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Enhancement of chondrogenesis of 
adipose-derived stem cells in HA-
PNIPAAm-CL hydrogel for cartilage 
regeneration in rabbits
Chau-Zen Wang1,2,3,11, Rajalakshmanan Eswaramoorthy2,12, Tzu-Hsiang Lin2,3,  
Chung-Hwan Chen2,4,8,9, Yin-Chih Fu2,4,5, Chih-Kuang Wang2,6, Shun-Cheng Wu2,  
Gwo-Jaw Wang2,7, Je-Ken Chang2,4,8,9 & Mei-Ling Ho1,2,3,10

Injectable thermoresponsive hydrogels have the advantages of effective cell delivery and minimal 
invasion for tissue engineering applications. In this study, we investigated the chondroinductive 
potential of newly developed hyaluronic acid (HA)-modified thermoresponsive poly(N-
isopropylacrylamide) (HA-PNIPAAm-CL) hydrogels on enhancing rabbit ADSC (rADSC) chondrogenesis 
in vitro and in the synovial cavity of rabbit. The HA-mixed PNIPAAm (HA-PNIPAAm-CP) and HA-cross-
linked PNIPAAm (HA-PNIPAAm-CL) were fabricated using physical interaction and chemical cross-
linking methods, respectively. The in vitro results showed that, compared to unmodified PNIPAAm, 
both HA-modified hydrogels significantly increased cell viability, chondrogenic marker gene (aggrecan 
and type II collagen) expression and sulfide glycosaminoglycan (sGAG) formation in embedded 
rADSCs. However, HA-PNIPAAm-CL showed the highest rADSC viability and chondrogenesis. The 
chondrogenic effects of HA-modified hydrogels on rADSCs were confirmed in vivo by the intraarticular 

injection of hydrogel-embedded rADSC constructs into rabbit synovial cavities for 3 weeks and tracing 
with CM-DiI labeling. Neocartilage formation in the hydrogels was determined by histomorphological 

staining of GAG and type II collagen. In vivo injected rADSC/HA-PNIPAAm-CL constructs showed more 
hyaline cartilage formation than that of rADSC/HA-PNIPAAm-CP and rADSC/PNIPAAm constructs 
in the synovial cavity of rabbit. These results suggest that the HA-PNIPAAm-CL provides a suitable 
microenvironment to enhance ADSC chondrogenesis for articular cartilage tissue engineering 
applications.

Articular cartilage lesions often result in progressive deterioration and eventual osteoarthritis1. The current 
clinical treatment strategies face difficulty in restoring the native structure of the cartilage2. Tissue engineer-
ing has been suggested to provide more advantages over the present clinical strategies3. Tissue engineering 
primarily consists of three major components: cells, biomaterials and environmental factors. Adipose-derived 
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stem cells (ADSCs) have been proposed as a potent stem cell source for articular cartilage tissue engineering 
because of their multi-lineage differentiation potential, ease of harvesting for autologous stem cell transplan-
tation and high proliferative rates for ex vivo expansion compared with bone marrow-derived stem cells4–6. 
Poly(N-isopropylacrylamide) (PNIPAAm) is a physically cross-linked thermoresponsive hydrogel that exhibits 
a lower critical solution temperature (LCST) of approximately 32 °C to 37 °C in aqueous solution; the hydrogel 
swells below the LCST and shrinks above the LCST in water7. The PNIPAAm hydrogel is a non-cytotoxic, injecta-
ble liquid biomaterial that easily carries cells, fills defects at room temperature and shifts to a solid phase at physi-
ological temperature7. Therefore, this hydrogel can be a suitable cell carrier for stem cell-based tissue engineering. 
However, PNIPAAm alone has no chondro-inductive effect on ADSCs in vitro. Recently, a novel approach that 
combines biopolymers with stimuli-responsive materials has emerged in tissue engineering to develop a “smart 
hydrogel”8,9. Among these hydrogels, thermoresponsive combined biopolymers, such as hyaluronan (HA), have 
received considerable interest because the resulting materials exhibit thermosensitive characteristics with neces-
sary biological properties, including good biocompatibility, biodegradability, and/or the differentiation induction 
of stem cells10. Although a range of PNIPAAm-grafted hydrogels has been reported11–15, the in vivo effect of these 
hydrogels on ADSCs was poorly evaluated. In this study, we developed a new two-step copolymerization method 
to synthesize the HA-PNIPAAm-CL and evaluated its chondroinductive property on rADSCs in vivo.

Among the biopolymers, HA is the key glycosaminoglycan in the mesenchyme during the early stage of 
chondrogenic differentiation5. Notably, HA holds key physiological roles in cartilage biomechanics and is ample 
in the synovial fluid. HA contributes to the high viscosity and lubricating properties of the synovial fluid. Our 
previous study showed that HA, as a microenvironmental factor, can both initiate and enhance cell aggrega-
tion and the chondrogenesis of ADSCs and subsequently facilitate hyaline cartilaginous matrix synthesis5. We 
therefore hypothesized that an HA-modified PNIPAAm hydrogel may improve the cell viability of ADSCs and 
enhance ADSC chondrogenesis for articular cartilage tissue engineering. In this study, we developed two bio-
materials, HA-PNIPAAm-CP and HA-PNIPAAm-CL, and investigated their efficacy on enhancing rADSC 
chondrogenesis for articular cartilage tissue engineering. The in vitro and in vivo effects of HA-PNIPAAm-CP 
and HA-PNIPAAm-CL on the viability of rADSCs, chondrogenic differentiation and hyaline cartilage matrix 
formation in rabbit knee synovial cavities through minimally invasive intraarticular injection methods were 
investigated.

Materials and Methods
Data availability statement. All materials, data and associated protocols are promptly available to readers 
without undue qualifications in material transfer agreements.

Materials. N-isopropyl acrylamide (NIPAM) was purchased from Sigma-Aldrich (St. Louis, MO). 
High-molecular-weight HA was procured from Kikkoman (Japan). Dulbecco’s Modified Eagle’s Medium 
(DMEM), Fetal bovine serum (FBS), and antibiotics were purchased from Gibco BRL (Gaithersburg, MD).

Isolation and culturing of rabbit adipose-derived stem cells (rADSCs). The rADSCs were isolated 
from 3-month-old New Zealand white rabbit (National Laboratory Center, Taipei, Taiwan) subcutaneous adi-
pose tissues following previously described methods5,16,17 with the approval of the Kaohsiung Medical University 
Animal Care and Use Committee, and all methods were performed in accordance with the relevant guidelines 
and regulations. Briefly, the isolated rADSCs were cultured and expanded at 37 °C under 5% CO2 in selective 
K-NAC medium which containing Keratinocyte-SFM (Gibco BRL, Rockville, MD), EGF-BPE (Gibco BRL, 
Rockville, MD), N-acetyl-L-cysteine, L-ascorbic acid 2-phosphate sequimagnesium salt (Sigma, St. Louis, MO) 
and 5% FBS. This medium can maintain the characterization of pluripotent stem cells and self-renewal properties 
of ADSCs5,16,17.

Fabrication of thermoresponsive HA-PNIPAAm hydrogels. To fabricate the PNIPAAm hydrogel, 
500 mg of NIPAM was dissolved in 10 mL of distilled water and purged with nitrogen for approximately 20 min at 
room temperature. Then, 100 µL of tetramethylethylenediamine (TEMED) and 100 µL of ammonium persulfate 
were added using a syringe. The polymerizing mixture was maintained below 0 °C overnight and wrapped with 
silver foil to protect it from light. This process was followed by a vigorous dialysis for three days to remove the 
unreacted starting materials. The samples were then lyophilized. The lyophilized PNIPAAm was stored at 4 °C 
until use.

