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Abstract: We develop a generic model of excitation and fluorescence

recapturing within filled microstructured optical fibres (MOFs) with

arbitrary structure and demonstrate that the light-matter overlap alone does

not determine the optimal fibre choice. Fibre designs with sub-wavelength

features and high-index glasses exhibit localised regions of high intensity,

and we show that these regions can lead to approximately two orders of

magnitude enhancement of fluorescence recapturing. Here we show how

this regime can be exploited for sensing and demonstrate experimentally

in-fibre excitation and fluorescence recapturing within a filled, solid-core

MOF.
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1. Introduction

Microstructured optical fibres (MOFs) have the potential to dramatically improve the perfor-

mance of fibre optic sensors based on absorption and fluorescence spectroscopy and have re-

cently attracted considerable interest [1, 2, 3, 4, 5, 6, 7], since a significant portion of the guided

light can be located in holes within the fibre. In the literature, the sensitivity of optical fibre

sensors based on absorption and fluorescence spectroscopy is usually considered to be related

solely to the power fraction of the guided mode field that is available for overlap with the ma-
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terial to be sensed. Such sensors are generally referred to as evanescent-field sensors, reflecting

the fact that only the evanescent tail of the guided mode is available for light-matter interac-

tions. Examples of fibre geometries used for evanescent-based sensing include; tapered fibres

[8, 9], D-shaped fibres [10], optical nanowires [11], solid-core MOFs [5, 12], multi-core MOFs

[3, 4] and hollow-core MOFs [13]. Most evanescent-based sensing geometries only allow a lim-

ited light-matter overlap and thus are restricted in the sensitivity that they can achieve. Some

typical mode-matter overlaps that have been reported include 0.1− 0.2% for D-shaped fibres

[10], 5.2% in an MOF [13], and multi-core MOFs with 6.5% [4]. Fibres with sub-wavelength

cores including optical nanowires and MOFs with embedded nanowire-like cores [14, 15] allow

overlaps as large as 99% as is evident from literature reports of 40% [12] and 99% [16]. These

advances allow solid-core fibres to achieve light-matter overlaps as high as other field-based

sensors which have access of up to 97% [17] or higher of the guided mode power such as cap-

illary tubes [18], index-guiding filled hollow-core MOFs [19] and hollow-core photonic band

gap fibres [20].

Although different MOF-variants of fluorescence-based sensors have been reported [2, 3,

4, 7, 10], the benefits that can be obtained using MOFs are far from being realised, largely

due to the lack of a formalism for predicting and thus optimizing the measurable fluorescence

power. Although models of the efficiency of fluorescence-based optical fibre sensors have been

developed for simple structures such as tapered or D-shaped fibres, they have limited applica-

bility because; 1) it is assumed that the modes of the fibre are the same at both the absorption

and fluorescence wavelengths and 2) they are based on ray-optics [1, 21] or scalar electromag-

netic fields (without including the effect of absorption loss) [8]. These models do not work

well for fluorescent dyes with significant excitation-fluorescence wavelength separation (such

as quantum dots), MOFs with wavelength-scale features and high contrast refractive indices, or

complex sensing geometries when the hole surface of MOFs are coated (functionalized) with

chemical-biological materials.

Here, we develop a general model of excitation and fluorescence recapturing within an

MOF’s modes based on guided mode solutions of vectorial form of Maxwell’s equations and

considering their losses at both emission and fluorescent frequencies. By evaluating the modal

characteristics of a range of fibres at both wavelengths, we explore ways of enhancing the sens-

ing sensitivity by maximising the fraction of the fluorescent photons that are coupled to the

guided mode(s) of the filled microstructured fibres (the fluorescence capture fraction, FCF).

