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Abstract: (1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to
environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor
(FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly
correlated with the progression of cancers. The aim of this study was to verify the role of FXR in
bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the
effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade
T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and
angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9,
and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer
cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein
expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor
MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed
in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in
bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future.

Keywords: FXR; bladder cancer; migration; invasion; angiogenesis; VEGF; proteasomal degradation;
protein half-life

1. Introduction

Bladder cancer is the tenth most common cancer worldwide, and it ranks as the
sixth most common cancer and the ninth leading cause of cancer death among men. In
2020, nearly 575,000 new cases were diagnosed [1]. In Taiwan, bladder cancer is the ninth
most common cancer among men (Centers for Disease Control, Ministry of Health and
Welfare, Taiwan, 2020). Approximately, 75% of patients showed a non-muscle-invasive type,
while others showed a muscle-invasive type, frequently with metastasis [2]. The mortality
rates have been declining, mainly due to the improvements in treatment (e.g., endoscopic
resection, adjuvant instillation of chemotherapy, and intravesical immunotherapy) [3].
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Previous studies have shown that the existence of some compounds that could have a
protective role against bladder cancer, including kaempferol, fisetin, and myricetin [4]. In
addition, the detection of clinical biomarkers NMP22, MDX, and uCAPP in urine are also
new therapeutic strategies explored in recent studies [5]. However, the recurrence rate in
bladder cancer patients is still an serious issue. According to the statistics, nearly 75% of
patients diagnosed with bladder cancer will recur or progress within ten years [6]. Above
all, increasing efforts should be put towards offering bladder cancer patients some new
therapeutic strategies, which is a critical issue in bladder cancer research.

The farnesoid X receptor (FXR, encoded by the NR1H4 gene) functions as a bile acid
nuclear receptor [7], and is expressed mainly in the liver, intestine, kidney, and adrenal
glands [8]. After being activated by ligands, FXR interacts with its heterodimer partner
retinoid X receptor (RXR) and binds to FXR response element (FXRE). Next, FXR modulates
the expression of the downstream target genes, including bile acid homeostasis [9], fatty
acid metabolism [10], and glucose metabolism [11]. Moreover, FXR induces gene expression
of small heterodimer partner (SHP), which suppresses the expression of CYP7A1 and
reduces hepatic bile acid synthesis via negative feedback in cholesterol metabolism [12].

Recently, the expression and role of FXR in cancers have been investigated. In breast
cancer, high expression of FXR was reported and shown to induce bone metastasis by
activating the expression of runt-related transcription factor (RUNX2) and mimicking the
bone microenvironment [13]. In addition, Caco2 and HT29 colon cancer cells show a high
expression of FXR, which contributes to cell differentiation and proliferation [14]. However,
FXR has also shown an opposite role in cancers. Lower FXR expression is associated
with higher tumor grade in colon cancer [14]. Moreover, patients have shown decreased
expression of FXR in tumors compared to the normal colon tissues. In colorectal cancer,
overexpressing FXR decreases the proliferation of cancer stem cells, thereby inhibiting can-
cer carcinogenesis [15]. In cervical cancer, FXR overexpression inhibits cervical squamous
carcinoma cell proliferation via the upregulation of SHP, MDM2, and p53 [16]. Nevertheless,
the role of FXR in bladder cancer has not been investigated. In this study, we aimed to
determine the effects of FXR on migration, invasion, and angiogenesis in both low- and
high-grade bladder cancer cells.

2. Results
2.1. Survival Rate and Expressions of FXR in Bladder Cancer Patients and Bladder Cancer
Cell Lines

As shown in Figure 1A–C, the relationship between the overall disease-free survival
and the expression of NR1H4 (FXR) in bladder cancer tissue were analyzed by gene
expression profiling interactive analysis (GEPIA). High expression of FXR in bladder cancer
patient groups resulted in a higher overall and disease-free survival rate than those in
low expression. Moreover, in Figure 1C, the adjacent normal tissue groups (N = 404) had
higher expression of FXR than those in the bladder cancer tissue groups (T = 28). Next, the
protein expression levels of FXR and its downstream target, SHP, were analyzed by Western
blotting; low-grade bladder cancer cells RT4 and TSGH8301 showed higher expression in
FXR and SHP (Figure 1D). These results implied that a reduction in FXR may affect the
survival and malignancy in bladder cancers.

2.2. Overexpression of FXR Inhibited Survival and Colony Formation in T24 Cells

Doxycycline-inducible overexpression FXR and vector control systems were estab-
lished in TSGH8301 and T24 cells. The intensity of protein expression of FXR were signif-
icantly increased after doxycycline induced for 48 and 72 h in both TSGH8301 and T24
cells (Supplementary Figure S1). In addition, FXR-related proteins RXR and SHP were also
increased significantly after FXR overexpression groups but not in vector control groups
(Supplementary Figure S1). Moreover, doxycycline had no effect on the cell viability, migra-
tion, and invasion in untransfected T24 cells (Supplementary Figure S2). Based on the above
evidence, we selected doxycycline induced for 48 and 72 h in the following experiments.
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MTT and colony formation assay were used to evaluate the effects of FXR overex-
pression on the survival rate of TSGH8301 and T24 cells. After 72 h overexpression of
FXR, MTT assay showed a reduction in viability of T24 cells by 27% (Figure 1E). Moreover,
the colony number was reduced by 25% in T24 cells after FXR overexpression for 9 days
(Figure 1F). The above results indicated that overexpression of FXR inhibited high-grade
T24 cell survival and colony-formation abilities.
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Figure 1. Farnesoid X receptor (FXR) expression and the effects on cell viability in human bladder
cancers. (A,B) Overall and disease-free survival rate in differential expression of NR1H4 (FXR) gene
in TCGA database of bladder cancer patients. (C) Scatter plots in differential expression of FXR
gene in TCGA database of bladder cancer tissues (red plot) and adjacent normal tissues (blue plot).
* p < 0.05 compared with the bladder cancer tissues group. (D) The expression levels of FXR and SHP
in the bladder cancer cell lines were analyzed by Western blotting. GAPDH was a loading control.
* p < 0.05 compared with the T24 group. (E) The survival rate of TSGH8301 and T24 were analyzed
after doxycycline induced for 72 h in vector control and FXR overexpressed groups using MTT assay.
(F) Colony formation assay of TSGH8301 and T24 were analyzed after 9 days of doxycycline induction
in vector control and FXR overexpressed groups. Wells were visualized and quantified. ** p < 0.01;
*** p < 0.001 compared with the control group.