To fabricate the HA-PNIPAAm-CP hydrogel, lyophilized PNIPAAm mixed with a 1:5 (PNIPAAm:HA) weight 
ratio of HA (molecular weight: 2 million Da) was dissolved in distilled water and then lyophilized. The lyophilized 
HA-PNIPAAm-CP was stored at 4 °C until use.

The fabrication of the HA-PNIPAAm-CL hydrogel (Fig. 1A) is a two-step process. The first step is the synthe-
sis of methacrylated hyaluronic acid (HA-MA) following a reported procedure18. The second step is the copoly-
merization of the synthesized HA-MA with NIPAM. Briefly, 500 mg of NIPAM was dissolved in 10 mLof distilled 
water, followed by the addition of a 1:5 (NIPAM: HA-MA) weight ratio of HA-MA. After being purged with 
nitrogen, 100 µL of TEMED and 100 µL of ammonium persulfate were added using a syringe. The polymerizing 
mixture was maintained below 0 °C overnight and wrapped with silver foil to protect the samples from light. The 
formed HA-PNIPAAm-CL was subjected to vigorous dialysis for 3 days to remove any unreacted starting mate-
rials, and the samples were then lyophilized. The lyophilized HA-PNIPAAm-CL was stored at 4 °C until use. The 
HA-PNIPAAm-CL has the same amount of HA as HA-PNIPAAm-CP after polymerization.

Fourier transform infrared (FTIR) analysis. Fourier transform infrared (FTIR) spectroscopic analysis 
was performed using the KBr pellet method on a Bio-Rad infrared spectrometer (model FTS-40, Cambridge, 
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MA). The expected pendant functionalities of a HA-PNIPAAm-CL hydrogel were confirmed by the FTIR 
spectrum.

SEM examination of the microstructure inside HA-PNIPAAm hydrogels. The morphological char-
acteristics of PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels were observed using scanning 
electron microscopy (SEM, JEOL, Tokyo, Japan) after gelation. The cross-sections of freeze-dried samples were 
coated with gold via a sputter-coater at ambient temperature. Micrographs of all scaffolds were taken at 100X.

Swelling ratio and shrinkage ratio (%) of HA-PNIPAAm hydrogels. Swelling/shrinkage studies 
were performed to calculate the water content (%) of the PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL 
hydrogel scaffolds, wherein 10 mg of freeze-dried hydrogels were placed in 200 µl of PBS at 37 °C. After 24 hours, 
these hydrogels were removed from the PBS, dabbed with a Kimwipe to remove any excess water on the surface, 
weighed and placed back into the buffer. The swelling ratio and shrinkage ratio (%) were calculated using the 
following equations. All experiments were performed 6 times14,19.

= − ×Swelling ratio (SR) ((W W )/W ) 100% (1)w 0 0

W0 and Ww are the initial dry weight and the wet weight, respectively.

= − ×Shrinkage Ratio ((W W )/W ) 100% (2)1 2 2

W1 is the weight of the liquid hydrogels (before gelling), and W2 is the weight of the solid hydrogels (after gelling).

In vitro cultured rADSCs in HA-PNIPAAm hydrogels. rADSCs/hydrogel constructs composed of rAD-
SCs and thermoresponsive hydrogels were prepared by suspending 1 × 106 cells/mL rADSCs in a 5% w/v PBS 
solution of PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels at 4 °C. A 200 µL aliquot of rADSCs/
hydrogel was added into each 24-well cell culture plate and maintained at 37 °C for 5 min to form the gel. After 
gelation, rADSC/hydrogel constructs were cultured with 1 ml of basal medium containing DMEM, 10% FBS 
(HyClone, Logan, UT), 1% nonessential amino acids and 100 U/ml penicillin/streptomycin (Gibco-BRL, Grand 
Island, NY), and the culture medium was changed.

Hydrogelation and in vitro degradation of HA-PNIPAAm hydrogels. For gelation time measure-
ments, three different concentrations (2%, 5% and 10% w/v) of HA-PNIPAAm hydrogels were taken for hydro-
gelation (in PBS), and the gelation was analyzed from 25 °C to 40 °C by increasing the temperature 1 °C/min. 
For the in vitro degradation analysis, 200 µL of 5% w/v PBS solution of PNIPAAm, HA-PNIPAAm-CP and 
HA-PNIPAAm-CL hydrogel were maintained at 37 °C for 5 min to form the gel. After gelation, to mimic the in 
vivo microenvironment, hydrogel constructs were incubated in 1 ml of PBS containing hyaluronidase (100 U/
mL)20. The samples were collected every 6 hours, and the weight loss of the hydrogels was estimated.

Detection the viability of rADSCs in hydrogels in vitro using live and dead staining and MTS 
viability assays. To evaluate the rADSC viability and cytotoxicity after culturing in 3D hydrogels in vitro, 
rADSC/hydrogel constructs cultured in basal medium for 1 and 5 days were assessed using a live and dead cyto-
toxicity kit (Molecular Probes, Eugene, OR) containing calcein-AM (live dye, green) and ethidium homodimer-1 
(dead dye, red). Briefly, rADSCs were isolated from the rADSC/hydrogel constructs by dissolving in PBS at 25 °C, 
and the cells were then collected through centrifugation. The collected cells were incubated in 1 ml of live- and 
dead-dye solution with 0.5 µL of calcein-AM and 2 µL of ethidium homodimer-1 in 1 ml of the standard medium 
for 30 min. Bright field and live/dead images of rADSC were taken using fluorescence microscopy (Eclipse 50i; 
Nikon Inc., MI, USA). For 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) viability assays 

Figure 1. (A) The fabrication of HA-PNIPAAm-CL hydrogels and (B) the Fourier transform infrared 
absorption spectra of HA, PNIPAAm, HA-MA and HA-PNIPAAm-CL to confirm the functional group changes 
and presences of HA and PNIPAAm in cross-linked HA-PNIPAAm-CL (arrow).
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(CellTiter 96® AQueous One Solution Cell Assay Promega, Madison, WI), rADSCs were isolated from the 
rADSC/hydrogel constructs by dissolving in PBS at 25 °C. The mitochondria activities of the rADSC cultured in 
hydrogels were detected by the conversion of MTS to formazan. The release of formazan product into the medium 
was directly proportional to the number of living cells in culture and was measured based on the absorbance at 
490 nm. At the indicated time interval, the MTS reaction mixture diluted in a standard medium at a 1:5 (MTS: 
medium) volume ratio was added to the wells containing the cell/hydrogel constructs and then incubated at 37 °C 
under 5% CO2. After 4 h incubation, 100 µL per well of the converted MTS medium was transferred to 96-well 
plates, and the absorbance was measured with a microplate reader (PathTech) at 490 nm using KC junior software.

