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In today’s world, diabetic retinopathy is a very severe health issue, which is a�ecting many humans of di�erent age groups. Due to
the high levels of blood sugar, the minuscule blood vessels in the retina may get damaged in no time and further may lead to retinal
detachment and even sometimes lead to glaucoma blindness. If diabetic retinopathy can be diagnosed at the early stages, then
many of the a�ected people will not be losing their vision and also human lives can be saved. Several machine learning and deep
learning methods have been applied on the available data sets of diabetic retinopathy, but they were unable to provide the better
results in terms of accuracy in preprocessing and optimizing the classi�cation and feature extraction process. To overcome the
issues like feature extraction and optimization in the existing systems, we have considered the Diabetic Retinopathy Debrecen
Data Set from the UCI machine learning repository and designed a deep learning model with principal component analysis (PCA)
for dimensionality reduction, and to extract the most important features, Harris hawks optimization algorithm is used further to
optimize the classi�cation and feature extraction process.�e results shown by the deep learning model with respect to speci�city,
precision, accuracy, and recall are very much satisfactory compared to the existing systems.

1. Introduction

Diabetes mellitus (DM) is a most important worldwide
health concern, which causes a range of long-term complete
impairments that have a signi�cant in�uence on the patient
and society, as the illness usually upsets people in their best
fruitful ages. As per the latest alarming statistical facts re-
leased by the International Diabetes Federation (IDF) Di-
abetes Atlas 2021 document [1], there are 537 million (1 in
10) adults (aged 20–79 years) living with diabetes mellitus
worldwide in 2021. �is number is anticipated to rise to 643
million (1 in 9 adults) by 2030 and 784 million (1 in 8 adults)
by 2045. Also, 81% (4 in 5 adults) with diabetes are living in
middle- and low-income countries. Around 6.7 million
deaths (1 every 5 seconds) occurred in 2021 due to DM. An

assessed 44% of adults (240 million) living with diabetes in
middle and low-income countries are left undiagnosed. In
2021, the global health expenditure caused by diabetes alone
is evaluated at USD 996 billion with an increase of 316% over
the last 15 years. Around 541 million (1 in 10) adults
worldwide have been positioned at high risk of emerging
type 2 diabetes due to diminished glucose tolerance levels.
�e top 10 countries with the maximum number of people
with diabetes account for 68% of adults with diabetes [2].

�e typical symptoms of type 1 diabetes are frequent
urination or bedwetting, constant hunger, excessive thirst,
lack of energy or fatigue, blurred vision, sudden weight loss,
and diabetic ketoacidosis. Type 2 diabetes is the most
common type of diabetes, accounting for over 90% of all
diabetes worldwide. Type 2 diabetes also have similar
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symptoms to type 1 diabetes people but, in general, the status
of people may be symptomless and less dramatic. Conse-
quently, one-half of the people suffer from type 2 diabetes
due to undiagnosed and continue with prediabetes condi-
tion. If this persists for a long duration, the people will
develop the health complications such as kidney disease,
neuropathy, retinopathy, foot ulceration, peripheral artery
disease, heart disease or stroke, very poor healing of lower-
limb ulcers, and visual impairment. An effective lifestyle
management and consistent health check-ups or screening
are a couple of the best precautionary treatments for pre-
venting the development and progress of the mentioned
complications [3].

People who have diabetes for a longer duration and
poorly controlled blood sugar level, the more prospective
they can develop diabetic retinopathy (DR), which causes
loss of vision by the gradual destruction of the blood vessels
of the retina (a light-sensitive tissue at the back of the eye)
over a period of time [4]. (e symptoms of DR include
blurred vision, difficulty seeing well at night, seeing floaters
or spots, and having a dark or empty spot in the centre of the
vision. DR is categorized into two types as follows: non-
proliferative diabetic retinopathy (NPDR) is the premature
period of the disease in which symptoms will be insignificant
or nonexistent. In NPDR, tiny blood vessels leak blood and
other fluids due to weakness. Fluid might leak into the
macula (a retinal tissue liable for clear central vision), which
causes the macula to swell, resulting in cloudy or blurred
vision. Proliferative diabetic retinopathy (PDR) is the further
progressive form of the disease. At this phase, circulation
complications deprive the retina of oxygen. As a result, new,
fragile blood vessels can begin to grow in the retina and into
the vitreous, and the gel-like fluid fills the back of the eye.
(e new blood vessels may leak blood into the vitreous
(centre of eye), causing cloudy vision.