2.3. Overexpression of FXR Inhibited the Migration and Adhesion Abilities in TSGH8301 and
T24 Cells

The wound healing assays demonstrated that the cell migration abilities were sig-
nificantly reduced by 39% and 32% in TSGH8301 and T24 cells after FXR overexpression
(Figure 2A). In the adhesion assays, the adhesive ability was decreased significantly after
FXR overexpression by 43% and 34% in TSGH8301 and T24 cells (Figure 2B). Moreover, the
expression levels of phosphorylation of FAK, integrin β1, integrin β3 and phosphorylation
of MLC were significantly reduced in both TSGH8301 and T24 cells (Figure 3). In contrast,
knockdown of FXR enhanced the migration and protein expression of integrin β3 and
p-MLC in low-grade RT4 and TSGH8301 cells (Supplementary Figure S3). These results
suggested that FXR overexpression decreased the migration and adhesion by reducing the
migratory and adhesive-related proteins in TSGH8301 and T24 cells.
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Figure 2. The effect on migration and adhesion abilities after FXR overexpression. (A) Wound healing
migration assays were performed in FXR-overexpressed (FXR-O) TSGH8301 and T24 human bladder
cancer cells after 6 h scratch. The right panels display the relative rate of the wound healing migratory
ability. ** p < 0.01; *** p < 0.001 compared to the control group. (B) Adhesion assays were performed
in FXR-O TSGH8301 and T24 cells after 50 min of incubation. Thereafter, the adhered cells were
stained and captured. The right panels display the relative rate of the adhesive ability. ** p < 0.01
compared to the control group. Scale bar = 200 µm.
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Figure 3. The effect on focal adhesion complex expression after FXR overexpression. (A) Focal
adhesion kinase (FAK), phospho-focal adhesion kinase (p-FAK), integrin β1, integrin β3, myosin
light chain (MLC) and phospho-myosin light chain (p-MLC) were analyzed by Western blotting in
the TSGH8301 and T24 cells after FXR overexpression for 48 and 72 h. GAPDH was used as the
loading control. (B) The bar graphs show the relative quantitative analysis of the aforementioned
proteins. * p < 0.05; ** p < 0.01 compared with the control group.

2.4. FXR Overexpression Inhibits Migratory and Adhesive Ability via Proteosome Degradation

Due to the reduction in integrins after FXR overexpression, whether mRNA reduction
or protein degradation occurred was investigated. The mRNA of integrin β1 and β3 was
unaffected in TSGH8301 cells, while the mRNA of integrinβ3 was decreased in FXR over-
expressed T24 cells (data not shown). Therefore, proteasomal and lysosomal degradation
inhibitors MG132 and NH4Cl were applied to TSGH8301 and T24 cells to assess the inhibi-
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tion of wound healing and adhesive abilities after FXR overexpression. Only proteosome
degradation inhibitor MG132 reversed the FXR overexpression-inhibited migration and
adhesion in bladder cancer cells (Figure 4). In addition, FXR overexpression-decreased
integrin β1, integrin β3, and phosphorylation of MLC expression were also recovered
by MG132 exposure (Figure 5). These results showed that FXR overexpression-reduced
migration and adhesion of bladder cancer cells occurred through proteosome degradation.
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Figure 4. The effect of proteosome inhibitor MG132 and lysosome inhibitor NH4Cl on the migratory
and adhesive abilities after FXR overexpression. (A) Wound healing migration assays were performed
with or without MG132 or NH4Cl in TSGH8301 and T24 cells after 6 h scratch. The right panels
displayed quantitative results of the relative migration rate. ** p < 0.01 compared to the control group;
## p < 0.01 compared to the FXR-O group. (B) Adhesion assays were performed in TSGH8301 and
T24 cells for 50 min. The cells were stained and captured. The right panels displayed quantitative
results of the relative adhesive rate. ** p < 0.01 compared to the control group; # p < 0.05 compared to
the FXR-O group. Scale bar = 200 µm.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 5. The effect of MG132 and NH4Cl on integrin expression after FXR overexpression. (A) In-

tegrin β1, integrin β3, MLC and p-MLC were analyzed by Western blotting in the TSGH8301 and 

T24 cells with or without MG132 or NH4Cl. GAPDH was used as the loading control. (B) The bar 

graphs show the relative quantitative analysis of the aforementioned proteins. ** p < 0.01 compared 

with the control group; # p < 0.05 compared to the FXR-O group. 

2.5. Overexpression of FXR Inhibited the Invasive Ability in the T24 Cells 

Because low-grade TSGH8301 cells could not penetrate the transwell chamber with 

Matrigel, only T24 cells were evaluated for invasion assay. The transwell invasion assay 

demonstrated that the cell invasive ability was reduced by 45% in the T24 cells after FXR 

overexpression for 72 h (Figure 6A). Furthermore, the protein expression levels of MMP2 

and MMP9 were significantly decreased (Figure 6B). Moreover, the activity of MMP2 and 

total MMP9 secretion were measured and separately decreased by 11% and 23% after FXR 

overexpression (Figure 6C,D). These results implied that the decrease in the invasive abil-

ities after FXR overexpression may be due to the reduction of MMPs in the T24 cells. 

 

Figure 6. The effect of invasive abilities after FXR overexpression. (A) Transwell invasion assays 

were performed for 16 h incubation in the T24 cells after FXR overexpression. The invasive cells 

were stained and captured. The right panel displayed the quantitative result. ** p < 0.01 compared 

to the control group. Scale bar = 200 μm (B) The expression of matrix metalloproteinases-2 (MMP2) 

Figure 5. The effect of MG132 and NH4Cl on integrin expression after FXR overexpression.
(A) Integrin β1, integrin β3, MLC and p-MLC were analyzed by Western blotting in the TSGH8301
and T24 cells with or without MG132 or NH4Cl. GAPDH was used as the loading control. (B) The bar
graphs show the relative quantitative analysis of the aforementioned proteins. ** p < 0.01 compared
with the control group; # p < 0.05 compared to the FXR-O group.
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2.5. Overexpression of FXR Inhibited the Invasive Ability in the T24 Cells

Because low-grade TSGH8301 cells could not penetrate the transwell chamber with
Matrigel, only T24 cells were evaluated for invasion assay. The transwell invasion assay
demonstrated that the cell invasive ability was reduced by 45% in the T24 cells after FXR
overexpression for 72 h (Figure 6A). Furthermore, the protein expression levels of MMP2
and MMP9 were significantly decreased (Figure 6B). Moreover, the activity of MMP2 and
total MMP9 secretion were measured and separately decreased by 11% and 23% after
FXR overexpression (Figure 6C,D). These results implied that the decrease in the invasive
abilities after FXR overexpression may be due to the reduction of MMPs in the T24 cells.
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Figure 6. The effect of invasive abilities after FXR overexpression. (A) Transwell invasion assays
were performed for 16 h incubation in the T24 cells after FXR overexpression. The invasive cells were
stained and captured. The right panel displayed the quantitative result. ** p < 0.01 compared to the
control group. Scale bar = 200 µm. (B) The expression of matrix metalloproteinases-2 (MMP2) and
matrix metalloproteinases-9 (MMP9) were analyzed by Western blotting in the T24 cells. GAPDH
was used as the loading control. (C) The concentration levels of MMP2 in the CM of T24 cells were
analyzed by ELISA. (D) The protein activity of MMP9 in the CM of T24 cells were analyzed by the
Fluorokine assay. * p < 0.05; ** p < 0.01 compared with the control group. # p < 0.05 compared to the
FXR-O group.