Detecting the sGAG expression in rADSCs/hydrogel constructs in vitro by using Alcian blue 
staining and DMMB assay. Alcian blue staining was performed to detect cartilaginous matrix sulfated 
glycosaminoglycan (sGAG) production in the rADSC/hydrogel constructs. For Alcian blue staining, the rADSC/
hydrogel constructs were cultured in 24-well plates for 5 and 7 days in basal medium. After culturing for 5 and 7 
days, sGAG formation in the cultures was isolated from the rADSC/hydrogel constructs by dissolving in PBS at 
25 °C and then was collected through centrifugation. The collected sGAG was fixed using 4% paraformaldehyde 
and stained with 0.5% Alcian blue at pH 1.0 overnight. After being washed twice with double-distilled water, the 
sGAG was dyed blue. A dimethylmethylene blue (DMMB) assay21 was used to quantify the sGAG content with 
shark cartilage chondroitin sulfate (Sigma-Aldrich, St. Louis, MO) as the standard. At the indicated time interval, 
rADSC/hydrogel constructs were lyophilized for 24 h and then digested in a papain solution (125 µg/ml papain 
type III, 10 mM L-cysteine, 100 mM phosphate and 10 mM EDTA at pH 6.3) for 15 h at 60 °C. A Hoechst 33258 
assay22 was used to measure the DNA content with calf thymus DNA as the standard. The sGAG content was 
normalized by the DNA content.

Detecting the chondrogenic marker gene expression in rADSC/hydrogel constructs in vitro 
using quantitative real-time PCR assay. We investigated the chondrogenic effect of PNIPAAm, 
HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels on the mRNA expression of chondrogenic marker genes 
in rADSCs using a quantitative real-time PCR assay. The rADSC/hydrogel constructs were cultured in basal 
medium for 7 days. At the indicated time intervals, rADSCs were isolated from the rADSC/hydrogel constructs 
by dissolving the constructs in PBS at 25 °C, and then the cells were collected by centrifugation. Total RNA, 
isolated using the Trizol reagent, was reverse transcribed into cDNA using oligo (dT) primers and the Moloney 
murine leukemia virus reverse transcriptase. Quantitative real-time PCR reactions were performed in a 25-µl 
mixture containing cDNA, specific primers for each gene and iQTM SYBR Green Supermix using the Bio-Rad 
iQ5 real-time PCR detection system (Bio-Rad Laboratories, Inc., Hercules, CA). The specific PCR products 
were detected by the fluorescence of SYBR Green, a double-stranded DNA binding dye23. Dissociation (melting) 
curves were generated to check the specificity of each PCR reaction after the PCR reactions. The relative mRNA 
expression levels were calculated from the threshold cycle (Ct) value of each PCR product and normalized with 
that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using the comparative Ct method24. All experi-
ments were performed in triplicate and repeated at least three times. The primer sequences are shown in Table 1.

Animal model. Intraarticular injection of CM-DiI-labeled rADSC/hydrogel constructs into rabbit synovial 
cavities to evaluate rADSC chondrogenesis in vivo. Three-month-old New Zealand white rabbits were pur-
chased from the National Laboratory Center, and the in vivo experiments were performed with the approval of 
the Kaohsiung Medical University Animal Care and Use Committee. To in situ trace intraarticular implanted 
rADSCs, rADSCs were labeled with CellTracker CM-DiI (Molecular Probes, USA) prior to being seeded into 
the hydrogels. CM-DiI stock was produced at a 1 mg/ml concentration in ethanol. rADSCs were labeled using 
4 µL CM-DiI stock/mL of PBS for 15 min at 37 °C and at 4 °C for 15 min. After a PBS washing, CM-DiI-labeled 
rADSCs were encapsulated in PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels (rADSCs/
hydrogel constructs) by suspending 1 × 106 cells/mL CM-DiI labeled-rADSCs in a 5% w/v PBS solution of 
PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogel under 4 °C. Eighteen rabbits (2.5–3 kg) were 
randomly allocated into 3 groups (6 rabbits/group): (1) the PNIPAAm group, composed of rADSCs in PNIPAAm 
hydrogels; (2) the HA-PNIPAAm-CP group, composed of rADSCs in HA-PNIPAAm-CP hydrogels; and (3) the 
HA-PNIPAAm-CL group, composed of rADSCs in HA-PNIPAAm-CL hydrogels. The hair over the medial aspect 
of the knee was shaved and cleaned with a depilator. Next, 300 µl of CM-DiI-labeled-rADSC/hydrogel constructs 
in syringe were intraarticularly injected into the rabbit knee synovial cavity under anesthesia using an intra-
peritoneal injection of ketamine (Ketalar®, Parke-Davis, Taiwan) in combination with xylazine-hydrochloride 
(Rompun®, Bayer HealthCare, Germany). After 3 weeks post-implantation, rabbits were euthanized using CO2 
inhalation. Implanted rADSC/hydrogel constructs in rabbit knee joint cavity were harvested and fixed in 4% 

Gene PCR primers Sequence

Type II collagen (Rabbit)
F: 5′-GAC CCC ATG CAG TAC ATG CG-3′
R: 5′-AGC CGC CAT TGA TGG TCT CC-3′

Aggrecan (Rabbit)
F: 5′-GCT ACG GAG ACA AGG ATG AGT TC-3′
R: 5′-CGT AAA AGA CCT CAC CCT CCA T-3′

GAPDH (Rabbit)
F: 5′-TCA CCA TCT TCC AGG AGC GA-3′
R: 5′-CAC AAT GCC GAA GTG GTC GT-3′ (R)

Table 1. Sequences of primers used in the real-time PCR. Forward (F) and reverse (R) primers are shown.
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paraformaldehyde at 4 °C for 24 h. The chondrogenesis of the rADSC/hydrogel constructs were evaluated using 
a hematoxylin and eosin (H&E) stain, a Safranin-O fast green stain and an immunohistochemistry (IHC) stain. 
CM-DiI-labeled rADSCs in rADSC/hydrogel constructs were examined using a confocal microscope for in situ 
tracing intraarticular implanted rADSCs.

Hematoxylin and eosin (H&E), Safranin-O staining and immunohistochemistry (IHC) for histomorphometric anal-
ysis of neocartilage formation. After 3 weeks post-implantation, rADSC/hydrogel constructs in the rabbit syno-
vial cavity were harvested and evaluated histomorphometrically. All specimens were fixed and paraffin-embedded 
as described previously25. The 5-µm-thick sections were stained with H&E (Santa Cruz, Santa Cruz, CA, USA). 
Safranin-O and fast green staining were used to evaluate the sGAG production in rADSC/hydrogel constructs in 
vivo. To evaluate sGAG production, the 5-µm-thick sections of the rADSC/hydrogel constructs harvested from 
rabbit knee were stained with 1% Safranin-O and counterstained with 1% fast green (Sigma, Saint Louis, MO, 
USA). Sections were then counterstained with 0.75% hematoxylin. IHC was performed using the ImmunoCruz 
Staining System (Santa Cruz Biotechnology, Inc. Dallas, Texas). Sections of rADSC/hydrogel constructs were 
incubated in 0.1% EDTA for 10 min at 100 °C for antigen retrieval25,26. After incubating with 5% BSA/PBS (Sigma, 
Saint Louis, MO, USA) blocking solution for 2 hr at room temperature, sections were labeled with rabbit-specific 
anti-type II collagen antibody (dilution 1:50; Chemicon, Temecula, CA) overnight at 4 °C in a humid chamber. 
After washing with PBS, sections were incubated with a biotinylated secondary antibody (Dako, Carpinteria, CA) 
for 1 hr and then incubated with horseradish peroxidase-conjugated streptavidin (Dako, Carpinteria, CA) for 1 hr. 
The reaction was developed using a 3,3′-diaminobenzidine solution containing 0.01% hydrogen peroxide, result-
ing in a brown color25. Sections were then counterstained with hematoxylin. Images at 10x, 100x and 400x were 
taken using a microscope equipped with a digital CCD camera (Eclipse 50i; Nikon Inc., MI, USA). For quantifi-
cation, the sections of Safranin-O staining and type II collagen staining were scanned with a TissueFAXS micro-
scope (TissueGnostics GmbH, Vienna, Austria), and followed by analyzed with the analysis software TissueQuest 
(TissueGnostics).

