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Enhancement of Log Mel Power Spectra of
Speech Using a Phase-Sensitive Model of
the Acoustic Environment and Sequential

Estimation of the Corrupting Noise
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Abstract—This paper presents a novel speech feature en-
hancement technique based on a probabilistic, nonlinear acoustic
environment model that effectively incorporates the phase rela-
tionship (hence phase sensitive) between the clean speech and
the corrupting noise in the acoustic distortion process. The core
of the enhancement algorithm is the MMSE (minimum mean
square error) estimator for the log Mel power spectra of clean
speech based on the phase-sensitive environment model, using
highly efficient single-point, second-order Taylor series expansion
to approximate the joint probability of clean and noisy speech
modeled as a multivariate Gaussian. Since a noise estimate is
required by the MMSE estimator, a high-quality, sequential noise
estimation algorithm is also developed and presented. Both the
noise estimation and speech feature enhancement algorithms are
evaluated on the Aurora2 task of connected digit recognition.
Noise-robust speech recognition results demonstrate that the
new acoustic environment model which takes into account the
relative phase in speech and noise mixing is superior to the earlier
environment model which discards the phase under otherwise
identical experimental conditions. The results also show that
the sequential MAP (maximum a posteriori) learning for noise
estimation is better than the sequential ML (maximum likelihood)
learning, both evaluated under the identical phase-sensitive
MMSE enhancement condition.

Index Terms—Noise estimate, noise-robust ASR, phase-sensitive
acoustic environment model, sequential algorithm, speech feature
enhancement.

I. INTRODUCTION

THIS paper addresses the problem of speech feature en-
hancement, and the associated problem of noise feature

estimation, when the noisy speech features alone are available
as the observational information. Enhancement of speech wave-
forms and features for improved auditory perception and for ro-
bust machine speech recognition has been an outstanding and
difficult problem in speech processing for many years [1], [12],
[13], [17], [25]. The problem is becoming increasingly impor-
tant recently due to emerging commercial deployment of speech
recognition technology which demands a high degree of noise
robustness [24], [21]. Toward high-performance solutions to ro-
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bust speech feature enhancement and accurate noise estimation,
we recently developed a series of enhancement techniques cap-
italizing on the availability of stereo training data [5], [6], [11]
or on a simple nonlinear model of the acoustic environment
[20], [2], [8], [9], [14], [7]. The latter approach discards the
phase relationship between the clean speech and the additive
noise during the speech signal corruption process. The former
approach is an end-to-end system, and due to its use of the
stereo data, takes phase errors into consideration but only in an
implicit manner. To overcome some weaknesses of these ear-
lier techniques, such as the difficulty of acquiring well-matched
stereo training data and the performance limit due to loss of the
phase information, we have more recently developed a new fea-
ture enhancement technique which requires no stereo training
data. This new technique explicitly exploits the novel concept
of phase sensitivity in the acoustic environment model to de-
rive the MMSE estimator for clean speech. In addition, in order
to compute the MMSE estimator as an explicit function of the
log-spectrum noise feature (and of the noisy speech feature), the
technique employs a new sequential point estimator for nonsta-
tionary noise based on the MAP (maximum a posteriori) prin-
ciple. Both of these aspects of the new technique form the core
material of this paper.

Exploitation of the phase between speech and noise for
speech enhancement has in the past been limited only to non-
statistical techniques, largely related to the framework known
as nonlinear spectral subtraction [18], [25]. An insightful
analysis was provided in [25], which links the SNR-dependent
subtraction factor in nonlinear spectral subtraction to the
missing phase information in the conventional linear spectral
subtraction. A deterministic, empirical technique based on this
analysis and on an approximate numerical solution was also
proposed in [25]. The technique proposed in this paper which
capitalizes on the same essential phase information, on the other
hand, is established using a very different framework based on
MMSE statistical estimation.1 In addition, the phase-sensitive
statistical model for the acoustic environment presented in this
paper includes not only the additive noise case (as in [25]) but
also simultaneously the case for convolutional distortion.

This paper is organized as follows. In Section II, we will
describe the new phase-sensitive nonlinear model for the

1The MMSE estimation technique for speech enhancement was initially es-
tablished in [12].
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acoustic environment, which characterizes in statistical terms
the acoustic distortion from clean speech features in the
(Mel-scaled) log-spectrum domain to their noisy counterpart
due to the additive noise corruption in the linear waveform
domain. The MMSE estimator for noise removal based on this
model will be derived in Section III. The novel MAP noise
tracking algorithm will be presented in Section IV, which
supplies an essential quantity required by the MMSE estimator.
In Section V, we will provide experimental evidence on the
Aurora2 task for the superiority of the phase-sensitive MMSE
estimator and of the MAP noise tracker over their respective
baselines.