2.6. Proteosome Degradation Was Involved in FXR Overexpression-Decreased Tube Formation in
T24 Cells

As shown in Figure 7A, the angiogenic ability, including the branch points and tube
length, was significantly decreased in the FXR overexpression groups by about 28% and
21% in TSGH8301 and 27% and 22% in T24 cells. In addition, the concentration of vascular
endothelial growth factor (VEGF) in conditioned medium (CM) was reduced after FXR
overexpression in T24 cells (Figure 7B). Moreover, the VEGF mRNA level was significantly
reduced after FXR overexpression in T24 cells (Figure 7C). The angiogenic-related pro-
teins including VEGFA, phosphorylated signal transducer and activator of transcription 3
(p-STAT3), nitric oxide synthase 2 (NOS2), and hypoxia-inducible factors 1α (HIF1α) were
significantly reduced in both TSGH8301 and T24 cells (Figure 8). Applying both VEGF121
and VEGF165 reversed the tube-formation ability in FXR overexpression groups in T24
cells (Supplementary Figure S4). These results indicated that the angiogenic ability of
HUVECs was inhibited by FXR overexpression in the TSGH8301 and T24 cells, which
resulted from the decreased VEGF secretion, mRNA expression, and angiogenic- related
protein expression in human bladder cancer cells.
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Figure 7. The effect of the overexpression of FXR on angiogenesis. (A) The human umbilical vein
endothelial cells (HUVECs) were cultured with an FXR overexpression (72 h) conditioned medium
(CM) and control CM of bladder cancer cells for 6 h. The formation of endothelial cell networks
was observed and the number of branch points and tube length in the TSGH8301 and T24 CM were
analyzed. The bar graphs show the quantitative results of relative branch points and tube lengths.
Scale bar = 200 µm. (B) The concentration levels of vascular endothelial growth factor (VEGF) in the
CM of TSGH8301 and T24 cells were analyzed by ELISA. (C) RT-PCR was used to analyze the mRNA
expression of VEGF after FXR overexpression in TSGH8301 and T24 cells. * p < 0.05; ** p < 0.01;
*** p < 0.001 compared with the control group.
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Figure 8. The effect of the overexpression of FXR on angiogenic related protein expression. (A) The
expression of VEGFA, signal transducer and activator of transcription 3 (STAT3), phospho-Stat3
(p-STAT3), nitric oxide synthase 2 (NOS2) and hypoxia-inducible factors-1α (HIF-1α) were analyzed
by Western blotting in TSGH 8301 and T24 cells after FXR overexpression. GAPDH was used as the
loading control. (B) The bar graphs show the relative quantitative analysis of the aforementioned
proteins. * p < 0.05; ** p < 0.01 compared with the control group.
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Next, proteasomal and lysosomal degradation inhibitors MG132 and NH4Cl were
added to assess the inhibition of tube-formation abilities after FXR overexpression in
T24 cells. Only MG132 reversed the angiogenic abilities after FXR overexpression in
T24 cells (Figure 9A). Additionally, MG132 exposure significantly reversed VEGFA and
NOS2 expression, which were reduced by FXR overexpression (Figure 9B). These results
showed that proteasomal degradations were involved in the FXR overexpression-inhibited
angiogenic ability of bladder cancer cells.
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Figure 9. The effect of proteosome inhibitor MG132 and lysosome inhibitor NH4Cl on the angiogenic
abilities after FXR overexpression. (A) The human umbilical vein endothelial cells (HUVECs) were
cultured with FXR overexpressed conditioned medium (CM) and control CM with or without MG132
or NH4Cl of bladder cancer cells for 6 h. The formation of an endothelial cell network was observed
and the number of branch points and tube length in the T24 CM were analyzed. Scale bar = 200 µm.
(B) VEGFA, p-STAT3, NOS2 and HIF-1α were analyzed by Western blotting in T24 cells with or
without MG132 or NH4Cl. GAPDH was used as the loading control. The bar graphs show the relative
attenuation of branch points and tube lengths. * p < 0.05, ** p < 0.01 compared with control group;
# p < 0.05, ## p < 0.01; ### p < 0.001 compared with FXR overexpression group.

2.7. HUVECs Migratory Abilities Were Reduced by Proteasomal Degradation

The wound-healing assays demonstrated that supplementation with FXR overexpres-
sion CM decreased HUVECs migration (Figure 10A). The protein expression of VEGFR1,
VEGFR2, VEGFA, p-FAK, and p-MLC were downregulation in HUVECs when cultured
with FXR overexpression CM (Figure 10B). Moreover, the proteosome inhibitor MG132
restored the migration inhibition and the aforementioned protein expression in HUVECs
(Figure 10). These results suggested that the migratory abilities of HUVECs reduced by
FXR overexpression CM were also mediated by proteasomal degradation.
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Figure 10. The effect of proteosome inhibitor MG132 on the migration after FXR overexpression CM
in HUVECs. (A) Wound healing migration assays were performed in HUVECs after treatment with
FXR overexpression CM with or without MG132. The lower panel displays quantitative results of the
relative migration rate of the wound healing migratory abilities. *** p < 0.001 compared to the control
group; ### p < 0.001 compared to the FXR-O group. Scale bar = 200 µm. (B,C) VEGFR1, VEGFR2,
VEGFA, p-FAK, p-paxillin, p-MLC were analyzed by Western blotting in HUVECs with or without
MG132. GAPDH was used as the loading control. The bar graphs show the relative quantitative
analysis of the aforementioned proteins. * p < 0.05 compared with the control group; # p < 0.05;
### p < 0.001 compared to the FXR-O group.

3. Discussion

FXR overexpression reduced the cell survival ability in T24 cells. In esophageal
squamous cell carcinoma, the FXR agonist GW4064 impaired esophageal squamous cell
carcinoma proliferation and migration by inducing apoptosis and cell-cycle arrest and
suppressing phosphorylation of ERK1/2 protein expression [17]. In human hepatocellular
carcinoma, FXR overexpression significantly represses liver cancer cell proliferation, and
tumor growth in nude mice resulted in a marked increase of SHP expression [18]. In cervical
cancer, overexpression of FXR induced early and late apoptosis and promoted G1 arrest
through upregulation of SHP, MDM2, and p53 [16]. In liver cancer, FXR overexpression
suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K
signaling pathway. These results suggest that decreased FXR viability in human bladder
cancer cells might result from the decrease in proliferation.