We demonstrate that the light-matter overlap alone does not determine the optimal fibre choice

as is usually assumed. Fibre designs with sub-wavelength features and high index glass exhibit

localised regions of high intensity [22, 23], and we show that these regions lead to enhanced

fluorescence recapturing and can be exploited for sensing. The significance of this parameter

regime becomes clearer considering; 1) recent indication of the existence of such narrow-width

high intensity regions at the interface of two different dielectrics, due to discontinuity of the

electric field, in both waveguides [25] and MOFs [22, 23] and 2) sensing configurations based

on surface excitation of chemical and biological layers. Recently, there have been reports on the

importance of the above-mentioned parameter regime in related fields. The enhancement of flu-

orescent scattering of semiconductor quantum dots deposited upon photonic crystals slabs [24]

and the enhancement (by few orders of magnitude) of the efficiencies of conventional surface

spectroscopy by using tapered fibres [6] are two examples.

Experimentally, chemical and biological sensing have been demonstrated using absorption

spectroscopy in D-shaped fibres [10] and MOFs [4, 5] and captured fluorescence-based sensing

in tapered fibres [26], liquid-filled hollow-core MOFs [19, 7], side excited MOFs [2, 17], and

double-clad and multi-core (liquid filled) MOF [3]. Here, we demonstrate experimentally both

in-fibre excitation and fluorescence recapturing within a liquid-filled, solid-core, index-guiding
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MOF [Fig. 1(b)] through its core guided modes. The experimental methods based on selective

hole filling of MOFs (c.f. Ref. [19, 7] for example) or propagating modes of high index liquids

(c.f. Ref. [3] for example) may be limiting in some applications. Thus, the use of high-index

glass (SF57 here) solid-core MOFs allows access to high light-matter overlaps without neces-

sitating selective hole filling while relying on solid-core modes even when the MOF holes are

filled with high index liquid.

2. Theory

To develop the model, we assume that the propagating modes of an absorbing MOF are the

same as nonabsorbing ones except that their powers decay with an attenuation factor of γ as

they propagate. The excitation electromagnetic power in the jth mode at excitation frequency

ωE can then be expressed as: [27]

PE j(z) =
∣∣aE j

∣∣2
NE j exp(−γE jz); NE j =

1

2
Re

{∫

A∞

(eE j ×h∗
E j).ẑdA]

}
(1)

γE j = k

(
ε0

µ0

)1/2
∫

A∞
nEni

E

∣∣eE j

∣∣2
dA

NE j
, (2)

where aE j is the expansion coefficient for mode j, eE j(x,y),hE j(x,y), βE j, and γE j are the jth

mode electric and magnetic field distributions, propagation constant and power decaying factor

due to absorption, respectively. Here, we assume that γ j represents all absorption mechanisms

in the MOF, including absorption due to the Beer-Lambert law [28].

For an arbitrary filled MOF both nE(x,y) and ni
E(x,y) (real and imaginary parts of refractive

indices) are functions of transverse coordinates and hence the piece-wise integral in Eq. (2)

can be integrated over the glass and hole (filled) regions. Eq. (1) indicates that although the

absorption of the excitation mode occurs in the filled region, through Beer-Lambert law, the

peak intensity also reduces, keeping the shape of the mode and the hole power fraction constant.

Upon absorbing the excitation photons, the fluorescent species in the holes behave as sources

and emit fluorescent photons in all directions. Similar to the excitation field, the emission of

this new fluorescent source can in general be written [27] as the sum of forward, backward,

and radiation modes of the non-absorbing MOF with the consideration of power decay due to

loss at the fluorescence frequency. Based on the formalisms developed in Ref. [27, 29], we find

the fluorescent power contribution to the jth forward mode of the MOF at the end of the filled

region z = L, due to a small section Δz = z2 − z1 [see Fig. 1(c)], and including its loss as:

dPF j(z
′) =

π exp[−γF j(L− z′)]

4ωF µ0nH
F kFNF j

∫

H

∫ z2

z1

∣∣eF j

∣∣2
PD(r)dz′′dA. (3)

Here, PD(r) is the radiation power density of any sources within the MOF, which for the case

considered here is due to the fluorescent emission of the filling material. The density of fluo-

rescent emission at point r depends on the absorption of excitation field from the beginning of

the filled area up to the point r, see Fig. 1(a). Using equations (1) and (2), assuming that the

fluorescent power density is proportional to the density of excitation power loss due to Beer-

