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ABSTRACT 

Determination of the directional distribution of ocean surface 
waves is of practical importance and analytical schemes for it are 
developed and discussed here.  Based on a generalized representation 
of wave properties such as surface elevation, subsurface pressure or 
horizontal components of water particle velocity, acceleration or 
wave force, two general schemes of analysis are developed.  In one 
scheme the predictive equations for the directional distribution of 
both the amplitude and phase of waves are derived. Distribution of 
energy as a function of direction for random waves is obtained in 
the other scheme.  Fourier series parameterization is used to repre- 
sent directional spectrum.  The truncation of the series dictated by 
data limitations introduce directional spread and negative side 
lobes for the estimated directional spectrum. A procedure to remove 
these undesirable side lobes by a non-negative smoothing function is 
described.  The smoothing causes further directional spread.  Methods 
for obtaining better directional resolution are discussed. Data 
adaptive spectral analysis techniques such as Maximum Likelihood 
Method and Maximum Entropy Method are suggested. 

1.  INTRODUCTION 

The directional spectrum of ocean waves is a distribution of wave energy 
with both frequency and direction.  This information is useful and necessary 
for understanding and predicting coastal processes like littoral sediment 
transport and diffraction and refraction of waves as well as for the prediction 
of motions and stresses in floating and fixed structures.  Several different 
techniques of measurement and analysis are used for obtaining directional wave 
spectra.  Panicker (17) gave a review of these techniques. A common method is 
the use of an array of wave gages to record wave properties at several differ- 
ent points in the wave field and analyze the data to obtain the directional 
spectral density distribution for each frequency of interest.  Two analytical 
schemes were developed by the authors for the determination of directional 
spectra.  The schemes are generalized by use of transfer functions between 
measured wave properties and surface wave amplitudes.  These, an extension of 
the work reported in 1970 by Panicker and Borgman (14), are reported here. 
Fourier series parameterization is used to estimate directional spectrum but 
the limited number of gages m an array necessitates truncation of the Fourier 
series resulting in negative side lobes for the spectrum.  A scheme for removing 
the negative side lobes by a non-negative smoothing function is developed and 
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described. Truncated Fourier series and smoothing may reduce the directional 

resolution. Possible methods for obtaining higher directional resolution are 

also discussed. 

2.  ANALYTICAL SCHEMES 

Two schemes of analysis are developed: the amplitude and phase detection 

scheme (Locked-Phase Analysis) and the spectrum approach (Random-Phase Analysis) . 

A general representation of wave properties is used so that the resulting 

Fourier-Bessel expressions equally apply to array measurements of any wave 

property such as surface elevation, subsurface pressure, water particle velocity, 

water particle acceleration and linearized wave force. 

2.1 General representation of a measurable wave parameter 

The analytical schemes developed here are good for a general array in which 

the different sensors may be placed arbitrarily and measure not necessarily the 

same properties.  Such a property, q, may be represented in terms of the wave 

amplitude, r, as 

q = rh[o cos(kx cos8 + ky sin9 - 2irft + <(>) 

(1) 
+ V sintkx cos8 + ky sin9 - 2irft + <)>)] . 

Here the angular function, h, specifies the directional property of the measured 

parameter and 

1,  if the property measured is non-directional such 

as pressure 

h = { cos8, if the x-component of a property is measured 

sm9, if the y-component is measured. 

(x,y,z) are the sensor coordinates with z measured positively downward from still- 

water level, k is the wave number (2ir/wave length) , 6 the vector wave direction, 

and f the frequency, t is time elapsed and <|> the corresponding phase angle. 

U(f,z) and V(f ,z) are transfer functions for the various wave properties and are 

tabulated in Table 1.  For facility for use in a general scheme of computation 

the wave properties in Table 1 are written in code in the first column of the 

table.  The code is in the form of a 3-digit number of the form www where w 

is the property studied such as water level, pressure, etc., w is information 

on relative water depth such as deep or shallow, and w is the directionality 

information of the property. The following cases are studied: 

wl 
1 = water level, 2 = subsurface pressure, 3 = water particle velocity, 

4 = water particle acceleration, 5 - force; 

0 = unaffected by depth, 1 = intermediate water depth, 2 = deep water; 

0 = non-directional property, 1 = x-component, 2 = y component. 