The overexpression of FXR inhibited the migration and adhesion abilities in human
bladder cancer cells. Previous studies showed that integrin binding to ECM results in
the phosphorylation of paxillin and FAK, giving rise to increased cells adhesion and
migration [19–22]. In liver cancer SK-Hep-1 cells and colorectal cancer, FXR suppresses
migration by suppressing the Wnt/β-catenin signaling pathway [23,24]. Furthermore,
the Wnt/β-catenin signaling pathway is linked to the activation of integrin β1 to drive
migration in glioma cells [25]. In colon cancer, the knockdown of FXR increased the
migration of colon cancer cells by inducing the protein expression of EMT markers such
as vimentin, snail, slug, fibronectin, and FAK [24]. In our results, FXR overexpression
decreased integrin β1, integrin β3, p-FAK and p-MLC expression, which resulted in the
downregulation of migratory and adhesive abilities in bladder cancer cells.
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The proteosome inhibitor MG132 reversed the FXR overexpression-inhibited adhesive
ability both in TSGH8301 and T24 cells. MG132 has been reported to enhance migration
and mesenchymal phenotype in A549 lung cancer cells [26]. Moreover, MG132 recovers
phospholipase C-γl overexpression reduced adhesion and migration in rat fibroblasts [27].
Nevertheless, in migration, MG132 could significantly reverse the FXR overexpression-
inhibited migratory ability only in T24 cells. Previously, it has been reported that integrin
β1 mainly regulates cell adhesion but integrin β3 largely regulates cell migration [28].
Our results indicated that integrin β1 declined both in TSGH8301 and T24 cells; however,
integrin β3 only decreased significantly in T24 cells. These results implied that a different
effect of MG132 on migration and adhesion in TSGH8301 and T24 cells. Taken together,
FXR overexpression reduced the expression of migratory-related proteins, which may lead
to proteosome degradation in bladder cancer cells.

The expression of MMP2 and MMP9 was significantly reduced after FXR overexpres-
sion, which may inhibit invasion in human bladder cancer T24 cell. MMPs mediate the
breakdown of the basal membrane, degrade the extracellular matrix, and create a microen-
vironment that enhances tumor cell migration and invasion [15]. In colon cancer, FXR
overexpression inhibits colon cancer cell proliferation and invasion in vitro by suppressing
MMP7 mRNA and protein expression [29]. In liver cancer, FXR overexpression results in a
significant reduction in the total and nuclear β-catenin proteins and its downstream target
genes, including c-Jun and MMP9, in vitro and in vivo that contribute to the inhibition of
cell invasive abilities. Therefore, MMP9 protein was decreased in human bladder cancer
T24 cells, which might be due to β-catenin reduction. However, after being treated with
proteosome inhibitor MG132 and lysosome inhibitor NH4Cl, neither of the above can
reverse the FXR overexpression-inhibited invasion in T24 cells (data not shown). Although
both MG132 and NH4Cl could reverse the activity of MMP9, they could not prevent the re-
duction in MMP2 (Figure 6C,D). The mechanism of FXR overexpression inhibited invasion,
MMP2 and MMP9 expression may need further investigation.

Overexpression of FXR inhibited the angiogenesis ability via VEGF reduction in en-
dothelial cells. VEGFA is an abundant effector molecule that is secreted from tumors,
mesothelial cells and inflammatory cells, and contributes to vascular formation [30]. For
tumor growth and metastasis, growth of the vascular network is essential to supply nu-
trients and oxygen and also remove waste products [31]. Moreover, hypoxia activates
hypoxia-inducible transcription factors (HIFs), which induces the expression of angiogenic
factors including VEGFs and NOS [32]. In hepatocellular carcinoma, STAT3 activated by
LPS increases the production of VEGF by tumor cells, which promotes the proliferation
and angiogenesis of HCC cells [33]. The mRNA expressions of VEGF, VEGFR2, PI3K and
p38 downregulate significantly while FXR is overexpressed in pulmonary fibrosis [34]. In
our results, FXR overexpression significantly reduced the VEGF and iNOS mRNA level in
T24 cell and protein expression of VEGFA, HIF1α, p-STAT3 and iNOS in both TSGH8301
and T24 cells. Treatment with the proteosome inhibitor MG132 in T24 cells reversed both
the tube formation abilities and angiogenic-related proteins, as well as VEGFA, HIF1α,
p-STAT3 and iNOS. Therefore, FXR overexpression may enhance proteasomal degradation,
leading to VEGFA, p-STAT3 and HIF1α down-regulation and reduced angiogenesis.

The inhibition of migratory abilities in HUVECs cultured with FXR overexpression CM
was observed. Cancer–endothelial cell interactions in the tumor microenvironment cause
the secretion of adhesion molecules and chemokines, which are critical to tumor growth and
metastasis [35]. Previous studies have shown that the integrin-induced signal pathway is
involved in endothelial cell migration, and the integrins-FAK-Rho GTPases are activated in
both endothelial and cancer cells [36]. Cancer cells secrete growth factors, including VEGF,
COX-2 and NF-κB, which significantly increase endothelial cell proliferation, migration,
and tube formation [37]. In breast cancer, angiotensin-converting enzyme 2 inhibited
endothelial cells proliferation, tube formation, and migration through the phosphorylation
of VEGFR2, MEK1/2, and ERK1/2 in HUVECs through the downregulation of VEGFA
in breast cancer cells [38]. Moreover, MG132 abrogates a reduction in VEGFR2, AKT, and
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ERK1/2 caused by octaminomycins in HUVECs [39]. As in our results, FXR overexpression
CM significantly decreased the proteins expression of VEGFA, VEGFR1, VEGFR2, p-FAK,
and p-MLC in HUVECs, which could be blocked by MG132 treatment. FXR overexpression
in bladder cancer cells contributed to migration reduction in HUVECs through proteasomal
degradation, as well as a decrease in VEGFR, VEGFA, p-FAK and p-MLC expression.

In our studies, FXR overexpression inhibited bladder cancer cell migration, adhesion,
and angiogenesis in human bladder cancer cells TSGH8301 and T24 through proteasome
degradation pathway. However, there are still some limitations that need to be improved.
First, although the impressive effects of FXR on bladder cancer cells were found in our
in vitro experiments, the effects of FXR in animal models represent an issue that still needs
to be solved. Second, the invasive ability and its related proteins MMP2 and MMP9 cannot
be reversed in both MG132 and NH4Cl. The relationship between FXR overexpression
and invasion inhibition in muscle invasive human bladder cancer T24 also needs further
investigation. Third, the FXR agonist obeticholic acid has been demonstrated to have
promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis,
primary sclerosing cholangitis, and nonalcoholic steatohepatitis [40]. However, the effects
of FXR agonist on bladder cancer is still unknown and needs additional investigation.