Lambert law in the filled region (proportionality constant ξ ), and taking into account energy

conservation, we have found PD(r) as:

PD(r) =
1

2
ξ αBnH

E (ε0/µ0)
1/2

∣∣aE j

∣∣2
δ H

E jRe[(eE j ×h∗
E j).ẑ]exp(−γE jz

′′), (4)

δ H
E j =

∫

H

∣∣eE j

∣∣2
dA/

∫

H
(eE j ×h∗

E j).ẑdA. (5)
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Here, αB = ελC is the absorption coefficient due to Beer-Lambert law [28], where ε is the

molar extinction coefficient of the filling material, C is the molar concentration, and superscript

H refers to hole regions. Substituting Eq. (4) into Eq. (3), and taking the integral over z ′′ and

the limit of z1 → z2, we find

dPF j(z
′) =

πξ αBnH
E (ε0/µ0)

1/2
∣∣aE j

∣∣2
δ H

E j

8ωF µ0nH
F kFNF j

exp[−γF j(L− z′)]exp(−γE jz
′)dz′ (6)

×

∫

H

∣∣eF j

∣∣2
Re[(eE j ×h∗

E j).ẑ]dA.

Integrating the fluorescent contributions of the elements from z = 0 to z = L, the fluorescence

capture fraction (FCF) into the jth guided mode of the MOF can be expressed as

FCF = PF j(L)/PE j(0) = AB j

exp(−γF jL)

(γE j − γF j)
{1− exp[(γF j − γE j)L]} (7)

A =
ξ αBλ 2

8π(nH
F )2

; B j = nH
F nH

E

(
ε0

µ0

)
δ H

E j

∫
H

∣∣eF j

∣∣2
Re[(eE j ×h∗

E j).ẑ]dA

4NF jNE j

. (8)

In this equation A is a constant coefficient and PE j(0) is the input excitation field power at the

beginning of the filled part of the fibre, whose length is shown by L [see Fig. 1(a)]. It should

be noted that throughout the text we only consider FCF into the fundamental guided mode

propagating in the forward direction. To find FCF into backward propagating modes, different

loss calculations should be included in the above formalism which is beyond the scope of

this paper. Also, in derivation of Eq. (6) and (7), it is assumed that the whole fibre length is

completely filled. For fibres that are only partially filled, the mode mismatch between the filled

and unfilled sections should be considered for both excitation and fluorescence frequencies,

which is beyond the scope of this paper.

3. Modelling results and discussion

The model developed in Section 2 is general and can be applied to any filled MOF with arbitrary

cross section structure. Here, we consider an MOF [shown in Fig. 1(b)], which consists of a core

surrounded by three large, non-circular, air holes creating a somewhat triangular core supported

by three struts. This type of fibre geometry has been studied [30, 31] and is the simplest fibre

geometry that can be fabricated giving rise to a well defined air-suspended core with large

surrounding (fillable) air holes. To find the propagation constant and field distributions for the

MOF, we solve the full vectorial form of Maxwell’s equations since, for the subwavelength

scales considered here, a scalar approximation gives inaccurate results [32].

We define the MOF core diameter, d, to be the diameter of a circle with area equal to that

of the largest equilateral triangle that fits wholly within the substrate core region, shown as the

solid circle in Fig. 1(b). For simplicity we consider an idealized MOF structure, which closely

matches that of the SEM image [Fig. 1(b)]: the curvature of the core is approximated by the

edges of the three dashed circles connected by the bases of three rectangles approximating the

struts. To solve Maxwell’s equations for this geometry we use the Finite Element Modelling

(FEM) technique instantiated in the commercial FEM package COMSOL 3.2. The accuracy of

the modal parameters depends heavily on the densities of the mesh in different regions, which

have been set separately to achieve converged values. The parameters used for the simulations

are; excitation wavelength λE = 532 nm, fluorescence wavelength λF = 590 nm, filling ma-

terial: Rhodamine B dissolved in isopropanol, and five different glass materials [silica, lead

silicates (LLF1, F2, and SF57), and bismuth] whose refractive indices are indicated on the

figures.
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Fig. 1. Schematic of a filled MOF showing the parameters used in modelling (a) and the

SEM image of the cross section of the MOF used for the modelling and experiment (b).