The following additional notations are used in Table 1: p = water density, 

g = acceleration due to gravity, Z = stillwater depth, C = coefficient of 
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Table 1.     Transfer Functions for Wave Properties in Equation   (1) 

CODE 

XO0 

210 

220 

311 

312 

321 

322 

411 

412 

421 

422 

511 

512 

521 

522 

1.0 

cosh k(Z -z) 
P9      cosh kZ 

pg exp(-kz) 

cosh k(Z -z) 
2irf 

0 

smh kZ 

2irf exp(-kz) 

0 

0 

- (2TTf) 
2 sinh k(Z -z) 

sinh kZ 

-(2irf)2 exp(-kz) 

c   f Dp ^8A a 
2ir£ cosh k(z -z) 

TO 
•CM p -j- <2irf) 

smh kZ„ 

_ smh k(Z -z) 

sinh kZ_ 

C    -| Dp  ./8/Tr a 21Tf exp(-kz) 

2 
•P 2 

"CM P    4     (21Tf)     exp(-kz) 

sinh k(Z -z) 

sinh kZ 

2irf exp(-kz) 

(2TTf) 

0 

2  cosh k(Z -z) 

sinh kZ. 

(2TTf)     exp(-kz) 

0 

TTD , cosh k(Z -z) 
CMP^(2lrf) sinh kz_ 

2irf sinh k(Z -z) 
cD f Dp ^A a 5^5^ 

PTO 
C„ —r-*-  (2irf)     exp(-kz) 

M     4 

C     ,  D     /8/TT  0  27Tf  exp(-kz) 
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drag in force calculation, c„ = coefficient of mass in force calculation, D = 
M P 

diameter of object on which wave force is measured and o  = root-mean-square 
horizontal velocity of water particles in wave.  Linear wave theory is used 
to obtain the quantities in Table 1 and in addition, linearization of drag 
force in the wave force expression is used for the transfer functions for 
force measurements (Borgman (4)) . 

2.2 Locked-Phase Analysis 

2.2.2 General Development 

Very often in the directional analysis of ocean waves the waves are 
assumed random and the computed directional spectrum does not retain any phase 
information. But for a phase-locked wave field as m some laboratory tanks or 
in some coastal regimes dominated by distant swells, an analysis procedure that 
would yield distribution of phase as well as amplitude as a function of wave 
direction may be appropriate.  A deterministic scheme of analysis for it using 
the Fast Fourier Transform (FFT) technique is described below. 

Let q be a wave parameter measured at time t on a sensor located at 

(x,y,z).  Then q is the sum of the contributions from all the frequencies, 
n 

f ...f , and directions 9 .  Let the component amplitudes for each frequency 

mAf be r (8). Directions here are vector wave directions measured positive 
m 

anti-clockwise from the X-axis. Using notations of Eq. 1 but substituting 
Y = kx cos8 + ky sm6 , one may write 

m        J m 

M      fir r- -| 
q    =    T r h U cos{v-2TTf t +i>  }  + V sin{Y-2TTf t +<t>  }  d6   . (2) 
TI        *•     I       m L mnm mnmjm 

m=o •'-IT 

Let the duration of the record be T with a total of N data points.     The FFT 
relationships involving data sampling interval  At and frequency interval Af are 
as follows: 

At  •   Af = 1/N,   Af = 1/T,   f    = mAf    and    t    « nAt. (3) 
m n 

Using these one can write down Eq. 2 as 
M M 

A^r V „     2lTmn , ._ v  _,     2irmn ... 
q_ = Af )  B cos —— + Af )  C sin —— (4) 
Ti      L      m      N       '-  m     N 

m=o m=o 

where 

and 

f 
= T r h{u cos(Y+<i>  )   + V sin   (Y+<t>  ) )d9 (5) ) m m Tm        m 

'-IT 

r 
= T r h{u sin(Y+i(i  )  - V cos   (Y+<f> ) }d6     . (6) 

j_„    m m mm 

N 
If we let M = — -  1 and let A    as 

2 m 
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0,      if » = M+l  =  N/2 

A={-(B-lC), lfl<m<M = ^+l (7) • 2.      m m —     — 2 

k (B
M • + * c• J' if f + 1 < m < N-l 2.      N-m N-m 2 —      — 

it can then be shown from Eqs. 4 and 7 that 

N-l 
i2TTmn/N 

a    f m 
m=o 

A xs thus the finite Fourier transform of q .  They form a Fourier trans- 
is Tl     J 

form pair and A is given as 

N-l 
-i27Tmn/N 

n=o 

qn = Af I      Ame"•*". (8) 

At  I   q,^ e-
l27mm/N. (9) 