4. Materials and Methods
4.1. Cell Culture

Three different grades of bladder cancer cell lines (Tri-Service General Hospital 8301
(TSGH8301)) were provided from the Division of Urology, Tri-Service General Hospital,
National Defense Medical Center, and incubated in RPMI 1640 medium. RT4 and T24 cells
were obtained from the Bioresource Collection and Research Center (BCRC), Taiwan, and
grown in McCoy’s 5a medium. All mediums were supplemented with 10% fetal bovine
serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA), 1% L-glutamine, and 1%
sodium pyruvate (Corning, NY, USA). Human umbilical vein endothelial cells (HUVECs)
were purchased from the BCRC in Taiwan and cultured in endothelial cell media (ECM)
(ScienCell Research Laboratories, Carlsbad, CA, USA). Cells were all incubated in 5% CO2
at 37 ◦C.

4.2. Plasmid Construction, Lentivirus Production and Doxycycline Induciable Overexpression

The FXR cDNA transcript variant 1 clone and the P2A-DsRed sequence synthesis were
provided from GenScript Biotech (Piscataway, NJ, USA). The FXR-P2A-DsRed was cloned
into the pAS4.1w.Puro-aOn, a tetracycline-inducible plasmid. The lentivirus was produced
by 293T cells co-transfected with the lentiviral vectors FXR-P2A-DsRed::pAS4.1w.Ppuro-
aOn, pCMV-dR8.91, and pMD2.G using Lipofectamine 3000 reagent (Thermo Fisher Sci-
entific, Waltham, MA, USA) according to the manufacturer’s instructions. The National
RNAi Core Facility provided the pAS4.1w.Puro-aOn and lentivirus package plasmids at
Academia Sinica in Taiwan. The lentivirus was used to infect TSGH8301 and T24 cells.
All cells were selected by puromycin (2 µg/mL). After antibiotics selection, the cells were
sorted by FACSAria IIIu sorter (BD, Franklin Lakes, NJ, USA). The protein expression of
FXR was checked after doxycycline was induced for 48 and 72 h.

4.3. MTT Assays

TSGH8301 and T24 human bladder cancer cells were seeded in 96-well plates at a
density of 2 × 103 cells (TSGH8301) or 1 × 103 cells (T24) per well. Doxycycline (1 µg/mL)
was added to the FXR overexpression groups for 72 and 96 h. Next, MTT reagent (3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, Sigma-Aldrich, Brulington,
MA, USA) was added, and after 3 h of incubation, MTT reagent was removed and cells
were lysed and measured at an absorbance of 590 nm.
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4.4. Colony Formation Assays

Fifty TSGH8301 and 100 T24 human bladder cancer cells were cultured in six-well
plates. Cells were treated with or without culture medium with doxycycline (1 µg/mL)
and the mediums were changed every two days. After nine days of culture, the cells
were fixed with 10% paraformaldehyde and stained with Coomassie Brilliant Blue G250
(Sigma-Aldrich, Brulington, MA, USA). Then, the colonies in each well were counted.

4.5. Wound Healing Migration Assay

TSGH8301 and T24 human bladder cancer cells or HUVECs were seeded and separated
into four groups: control (CTL), FXR overexpression (FXR-O), FXR overexpression with
MG132 (200 ng/mL) (FXR-O+MG132) and FXR overexpression with NH4Cl (200 ng/mL)
(FXR-O+NH4Cl). MG132 and NH4Cl were treated for 24 h before the experiments. Wounds
were scratched by a 200 µL pipette tip. The migratory ability in TSGH8301, T24, and
HUVEC cells was analyzed after various treatments for 6 h. Then, the wound images were
captured and the areas were analyzed by ImageJ.

4.6. Adhesion Assays

The six-well plates were prepared and coated with fibronectin (1 µg/mL) in a 37 ◦C
incubator for 15 min. After various treatments, the cells were suspended in culture medium
and seeded into wells precoated with fibronectin. After incubation at 37 ◦C for 50 min, the
plates were washed with PBS to remove the non-adherent cells. The adhesive cells were
fixed and stained. Cells were examined in three randomly selected fields from each well.
The fields were then captured and analyzed.

4.7. Transwell Assays

T24 cells were seeded in the upper chamber of a Transwell at a density of 3 × 104 cells/
well (Corning Costar, Midland, NC, USA). Before seeding, 3% Matrigel mixed with Mc-
Coy’s 5A medium was added to the upper chamber and incubated for 2 h at 37 ◦C. After
incubating at 37 ◦C for 16 h, the cells on the lower chamber were fixed and stained. Invading
cells were captured and analyzed in three randomly selected fields from each transwell.

4.8. Tube Formation Assays

Matrigel (50 mL/well) was added to a precooled 96-well plate and incubated for 2 h at
37 ◦C. HUVECs (1 × 104) were seeded into each well with 50% conditioned medium (CM).
After 6 h of incubation, the tube formation was imaged. Then, the tube length and branch
points were quantified and analyzed by AngioTool.

4.9. Real-Time Polymerase Chain Reaction (RT-PCR)

After various treatments, the cells were collected by GENEzol™ Reagent and the
total RNA was purified by the GENEral™ TriRNA Pure Kit from Geneaid in Taiwan. The
RNA was reverse-transcribed to cDNA by the PrimeScript™ RT reagent kit (TAKARA Bio
Inc., Shiga, Japan) according to the manufacturer’s instructions. RT-PCR was carried out
with a LightCycler® 480 Instrument (Roche, Basel, Switzerland) using SensiFAST SYBR
(Meridian Bioscience, Cincinnati, OH, USA). The oligonucleotide primers used are listed in
Supplementary Table S1. The GAPDH gene was used as an internal control.

4.10. Western Blotting

After different treatments, the cells were collected with mammalian protein extraction
buffer (GE Healthcare Life Sciences, Chicago, IL, USA) containing proteinase inhibitor
and phosphatase inhibitor (MedChem Express Monmouth Jucntion, NJ, USA). Different
protein samples were electrophoresed on a 10% or 11% SDS-PAGE and then transferred to
a nitrocellulose membrane (Bio-Rad, Berkeley, CA, USA). The membranes were blocked
and incubated with primary antibodies at 4 ◦C overnight. After being washed, the strips
were incubated with a 1:5000 dilution of HRP-conjugated anti-rabbit or anti-mouse IgG
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antibody from Cell Signaling Technology at room temperature for 1 h. Next, the blots were
reacted with the ECL substrate developing solution (Bio-Rad, Berkeley, CA, USA) and
protein signals were detected by Xplorer (SPOT Imaging, Sterling Heights, MI, USA). The
density of the bands on the nitrocellulose membrane (Bio-Rad, Berkeley, CA, USA) was
quantified and analyzed using ImageJ. The density of the control samples was designated
as 100%, and the density of the test sample was then obtained relative to the density of the
control sample. The antibodies used are listed in Supplementary Table S2.