Dashed circles in (b) show the idealized geometry used for modelling. The effective area

of the fundamental mode for the geometry shown in (b) when the holes are filled with

Rhodamine B in an isopropanol solution (c). The wavelength is 590 nm, refractive index of

isopropanol is 1.3774 and different substrate glasses are marked.

Simulation results of FCF as a function of fibre length for constant core diameter and

concentration, as shown in Fig. 2(a), indicate that there is an optimum fibre length L opt =
ln(γF/γE)/(γF − γE), which leads to maximal FCF for any fibre geometry [see Eq. (7)]. For

L < Lopt increasing the fibre length increases the absorption in the filled region via the Beer-

Lambert law, and thus increases FCF. Beyond this optimum length, fibre attenuation dominates

and the fluorescent power decays as exp(−γFL). Unsurprisingly, as the results in Fig. 2(a) show,

the use of lower index glasses results in a higher FCF since the relatively low core-cladding

index contrast leads to a higher light-matter overlap within the holes [this is also evident in the

behaviour of Ae f f in Fig. 1(c)].

Numerical simulations of the FCF also identify a less obvious and particularly interesting

regime [see Fig. 2(b)]. For small core diameters (d < 0.8 µm), the FCF can be significantly

enhanced by employing high index (soft) glasses. For example, the maximum FCF ( FCF

at fibre length Lopt ) for bismuth-oxide fibres at d ≈ 0.18 µm, is 2.2%, 10 times larger than

the maximum FCF value for silica fibres (0.22%) at d ≈ 0.52 µm. Also, at the core size of

d ≈ 0.2 µm the maximum FCF value for bismuth fibres is 2.1%, 88 times larger than that

of silica fibres (0.024%). This is contradictory to the usual assumption that sensitivity is pro-

portional to power fraction in the holes, since high index glasses result in lower power frac-

tion in the holes compare to that of low index glasses at small core diameter. For example,

at the core diameter of d ≈ 0.2 µm hole power fraction at excitation frequency (defined as

ηH
E = nH

E (ε0/µ0)
1/2 (1/2NE j)

∫
H

∣∣eE j

∣∣2
dA) for silica and bismuth fibres are 0.97 and 0.43 re-
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Fig. 2. Numerical results of the fluorescence capture fraction (FCF) as a function of fibre

length (a) and core diameter (b) for different substrate glasses. Other parameters are; core

diameter 1.0 µm, in (a) and concentration 5×10−5 Mol in (a) and (b). Maximum FCF in

(b) corresponds to optimum fibre length.

spectively.

To understand this effect, we examine coefficient B j in Eq. (8), which depends on the field

distributions of the guided modes of the fibre and their overlap with the materials within the

holes. We assume that the mode profiles of the excited and fluorescent fields are the same (i.e.,

NF j = NE j), which although not strictly true especially for filling materials such as quantum

dots with large separation of absorbing and fluorescent wavelengths, can help provide physical

insight. We rewrite coefficient B j as B j = NOI j/Ae f f , where;

NOI j = nH
E nH

F

(
ε0

µ0

)1/2 δ H
E j

∫
H

∣∣e j

∣∣2
Re[(e j ×h∗

j).ẑ]dA

∫
A∞

∣∣∣Re[(e j ×h∗j).ẑ]
∣∣∣
2

dA

; Ae f f =
(
∫

A∞
Re[(e j ×h∗j).ẑdA])2

∫
A∞

∣∣∣Re[(e j ×h∗j).ẑ]
∣∣∣
2

dA

.

Here NOI j is a normalized field-matter overlap integral, which approaches 1 when the core

diameter becomes very small and most of the light is located outside the core [see Fig. 3(a)].

Ae f f , defined based on z component of the Poynting vector, is a generalised form of the usual

definition of Ae f f [33].