Statistical analysis. All values are expressed as the mean ±  standard error of the mean (SEM) of at least 
three independent experiments. A one-way ANOVA (analysis of variance) was used to test for significant dif-
ferences, and multiple comparisons were performed using Scheffe’s method. Statistical significance was set at 
p < 0.05.

Results
Characterization of HA-cross-linked PNIPAAm (HA-PNIPAAm-CL) by FTIR spectrometric 
analysis. The chemically cross-linked HA-PNIPAAm-CL was synthesized by the copolymerization method 
(Fig. 1A). The formation of HA-PNIPAAm-CL was confirmed by an FTIR spectrometric analysis (Fig. 1B). 
The FTIR spectrum of uncross-linked PNIPAAm and HA showed the characteristic peaks at 1652 cm−1 (A), 
1540 cm−1 (B), 1401 cm−1 (C) for PNIPAAm and 1037 cm−1 (D) for HA correspond to the reactive amide and 
carboxyl groups. The FTIR spectrum of the HA-MA monomer showed characteristic peaks at 1718 cm−1 (E) 
and 1408 cm−1 attributed to the acrylate and carboxylate groups, respectively. The characteristic peaks for mon-
omers, acrylate group (1718 cm−1), and carboxylate (1401 cm−1) disappeared after the successful synthesis of 
HA-PNIPAAm-CL. Additionally, the FTIR spectrum of HA-PNIPAAm-CL showed distinct absorptions for both 
HA and PNIPAAm at 1037, 1652, and 1540 cm−1, corresponding to hydroxyl, carbonyl and the stretching of 
amide groups, respectively (Fig. 1B; arrow). Increased peak intensity was observed in the synthesized polymeric 
HA-PNIPAAm-CL for the carbonyl groups in comparison to that of HA and HA-MA. The peak at 2854 cm−1 
corresponds to an amide with C=O stretching, and the peak at 1619 cm−1 accounts for a C-O with C=O combi-
nation (Fig. 1B).

Physicochemical and morphological properties of PNIPAAm, HA-PNIPAAm-CP and 
HA-PNIPAAm-CL hydrogels. The hydrogelation of aqueous solutions of PNIPAAm, HA-PNIPAAm-CP 
and HA-PNIPAAm-CL hydrogels were measured by incubating three different concentrations (2, 5, and 10% 
w/v) in a water bath by increasing temperature 1 °C/min. The hydrogelation analysis showed that all hydro-
gels exhibit sol-to-gel phase transitions between 32 and 36 °C. The injectable 5% concentration of PNIPAAm, 
HA-PNIPAAm-CP and HA-PNIPAAm-CL gels showed stable hydrogel formation at 34 °C, 35 °C and 35 °C, 
respectively. Ten percent HA-PNIPAAm gels HA-PNIPAAm-CP and HA-PNIPAAm-CL showed sol-to-gel phase 
transitions at 32 °C and 33 °C, respectively and were difficult to inject. Therefore, the 5% gels were chosen for 
in vitro and in vivo experiments. The gelation time analysis showed that all hydrogels exhibit sol-to-gel phase 
transitions within 1 min at physiological temperature (37 °C) (Fig. 2A), suggesting that both the HA-modified 
PNIPAAm hydrogels did not have a substantial influence on the gelation property compared with PNIPAAm. 
Cross-sectional SEM images were obtained to characterize the microstructure morphologies of freeze-dried 
PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels (Fig. 2B). The SEM images of the PNIPAAm 
and HA-PNIPAAm hydrogels showed a continuous and honeycomb-like porous structure with pore diameters 
in the range of 50–300 µm. Figure 2C shows that the swelling ratio of both freeze-dried HA-modified PNIPAAm 
hydrogels HA-PNIPAAm-CP (23.03 ± 2.15%) and HA-PNIPAAm-CL (18.43 ± 2.05%) hydrogels determined in 
PBS was significantly higher than that of PNIPAAm (11.88 ± 1.52%) hydrogels. However, the shrinkage ratio of 
HA-PNIPAAm-CP (31.00 ± 0.07%) and HA-PNIPAAm-CL (44 ± 0.03%) hydrogels was significantly lower than 
that of PNIPAAm (61.00 ± 0.02%) hydrogels (Fig. 2D). The in vitro degradation analysis showed that the degra-
dation time for the HA-PNIPAAm-CP and HA-PNIPAAm-CL was approximately 48–72 hours at 37 °C (Fig. 2E).
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HA-modified PNIPAAm hydrogels enhanced biocompatibility and cell viability of rADSCs. The 
live and dead staining and MTS assay were used to test the biocompatibility of PNIPAAm, HA-PNIPAAm-CP 
and HA-PNIPAAm-CL hydrogels. The live and dead staining images showed that higher numbers of encap-
sulated viable rADSCs were observed in both HA-modified PNIPAAm hydrogels than that for rADSCs cul-
tured in PNIPAAm hydrogels at days 1 and 5 (Fig. 3A). Few dead cells were stained in all hydrogels at day 1. 
However, higher dead cell staining was observed in PNIPAAm hydrogels than that of HA-PNIPAAm-CP and 
HA-PNIPAAm-CL hydrogels at day 5; the lowest dead cell staining was displayed in HA-PNIPAAm-CL hydro-
gels (Fig. 3A). Cell aggregation is a critical step for initializing the process of chondrogenesis27. In Fig. 3A, the 
bright field and live staining images showed obviously aggregated cell nodules in both HA-PNIPAAm-CP and 

Figure 2. Detection of the physicochemical and morphological properties of PNIPAAm, HA-PNIPAAm-CP 
and HA-PNIPAAm-CL hydrogels using (A) LCST analysis, (B) SEM analysis, (C) a swelling test, (D) a 
shrinking test, and (E) in vitro degradation. (*) and (**) indicate p < 0.05 and p < 0.01, respectively, in 
comparison with the PNIPAAm group.
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HA-PNIPAAm-CL compared to those for rADSCs cultured in PNIPAAm hydrogels at days 1 and 5. The MTS 
results confirmed that the cell viability significantly increased in HA-PNIPAAm-CP and HA-PNIPAAm-CL 
hydrogels at day 5, with the highest cell viability in HA-PNIPAAm-CL hydrogels (Fig. 3B).

Enhancement the chondrogenic marker gene expression in rADSC-cultured HA-modified 
PNIPAAm hydrogels in vitro. To investigate the chondro-inductive effect of HA-modified PNIPAAm 
hydrogels on rADSCs, quantitative real-time PCR analysis was used to measure the mRNA expression of chon-
drogenic marker genes, type II collagen and aggrecan, in rADSCs cultured in hydrogels for 7 days (Fig. 4). 
Figure 4A shows that the mRNA expression of type II collagen in rADSCs cultured HA-PNIPAAm-CP and 
HA-PNIPAAm-CL hydrogels increased significantly after 5 and 7 days of culturing in basal medium compared 
to that for rADSCs cultured in PNIPAAm hydrogels. Figure 4B shows that the mRNA expression of aggrecan 
in rADSCs cultured in HA-PNIPAAm-CP (at days 5 and 7) and HA-PNIPAAm-CL hydrogels (at days 3, 5 and 
7) increased significantly when compared to that for rADSCs cultured in PNIPAAm hydrogels. Furthermore, 
the rADSCs cultured in HA-PNIPAAm-CL hydrogels showed the highest mRNA expression of type II collagen 
(Fig. 4A) and aggrecan (Fig. 4B) compared to that for the rADSCs cultured in HA-PNIPAAm-CP and PNIPAAm 
hydrogels at days 3, 5 and 7.