II. PROBABILISTIC, PHASE-SENSITIVE MODELING FOR THE

ACOUSTIC ENVIRONMENT

A. Relationship Among the Phase Factor and the Log-Spectra
of Noise, Channel, Clean and Distorted Speech

Using the discrete-time, linear system model for the acoustic
distortion in the time domain [1], [20], we have the well-known
relationship among the noisy speech ( ), clean speech ( ),
additive noise ( ), and the impulse response of the linear dis-
tortion channel ( )

In the frequency domain, the equivalent relationship is

(1)

where is the frequency-bin index in DFT given a fixed-length
time window, and is the (frequency-domain) transfer
function of the linear channel.

The power spectrum of the noisy speech can then be obtained
from the DFT in (1) by

(2)

where denotes the (random) angle between the two complex
variables and ( ). Equation (2) incorporates the
phase relationship between the (linearly filtered) clean speech
and the additive corrupting noise in the speech distortion
process, which will be shown to be important for improving
the performance of speech feature enhancement. It is noted that
in the traditional models for acoustic distortion [1], [20], [22],
the last term in (2) has been assumed to be zero. This is correct
only in expected sense. The phase-sensitive model presented
in this paper based on (2) with nonzero instantaneous values in
the last term removes such a commonly made but un-realistic
assumption.

The new (2) leads to the following relationship among the
phase factor (which is related to the angle between Mel-filter
vectors of clean speech and noise, and is defined precisely in

(28) in the Appendix) and the log Mel power spectra of noise ,
of channel , of clean speech , and of distorted speech

(3)

See a detailed derivation of (3) in the Appendix .
From (3), the phase factor (vector) can be solved as a func-

tion of the remaining variables

(4)

B. Probabilistic, Phase-Sensitive Modeling of the Acoustic
Environment

We now use the nonlinear relationship among the phase factor
and the log-domain signal quantities of , , , and , shown

in (3) or (4), as the basis to develop a probabilistic phase-sen-
sitive model for the acoustic environment. The outcome of a
probabilistic model for the acoustic environment is explicit de-
termination of the conditional probability, , of the
noisy speech observation ( ) given all other acoustic variables

, , and . This conditional probability will be required for de-
riving an optimal estimate of clean speech, as will be presented
in the next section.

To determine the form of , we first need to as-
sume a form of the statistical distribution for the phase factor

. To accomplish this, we first note
that the angle between the complex variables of and
( ) is uniformly distributed over ( , ). This amounts
to the maximal degree of randomness in mixing speech and
noise, and has been empirically observed to be correct.

Then, from the definition of in (28) (Appendix ), it can
be shown that the phase factor for each Mel-filter can be
approximated by a (weighted) sum of a number of indepen-
dent, zero-mean random variables distributed (nonuniformly)
over ( , 1), where the total number of terms equals the number
of DFT bins (with a nonzero gain) allocated to the Mel-filter.
When the number of terms becomes large, as is typical for high-
frequency filters, the central limit theorem postulates that
will be approximately Gaussian. Law of large numbers further
postulates that the Gaussian will have zero mean since each term
of has a zero mean.

Thus, the statistical distribution for the phase factor can be
reasonably assumed to be a zero-mean Gaussian

where the filter-dependent variance is estimated from a set
of training data (see details in Section V-D). Since noise and
(channel-distorted) clean speech are mixed independently for
each DFT bin, we can also reasonably assume that the different
components of the phase factor are uncorrelated. Thus, we
have the multivariate Gaussian distribution of

(5)

where is a diagonal covariance matrix.
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Given , we are now in a position to derive an appropriate
form for . To do so, we first fix the values of ,

, and , treating them as constants. We then view (3) as a
(monotonic) nonlinear transformation from random variables
to . Using the well-known result from probability theory on
determining the PDF for functions of random variables, we have

(6)

where is the Jacobian2 of the nonlinear
transformation.

The diagonal elements of the Jacobian can be computed,
using (3) and then using (30) (see the Appendix ), by

(7)

The determinant of the diagonal matrix of (7) is then the product
of all the diagonal elements. Also, the Gaussian assumption for

gives

(8)
Substituting (7) and (8) into (6), we establish the following

probabilistic model of the acoustic environment:

(9)

Because is the inner product (proportional to cosine of the
phase) between the Mel-filter vectors of noise and clean speech
characterizing their phase relationship, a Gaussian distribution
on it makes the environment model of (9) phase sensitive.3

For exposition simplicity, in the remaining of this paper we
assume: 1) The log-domain noise vector is deterministic,
or ( can be obtained by point estimators as
will be described in Section IV); and 2) The channel distortion
can be ignored: . Further, since the covariance matrix

is assumed to be diagonal with nonzero elements denoted
by , we will present the scalar rather than vector derivation,
without loss of generality, for speech feature enhancement next.