A , the complex conjugate of the FFT coefficient A of the time series at a 
m'       *• m 

gage for frequency mAf, for 0 < m < N/2, can now be written from Eqs. 5, 6, 
and 7 as 

.„     ~T   i(kx cose +ky sm9 ) 
A_ - | (U-iV) |  r_ e mh e       m      m d6„ (10) 

rTT id) 
f      r    e    % 
J-ir   m 

2 A fTr i<|>        lkD cos (9 -g) 

T(U^fr"J_    rme    *"** m      d9m <"> 
where D is the radius vector from the origin to the gage, inclined at an angle 
3 to the x-axis (see Fig. 1). The objective is to determine amplitude r and 

m 
phase <|> for each frequency mAf as a function of wave direction 6 . Amplitude 

and phase may be either continuous or discrete functions of direction.  Ex- 
pressions for these two cases are derived below. 

2.2.2 Continuous functions for amplitude and phase 

Let the amplitude and phase function, F(6), be expressed as a complex 
Fourier series: 

a + ia'   N N 
F(9) - -=^-r  + I  (a cos n9+b sin n9) + l T  (a1 cos n6+b' sin n9). 

n-l n-l (12) 

This can be written as an exponential Fourier series as 

F(9) = I  a eln9 (13) 
n=-N n 

where 
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- (a + b") + i(a' - b ) 
2   n   n      n   n 

if n >  0 

(a + ia') , if n = 0 
o    o 

(a  - b' ) + i(a' + b ) , if n < 0 

(14) 

Substituting Eq. 14 in Eq. 11 and dropping subscript m from 9, one gets 

N 2 A 

T(U-iV) J-TT 

in8.  lkD cos (6-B) . 
she do* (15) 

In the Locked-Phase analysis the function h is 1.0, cos8 or sin9 depend- 

ing on the wave parameter measured being non-directional, x-component or 

y-component. In the Random-Phase analysis described in the next section, pairs 

of measurements are used and therefore, in general, instead of three there 

could be six angular functions H(6) as defined in the exponential form below. 

H- 1       dre
lrW 

r=-2 

where d    is defined for the  six different cases in Table 2 as  follows: 
r 

Table  2.    Values of d    in Eq.   16 

Case H(9) d-2 d-l 
do dl d2 

1 1.0  1 0 0 1 0 0 

2 COS0   I, 0 1 

2 
0 1 

2 
0 

3 sinfi J 0 l 

2 
0 

l 

2 
0 

4 
2a cos 9 1 

4 
0 l 

2 
0 l 

4 

5 cos9 sm9 
l 

4 
0 0 0 

I 

4 

6 sin 9 _ 1 

4 
0 1 

2 
0 1 

4 

Substituting Eq.   16  in Eq.   15 and \f> = 9-$,  one gets 

2 A 

T (U-iV) 
f      «      f    d     T    .* <»"><*+' 

n=-N    n r=-2 r J-TT 

c)Bfr 
r J-7T 

8)     lkD cosijj 

N 2 
=    Y       a       I    d    e' 

n=-N    " r=-2 r 
cos(n+r)i|i e 

dip 

ikD coslji 
di|) 

,   , _, .     lkD cos*   , sm(n+r)i() e Ydiji 

(16) 

(17) 

<?k3 



264 COASTAL ENGINEERING 

Abramowitz and Stegun (1) gives the value of the first integral as 

II cos(n+r)i|) elkD cos^ = 2irin+rJn+r(kD) (i8) 
IT 

where J(kD) is the Bessel function of the first kind and order (n+r) 

with the argument kD. The value of the second Integral is zero as the 
integrand is odd.  Substituting this and a from Eq. 14 one gets 

2 A     a  + ia"  2        . 

+ l IK • »n> * MaA - bj] j_2dr e^^ i"-Jn+r(-) (19, 

N , r -.2     -i(n-r)B 
+  ) i (a - b") + i(a' + b )   Y  d e        i"n rj   (kD) 

', 21 n   n      n   n \      L  . r -n+r n=l  "- -> r=-2 

Equation 19 can be simplified by noting that 

J (kD = (-l)rJ (kD) and i"rj  (kD) = irJ (kD) 
-r r -r        r 

and assigning for various cases in Table 2 a dummy parameter e as follows- 

1.0, for cases 1, 4, 5, 6 

l , for cases 2, 3 

Let 

a   -r     n  ~\       i     a     1^3  ,  j,    -irp d J (kD)   2  de+de 
»S--a-f—+ I  -= ^  i^tkD) (20, 

r=l 

,      i(n+r)8       -i(n+r)B 
2  d e       + d  e 

A* = 7  — ~  ir J ^ (kD) (21) 
n  ^±_2 e n+r 

2  -id ei(n+r)e + id  e-(«
+-)B 

B* =  Y —  ir J J (kD) (22) 
n   L  „ P n+r 

r=-2 e 

Then Eq. 19 can be expressed as 

2 a N 

m,TT " „ = (a + ia')A* + Y in(a A* + b B*) 
T(U-iV)ne    o    o o   '•.    n n   n n 

n=l (23) 
N    . 