Enhancement the cartilaginous matrix of sGAG production in rADSC-cultured HA-modified 
PNIPAAm hydrogels in vitro. The cartilaginous matrix of sGAG synthesis in the rADSC/hydrogel con-
structs was detected using Alcian blue staining (Fig. 5A) and quantified using DMMB assays (Fig. 5B). The Alcian 
blue staining results showed that higher sGAG staining and cell aggregation were observed in both HA-modified 
PNIPAAm hydrogel groups than that in the PNIPAAm hydrogel group at days 5 and 7 (Fig. 5A). The number 
of cells in the rADSC/hydrogel constructs was quantified by total DNA content (Fig. 5B). The DMMB assay 
showed that, at days 5 and 7, both the total amount of sGAG (Fig. 5C) and the average amount of sGAG per cell 
(sGAG/DNA, Fig. 5D) were significantly higher for cells cultured in both HA-modified PNIPAAm hydrogels (the 
highest sGAG content was in HA-PNIPAAm-CL hydrogels) than those for the cells cultured with the PNIPAAm 
hydrogels.

Using rabbit model for in vivo evaluation of the enhancement of the neocartilage matrix for-
mation of sGAG and type II collagen in rADSC/HA- PNIPAAm-CL constructs. To investigate the 
chondroinductive effect of HA-modified PNIPAAm hydrogels on the induction of rADSC chondrogenesis in 

Figure 3. HA-modified PNIPAAm hydrogels enhanced the cytocompatibility and cell viability of rADSCs. 
Detection the cell survival of rADSCs encapsulated in PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL 
hydrogels at days 1 and 5 using (A) live and dead staining and (B) an MTS assay. Magnification: 200 X. Green: 
Calcein-AM. Red: EthD-1. Scale bar: 100 µm. (*) and (**) indicate p < 0.05 and p < 0.01, respectively, in 
comparison with the PNIPAAm group. (##) indicates p < 0.01 in comparison with the HA-PNIPAAm-CP group.
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Figure 4. Detection the chondrogenic markers gene expression of (A) type II collagen and (B) aggrecan in 
rADSCs cultured in PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels for 1, 3, 5 and 7 days. 
The mRNA expression level of collagen type II and aggrecan in rADSCs cultured in HA-modified hydrogels is 
expressed and normalized relative to the rADSCs cultured in PNIPAAm hydrogels, which is defined as 1. The 
values are the mean ± SEM (n = 3). (*) and (**) indicate p < 0.05 and p < 0.01, respectively, in comparison with 
the PNIPAAm group. (#) indicates p < 0.05 in comparison with the HA-PNIPAAm-CP group.

Figure 5. Enhancement the cell aggregation and cartilaginous matrix sGAG formation in rADSC cultured HA-
modified PNIPAAm hydrogels in vitro at days 5 and 7. (A) Alcian blue staining for glycosaminoglycans (sGAG). 
Magnification: 400 X. Scale bar: 100 µm. (B) Quantification analysis of sGAG formation by using the DMMB 
assay. (*) and (**) indicate p < 0.05 and p < 0.01, respectively, in comparison with the PNIPAAm group. (#) and 
(##) indicate p < 0.05 and p < 0.01, respectively, in comparison with the HA-PNIPAAm-CP group.
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vivo, the rADSC/hydrogel constructs were intraarticularly injected into rabbit knee synovial cavities for 3 weeks 
(Fig. 6A). Injected rADSC/hydrogel constructs were gelled and formed spheroid tissue-like structures in the 
synovial cavities for 3 weeks (Fig. 6A) without any observed inflammation or changes in the cartilage. H&E 
staining of injected rADSC/hydrogel constructs (Fig. 6B) showed that tissue-like structures were observed only 
in the periphery of the rADSC/hydrogel constructs with the central degradation of hydrogel in the PNIPAAm 
and HA-PNIPAAm-CP groups. In contrast, the tissue-like structure was filled in rADSC/hydrogel constructs in 
HA-PNIPAAm-CL group (Fig. 6B). We tracked the implanted rADSCs in rADSC/hydrogel constructs by using 
CM-DiI labeling. As showed in Fig. 6C, micrographic images under confocal microscope showed the presence of 
implanted CM-DiI-labeled rADSCs after 3 weeks in all three groups (Fig. 6C).

Consistent with the histological results in Fig. 6B, Safranin-O staining results showed obvious deposition of 
sGAG in HA-PNIPAAm-CL-encapsulated rADSCs after 3 weeks of implantation (Fig. 6D). In comparison to 
the PNIPAAm group, sGAG deposition in HA-PNIPAAm-CL and HA-PNIPAAm-CP groups was significantly 
increased at 3 weeks (Fig. 6F). Moreover, the sGAG deposition was filled in the HA-PNIPAAm-CL constructs, 
whereas the sGAG deposition was observed only in the periphery of HA-PNIPAAm-CP constructs with no sGAG 
deposition in the central degradation of the hydrogel (Fig. 6D). Consistent with Fig. 6D, the quantification results 
of Safranin-O staining (Fig. 6F) showed that HA-PNIPAAm-CL constructs had the highest sGAG deposition. 
Figure 6E shows the type II collagen staining of injected rADSC/hydrogel constructs from the synovial cavity 
of rabbits at week 3. The HA-PNIPAAm-CL and HA-PNIPAAm-CP groups showed significantly higher type II 
collagen staining than the PNIPAAm group did at week 3 (Fig. 6E,G). The type II collagen deposition was filled in 
the HA-PNIPAAm-CL constructs, whereas the type II collagen deposition was observed mostly in the periphery 
of HA-PNIPAAm-CP constructs with little type II collagen depositions in the central degradation of hydrogels. 
The highest type II collagen deposition was found in the HA-PNIPAAm-CL constructs (Fig. 6G) These results 
indicated that HA-PNIPAAm-CL provides a suitable microenvironment to induce chondrogenesis in rADSCs.

Discussion
Hyaluronic acid is a major glycosaminoglycan and native to cartilage tissue5. We previously showed that 
the HA microenvironment enhanced chondrogenesis in ADSCs5,28. Additionally, we found that the HA 
microenvironment induces chondrogenesis in hADSCs mainly through CD44 mediation28. In this study, 
we developed a two-step copolymerization method to synthesize and showed the chondroinductive prop-
erty of HA-PNIPAAm-CL on rADSCs in vitro and in vivo of rabbit synovial cavity. Although a range of 
PNIPAAm-grafted hydrogels has been reported11–13, the in vivo effect of these hydrogels on ADSCs was not well 
evaluated. In this study, we demonstrated that HA-PNIPAAm-CL provides a suitable microenvironment to sup-
port the injected ADSCs in the rabbit synovial cavity successfully after 3 weeks. The in vivo results were consistent 
with our findings in vitro that HA-PNIPAAm-CL enhanced rADSC chondrogenesis by promoting the expres-
sion of chondrogenic marker genes (type II collagen and aggrecan) and increased cartilaginous matrix synthesis 
(sGAG and type II collagen) in vivo in rabbit synovial cavity. In addition, our study demonstrated that the syno-
vial cavity injection model of rabbit provides an easy and effective way to evaluate the chondroinductive property 
of hydrogels on ADSCs in vivo, which can be used to screen the feasible candidate of chondroinductive hydrogels 
of ADSCs before testing on high-cost and time-consuming large animals.