As far as health issues are concerned, the prevention is
better than cure. Moreover, the treatment of a specific
disease can be easy and effective if it is detected at the
premature stage itself. Repetitive medical check-ups play a
key role in DR because it exhibits mild symptoms until it is
too late for actual treatment [5–7]. If you have either type 1
or type 2 diabetes, your physician may endorse that you have
a comprehensive eye assessment straightaway once diabetes
is diagnosed. A comprehensive eye scrutiny by an oph-
thalmologist or optometrist can detect edema (swelling) in
the macula at the back of eye. (e macula is critical to our
central vision, which allows us to see in fine detail. Optical
coherence tomography (to check the current status of the
retina) and fluorescein angiography (to assess unusual blood
vessel growth) are a couple of diagnosis approaches used by
physicians through direct fundus examination or fundus
photographs. Nevertheless, there is a shortage of knowl-
edgeable ophthalmologists who can assess the fundus
photographs to detect DR, which sometimes results in
misdiagnosis. Moreover, there is a scarcity of knowledgeable
physicians in local areas where there are more diabetic
patients and the investigation procedure is onerous. (us,
the need for an automated diagnosis infrastructure for ef-
fective time and cost saving instead of manual diagnosis.

Deep learning (DL) is a slice of machine learning tech-
niques, which has been extensively applied for the detection
and classification of DR. (e DL-based approaches were
considered for computer-aided medical diagnosis of DR
include support vector machine (SVM), convolutional neural
networks (CNNs), restricted Boltzmann machines, sparse
coding, and auto encoder [8–10]. All these approaches follow
the common procedure, collect the retina image data set, do
preprocessing, extract features, and classify using the DL
technique. (e retinal image data set consists two types of
images, i.e., optical coherence tomography (OCT) and fundus
colour images [11]. OCTimages are either 2 or 3-dimensional,
which gives significant evidence about retina thickness and its
structure. (e fundus images are large 2-dimensional image
views of the top layer of retina [12]. (e algorithm, which is
used for extracting features from the image data set, plays a
significant role in the outcome of the experiment. It is better
to apply the best optimizer to find the significant features
from the data set in the public domain, which might contain
some insignificant features also. (e principal component
analysis (PCA) is the well-established unsupervised machine
learning technique for the feature engineering process, which
includes extraction and dimensionality reduction [13–15].

In reference [16], the authors proposed a hybrid model
for early detection of DR. (is model consists of feature
selection using PCA, dimensionality reduction using firefly
algorithm (FA) [17], and classification using deep learning
technique.(e FA was the meta-heuristic algorithm and was
motivated by the flashing behaviour of fireflies. (e algo-
rithm mimics how fireflies interact using their flashing
lights. (e algorithm assumes that all fireflies are unisex,
which means any firefly can be attracted by any other firefly;
the attractiveness of a firefly is directly proportional to its
brightness, which depends on the objective function.(e FA
algorithm suffers from trapping itself in the local optimum
and has a sluggish convergence speed. So, FA is not a perfect
solution to achieve our objective to optimize the dimen-
sionality reduction process during the feature extraction
from the image data set. (e latest Harris hawks optimi-
zation (HHO) algorithm resolves hitches of a feature space
comprising multi-modality, local optimal solutions, and
misleading optima [18]. HHO is a population-based met-
aheuristic algorithm, inspired by the hunting strategy and
cooperative behaviour of Harris hawks. As far as our
knowledge, HHO does not apply so far for DR detection and
classification during the feature engineering process. (e
main objectives of this research work are optimizing the
feature set extracted from the image data set and proposing
the best classification algorithm through experiments. (e
contributions of this work are as follows:

(i) A principal component analysis algorithm has been
used for feature extraction and selection from the
image data set.

(ii) A dimensionality reduction using the HHO algo-
rithm has been proposed in order to optimize the
feature set further.

(iii) A deep convolution neural network has been used
for DR detection and classification.
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(iv) (e proposed work, a combination of deep neural
network, PCA, and HHO, has been implemented
and compared with various machine learning
models such as KNN (k-nearest neighbour), SVM
(support vector machine), and XGBOOT classifi-
cation algorithm.

(v) (e numerical outcomes of this experiment along
with comparisons are encouraging and are better
than entrenched metaheuristic methods in terms of
accuracy, precision, recall, specificity, and sensitivity.

(e subsequent sections of this study are organized as
follows: a noticeable literature review has been presented in
Section 2. Section 3 deliberates the proposed methodology
and experimental setting details. Section 4 discusses the
results achieved with the proposed method and compared
with existing approaches and Section 5 articulates the
conclusion and scope of future work.