+ I    i   (a1 A* + b'B*). 
n=l      

n n   n n 
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It may be noted that A*, A*, and B* are all real-valued functions. They are 
o  n      n 

evaluated and tabulated in Table 3. Equation 23 is the desired relationship 
for evaluating the directional function F(9) for frequency mAf in terms of its 
Fourier series coefficients a , a', a,, a', etc. and expressions similar to it 

o  o  1  1 
exist for other frequencies. Equation 23 may be written m matrix form as 
follows: 

2 A_      r -i r -|T 
(24) 

Im 

T(U- 

2 

•1V)TT 

A m 
T(U- •1V)¥ 

(25) 

- = [A*, - A*, -B*, -A*, - B*,...] [aQ, aif bi# a2, b^...] 

^nr • [AS- h*v B!' -A2- ~Br- ] [a;- »i' V a2' b2'--] 

Here superscript T denotes a transpose of the matrix indicated. By inverting 
the matrices the coefficients for the complex Fourier series can be obtained 
and the directional distribution functions for amplitude a and phase <£  for 
each frequency mAf can be evaluated as follows: 

N 12 
r (0) = {^- + T  (a cos n6 + b sxn n8)> 
~     ' °    %  n        n      \ 

n_1 ' (26) 

' '     i  n n       1 n=l 

a'   N 
~ + T  (a1 cos n6 + b' sm n6) 
2    *•,   n n 

(9) = arc tan {  2^i  ) (27) 
N 

o   y  (a cos n9 + b sin n0) 
•S-    ,   n n 2   n=l 

2.2.3 Amplitudes and Phases of Discrete Wave Trains 

In the discrete case the complex phase-amplitude function F(8) is assumed 
to have non-zero values only at a finite number of discrete directions. F(9) 
may be written as 

M 
F(9) = y  (r + ir')<S(9-9 ) (28) L,       m mm 

m=l 

where 6(9-6 ) is a Dirac delta function representing a spike at 9 = 6 and 

zero elsewhere. A relationship analogous to Eq. 11 can be used to evaluate 
F(9)- 
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ca ca 

CM CM 

C c 

G e 
H ca •H ca 
to 

CN 
to 

CM 
CM 

1 
+ ca ca CM 

r 
+ 

a CM CM c 
ca ca ca ca b ~c 1 + b c 

H £ _c H 

1 
r-l + r-H + Jf to 

to to 
.r to 

CQ £ _C _c £ 1 CM 0 0 + CM 
a + o u + *fi a a to to ca a ca C 

CO a •H H 0 o c b CM CM c b 
H (0 (0 o u f + 
to c jf a c c Jf 

iH rH H r-i H b b H 
c 1 + 1 + to i to + 

b C c c a jf Jf 
1-3 b b b c c 

CM I + i i b i + b 

oa ca 

tN CM 

a a 
to to 
0 ca 0 ca 
o 

CM 
o 

CM 
CM 

t 
+ ca CM 

1 
+ 

c ca CM a 
CO. ca ca b to + b to 

ca 0 CM c o 

1 
r-4 + JH + Jf 0 1 

a 
jf 0 

ca a a I C l CM H + CM 
C a + "c to + 

* c w to C ca c H ca a < 10 o 0 c H a b to CM c b 
0 u u H to + 
0 to to Jf CM c to Jf 

H H H 0 1 b 0 
c i + H + o 1 c 0 + 

b B C i a b Jf 
b b c b c wc 

CM 1 + hi + b Jf l b 

ca ca 
tN CM 

to to 
o ca 0 

ca ca 0 CM o 
to c C 

* 0 0 0 H tN H CM < b u 

b 

to 

H 
b 

b 

I 

0 
b 

Jf 

to 

CM 
b 

Jf 

t 

b 

+ 

b° 
Jf 

o o o o 
U) 

H 
•H H 

H iH .-I 

CD 
C 
H 

CD O CD CD CD to CD 
to C tN CM 

X H 0 
o 

H 
to 

to 
0 
o 

CD 
to 
0 
0 

H 
to 

w 
in -H CM ro *J in <£> « 
u 
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'TT    lkD cos (8 -8) 
Fh e       m  d6 (29) 

Substituting for F from Eq. 28 and for h with appropriate values of H(9 ) from 

Table 2 and evaluating the integral involving Dirac delta function, one gets 

2 A      M               lkD cos(6 -6) 

•^>""Jl <rm + rm)H(9m)e       n (30) 

Separating the real and imaginary parts of Eq. 30 one can obtain as many pairs 
of equations as there are gages, for r and r'. 