The physical properties of the hydrogels are crucial for tissue engineering applications such as the substitu-
tion degree of methacrylated HA, degradation time and swelling/shrinkage ratio. We conducted the 1H-NMR 
analysis to confirm and measure the degree of methacrylated HA as reported previously7. The 1H-NMR analysis 
for the methacrylate groups confirmed that the substitution degree of methacrylated HA is ~30 mol%. To inves-
tigate whether HA-PNIPAAm-CP and HA-PNIPAAm-CL were biodegradable in vitro, we tested the degradation 
time using hyaluronidase at 37 °C. The in vitro degradation analysis showed that the degradation time for the 
HA-PNIPAAm-CP and HA-PNIPAAm-CL was 48–72 hours at 37 °C, which indicated that the HA-PNIPAAm-CP 
and HA-PNIPAAm-CL were biodegradable hydrogels. Since PNIPAAm is a hydrophobic polymer with high 
molecular interactions, such as hydrogen bonds and hydrophobic effects10, the incorporation of hydrophilic HA 
may reduce the number of hydrophobic groups and increase the hydrophilicity of the HA-PNIPAAm-CP and 
HA-PNIPAAm-CL hydrogels, which enhanced the swelling ratio and reduced the shrinkage ratio. Additionally, 
the mixing or chemical crosslinking did not affect the hydrogenation temperature of the PNIPAAm hydrogels. 
After gelation, PNIPAAm hydrogel shrank to a smaller size, which is not suitable for the exchange of oxygen 
and signaling factors in the microenvironment. To maintain the microenvironment of the stem cells within the 
hydrogel, the swelling ratio should be higher than that for the PNIPAAm group after gelation to facilitate the 
exchange of oxygen and signaling factors in synovial fluid, and the shrinkage ratio should be lower than that for 
the PNIPAAm group after gelation29. In this study, both HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels 
showed a higher swelling ratio and lower shrinkage ratio than that for the PNIPAAm hydrogels (control group), 
which may facilitate the exchange of materials in the synovial cavity.

When attempting to fabricate the cross-linked PNIPAAm thermoresponsive hydrogel, the newly developed 
hydrogels should have an LCST within the physiological range14,19. Additionally, the gelation time plays an impor-
tant role in the in vivo implantation. Delaying the gelation time may affect the homing of endogenous stem/
progenitor cells and filling of the hydrogel at the target/defect site. The blood flow and local fluid at the target/
defect site may dilute the implantation materials and affect the gelation property. In this study, the LCST analysis 
result demonstrated that the gelation times for HA-PNIPAAm-CP and HA-PNIPAAm-CL are within 1 min at 
the physiological range (37 °C). In addition, the neocartilage formation of hydrogels in vivo was comparable to 
that of the in vitro results; therefore, the gelation property and structural changes of hydrogels after intraarticular 
injection might be similar to that of in vitro evaluation. The reason that the different results of the degradation rate 
from in vitro and in vivo studies may be due to the mechanical force during the joint movement in vivo study. The 
compression and shearing forces during joint movement may cause more fluid influx and efflux into the hydrogel 
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construct, which may cause a more rapid loss of HA mixed in HA-PNIPAAm-CP than that of HA cross-linked 
in HA-PNIPAAm-CL.

In this study, the histological results in the HA-PNIPAAm-CL groups showed that the cartilaginous tissue 
structure was observed in the whole implant, while that was only observed in the periphery of the PNIPAAm 

Figure 6. Using a rabbit model to evaluate the enhancement of the neocartilage formation in rADSCs/HA-
PNIPAAm-CL constructs in vivo. (A) Schematic diagram depicting the procedure of intraarticular injection of 
the rADSC/hydrogel constructs into rabbit knee synovial cavities. Injected rADSC/hydrogel constructs were 
harvested from rabbit synovial cavities after 3 weeks and then evaluated using (B) H&E staining, (C) confocal 
microscopy for images of bright fields and CM-DiI-labeled rADSCs (red, arrows), (D) Safranin-O fast green 
staining to detect the deposition of sGAG (arrows), and (E) IHC staining for detection the type II collagen 
formation (brown). Bar: 50 µm. Magnification: 10X (Scale bar: 1 mm), 100X (Scale bar: 100 µm) and 400X (Scale 
bar: 25 µm). Quantification analysis of safranin-O staining (F) and type II collagen staining (G) normalized 
relative to the PNIPAAm group, which is defined as 1. (**) and (***) indicate p < 0.01 and p < 0.005, 
respectively, in comparison with the PNIPAAm group.
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and HA-PNIPAAm-CP groups with the central degradation of hydrogel (Fig. 6B). We therefore proposed that 
the HA conjugated in the HA-PNIPAAm-CL may maintain in the hydrogel scaffold and provide a proper HA 
microenvironment for the chondrogenesis of ADSCs, whereas the HA mixed in the HA-PNIPAAm-CP can easily 
be dissolved out from the hydrogel due to mechanical loading in the synovial cavity, the high water solubility of 
HA and the simplicity of the preparation method (lyophilization of HA/PNIPAAm water solution). The carti-
lage formation ability of PNIPAAm and HA-PNIPAAm-CP groups is weak; they cannot provide a suitable 3-D 
microenvironment for cell survival and hold the cells for enough time to differentiate and form a cartilage matrix. 
The tissue-like structure formed at the periphery by receiving more oxygen and signal factors from the synovial 
fluid but not in the center of constructs. Therefore, the hydrogel in the center of the constructs in the PNIPAAm 
and HA-PNIPAAm-CP groups eventually degraded. In contrast, the HA-PNIPAAm-CL group has better chon-
drogenesis ability in that the neoformed cartilaginous matrix replaces the hydrogel both in the center and at 
periphery of the construct; therefore, no degradation was observed in the center of the construct.

The in vivo experiment of injection the rADSC/hydrogel construct in a rabbit synovial cavity is to primarily 
test the efficacy of cartilage formation of the construct in the synovial cavity environment, the articular cartilage’s 
natural environment. In addition, the animal model used in this study is to screen the feasible candidate products 
of hydrogels before testing on high-cost and time-consuming large animals. In this study, although it is difficult 
to collect the microscale cell/hydrogel constructs and rabbit synovial fluid to quantitatively evaluate the neo-
cartilage formation and remaining HA content with time after the in vivo application to explain the superiority 
of HA-PNIPAAm-CL over HA-PNIPAAm-CP in vivo, our results support this and showed that the rADSCs/
HA-PNIPAAm-CL group exhibited the greatest chondrogenic differentiation of ADSCs over that of the rADSCs/
PNIPAAm and rADSCs/HA-PNIPAAm-CP groups in vivo after 3 weeks.

In stem cell therapy, regenerating articular cartilage defects and maintaining the repaired cartilage for a long 
time is still an unsolved problem. The survival of the transplanted/injected cells at the site of tissue damage is para-
mount for successful regeneration30,31. In this study, the PNIPAAm and the HA-PNIPAAm-CP groups show more 
dead cells after 5 days of culture in 3D hydrogel constructs. We proposed that the dead cells in the PNIPAAm and 
HA-PNIPAAm-CP groups may be due to their 3-D microenvironment, which cannot provide a suitable niche 
for cell survival for 5 days in basal medium. Recent reports on animal models and humans suggest that only a 
small percentage of stem cells remain a week after transplantation31. Herein, we developed an in vivo model that 
contains the exact hypoxic and physiological degradation enzymes of a chondro-specific microenvironment by in 
situ injection of rADSC/hydrogel constructs into the rabbit knee joint cavity to evaluate the chondrogenic effect 
of injectable HA-PNIPAAm-CL and rADSC/HA-PNIPAAm-CP hydrogels. In the present study, the cell tracking 
images of the rADSC/HA-PNIPAAm-CL hydrogel demonstrated the presence of injected rADSCs after 3 weeks 
of implantation, which suggest that HA-PNIPAAm-CL hydrogel may provide a biocompatible microenvironment 
to facilitate the survival of transplanted/injected ADSCs in vivo. However, further in vivo studies are required to 
determine whether this HA-PNIPAAm-CL hydrogel combined with rADSCs is beneficial for long-term articular 
cartilage regeneration in a focal defect.