2. Literature Review

Today’s world of advances in deep learning (DL) has
changed the way, in which healthcare is handled recently,
which allows the medical practitioners effectively diagnose
and treat diseases. Several researchers across the globe
attempted to address the task at hand effectively. From the
evolution of various DL-based classification, detection
models have been drawn in this century. Many researchers
are working in this area across the globe. Table 1 lists the
review on deep learning applications in diabetic retinopathy
and other datasets.

Currently, DL has begun to have an immense impact in
various fields of health care. (e rapid development of
variations in DL techniques and the increased availability of
data in health care have allowed the recording of impressive
health care results [26, 27]. DL approaches can uncover
details contained in a vast volume of health care data that are
clinically important, which can be used for treatment,
monitoring, prevention, and decision-making of health
conditions. EHR processing, health behaviour reaction, and
sound treatment retrieval from eye-related research, text,
and classification are some of the implementation areas of
DL. (is will lead to simpler treatment for patients, with
quicker and more effective monitoring. Usage of DL in
medicine has converted the use of basic instruments, such as
stethoscopes and thermometers, into computed tomography
(CT), lithotripsy, ventilators, radio nuclear imaging, radia-
tion therapy, ultrasound diagnostic devices, and dialysis,
which has been used for highly adaptive treatment for
traditional medical care capable of dealing with many
dreaded illnesses. (ere is no question that health care
treatment and facilities will see greater changes in even other
sectors in the coming years to make them more competitive
with qualitative programs.

Many international collaborative works have focused on
applying DL-based algorithms for the diagnosis of diabetic
retinopathy disease. (e authors in reference [28] explored
DL applications for a range of biomedical issues, inclu-
ding simple biological processes, patient classification, and

patient care, and addressed if the DL can transform the
mentioned activities or if the biomedical sphere faces special
challenges. (ey notice that DL is yet to definitively over-
come or revolutionize biomedicine in any of the important
problems in the field after a comprehensive literature review,
but promising progress is made on the previous significant
works. While changes over previous works have been typ-
ically small, recent developments suggest that deep learning
approaches can offer useful means to speed up or sustain
human science.While progress has beenmade in connecting
the prediction of a particular NN to input features, it re-
mains an open challenge to understand how users can view
these models to generate testable predictions of the system
under research. However, DL is expected to show promising
results in biological applications.

In the last few decades, diabetic retinopathy become a
global medical problem among elderly people. (e authors
in reference [29] have explored DNN to predict diabetic
retinopathy. (ey have proposed a principal component
analysis (PCA)-based DNN model for the classification. (e
grey wolf optimization (GWO) algorithm is used to extract
features of diabetic retinopathy dataset. (e proposed model
has compared their prominent results with pre-existing
techniques like XGBoost, k-NN, Naive Bayes, and support
vector machine (SVM). Reference [30] presented an ap-
proach for multimodal fusion in the contourlet domain
based on weighted PCA. (e main purpose of using con-
tourlet transform is because of capability to capture visual
geometrical anisotropy and structures. Further, weighted
PCAminimizes the dimensionality of the source images and
improves better selection of principal components.

Maximum and minimum fusion methods are used to
fuse the decomposed coefficients. Image quality is
assessed quantitatively using conventional fusion metrics
to evaluate the fused image in terms of both information
content and reconstruction quality. Reference [31]
extracted the optimal features from the heart disease
dataset through the proposed dimensionality reduction
technique. (e dataset used in this work was obtained
from the heart disease dataset from the publicly available
UCI machine learning repository. (is dataset has 74
features. (ey have used 6ML classifiers to validate the
proposed model. Random forest (RF) integrated with chi-
square-based PCA (CHIPCA) yielded the highest accu-
racy of 99.4% for Cleveland Hungarian (CH), 99.0% for
Hungarian, and 98.7% for Cleveland datasets.

Reference [32] developed a model based on each patient’s
risk factors. For each stage of DR advancement, the author
proposes amodel to estimate the time and rate of progression.
(e proposed model could aid physicians in creating a cus-
tomised follow-up program for patients depending on their
disease stage and risk factors. Reference [33] attempted to
optimize the energyutilization in the IoTnetworks through an
optimal CH selection using a nature-inspired algorithm,
HHO. (e performance of the HHO-based CH model was
analysed through several parameters such as load, Temper-
ature, number of alive nodes, delay, and residual energy.

(e authors in reference [34] used a model to process the
images in order to distinguish the ocular structure and detect
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the existence of diabetic retinopathy in this study. For
mapping an image with the relevant label, the model’s pa-
rameters were optimized using the transfer-learning process.
(e author has used the medical fundus oculi images dataset
for training and testing a model. (e proposed study has a
97.78% accuracy rate for the accurate prediction of diabetic
retinopathy in fundus oculi images. Many authors in ref-
erence [35] applied this dataset to DNN and CNN.