2 A__ M 
I r H(6   )   cos kD cos (9 -8)1 L m      m m      J 

(31) 

Re ¥i^W    "    UrmH(em)   °OS kD C°s<e
m-6>1 

M  r -, 
-    I    r'H(9  )   sin kD cos(9  -6) , L m      m ml 

2  A_ M 

T (0-lV) =    Y     r H(6   )   sin kD cos (6  -8) 
mil1 m      m m     J 

M f - 

T    r'H(9  )  cos kD cos(9 -0) 
^L  mm m     J 

(32) 
M 

A least-square analysis is appropriate  for obtaining r    and r1   from Eq.   31 and 
m     m 

Eq. 32.  By computing the modulus and argument from r and r' one obtains the 
wave amplitude and phase respectively. 

2.3 Random-Phase Analysis 

2.3.1 General Development 

Randomness in an ocean wave field may be introduced by assuming phase 
angles to be random variables.  Let the phase angle be an independent random 
variable uniformly distributed over the interval -IT to IT.  Let the directional 
spectral density function S(f,9) for f > 0 and -ir <_ 9 < ir be such that the 
total energy E contained m the waves traveling in the direction between 
QA9JD,A8JV_     . . .    ,  if  . . , At 6 - —— and 9 + — and having frequencies between f - — and f + —— is 

•M    f + M 

48 j   if 2pgS(f,8)df d6 (33) 

where p is water density and g the acceleration of gravity.  However, the 
total energy per unit crest width and unit wavelength of a wavelet of amplitude, r 

2 
is pgr /2. when Af and A9 are sufficiently small one can therefore write an 
equivalent surface wave amplitude m terms of the directional spectral density 
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r = /4S(f,9)Af A6 (34) 

After Pierson and Marks (18) one may therefore represent the random sea 
surface as the following pseudo-integral 

r r »^?f7 
Jo J-ir 

q(x,y,t) =2     /S(f,9)df d9 cos(kx cose + ky sin9 - 2irft + <|>)   (35) 
'o •"-¥ 

The above pseudo-integral should be considered only as a concise and descrip- 
tive symbolization of the limiting process indicated and not as an actual 
integral. q(x,y,t) is a Gaussian stochastic process in the three parameters 
x, y, and t; see Takano (19, p. 86). 

Let q1 be any wave parameter at time t and measured at a gage located at 
(x,y,z') and let q" be a wave parameter measured at time t + T and another 
gage located at (x+X, y+Y, z"). Analogous to Eq. 2 with corresponding primes 
for circular functions h and transfer functions U and V, and using Eq. 35, one 
may write down q' and q" as follows 

02TT 
/S df d6 h'[u' cos{kx cos0 + ky sin6 - 2irft + <|>} 

„ o (36) 

+ V'sm{kx cos9 + ky sin6 - 2TTft + ((>}] 

f»   r2TI 
q" - 2      /S df d6 h" [u"cos{k(x+X)cos8 + k (y+Y) sin9 - 2iTf(t+T) + <f>} 

'o  'o 
+  V"sin{k(x+X)cos9 + k(y+Y)sin6 - 2lTf(t+T) + <)>}] (37) 

The cross-covariance C , „ between q' and q" is the expectation of the product 

q'q".  Evaluating the expectations of the various terms m the product and sub- 
stituting Y = kX cos9 + kY sm9, the cross-covariance between measurements at 
the two gages can be written in terms of the co-spectrum c(f) and quadrature 
spectrum q(f) as follows. 