In conclusion, in this study, we developed a two-step copolymerization method to synthesize 
HA-PNIPAAm-CL with gelation occurring under physiological temperature to create biodegradable hydrogels. 
We demonstrated that HA-PNIPAAm-CL enhanced rADSC chondrogenesis by promoting the expression of 
neoformed cartilaginous matrix synthesis of sGAG and type II collagen in vivo in a rabbit synovial cavity. Most 
importantly, the neoformed cartilaginous tissue of the HA-PNIPAAm-CL/rADSC constructs sustained in a rabbit 
joint cavity for 3 weeks. These results indicate that the injectable HA-PNIPAAm-CL hydrogel has high potential 
as an ADSC delivery biomaterial with the beneficial properties of enhancing the cytocompatibility and chondro-
genesis of ADSCs to facilitate neocartilage formation in situ by providing a chondroinducive microenvironment 
for the ADSC-based tissue engineering of articular cartilage.

References
 1. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. 

Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society 10, 432–463, https://doi.org/10.1053/joca.2002.0801 (2002).
 2. Mollon, B., Kandel, R., Chahal, J. & Theodoropoulos, J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis 

and cartilage/OARS, Osteoarthritis Research Society 21, 1824–1833, https://doi.org/10.1016/j.joca.2013.08.024 (2013).
 3. Hettrich, C. M., Crawford, D. & Rodeo, S. A. Cartilage repair: third-generation cell-based technologies–basic science, surgical 

techniques, clinical outcomes. Sports medicine and arthroscopy review 16, 230–235, https://doi.org/10.1097/JSA.0b013e31818cdc98 
(2008).

 4. Strem, B. M. et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54, 132–141 (2005).
 5. Wu, S. C., Chang, J. K., Wang, C. K., Wang, G. J. & Ho, M. L. Enhancement of chondrogenesis of human adipose derived stem cells 

in a hyaluronan-enriched microenvironment. Biomaterials 31, 631–640, https://doi.org/10.1016/j.biomaterials.2009.09.089 (2010).
 6. Taha, M. F. & Hedayati, V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. 

Tissue Cell 42, 211–216, https://doi.org/10.1016/j.tice.2010.04.003 (2010).
 7. Cui, Z., Lee, B. H., Pauken, C. & Vernon, B. L. Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, 

injectable, and bioresorbable polymer hydrogels. Journal of biomedical materials research. Part A 98, 159–166, https://doi.
org/10.1002/jbm.a.33093 (2011).

 8. Gonzalez-Alvarez, M., Gonzalez-Alvarez, I. & Bermejo, M. Hydrogels: an interesting strategy for smart drug delivery. Therapeutic 
delivery 4, 157–160, https://doi.org/10.4155/tde.12.142 (2013).

 9. Park, S. Y. et al. Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng 
Part A 16, 1271–1279, https://doi.org/10.1089/ten.TEA.2009.0328 (2010).

 10. Amini, A. A. & Nair, L. S. Injectable hydrogels for bone and cartilage repair. Biomedical materials 7, 024105, https://doi.
org/10.1088/1748-6041/7/2/024105 (2012).

 11. Peroglio, M. et al. Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. European spine 
journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the 
Cervical Spine Research Society 21(Suppl 6), S839–849, https://doi.org/10.1007/s00586-011-1976-2 (2012).

http://dx.doi.org/10.1053/joca.2002.0801
http://dx.doi.org/10.1016/j.joca.2013.08.024
http://dx.doi.org/10.1097/JSA.0b013e31818cdc98
http://dx.doi.org/10.1016/j.biomaterials.2009.09.089
http://dx.doi.org/10.1016/j.tice.2010.04.003
http://dx.doi.org/10.1002/jbm.a.33093
http://dx.doi.org/10.1002/jbm.a.33093
http://dx.doi.org/10.4155/tde.12.142
http://dx.doi.org/10.1089/ten.TEA.2009.0328
http://dx.doi.org/10.1088/1748-6041/7/2/024105
http://dx.doi.org/10.1088/1748-6041/7/2/024105
http://dx.doi.org/10.1007/s00586-011-1976-2


www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |  (2018) 8:10526  | DOI:10.1038/s41598-018-28893-x

 12. Collin, E. C. et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials 32, 2862–2870, https://doi.
org/10.1016/j.biomaterials.2011.01.018 (2011).

 13. Ohya, S. & Matsuda, T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial 
extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. Journal of biomaterials science. Polymer 
edition 16, 809–827 (2005).

 14. Tan, H., Chu, C. R., Payne, K. A. & Marra, K. G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels 
for cartilage tissue engineering. Biomaterials 30, 2499–2506, https://doi.org/10.1016/j.biomaterials.2008.12.080 (2009).

 15. Chen, J. P., Leu, Y. L., Fang, C. L., Chen, C. H. & Fang, J. Y. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as 
carriers for the intravesical administration of cisplatin. J Pharm Sci 100, 655–666, https://doi.org/10.1002/jps.22309 (2011).

 16. Wang, C. Z. et al. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. 
Biomaterials 31, 8674–8683, https://doi.org/10.1016/j.biomaterials.2010.07.096 (2010).

 17. Chen, H. T. et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly 
patients with osteoporotic fractures. J Cell Mol Med 16, 582–593, https://doi.org/10.1111/j.1582-4934.2011.01335.x (2012).

 18. Hahn, S. K., Park, J. K., Tomimatsu, T. & Shimoboji, T. Synthesis and degradation test of hyaluronic acid hydrogels. Int J Biol 
Macromol 40, 374–380, https://doi.org/10.1016/j.ijbiomac.2006.09.019 (2007).

 19. Tan, H. et al. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30, 6844–6853, 
https://doi.org/10.1016/j.biomaterials.2009.08.058 (2009).

 20. Segura, T. et al. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26, 359–371, https://doi.
org/10.1016/j.biomaterials.2004.02.067 (2005).