For these kinds of applications, image data alone is not
sufficient. Many works have been done in this area but they
did not find out a prominent method or model to improve
the detection of diabetic retinopathy.

3. Proposed Method

3.1. Harris Hawks Optimization (HHO). In this section, we
describe the mathematical model of the proposed method
along with its usage for optimal results. In general, population-
basedmetaheuristic optimization algorithmsmimic the natural
concept by considering a set of solutions (populations) during
the optimization phase of each iteration [36]. (e latest such
algorithm, the Harris hawks optimization (HHO) technique, is
a gradient-free, metaheuristic, swarm-based, nature-inspired
algorithm [18]. (e key concept of this algorithm is the uti-
lization of dynamic and natural cooperative hunting behaviour
of Harris’ hawks for victims (medium-sized preys such as

rabbits, hares, reptiles, ground squirrels, quail, birds, and other
rodents) [37]. (e hunting patterns exhibit the Harris’ hawk’s
intelligent behaviour despite the complex dynamic environ-
ment and escaping nature (zig-zag gestures) by victims. So, an
optimization technique, which simulates the behaviour of this
hunting pattern, can give better results compared to the
existing techniques. (e main advantages of the HHO algo-
rithm are the possibility of getting a global optimal solution,
high convergence speed, high accuracy, and better quality.
Consequently, the HHO algorithm can be applied to solve
various optimization problems in the engineering domain such
as feature extraction, design and development of a model,
pattern recognition, and electrical and electronics optimal
design applications [33].

(e working mechanism of the HHO algorithm in dif-
ferent stages is depicted in Figure 1 and the next subsections
follow its description in a stage-by-stage manner. Broadly,
the algorithm consists of two stages: exploration and ex-
ploitation. (e exploration stage models the behaviour of the
Harris hawks search process to detect and spot the victims.
(e exploitation stage models the intelligent hunt.

3.1.1. Exploration Stage. Usually, the hawks who have
powerful eyes will spend hours of time patiently to track
and detect the victims by waiting, observing, and

Table 1: Review of deep learning applications in diabetic retinopathy and other datasets.

Reference Dataset Method used Evaluation metrics Research challenges

[19]
Diabetic retinopathy (DR)
dataset consisted of 75137

images

5-Fold cross-validation and data-
driven deep learning algorithm

Sensitivity, specificity, and
AUC score

(e results were not
properly evaluated using
typical state-of-the-art

models

[20]
73 patients (122 eyes) were
evaluated, 50.7% men and

49.3% women

RBM-1000, RBM-500, and OPF-
1000

Sensitivity measured,
specificity, and accuracy

More in-depth analysis on
larger datasets was

missing and accuracy may
also be improved

[21]
14,186 retinal images and
Messidor dataset with 1200

images
Deep learning algorithm

Accuracy, sensitivity,
specificity, positive and

negative predictive values, and
AUC

Dataset is fixed and is not
compared with other

technique

[22]

128175 retinal images,
EyePACS-1 dataset

consisted of 9963 images,
and Messidor-2 dataset with

1748 images

Deep convolutional neural
network

(e algorithm had 97.5% and
96.1% sensitivity and 93.4%
and 93.9% specificity in the 2

validation sets

Limited dataset, system
maybe failed to learn
more complex features

[23] Heart disease dataset

Effective heart disease prediction
system using enhanced deep

genetic algorithm and adaptive
Harris hawks optimization-based

clustering

Accuracy, precision, recall,
specificity, and F-score

Requires more
improvement in the
learning process

[24]

COVID-CT-dataset: 349 and
397 images and CT scans for
COVID-19 classification:
4,001 and 9,979 images

Hybrid learning and optimization
approach CovH2SD-CovH2SD
uses DL. HHO algorithm to
optimize the hyperparameters

Accuracy, precision, recall, F1-
score, and AUC performance

metrics

Not good for multiclass
classification

[25] Hand gesture dataset from
Kaggle repository

HHO is used for hyperparameter
tuning of CNN for enhancing

hand gesture recognition

Reduction of the burden on the
CNN by reducing the training
time and 100% accuracy for
hand gesture classification is

attained

Requires more
improvement in the
learning process
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monitoring the desert spot. In the context of HHO for
optimization purposes, the hawks are observed as candi-
date solutions and the best of the candidate solutions at
each iteration process are observed as intended optimal
solution or victim. Initially, the hawks can perch at location
of the spot in two possible ways, either close enough rel-
ative to the location of the other family hawks and the
victim or at random locations on high trees. Both the ways
are considered with an equal chance of probability and the
same is modelled in equation (1) with c≥ 0.5 for random
locations and c< 0.5 for relative locations. Several hawks
cooperatively move towards the victim from di�erent di-
rections to surprise it. �e change in the location of the
hawks at each iteration during the exploration stage is
mathematically modelled as follows:

C(i + 1) �

Crandom(i) − n1 Crandom(i) − 2n2C(i)
∣∣∣∣

∣∣∣∣
c≥ 0.5

Cvictim(i) − Cavg(i)( ) − n3 L + n4(U − L)( )
c< 0.5




,

(1)

where C(i) is the current location vector of hawks. C(i+ 1) is
the location vector of hawks in the next iteration i. Cvictim (i)
is the location of victim. Cavg is the average location of the
current population of hawks. �e c, n1, n2, n3, and n4 are
random variables whose values are to be updated at each
iteration between 0 and 1. �e upper and lower bounds of
these variables are considered as U and L, respectively. �e
randomly picked hawk from the current population is
represented by Crandom(i). �e average location of the hawks
is calculated using equation (2):

Cavg(i) �
1
M
∑
M

k�1
Ck(i), (2)

where Ck(i) denotes the position of hawks after iteration i
and M represents the number of hawks.

3.1.2. Exploitation Stage. In this stage, the hawks execute the
sudden pounce on the envisioned victim, which was spotted
in the exploration stage. In this context, several styles of
chasing will take place due to the victims may execute
di�erent escaping strategies according to the dynamic en-
vironment. In the HHO, four potential tactics were provided
based on chasing styles of the hawks and escaping attitudes
of the victim. Let q represents escaping chance of a victim
from sudden pounce, successful escape with q< 0.5, and
unsuccessful escaping with q≥ 0.5. However, the hawks have
their own strategies such as soft or hard surround to catch
the victim. In other words, the retained energy of the victim
gives directions to the hawks to do either soft or hard en-
circle the victim. To win this hunting process, the hawks will
try to reach closer and closer to the envisioned victim and
then cooperatively executes the sudden pounce to kill the
same. Simultaneously, the victim looses its energy while
using escaping strategies. After some time, the victim energy
will be exhausted and this context leads to catch the same
easily by hawks.

�e modelling of the victim energy plays a vital role here
and it is de�ned as follows:

G � 2G0 1 −
i

I
( ), (3)

where G represents the victim escaping energy. I is the
maximum possible iterations. G0 is the initial energy state
and it is a random variable whose value changes between −1
and 1 in each iteration. �e victim is strengthening if the
value of G0 increases from 0 to 1 and weakening if the value
of G0 decreases from 0 to −1. However, the dynamic value of
escaping energy G is always in the downtrend during iter-
ation by iteration. �e HHO moves to the exploration stage
to search for another victim if |G| ≥ 1 and continues in the
exploitation stage if |G| < 1. During the exploitation stage,
the algorithm switches between soft (if |G|≥ 0.5) and hard (if
|G|< 0.5) surrounding of the victim. So, the hawks will
execute any one of the following four promising tactics based
on the G, the escaping energy of the victim, and q, the
escaping chance of a victim.

3.1.3. Soft Surrounding. �is scenario is applicable, if |G| ≥
0.5 and q≥ 0.5. Here, the victim tries to escape from hawks
through confusing zig-zag movements/jumps with having
su«cient energy. At this juncture, the hawks follow a soft
surrounding approach to do sudden pounce in several
rounds of attempts by making the victim energy exhausted.
�is soft surrounding approach has been modelled as
follows:

C(i + 1) � ΔC(i) − G SCvictim(i) − C(i)
∣∣∣∣

∣∣∣∣. (4)

ΔC(i) � Cvictim(i) − C(i), (5)

where ∆C(i) is the di�erence between the location vector of
the victim and the present location in iteration i. �e
strength of the victim to do zig-zag movement or jump is
represented by S� 2(1− n5). Here, S value updates dy-
namically in each iteration to mimic the movements or

So� surrounding with

progress
ive quick dives

Sit a
t ra

ndom locations

Sit at relative to locations

of other hawks

So� surrounding
Hard surrounding

Exploration

Stage Exploitation

Stage

Hard surrounding with

progress
ive quick dives

q<0.5

c≥0.5

|G|=1

q≥0.5

G

c<0.5

|G
|≥

 1

|G
|≥

 0.
5

|G
|<

 0.
5

Figure 1: Various stages during the HHO algorithm.
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jumps by victims. N5 is a random variable whose value is
between 0 and 1.