C , „ = 2   c(f)cos 2irfxdf + 2   q(f)sm 2TTfTdf (38) 
q q     Jo Jo 

where 
(•2ir 

c(f) =    Sh'h'^fU'U" + V'V")COSY + (U'V" - V'U")sinY]d9     (39) 
Jo 
f2ir 

q(f) =    Sh'h"[(U'U" + VV")sinY - (U'V" - V'U")cosY]d9 .    (40) 
Jo 

The cross-spectrum is defined as c - iq.  It may be obtained as the product 
the complex conjugate of FFT coefficient of one gage record with the FPT 
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coefficient of the other and divided by the duration of the record.  The 
complex conjugate of the cross-spectrum may be written as 

c + iq =  (U'O" + V'V") + i(VO" - O'V")     Sh'h"e1Yae .     (41) 

If we let D and g be the spacing and orientation between two gages of a pair 
(see Pig. 1) and h'h" = H(8) be one of the circular functions noted in Table 2, 
Eq. 41 can be written as 

(U^nff-iV, = F S" e"D COS(8"e)d9- J o 

This expression can be used to evaluate the directional spectral density 
function S(f,8). Two cases may be considered  S(8) for each frequency as a 
continuous function of direction and S(8) discrete in directions. 

2.3.2 Continuous Function for Directional Spectrum 

When wave energy is distributed continuously around the circle, S(8) may 
be represented as a Fourier series. 

a    N 
S(9) = Y~ + I     (a cos n6 + b sin n9) . (43) 

n=l 

This is equivalent to the series obtained by setting the imaginary part zero 
in the complex Fourier series representation m Eq. 12 of the Locked-Phase 
Analysis.  The results derived there may be used here with suitable modifica- 
tion and the following equations analogous to Eq. 24 and Eq. 25 are obtained. 

Re. 

1m 

c + ig 
(U'+lV) (U"-lV")TTE 

c + ig 
(U'+lV ) (U"-lV")TC 

" [ao'-A*2'-BI'A|'BI'---][ao'a2'b2'a4'b4--]T   (44) 

= [A*,B!,-A*,-B*,...][a1,b1,a3,b3,...]
T .      (45) 

Here A*, A*.  B*. etc. are as tabulated in Table 3.  The Fourier series coef- 
o  1  1 

ficients a , a , b , etc. of the directional spectral density function s(6) may 

be obtained by matrix inversion.  As there are as many cross-spectra between 
gages as there are pairs of gages, the number of equations available is equal 
to the number of pairs of gages.  That is, the greatest number of harmonics up 
to which S(8) can be represented is at the most the number of gage pairs. 

2.3.3 Discrete Energy Analysis 

If S(8) has non-zero values only at a finite number of directions, an 
analysis analogous to the one in Section 2.2.3 may be made by representing 
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S(9) in terms of a Dirac delta function- 

M 
S(9) = I    r 6(9-9 ) (46) 

„-i mm m=l 

The following results similar to Eq. 31 and Eq. 32 may be obtained. 

Re (Ir+iVM(U"-iV")  = I rmH(em,coskDcoS(em-g) (47) 
m=l 

M 
I 

m=l 
Im tu-nV-ltS-iV)  " I    rm Htem)sln kD ~»<VB) (48) 

The discrete energy values r for each direction 9 may be obtained from m m 
Eq. 47 and Eq. 48 by a least-square analysis. 

3.  SMOOTHING OF DIRECTIONAL SPECTRUM 

When a Fourier series parameterization is used to represent directional 
spectrum as in Eq. 43, the quality of the result will depend greatly with the 
total number of harmonics of the Fourier series representation.  The number of 
Fourier series coefficients that can be evaluated from the data, however, is 
limited by the number of gages and their placement m an array. The maximum 
number of harmonics that can be evaluated by the Random-Phase Analysis is at 
the most equal to the number of pairs of gages in an array and half the number 
of gages by the Locked-Phase Analysis. All but the first terms of a Fourier 
series take negative values and therefore negative side lobes show up when 
directional spectrum is represented by a truncated Fourier series. The nega- 
tive side lobes in an energy spectrum is objectionable because energy spectral 
density is non-negative.  It is undesirable also because negative side lobes 
may mask the real signals at the corresponding directions and therefore 
deteriorate directional resolution.  Longuet-Higgins (11) proposed methods to 
use the available Fourier coefficients to fit the data best to a limited number 
of principal directions by making use of the fact that the real spectrum is 
non-negative.  But when the directional spectrum is a unimodal continuous dis- 
tribution for each frequency its estimation may be enhanced by convoluting it 
with a non-negative smoothing function to remove the negative side lobes. 
Smoothing functions for directional spectra were proposed and used by 
Longuet-Higgins, Cartwright and Smith (12). A procedure for using one such 
smoothing function W (9), suggested by Borgman (5) is described below. 