 21. Taylor, K. B. & Jeffree, G. M. A new basic metachromatic dye, I:9-dimethyl methylene blue. Histochem J 1, 199–204 (1969).
 22. Lipman, J. M. Fluorophotometric quantitation of DNA in articular cartilage utilizing Hoechst 33258. Anal Biochem 176, 128–131, 

doi:0003-2697(89)90282-0 (1989).
 23. Morrison, T. B., Weis, J. J. & Wittwer, C. T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during 

amplification. Biotechniques 24, 954–958, 960, 962 (1998).
 24. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta 

C(T)) Method. Methods 25, 402–408, https://doi.org/10.1006/meth.2001.1262 (2001).
 25. Ho, M. L. et al. Simvastatin increases osteoblasts and osteogenic proteins in ovariectomized rats. Eur J Clin Invest 39, 296–303, 

https://doi.org/10.1111/j.1365-2362.2009.02092.x (2009).
 26. Wang, C. K. et al. Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone. Biomaterials 30, 4178–4186, 

https://doi.org/10.1016/j.biomaterials.2009.04.029 (2009).
 27. Thorogood, P. V. & Hinchliffe, J. R. An analysis of the condensation process during chondrogenesis in the embryonic chick hind 

limb. J Embryol Exp Morphol 33, 581–606 (1975).
 28. Wu, S. C. et al. Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose-derived stem cells. J Appl Physiol 114, 

1610–1618, https://doi.org/10.1152/japplphysiol.01132.2012 (2013).
 29. Jin, R. et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30, 2544–2551, https://doi.

org/10.1016/j.biomaterials.2009.01.020 (2009).
 30. Chen, F. M., Wu, L. A., Zhang, M., Zhang, R. & Sun, H. H. Homing of endogenous stem/progenitor cells for in situ tissue 

regeneration: Promises, strategies, and translational perspectives. Biomaterials 32, 3189–3209, https://doi.org/10.1016/j.
biomaterials.2010.12.032 (2011).

 31. Kavanagh, D. P. & Kalia, N. Hematopoietic stem cell homing to injured tissues. Stem cell reviews 7, 672–682, https://doi.org/10.1007/
s12015-011-9240-z (2011).

Acknowledgements
The authors acknowledge the grant support for this study provided by the National Science Council (MOST 
105-2320-B-037-017-MY3), the Ministry of Economic Affairs (100-EC-17-A-17-S1-041), Kaohsiung Medical 
University Hospital (KMUH101-1I01 and KMUH101-1R38) and Kaohsiung Medical University (KMU-
M110006). This study is also supported partially by the Kaohsiung Medical University “Aim for the Top 
Universities Grants”, grant No. KMU-TP103B00, KMU-TP103B02, and KMU-TP103B09.

Author Contributions
Study conception and design: Chau-Zen Wang, Je-Ken Chang and Mei-Ling Ho. Acquisition of data: Chau-
Zen Wang, Rajalakshmanan Eswaramoorthy,and Tzu-Hsiang Lin. Analysis and interpretation of data: Chau-
Zen Wang, Rajalakshmanan Eswaramoorthy, Tzu-Hsiang Lin, Chung-Hwan Chen, Yin-Chih Fu, Chih-Kuang 
Wang; Shun-Cheng Wu, Gwo-Jaw Wang, Ken Chang and Mei-Ling Ho. Drafting of manuscript: Chau-Zen 
Wang, Rajalakshmanan Eswaramoorthy and Mei-Ling Ho. Critical revision: Chau-Zen Wang, Rajalakshmanan 
Eswaramoorthy, Je-Ken Chang and Mei-Ling Ho.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1016/j.biomaterials.2011.01.018
http://dx.doi.org/10.1016/j.biomaterials.2011.01.018
http://dx.doi.org/10.1016/j.biomaterials.2008.12.080
http://dx.doi.org/10.1002/jps.22309
http://dx.doi.org/10.1016/j.biomaterials.2010.07.096
http://dx.doi.org/10.1111/j.1582-4934.2011.01335.x
http://dx.doi.org/10.1016/j.ijbiomac.2006.09.019
http://dx.doi.org/10.1016/j.biomaterials.2009.08.058
http://dx.doi.org/10.1016/j.biomaterials.2004.02.067
http://dx.doi.org/10.1016/j.biomaterials.2004.02.067
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1111/j.1365-2362.2009.02092.x
http://dx.doi.org/10.1016/j.biomaterials.2009.04.029
http://dx.doi.org/10.1152/japplphysiol.01132.2012
http://dx.doi.org/10.1016/j.biomaterials.2009.01.020
http://dx.doi.org/10.1016/j.biomaterials.2009.01.020
http://dx.doi.org/10.1016/j.biomaterials.2010.12.032
http://dx.doi.org/10.1016/j.biomaterials.2010.12.032
http://dx.doi.org/10.1007/s12015-011-9240-z
http://dx.doi.org/10.1007/s12015-011-9240-z
http://creativecommons.org/licenses/by/4.0/

	Enhancement of chondrogenesis of adipose-derived stem cells in HA-PNIPAAm-CL hydrogel for cartilage regeneration in rabbits ...
	Materials and Methods
	Data availability statement. 
	Materials. 
	Isolation and culturing of rabbit adipose-derived stem cells (rADSCs). 
	Fabrication of thermoresponsive HA-PNIPAAm hydrogels. 
	Fourier transform infrared (FTIR) analysis. 
	SEM examination of the microstructure inside HA-PNIPAAm hydrogels. 
	Swelling ratio and shrinkage ratio (%) of HA-PNIPAAm hydrogels. 
	In vitro cultured rADSCs in HA-PNIPAAm hydrogels. 
	Hydrogelation and in vitro degradation of HA-PNIPAAm hydrogels. 
	Detection the viability of rADSCs in hydrogels in vitro using live and dead staining and MTS viability assays. 
	Detecting the sGAG expression in rADSCs/hydrogel constructs in vitro by using Alcian blue staining and DMMB assay. 
	Detecting the chondrogenic marker gene expression in rADSC/hydrogel constructs in vitro using quantitative real-time PCR as ...
	Animal model. 
	Intraarticular injection of CM-DiI-labeled rADSC/hydrogel constructs into rabbit synovial cavities to evaluate rADSC chondr ...
	Hematoxylin and eosin (H&E), Safranin-O staining and immunohistochemistry (IHC) for histomorphometric analysis of neocartil ...

	Statistical analysis. 

	Results
	Characterization of HA-cross-linked PNIPAAm (HA-PNIPAAm-CL) by FTIR spectrometric analysis. 
	Physicochemical and morphological properties of PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels. 
	HA-modified PNIPAAm hydrogels enhanced biocompatibility and cell viability of rADSCs. 
	Enhancement the chondrogenic marker gene expression in rADSC-cultured HA-modified PNIPAAm hydrogels in vitro. 
	Enhancement the cartilaginous matrix of sGAG production in rADSC-cultured HA-modified PNIPAAm hydrogels in vitro. 
	Using rabbit model for in vivo evaluation of the enhancement of the neocartilage matrix formation of sGAG and type II colla ...

	Discussion
	Acknowledgements
	Figure 1 (A) The fabrication of HA-PNIPAAm-CL hydrogels and (B) the Fourier transform infrared absorption spectra of HA, PNIPAAm, HA-MA and HA-PNIPAAm-CL to confirm the functional group changes and presences of HA and PNIPAAm in cross-linked HA-PNIPAAm-CL
	Figure 2 Detection of the physicochemical and morphological properties of PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels using (A) LCST analysis, (B) SEM analysis, (C) a swelling test, (D) a shrinking test, and (E) in vitro degradation.
	Figure 3 HA-modified PNIPAAm hydrogels enhanced the cytocompatibility and cell viability of rADSCs.
	Figure 4 Detection the chondrogenic markers gene expression of (A) type II collagen and (B) aggrecan in rADSCs cultured in PNIPAAm, HA-PNIPAAm-CP and HA-PNIPAAm-CL hydrogels for 1, 3, 5 and 7 days.
	Figure 5 Enhancement the cell aggregation and cartilaginous matrix sGAG formation in rADSC cultured HA-modified PNIPAAm hydrogels in vitro at days 5 and 7.
	Figure 6 Using a rabbit model to evaluate the enhancement of the neocartilage formation in rADSCs/HA-PNIPAAm-CL constructs in vivo.
	Table 1 Sequences of primers used in the real-time PCR.