3.1.4. Hard Surrounding. �is scenario is applicable, if |G| <
0.5 and q≥ 0.5. Here, the victim energy is so exhausted and
its escaping energy is low. At this juncture, the hawks follow
a hard surrounding approach to do sudden pounce to catch
the intended victim. Here, the current locations of the hawks
are updated using equation (6) and this concept with one
hawk is illustrated in Figure 2:

C(i + 1) � Cvictim(i) − G|ΔC(i)|. (6)

3.1.5. Soft Surrounding with Progressive Quick Dives.
�is scenario is applicable, if |G| ≥ 0.5 and q< 0.5. �is
means, the hawks construct a more intelligent soft sur-
rounding strategy due to the victim still has su«cient energy
to escape successfully [37]. In real time, the victim chooses
random escaping patterns and leapfrog movements [38]. To
model this concept, the levy �ight (LF) random walk notion
is adopted in to the HHO algorithm [39,40]. �e LF concept
helps to mimic the real-time zig-zag movements of victim
and the hawks’ sudden, irregular, and quick dives around the
escaping victim. �e hawks dynamically execute many
sudden quick dives around the victim, and update their
location and direction of attack progressively according to
the escaping behaviour of victim. �e literature proved that
the LF-based actions are the optimal searching strategies for
hunters in nondestructive searching circumstances. More-
over, the LF-based movement of patterns is common in the
victims such as rabbit, monkeys, and sharks. �is motives
the utilization of LF-based movements within the HHO
algorithm.

To catch the victim in the adverse condition, the hawks’
real behaviour is to choose the best possible dive at every step
and reach closer by closer to the victim. To mimic this
behaviour, the hawks can compute their next movement
based on the following rule:

A � Cvictim(i) − G SCvictim(i) − C(i)
∣∣∣∣

∣∣∣∣. (7)

After computing the next move, the hawks compare the
latest move with the previous one. If the latest is better than
the previous one, then they choose and execute the same.
Otherwise, they choose sudden, irregular, and quick dives
around the escaping victim. Sometimes, the hawks choose to
dive according to LF-based patterns as de�ned in the fol-
lowing equation:

B � A + V∗LF(D), (8)

where D is the problem dimension, V is a random 1Xd
dimensional vector, and the levy �ight (LF) function is
computed using the following equation:

LF(x) � 0.01 ×
p × σ
|q|1/β

, σ �
Γ(1 + β) × sin(πβ/2)
Γ(1 + β/2) × β × 2(β−1/2)
( )

1/β

,

(9)

where β is a constant with a value of 1.5 and p and q are
random variables with a value between 0 and 1.

�erefore, in the soft surrounding phase, the latest
positions of the hawks can be de�ned in the �nal strategy
using the following equation:

C(i + 1) �
A ifF(A)<F(C(i))
B if F(B)<F(C(i))

{ , (10)

where A and B are attained using equations (7) and (8),
respectively. An instance of the above modelling concept for
one hawk is illustrated in Figure 3. �is demonstration also
contains the leapfrog movements based on LF through
possible iterations. �e LF-based patterns are depicted with
coloured dots on trial and then the HHO algorithm touches
position B. In every stage, the next better location is chosen
as A or B.�e same concept is applicable to all hawks during
searching.

3.1.6. Hard Surrounding with Progressive Quick Dives.
�is scenario is applicable, if |G| < 0.5 and q< 0.5. �is
means, the hawks execute hard surrounding before the
sudden pounce to catch and kill the victim due to the victim
energy has been exhausted. At victim side, this condition is
similar to the soft surrounding, but the hawks move closer
by closer by reducing the average position with the es-
caping victim. Hence, the hawks update their locations in
the context of hard surrounding using the following
equation:

C(i + 1) �
A ifF(A)<F(C(i))
B if F(B)<F(C(i))

{ , (11)

where A and B are attained using equations (12) and (13),
respectively:

A � Cvictim(i) − G SCvictim(i) − Cavg(i)
∣∣∣∣∣

∣∣∣∣∣. (12)

B � A + V × LF(D), (13)

where Cavg(i) is computed using equation (2). An instance of
the above modelling concept with overall vectors for one
hawk is illustrated in Figure 4. �is demonstration also
contains the leapfrog movements based on LF through some
iterations. �e LF-based patterns are depicted with coloured
dots and the next better location is provided by A or B for the
next iteration.