W (9) = R^ cos2N(6/2) (49) 

where N is the total number of harmonics.  R^ is such that the area under W (9) 

is unity and the value of the effective width (width of a rectangle of the same 
height and equal area) is the reciprocal of R .  Let the unsmoothed directional 
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spectrum be represented as a Fourier series: 

a    N 
S(0) = ^ + T  (a, cos k6 + b. sin k6) (50) 

2   k=l ^ * 

Let W (0) be expressed as a Fourier series as follows: 

V9) =^ + ?jn ^
cos(kd) (51) 

k=l 

where C  have to be evaluated consistent with Eq. 49.  Convolutmg S (0) with 

W (6) of Eq. 51, one gets the smoothed spectrum S (0) as follows: 

•IT 

S2<0) =     S(0')W2(0-0')d6' 

"¥ +    I    CkN(ak C°S k6 + bk S1" ke) 
k=l 

(52) 

Thus to obtain the smoothed spectrum one only has to evaluate the coefficients 
C  .  This can be done by expanding Eq. 49 in the form of the Fourier series in 

Eq. 51.  Details of a numerical procedure for this is given by Panicker (16). 
The coefficients are computed for each of the Fourier series representations 
up to the one with a maximum of 8 harmonics and tabulated in Table 4. 

4.  DIRECTIONAL RESOLUTION 

The analytical procedures developed in the previous sections were applied 
to actual data to obtain directional spectra.  The necessary computer programs 
were developed and described along with the details of the analysis by 
Panicker (16).  Some results obtained are shown here in the context of a dis- 
cussion on directional resolution. 

Smoothing of the directional spectrum causes a broadening of the direc- 
tional spread.  This can be seen in Fig. 2 where the results obtained for a 
simulated single sinusoid with a 4-gage star array are shown.  One notices 
that the effective width of the directional spectrum represented to 4 har- 
monics and obtained with Wj smoothing is about 98° and without smoothing the 
effective width is 40°, but the ideal result for the single smuoid would be 
a single spike at the input direction with no directional spread.  This in- 
dicates an inherent directional spread on account of the truncated Fourier 
series representation of directional spectrum and an additional spread owing 
to W2 smoothing which is necessary to remove the negative side lobes of the 
truncated series.  However, when real data from the ocean is used to obtain 
directional spectrum, as done by Panicker and Borgman (14), it is not obvious 
how much of the directional spread is real and how much is due to the trunca- 
tion and smoothing of the Fourier series.  Figures 3 and 4 are directional 
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Table 4.  vaiues of R and C, „ for W_(8) 
N     kN     2 

No. Of 

Harmonics 

N 

Reciprocal of 

Effective Width 
R 
N 

Fourier Coefficients, CkN 
k=l 2 3     4   5      6 7 8 

1 
1 1 

2 

2 
4 

3TT 

2 

3 

1 

6 

3 
8 
5ir 

3 
4 

3 

10 
1 
20 

4 
64 
35ir 

4 

5 

2 
5 

4     1 
35    70 

5 
128 

63TT 

5 

6 

10 

21 

5      5   1 
28    126 252 

6 
512 

2311T 

6 

7 

15 

28 

5     1   1__    _1_ 
21    14   77    924 

7 
1024 
4291T 

7 

8 

7 

12 

7     7    7     7 
24    66  264   1716 

7 
3432 

8 
16384 

6435TT 

8 

9 

28 

45 

56    14   56     4 
165   99  1287   429 

8 
6435 

1 
12870 

spectra obtained for two different frequencies from the CERC 5-gage array de- 
signed by Borgman and Pamcker (6) and installed off Pt. Mugu, California by 
the U. S. Army Corps of Engineers.  It may be seen that W2 smoothing removes 
the spurious side lobes resulting from the truncation of Fourier series.  One, 
however, suspects that W2 smoothing has caused broadening of the directional 
band width and reduction of directional resolution. 

It might be emphasized that higher directional resolution does not neces- 
sarily associate itself with a narrow directional spectrum.  The highest di- 
rectional resolution (±3°) achieved so far for ocean wave measurements is for 
the directional spectra of 7 sec waves obtained by a radio back-scatter technique 
off Wake Island, Pacific Ocean and reported by Teague, et al. (20).  The most 
interesting feature of these high-resolution directional spectra is their broad 
directional band width with as much as 1% of the peak energy density showing up 
at directions opposite to the wind.  Longuet-Higgms, Cartwright and Smith (12) 
also reported broad directional spectra, but the results obtained by them 
using a pitch-roll buoy and Fourier series parameterization with smoothing 
were not considered to have sufficient resolution to support the conclusion. 
However, the results of Teague, et al. (20) warn against restrictive assump- 
tions on directional spread about the mean wind direction, such as ±45° of 
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Arthur (2) and ±90 of Cote, et al. (9). Arbitrary parameterizations such as 
the tent functions of Oakley (13) to fit the data to narrow directional spec- 
tra also may not be the appropriate methods for ocean waves. 