Inspecting Ae f f [Fig. 1(c)] and NOI [Fig. 3(a)] at a core size of d = 0.2 µm for both silica

and bismuth, reveals that the field-matter overlap NOI for silica is 3.6 times larger than that of

bismuth. However the effective area, Ae f f , of the propagating mode for bismuth is 230 times

smaller than that of silica for this core diameter, resulting in higher intensity values for bismuth

and thus a larger FCF . Examining the intensity profiles of the fundamental mode for these

silica and bismuth fibres [Fig. (4)], clearly shows that while the mode is well expanded into the

hole region in the case of silica, it is well confined within the core for bismuth and forms a high

intensity, thin layer at the core-hole interface within the filled region.

These localised high intensity regions are formed due to the discontinuity of the electric

field at the interface of two dielectric media, as recently reported in slab waveguides [25] and

MOFs [22, 23]. The magnitude of the discontinuity is proportional to the ratio of the dielectric
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Fig. 3. Numerical results of Normalized Overlap Integral (NOI), defined in the text and

calculated at the wavelength of 590 nm (a), and the fluorescent capture fraction (FCF) as a

function concentration (b). In (b) dashed and solid lines correspond to core diameters 0.2
and 1.0 µm respectively, and the insets show the linear scale plot of the main graph over

the same concentration range.

constants of the two media and hence soft glasses with higher refractive indices result in higher

intensities at the glass-hole interface.

The results presented here demonstrate for the first time that overlapping localised high in-

tensity regions in the modal field with a fluorescent material is an effective way of enhancing

the performance of a sensing fibre. This enhancement is significant not only for situations where

the holes are filled with liquids, but is also particularly relevant for sensing configurations where

samples are coated or functionalized onto the walls of the MOF. This enhanced FCF regime,
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more confined in (b) and a thin layer of high intensity region is formed at the glass-hole

interface.
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achieved by the use of small core dimensions and high index glasses, also enhances the sensi-

tivity of FCF to concentration variations in the material to be sensed. Using Eq. (7), the FCF

can be approximated as [1−exp(−ελCηH
E j)] as a function of concentration C, which simplifies

to ελCηH
E j in the limit of small concentration. This behaviour of FCF is confirmed as shown

in Fig. 3(b) for two core diameters d = 1.0 (solid lines) and d = 0.2 µm (dashed lines) and

different glasses. However, the behaviour of FCF as a function of concentration C is opposite

for small and large core regimes. Fig. 3(b) and its insets show that for large core diameters

(e.g., d = 1.0 µm), silica has the largest asymptotic FCF value (∼ 0.11%) and FCF slope

(∂ (FCF)/∂C ∼ 0.0027%/µM). Whereas, for small core diameter ( d = 0.2 µm), bismuth has

the largest corresponding FCF value of (∼ 2.67) and FCF slope (∼ 0.069%/µM). As a re-

sult, both FCF and its sensitivity to small variations in concentration are enhanced in the small

core, high index glass regime. This regime is expected to be of particular practical benefit in al-

lowing observations of captured fluorescence to occur at extremely low sample concentrations,

allowing for the development of sensors with competitive detection limits.

4. Experimental results

We have demonstrated experimentally in-fibre excitation and fluorescence recapturing within a

filled, solid-core MOF. The holes of the MOF, shown in Fig. 1(b), were filled with Rhodamine

B dissolved in isopropanol (n = 1.3774) using capillary action. Using the experimental setup

in Fig. 5(a), Fig. 5(b) shows the experimental measurements and theoretical prediction of the

filling rate. We use the filling rate equation developed in Ref. [34] for a circular capillary tube,

considering the following parameters for isopropanol, its interaction with glass, and the fibre

geometry; density 785 kgm−3, surface tension 0.022 Nm−1, viscosity 2.27×10−3 Nsm−2, ef-

fective radius 6.11×10−6 m, contact angle 0◦, coefficient of slip 0 m, and external pressure 0

Pa. To find the effective radius re f f , we have assumed that the holes of the MOF in Fig. 1(b)

are circular with the same area as that of the real fibre. This, strictly speaking, is inaccurate

because capillary forces are mainly a surface effect, which depends on the radius of curvature

of the different corners in the geometry, and we believe that this assumption is the main reason

for the discrepancy between the theoretical and experimental results in Fig. 5(b). For these ex-

perimental measurements the position of the liquid in the holes was recorded by observing the

fluorescent emission at the liquid interface in the backward direction of the laser beam in Fig.