G C(i)
C(i+1)

Cvictim

Cvictim - G |ΔC|

Figure 2: Illustration of overall vectors in the strategy of hard
surrounding with one hawk.
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�e key feature of HHO algorithm, which has a pro-
ductive impact during the exploitation stage, is that it ex-
hibits a series of search strategies and picks the best move at
each iteration. �e HHO algorithm tries to improve the
superiority of the solution throughout the optimization
process by progressive choice arrangement by search agents.
�e usage of adaptive and time-varying constituents allows
the HHO algorithm to resolve the hitches of a feature space
comprising multimodality, local optimal solutions, and
misleading optima. �e candidate solutions take help from
the strength of randomized moves in congruent during the
stages of exploration and exploitation learning.

Finally, the computational complexity of the HHO al-
gorithm has been analysed and computed based on three
tasks: initialization, �tness evaluation, and updating of
hawks. If there are N number of hawks, then the compu-
tational complexity of the initialization process is O(N). If D
is the dimension of de�nite problem andM is the maximum
number of iterations then the computational complexity of
the updating procedure is O(M × N) +O(M × N × D),
which is a sum of searching for the best location and
updating the location vector of all hawks. �erefore, the
computational complexity of HHO is O(N × (M+MD +1)).

4. Results and Explanation

�e dataset, the experimental framework, the metrics, and the
experimental outcomes are all discussed in this section. �ere
were1151 instancesand20attributes in thediabetic retinopathy
dataset used in this study. Table 1 [16] lists the characteristics of
the dataset used in this study. Except for the output layer, all of
the layersused theSoftsignactivation function.�eexperiment
was conducted using the Diabetic Retinopathy Debrecen
dataset [41] from the UCI ML library. �e features extracted
from the image dataset were used to create the attributes in this
dataset. �e Python experimentation was carried out on a
personalmachinewith 8GBof RAM.�e results of the current
proposed work are outperformed than the existing method-
ologies discussed in the literature review.

4.1. Metrics Used in the Evaluation of the Model. �e sug-
gested model is evaluated using the metrics listed below.

Accuracy. In the testing phase, it is the percentage of proper
predictions made by a classi�er and the actual value of the
label. It is also known as the ratio of the number of right
assessments to the total number of assessments. �e fol-
lowing equation can be used to calculate accuracy:

Accuracy � (TNeg + TPos)
(TNeg + TPos + FNeg + FPos)

. (14)

Here, TPos is true positives, TNeg is true negatives, FPos
is false positives, and FNeg is false negatives.

When the class label of a record is available in the given
dataset and the classi�er indicates positive for that record,
then it is called a true positive. When the class label of a
record is not available and the classi�er forecasts the class
label, then it is called a true negative. When the class label of
a record is accessible and the classi�er expects a negative for
that record, then it is called a false negative. When the class
label of a record is not available in a dataset and the classi�er
estimates a positive class, then it is called a false positive.

Speci�city. It is the percentage of true negatives successfully
detected by the classi�er while taking the test. �e following
equation is used to calculate it:

Specificity �
(Tneg)

(Tneg + Fpos)
. (15)

Sensitivity. During testing, it is the percentage of true
positives successfully detected by the classi�er.�e following
equation is used to calculate it:

Sensitivity �
(TPos)

(TPos + FNeg)
. (16)

Precision. Precision is an important metric for measuring
exactness. It expresses how much of the total forecasted
positive occurrences the classi�er identi�ed as positive, as
shown in the following equation:

Cavg

Cvictim - G|SCvictim - Cavg|
A

B

G

∆C

C
V×LF(D)

Cvictim

Figure 4: Illustration of overall vectors in the strategy of hard
surrounding with progressive quick dives.

G

B

C
ΔC

Cvictim

Cvictim–G |SCvictim–C|
V×LF–(D)

A

Figure 3: Illustration of overall vectors in the strategy of soft
surrounding with progressive quick dives.
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Precision �
(Tpos)

(Tpos + Fpos)
. (17)

Recall. �e percentage of positive cases classi�ed as positive
by the classi�er is determined by recall. When there is a large
cost connected with the false negative, as stated in equation

(18), the recall is a performance parameter used to predict
the optimal model:

Recall �
(Tpos)

(Tpos + Fneg)
. (18)
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Figure 5: Analysis of activation functions.
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Figure 6: Analysis of optimizers.