As Teague, et al. (20) has shown, high resolution directional spectra 
can be obtained by good measurement techniques. On the analysis side, data 
adaptive techniques of analysis [Lacoss (10)] for array data hold promise 
for high resolution.  Maximum Likelihood Method [Capon (8)] and Maximum 
Entropy Method [Burg (7)] are two such nonlinear techniques.  A review of 
these are given by Panicker (17).  The advantage of these methods is that 
arbitrary parameterizations such as Fourier series representation are not 
used but the data content is used to determine the window shape.  The 
analytical development described in Section 2.31 of this paper would be 
applicable for the Maximum Likelihood Method also.  0. H. Oakley (personal 
communication) computed directional spectra using the Maximum Likelihood 
Method and obtained good directional resolution with a 4-gage star array. 
In this method only an additional Hermitian matrix inversion is required 
and therefore the computer time requirements are comparable to those for the 
direct Fourier transform method of Barber (3).  Lacoss (10) and Burg (7) re- 
ported that Maximum Entropy Method gave still higher resolution; but Burg (7) 
noted that with arrays having unequal spacings the determination of the 
Maximum Entropy Spectrum became very difficult.  This is still subject to 
active research. 

5.  SUMMARY AND CONCLUSIONS 

Two general schemes for the directional analysis of surface waves have 
been developed and described. A generalized representation of wave properties 
was used so that the equations derived are applicable to the analysis of dif- 
ferent kinds of measurements such as surface elevation, subsurface pressure 
or either of the horizontal components of water particle velocity, accelera- 
tion or wave force.  The necessary transfer functions were tabulated.  The 
amplitude and phase detection scheme (Locked-Phase Analysis) is a deterministic. 
Fast Fourier Transform method to determine the distribution of amplitude and 
phase as a function of direction and is applicable to phase-locked systems 
such as wave fields in some laboratory tanks and some coastal regimes dominated 
by distant swells.  Cases of amplitudes and phases both as continuous functions 
of directions and discrete were considered.  The Random-Phase Analysis is a 
spectrum approach to obtain the distribution of wave energy density as a func- 
tion of direction for each frequency and both continuous and discrete distri- 
butions were considered.  Fourier series parameterization was used for the 
directional distribution functions and explicit equations were derived for 
calculating the Fourier series coefficients. There are two such equations 
for each gage in the Locked-Phase Analysis and for each gage-pair in the 
Random-Phase Analysis.  The evaluation of the Fourier series coefficients 
is done by inverting a matrix of quantities describing the array geometry 
relative to wave length and multiplying it with a matrix of quantities derived 
from the FFT coefficients of sensor outputs as stated m Eq. (24) and Eq. (25) 
for Locked-Phase Analysis and Eq. (44) and Eq. (45) for Random Phase Analysis. 
It was noted that representation of directional spectrum by truncated Fourier 
series resulted in negative side lobes for the spectrum.  Negative side lobes 
for spectrum are unrealistic and undesirable and they have to be removed. 
Computational procedure for this by use of the non-negative W smoothing 
function was described. 
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Results obtained using data from simulation and from the CERC 5-gage 
array off Point Mugu, California were discussed.  It was found that repre- 
sentation by a truncated Fourier series introduced considerable directional 
spread to a simulated sinusoid and W2 smoothing caused further directional 
spread.  Better directional resolution than that obtained by Fourier series 
parameterization would be desirable. 

High directional resolution does not necessarily go with narrow direc- 
tional spectrum.  A directional sprectrum obtained by radio backscatter 
technique was found to have the highest directional resolution so far re- 
ported, yet the spectrum itself was broad showing considerable energy values 
in all directions.  Therefore arbitrary parameterizations such as tent func- 
tions for narrow spectra may not yield high directional resolution for ocean 
waves. 

For analysis to obtain high resolution directional spectra from wave 
gage arrays, data adaptive techniques of analysis such as Maximum Likelihood 
Method and Maximum Entropy Method hold promise.  The general scheme of 
analysis reported here may also be used for a Maximum Likelihood estimation 
in lieu of the Fourier series parameterization described. 
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