4.11. Enzyme-Linked Immunosorbent Assay (ELISA) for VEGF and MMP2

The concentration of VEGF and MMP2 in the conditioned medium was measured by
the ELISA Kit (R&D Systems, Minneapolis, MN, USA and abcam, ab100606, Cambridge,
MA, USA) according to the manufacturer’s instructions. The values detected by ELISA
were corrected using a dilution factor and expressed in picograms per milliliter (pg/mL).

4.12. Human Active MMP9 Fluorokine Eassay

The active form of MMP9 was measured by the Fluorokine Human MMP9 Kit (R&D
Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions.

4.13. Statistical Analysis

The overall survival data sets obtained from The Cancer Genome Atlas (TCGA)
database were analyzed using the Kaplan–Meier method on the Gene Expression Profil-
ing Interactive Analysis (GEPIA) website. All results included at least five independent
experiments. The results are presented as the mean ± standard error of the mean (SEM).
Differences were analyzed using the Kruskal–Wallis test. Post hoc analysis was performed
using the Mann–Whitney test. Statistical significance was set at p < 0.05.

5. Conclusions

This is the first study to investigate the role of FXR in human bladder cancer. In our
study, the overexpression of FXR resulted in the inhibition of the migration, adhesion,
and angiogenesis in human bladder cancer cells. Moreover, FXR overexpression reduced
the secretion of angiogenic-related factor VEGFA and endothelial-cell-migration-related
proteins VEGFR1, VEGFR2, p-FAK, and p-MLC, leading to the declining effects of HUVEC
angiogenesis and migration. Finally, the proteosome inhibitor MG132 may reversed the
effects of FXR. These findings indicated that FXR may serve as a potential target for
therapeutic strategies in human bladder cancer in the future (Figure 11).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 16 
 

 

 

Figure 11. Scheme of FXR overexpression downregulated bladder cancer cell migration, adhesion, 

and tube formation. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1. 

Author Contributions: Data curation, H.-H.W. and C.-Y.C.; Funding acquisition, H.-H.W., S.-T.W. 

and Y.C.; Investigation, C.-R.L. (Chien-Rui Lai), H.-H.C., Y.-L.T., W.-C.T. and Y.-C.C.; Methodology, 

C.-R.L. (Chien-Rui Lai), H.-H.C. and C.-R.L. (Chen-Ray Lee); Supervision, S.-T.W. and Y.C.; Valida-

tion, C.-R.L. (Chien-Rui Lai) and H.-H.W.; Visualization, C.-Y.C.; Writing—original draft, C.-R.L. 

(Chien-Rui Lai); Writing—review & editing, Y.C. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This work was supported by the grants from the Ministry of Science and Technology 

(MOST 110-2314-B-016-021-MY2), Ministry of National Defense—Medical Affairs Bureau (MAB-D-

111004), Tri-Service General Hospital (TSGH-D-111073), and Cheng Hsin General Hospital 

(CHNDMC-111-10). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable.  

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. Data may be available upon request to interested researchers.  

Acknowledgments: We appreciate the technical assistance and animal care provided by Instrument 

Center and Animal Center in National Defense Medical Center, Taiwan. We thank the National 

RNAi Core Facility in Academia Sinica in Taiwan for providing shRNA reagents and the related 

services. We also thank Academia Sinica Core Facility and Innovative Instrument Project (AS-

CFII108-113) for their cell-sorting services. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN 

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249, 

https://doi.org/10.3322/caac.21660. 

2. DeGeorge, K.C.; Holt, H.R.; Hodges, S.C. Bladder Cancer: Diagnosis and Treatment. Am. Fam. Physician 2017, 96, 507–514. 

3. Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; van Rhijn, B.W.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.; Redorta, 

J.P.; et al. EAU Guidelines on Non–Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2013. Eur. Urol. 2013, 64, 639–

653. https://doi.org/10.1016/j.eururo.2013.06.003.  

4. Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et 

al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 

3750, https://doi.org/10.3390/nu13113750. 

Figure 11. Scheme of FXR overexpression downregulated bladder cancer cell migration, adhesion,
and tube formation.



Int. J. Mol. Sci. 2022, 23, 5259 14 of 16

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23095259/s1.

Author Contributions: Data curation, H.-H.W. and C.-Y.C.; Funding acquisition, H.-H.W., S.-T.W.
and Y.C.; Investigation, C.-R.L. (Chien-Rui Lai), H.-H.C., Y.-L.T., W.-C.T. and Y.-C.C.; Methodology,
C.-R.L. (Chien-Rui Lai), H.-H.C. and C.-R.L. (Chen-Ray Lee); Supervision, S.-T.W. and Y.C.; Validation,
C.-R.L. (Chien-Rui Lai) and H.-H.W.; Visualization, C.-Y.C.; Writing—original draft, C.-R.L. (Chien-
Rui Lai); Writing—review & editing, Y.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the grants from the Ministry of Science and Technology (MOST
110-2314-B-016-021-MY2), Ministry of National Defense—Medical Affairs Bureau (MAB-D-111004),
Tri-Service General Hospital (TSGH-D-111073), and Cheng Hsin General Hospital (CHNDMC-111-10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. Data may be available upon request to interested researchers.

Acknowledgments: We appreciate the technical assistance and animal care provided by Instrument
Center and Animal Center in National Defense Medical Center, Taiwan. We thank the National RNAi
Core Facility in Academia Sinica in Taiwan for providing shRNA reagents and the related services.
We also thank Academia Sinica Core Facility and Innovative Instrument Project (AS-CFII108-113) for
their cell-sorting services.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. DeGeorge, K.C.; Holt, H.R.; Hodges, S.C. Bladder Cancer: Diagnosis and Treatment. Am. Fam. Physician 2017, 96, 507–514.
[PubMed]

3. Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; van Rhijn, B.W.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.;
Redorta, J.P.; et al. EAU Guidelines on Non–Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2013. Eur. Urol. 2013,
64, 639–653. [CrossRef] [PubMed]

4. Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.;
et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021,
13, 3750. [CrossRef]

5. Crocetto, F.; Barone, B.; Ferro, M.; Busetto, G.M.; La Civita, E.; Buonerba, C.; Di Lorenzo, G.; Terracciano, D.; Schalken, J.A. Liquid
biopsy in bladder cancer: State of the art and future perspectives. Crit. Rev. Oncol. 2022, 170, 103577. [CrossRef]

6. Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S.; the Urologic Diseases in
America Project. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [CrossRef]

7. Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B.
Identification of a Nuclear Receptor for Bile Acids. Science 1999, 284, 1362–1365. [CrossRef]

8. Forman, B.M.; Goode, E.; Chen, J.; Oro, E.A.; Bradley, D.J.; Perlmann, T.; Noonan, D.J.; Burka, L.T.; McMorris, T.;
Lamph, W.W.; et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995, 81, 687–693.
[CrossRef]

9. Lambert, G.; Amar, M.J.A.; Guo, G.; Brewer, H.B.; Gonzalez, F.J.; Sinal, C.J. The Farnesoid X-receptor Is an Essential Regulator of
Cholesterol Homeostasis. J. Biol. Chem. 2003, 278, 2563–2570. [CrossRef]

10. Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower
triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Investig. 2004, 113, 1408–1418. [CrossRef]

11. Zhang, Y.; Lee, F.Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F.J.; Willson, T.M.; Edwards, P.A. Activation of the nuclear receptor
FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA 2006, 103, 1006–1011. [CrossRef]
[PubMed]

12. Fang, S. Bile Acid Receptor Farnesoid X Receptor: A Novel Therapeutic Target for Metabolic Diseases. J. Lipid Atheroscler. 2017,
6, 1–7. [CrossRef]

13. Absil, L.; Journé, F.; Larsimont, D.; Body, J.J.; Tafforeau, L.; Nonclercq, D. Farnesoid X receptor as marker of osteotropism of breast
cancers through its role in the osteomimetism of tumor cells. BMC Cancer 2020, 20, 640. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms23095259/s1
https://www.mdpi.com/article/10.3390/ijms23095259/s1
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://www.ncbi.nlm.nih.gov/pubmed/29094888
http://doi.org/10.1016/j.eururo.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23827737
http://doi.org/10.3390/nu13113750
http://doi.org/10.1016/j.critrevonc.2022.103577
http://doi.org/10.1002/cncr.28147
http://doi.org/10.1126/science.284.5418.1362
http://doi.org/10.1016/0092-8674(95)90530-8
http://doi.org/10.1074/jbc.M209525200
http://doi.org/10.1172/JCI21025
http://doi.org/10.1073/pnas.0506982103
http://www.ncbi.nlm.nih.gov/pubmed/16410358
http://doi.org/10.12997/jla.2017.6.1.1
http://doi.org/10.1186/s12885-020-07106-7
http://www.ncbi.nlm.nih.gov/pubmed/32650752


Int. J. Mol. Sci. 2022, 23, 5259 15 of 16

14. De Gottardi, A.; Touri, F.; Maurer, C.A.; Perez, A.; Maurhofer, O.; Ventre, G.; Bentzen, C.L.; Niesor, E.J.; Dufour, J.-F. The Bile Acid
Nuclear Receptor FXR and the Bile Acid Binding Protein IBABP Are Differently Expressed in Colon Cancer. Am. J. Dig. Dis. 2004,
49, 982–989. [CrossRef] [PubMed]

15. Cho, Y.-H.; Ro, E.J.; Yoon, J.-S.; Mizutani, T.; Kang, D.-W.; Park, J.-C.; Kim, T.I.; Clevers, H.; Choi, K.-Y. 5-FU promotes stemness of
colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat. Commun. 2020, 11, 5321. [CrossRef] [PubMed]

16. Huang, X.; Wang, B.; Chen, R.; Zhong, S.; Gao, F.; Zhang, Y.; Niu, Y.; Li, C.; Shi, G. The Nuclear Farnesoid X Receptor Reduces p53
Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Front. Cell Dev. Biol. 2021, 9, 583146. [CrossRef]

17. Feng, Q.; Zhang, H.; Yao, D.; Zhang, X.; Chen, W.D.; Wang, Y.D. Activation of FXR suppresses esophageal squamous cell
carcinoma through antagonizing ERK1/2 signaling pathway. Cancer Manag. Res. 2021, 13, 5907. [CrossRef]

18. Su, H.; Ma, C.; Liu, J.; Li, N.; Gao, M.; Huang, A.; Wang, X.; Huang, W.; Huang, X. Downregulation of nuclear receptor FXR is
associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma. Am. J. Physiol. Liver
Physiol. 2012, 303, G1245–G1253. [CrossRef]

19. Ylänne, J.; Chen, Y.; O’Toole, E.T.; Loftus, J.C.; Takada, Y.; Ginsberg, M.H. Distinct functions of integrin alpha and beta subunit
cytoplasmic domains in cell spreading and formation of focal adhesions. J. Cell Biol. 1993, 122, 223–233. [CrossRef]

20. Janiszewska, M.; Primi, M.C.; Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem. 2020,
295, 2495–2505. [CrossRef]

21. Guan, J.-L. Focal adhesion kinase in integrin signaling. Matrix Biol. 1997, 16, 195–200. [CrossRef]
22. Crowe, D.L.; Ohannessian, A. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via

mitogen activated protein kinase activation. BMC Cancer 2004, 4, 18. [CrossRef] [PubMed]
23. Li, Q.; Li, N.; Zeng, Y.; Wang, X.; Li, J.; Su, H.; Gao, M.; Huang, X. Nuclear receptor FXR impairs SK-Hep-1 cell migration and

invasion by inhibiting the Wnt/β-catenin signaling pathway. Oncol. Lett. 2020, 20, 1. [CrossRef]
24. Yu, J.; Li, S.; Guo, J.; Xu, Z.; Zheng, J.; Sun, X. Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigene-

sis. Cell Death Dis. 2020, 11, 640. [CrossRef] [PubMed]
25. Renner, G.; Noulet, F.; Mercier, M.-C.; Choulier, L.; Etienne-Selloum, N.; Gies, J.-P.; Lehmann, M.; Lelong-Rebel, I.; Martin, S.;

Dontenwill, M. Expression/activation of α5β1 integrin is linked to the β-catenin signaling pathway to drive migration in glioma
cells. Oncotarget 2016, 7, 62194–62207. [CrossRef]

26. Lang, B.J.; Nguyen, L.; Nguyen, H.C.; Vieusseux, J.L.; Chai, R.C.C.; Christophi, C.; Fifis, T.; Kouspou, M.M.; Price, J.T. Heat
stress induces epithelial plasticity and cell migration independent of heat shock factor 1. Cell Stress Chaperon 2012, 17, 765–778.
[CrossRef]

27. Kang, J.K.; Chang, C.-H.; Nam, H.J.; Kim, S.-K.; Ahn, K.J.; Seok, H.; Park, S.J.; Kang, Y.J.; Jo, Y.S.; Shong, M.; et al. Downregulation
of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed
cells. Cell. Oncol. 2011, 34, 11–21. [CrossRef]