(1) Inputs: All features extracted from fundus image data set.
(2) Outputs: Optimal feature set
(3) Initialize the population randomly, Ci(i� 1,2,. . .,M)
(4) Set C while until end condition met do Compute the hawk’s �tness values. Victim as the victim best location
(i) end
(5) for each hawk (Ci) do
(6) Update the strength of jump S and initial energy G0

end
(7) G0� 2rand()− 1, S� 2(1− rand())
(8) Update the energy G using (3)

end
(9) if |G|≥ 1 then
(10) �e vector of location is updated using Eq.

end
(11) if |G|< 1 then
(12) if |G|≥ 0.5 and q≥ 0.5 then
(13) �e vector of location is updated using (4)

end
(14) else if |G|< 0.5 and q≥ 0.5 then
(15) �e vector of location is updated using (6)

end
(16) else if |G|≥ 0.5 and q< 0.5 then
(17) �e vector of location is updated using (10)
(18) else if |G|< 0.5 and q< 0.5 then
(19) �e vector of location is updated using (11)
(20) end
(21) return Cvictim

ALGORITHM 1: HHO Algorithm Pseudocode [18].
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4.2. Performance Analysis. �e DNN-PCA model was built
using a sequential strategy for testing the proposed model.
�e dataset was divided into two sections for cross vali-
dation, with 80% utilised for training and 20% used for
verifying every 64 records (batch size). To determine the
optimal activation function for a dataset of 50 epochs and a
batch size of 64, testing was performed on many activation
functions such as ReLU, ELU, tanh, Softmax, SELU, Soft-
plus, and Softsign. �e Softsign activation function, as
shown in Figure 5, provided the best average training and
testing accuracy. As a result, the Softmax activation function
is used to evaluate the model on dense layers.

�e investigation was completed on the dataset with 50
epochs and a batch size of 64 to obtain the optimal optimizer
in the layers of deep neural networks using many optimizers

such as Adam, NAdam, SGD, rmsprop, adagrad, adadelta,
and adamax. As shown in Figure 6, the Adam optimizer
o�ered the highest level of accuracy. As a result, the Adam
optimizer is selected for input and other dense layers ex-
perimentation. For the output layer, a sigmoid optimizer is
employed.

�e DR dataset was explored with many layers with 50
epochs, Adam optimizer at input and dense layers, Softsign
activation function, sigmoid optimizer at the output layer,
and 64 as batch size to pick the number of layers in DNN for
experimenting. �e model showed an excellent training and
testing accuracy with 5 layers, as shown in Figure 7, with the
accuracy level starting to decrease with 6 levels. As a result, a
�ve-layer deep neural network was deployed in the
experiment.
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�e DR data set was tested utilising Softsign activation
with �ve intermediate layers, sigmoid optimizer at the
output layer, Adam optimizer at input and dense layers, and
64 as batch size to determine the number of epochs. �e
model provided better results in providing a good average
training and testing accuracy with 600 epochs, as shown in
Figure 8, with the testing accuracy beginning to dip with 650
epochs. As a result, 600 epochs were used to train a deep
neural network.

�e number of components chosen for the PCA in the
experimental study was 0.9%, that is, to retain 99% of the
information

Figures 9–14 show how the accuracy, precision, recall,
sensitivity, and speci�city of machine learning models are
evaluated. �ese graphs show that ML models based on
PCA-HHO provided the best results rather than the other
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two scenarios: ML with PCA and ML without dimension-
ality reduction. When dimensionality reduction and feature
engineering concepts are included or excluded from ML
methods, it is found that the suggested model, DNN-PCA-
HHO, outperforms the other hybrid ML techniques.

(e following are the highlights of the results relevant to
the suggested model:

(1) When compared to other prominent ML hybrid
models, the DNN-PCA-HHOmodel surpasses them.

(2) When PCA is used alone on DNN and other ML
algorithms, the performance measurements deteri-
orate slightly. However, the amount of time spent
training is minimised.

(3) PCA+HHO, on the other hand, improves the
performance ofML algorithms while cutting training
time in half, as shown in Figure 15.

(4) When the original dataset was employed, it fell
victim to overfitting, which had a negative impact on
the results.(e performance has been improved even
though the size of the data set was increased by two
times and the same is shown in the Figure 13.

Table 2 describes the findings of the analysis.

5. Conclusion

(e proposed system used principal component analysis for
extracting the best features. (e dataset for the proposed
model is gathered from the publicly accessible UCI machine
learning repository, which contained redundant and un-
necessary features in its raw form. (e Harris hawks opti-
mization algorithm outperformed the process of selection
and extraction of the required features from the dataset. (e
proposed model results were compared to the outcomes of
the most popular machine learning algorithms, with the
findings demonstrating the model’s superiority in terms of
specificity, precision, accuracy, recall, and sensitivity. Nev-
ertheless, in the event of a low-dimensional dataset, the
model’s ability to perform well may be limited by the
possibility of overfitting. (erefore, our proposed model
encourages the researchers to pursue similar research in a
variety of other health disciplines using high-dimensional
data.
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