5(a).

The setup sketched in Fig. 5(c) was used to excite the Rhodamine B molecules filled into

the holes of the fibre and measure the captured fluorescence emission. The outer surface of the

fibre was coated with an index matching liquid, DAG, to strip any fluorescent emission coupled

to the cladding modes. This ensured that all the measured fluorescence had been captured by

the relatively low-loss, core-guided modes of the fibre, as assumed by the theoretical model.

The absorption and low concentration fluorescent peaks of Rhodamine B are at 540 nm [35]

and 570 nm, respectively. The MOF used in the experiment has a core diameter of d = 1.8 µm,
core material of SF57 and its cross section is shown in Fig. 1(b). A CW laser at 532 nm was

coupled into the MOF using an aspheric lens of f = 2.75 mm and NA = 0.65 and maximum

coupling efficiency of around 19% was measured. The loss of the unfilled fibre at 532 nm is

5.5±0.5 dB/m, using the standard cutback method. At the output, we used a long pass filter to

exclude the excitation frequency components. The fluorescence emission is then coupled into

a single mode (SM) fibre, which was connected to an optical spectrum analyser for spectrum

measurement.

The experimental results are presented in Fig. 5(d) clearly showing the expected fluores-

cence and also significant decay of the measured fluorescence over 960 seconds exposure to

the excitation field. The decay in fluorescence was due to photobleaching, the photo-induced
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Fig. 5. Experimental setup for filling an MOF (a). The experimental and theoretical predi-

cations of filling time as a function of filled length (b). For the theoretical predictions it is

assumed that the holes of the fibre are circles whose area are 1, 0.8, or 0.6 times of that

of the real fibre in Fig. 1 (117, 94, and 70 µm2 respectively). Experimental set up (c) and

results (d) for capturing the fluorescent emission by the core of the MOF.

destruction of the fluorophore [28]. While partial recovery is possible, photobleaching has the

potential to be problematic. For example, to measure FCF as a function of fibre length we fill

a fibre and use a cut-back method to measure FCF at different lengths. However due to pho-

tobleaching effect and the time that takes to cleave, align, and couple the fluorescence beam

into the OSA, it is very difficult to measure FCF as a function of length for Rhodamine B. A

promising alternative is to replace organic dyes with quantum dots, which experience negligi-

ble photobleaching and have already found use in sensing such as for biological and medical

applications [26, 36].

5. Discussion and conclusion

To the best of our knowledge this is the first time that a general model of both in-fibre exci-

tation and fluorescence recapturing of filled solid-core MOFs by their core guided modes has

been developed and demonstrated experimentally. An expression for the efficiency of fluores-

cence capture fraction has been developed for an arbitrary MOF based on vectorial solutions

of Maxwell’s equations and considering the modal behaviour of the MOF for distinct excita-

tion and fluorescence frequencies. We have predicted between one to two orders of magnitude

improvement in the fluorescence capture fraction (FCF) of MOFs with high index substrate

glasses and small core diameters in comparison with those with low index glasses. This para-

meter regime results in localised, high intensity electromagnetic fields at the interface of the

glass and hole regions, making it an ideal regime for thin layer sensing where chemical or

biological substances are coated onto the interface.

The fluorescence capture fraction is normalised to the input power in the fibre and hence,

although the small core parameter regime degrades the coupling efficiency, higher incident

power (below the damage threshold of the glass) can be used to attain certain power in the

fibre. Additionally, by using advanced coupling techniques such as tapers or high numerical

aperture buffer fibres [37], one should be able to minimise the coupling loss into small core
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fibres.

Our recent progress in fabricating soft glass MOFs with small cores, and the evidence that

with careful fabrication processes fibre loss of order of < 0.5 dB/m can be achieved [38], pro-

vide an attractive new route towards the development of highly-sensitive fluorescence sensors.
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