28. Clyman, R.I.; Mauray, F.; Kramer, R.H. β1 and β3 integrins have different roles in the adhesion and migration of vascular smooth
muscle cells on extracellular matrix. Exp. Cell Res. 1992, 200, 272–284. [CrossRef]

29. Peng, Z.; Chen, J.; Drachenberg, C.B.; Raufman, J.-P.; Xie, G. Farnesoid X receptor represses matrix metalloproteinase 7 expression,
revealing this regulatory axis as a promising therapeutic target in colon cancer. J. Biol. Chem. 2019, 294, 8529–8542. [CrossRef]

30. Chen, Y.; Mathy, N.W.; Lu, H. The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with
non-small cell lung cancer (Review). Mol. Med. Rep. 2018, 17, 8019–8030. [CrossRef]

31. Nguyen, T.T.; Ung, T.T.; Kim, N.H.; Jung, Y.D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases 2018, 6, 577–588.
[CrossRef] [PubMed]

32. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [CrossRef]
33. Wang, Z.; Yan, M.; Li, J.; Long, J.; Li, Y.; Zhang, H. Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular

carcinoma. Biochim. Biophys. Acta 2019, 1866, 566–574. [CrossRef]
34. Meng, L.; Wang, C.; Wang, Z.; Yin, T.; Liu, Z.; Qin, H.; Zhang, Y.; Gu, X.; Yu, X.; Jiang, L.; et al. Feixian Recipe inhibits pulmonary

fibrosis by targeting pulmonary microvascular endothelial cells and VEGF/VEGFR2 signaling pathway. Tradit. Med. Mod. Med.
2018, 1, 59–67. [CrossRef]

35. Buess, M.; Rajski, M.; Vogel-Durrer, B.M.; Herrmann, R.; Rochlitz, C. Tumor-Endothelial interaction links the CD44+/CD24-

phenotype with poor prognosis in early-stage breast cancer. Neoplasia 2009, 11, 987–1002. [CrossRef] [PubMed]
36. Feng, T.; Yu, H.; Xia, Q.; Ma, Y.; Yin, H.; Shen, Y.; Liu, X. Cross-talk mechanism between endothelial cells and hepatocellular

carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget 2017,
8, 69577–69593. [CrossRef]

37. Hwang, S.-H.; Lee, B.-H.; Choi, S.-H.; Kim, H.-J.; Won, K.J.; Lee, H.M.; Rhim, H.; Kim, H.-C.; Nah, S.-Y. Effects of gintonin on the
proliferation, migration, and tube formation of human umbilical-vein endothelial cells: Involvement of lysophosphatidic-acid
receptors and vascular-endothelial-growth-factor signaling. J. Ginseng Res. 2016, 40, 325–333. [CrossRef] [PubMed]

38. Bijnsdorp, I.V.; Capriotti, F.; Kruyt, A.E.F.; Losekoot, N.; Fukushima, M.; Griffioen, A.W.; Thijssen, V.L.; Peters, G.J. Thymidine
phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors.
Br. J. Cancer 2011, 104, 1185–1192. [CrossRef]

http://doi.org/10.1023/B:DDAS.0000034558.78747.98
http://www.ncbi.nlm.nih.gov/pubmed/15309887
http://doi.org/10.1038/s41467-020-19173-2
http://www.ncbi.nlm.nih.gov/pubmed/33087710
http://doi.org/10.3389/fcell.2021.583146
http://doi.org/10.2147/CMAR.S243317
http://doi.org/10.1152/ajpgi.00439.2011
http://doi.org/10.1083/jcb.122.1.223
http://doi.org/10.1074/jbc.REV119.007759
http://doi.org/10.1016/S0945-053X(97)90008-1
http://doi.org/10.1186/1471-2407-4-18
http://www.ncbi.nlm.nih.gov/pubmed/15132756
http://doi.org/10.3892/ol.2020.12022
http://doi.org/10.1038/s41419-020-02819-w
http://www.ncbi.nlm.nih.gov/pubmed/32807788
http://doi.org/10.18632/oncotarget.11552
http://doi.org/10.1007/s12192-012-0349-z
http://doi.org/10.1007/s13402-010-0001-9
http://doi.org/10.1016/0014-4827(92)90173-6
http://doi.org/10.1074/jbc.RA118.004361
http://doi.org/10.3892/mmr.2018.8922
http://doi.org/10.12998/wjcc.v6.i13.577
http://www.ncbi.nlm.nih.gov/pubmed/30430113
http://doi.org/10.1038/35025220
http://doi.org/10.1016/j.bbamcr.2018.11.016
http://doi.org/10.1142/S2575900018500052
http://doi.org/10.1593/neo.09670
http://www.ncbi.nlm.nih.gov/pubmed/19794958
http://doi.org/10.18632/oncotarget.18632
http://doi.org/10.1016/j.jgr.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/27746684
http://doi.org/10.1038/bjc.2011.74


Int. J. Mol. Sci. 2022, 23, 5259 16 of 16

39. Jang, J.P.; Han, J.M.; Jung, H.J.; Osada, H.; Jang, J.H.; Ahn, J.S. Anti-Angiogenesis Effects Induced by Octaminomycins A and B
against HUVECs. J. Microbiol. Biotechnol. 2018, 28, 1332–1338. [CrossRef]

40. Gege, C.; Hambruch, E.; Hambruch, N.; Kinzel, O.; Kremoser, C. Nonsteroidal FXR Ligands: Current Status and Clinical
Applications. Handb. Exp. Pharm. 2019, 256, 167–205. [CrossRef]

http://doi.org/10.4014/jmb.1806.06046
http://doi.org/10.1007/164_2019_232

	Introduction 
	Results 
	Survival Rate and Expressions of FXR in Bladder Cancer Patients and Bladder Cancer Cell Lines 
	Overexpression of FXR Inhibited Survival and Colony Formation in T24 Cells 
	Overexpression of FXR Inhibited the Migration and Adhesion Abilities in TSGH8301 and T24 Cells 
	FXR Overexpression Inhibits Migratory and Adhesive Ability via Proteosome Degradation 
	Overexpression of FXR Inhibited the Invasive Ability in the T24 Cells 
	Proteosome Degradation Was Involved in FXR Overexpression-Decreased Tube Formation in T24 Cells 
	HUVECs Migratory Abilities Were Reduced by Proteasomal Degradation 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Plasmid Construction, Lentivirus Production and Doxycycline Induciable Overexpression 
	MTT Assays 
	Colony Formation Assays 
	Wound Healing Migration Assay 
	Adhesion Assays 
	Transwell Assays 
	Tube Formation Assays 
	Real-Time Polymerase Chain Reaction (RT-PCR) 
	Western Blotting 
	Enzyme-Linked Immunosorbent Assay (ELISA) for VEGF and MMP2 
	Human Active MMP9 Fluorokine Eassay 
	Statistical Analysis 

	Conclusions 
	References