III. MMSE LOG POWER SPECTRAL ESTIMATOR OF

CLEAN SPEECH

A. Algorithm and its Derivation

Given the log (Mel) power spectra of the noisy speech ob-
servation , the MMSE estimator for clean speech is the
conditional expectation

(10)

2It can be easily shown that this Jacobian matrix is a diagonal one.
3This contrasts our earlier model in [7] where an entire term of

���= cosh((n� x� h)=2) was assumed to be a zero-mean Gaussian.
Hence, the phase information has been seriously smeared due to elimination of
the explicit dependency of the variances on the instantaneous SNR.

where is determined by the probabilistic
environment model just presented. The prior model for clean
speech, , in (10) is assumed to have the Gaussian mixture
PDF

(11)

whose parameters are pre-trained from the log-spectral clean
speech data. This allows us to write (10) as

(12)

The main difficulty in computing above is the non-Gaussian
nature of in (9). To overcome this difficulty, we use the
truncated second-order Taylor series expansion to approximate
the exponent of

where is independent of the mixture component .4 That is,
we approximate the function

(13)

by

(14)

In (14), we used a single expansion point (i.e., does not
depend on the mixture component ) to have significantly im-
proved computational efficiency, and is iteratively updated
to increase its accuracy to the true value of clean speech . The
Taylor series expansion coefficients have the following closed
forms:

4C is a function of �n and y, but will be cancelled out by the same quantity in
the denominator to be discussed shortly.
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Fitting (14) into a standard quadratic form, we obtain

where

This then allows us to compute the integral of (12) in a closed
form

(15)

The last step above used the fact that the integral in the preceding
step is the mean of the normal distribution.

The denominator of (12) is computed according to

(16)

where the integration over the normal distribution becomes one.

Substituting (15) and (16) into (12), we obtain the final
MMSE estimator

(17)

where the weighting factors are

Note that , , and in (17)
are all dependent on the noise estimate .

In applying the MMSE estimator (17) to perform speech fea-
ture enhancement, we first use the result of another enhance-
ment algorithm (published in [7]) to initialize at the right
hand side of (17). (In the MMSE estimator implementation, we
have explored various ways of initializing and found empiri-
cally that the performance of the estimator is rather sensitive to
the initial value of . The output of the enhancement system
in [7] (where the joint static and dynamic prior of clean speech
was used) gives a reasonably good quality of for initializing
the current MMSE estimator). The estimated clean speech is
then used to update and the iteration continues until a fixed
number of iterations is reached or convergence occurs. The use
of the iteration is to overcome approximation errors introduced
by truncated Taylor series expansion of (14). This iterative tech-
nique, commonly used in nonlinear signal processing [19], was
previously successfully applied to speech enhancement in [14]
and in spontaneous speech recognition in [10].

In the current implementation of the iterative MMSE esti-
mation algorithm based on (17), the noisy-speech frames are
processed independently of each other. That is, no dynamic con-
straints on the speech properties have been exploited. A fixed
number of iterations are completed for one noisy-speech frame
before starting new iterations to process the next noisy-speech
frame.

B. Computational Analysis

In this subsection, we provide a brief analysis on the computa-
tional and memory requirements for the iterative MMSE speech
feature enhancement algorithm just presented. The estimation
formula of (17) describes the computation for each frame of
noisy speech and for each algorithm iteration. Let be the total
number of frames and be the fixed number of iterations. Then
the computational load is proportional to , where
the proportion constant is related to the remaining quantities in
(17) that are all computed rapidly in closed forms. The initial
Taylor series expansion point in (17) is computed using a
phase-insensitive enhancement algorithm described in [7]. It has
the computational complexity about the same as the computa-
tion in (17) excluding the computations for the initial expansion
point and for the sequential noise estimate of . Determining
this noise estimate (described in the next section) also has a sim-
ilar computational complexity. Therefore, considering compu-
tations for both and , the full computation for (17) becomes
roughly three times of that excluding and .



DENG et al.: ENHANCEMENT OF LOG MEL POWER SPECTRA OF SPEECH 137

Since the algorithm is executed frame by frame for each sep-
arate iterations, the memory requirement for the algorithm be-
comes proportional to only, instead of to as for
the computational requirement.

In our experiments described in Section V, the number of mix-
ture components for the clean speech model is set to be 256,
and the number of algorithm iterations ranges from one to 12.
This choice made the overall algorithm (coded in Matlab 6.1)
run about 10 to 100 times of real time in a Pentium III 547-MHz
machine.

IV. SEQUENTIAL ESTIMATION OF NONSTATIONARY NOISE

In this section, we present sequential trackers for estimating
the log spectrum of nonstationary noise , which is needed
in computing quantities , , and

in the iterative MMSE estimation of clean speech
according to (17). This algorithm is generalized from the
earlier ML estimator within the same recursive-EM framework
presented in [8] and [9], based on a relatively simple phase-
insensitive acoustic distortion model presented also in [8] and
[9].

A. E-Step

In the E-step, we compute the MAP auxiliary function [4] of

(18)

where is the fixed prior distribution of Gaussian for noise
, is the variance scaling factor, and the ML auxiliary func-

tion [4] is the following conditional expectation:

(19)

In (19), is the sequence of (hidden)
mixture components in the clean speech model (11) up to time
frame , and similarly we have the observation sequence of

. The expectation in (19) is carried out with
respect to the conditional distribution . Note
that the objective function of (19) in the current sequential EM
algorithm differs from the one in the conventional batch-EM in
that in (19) is time indexed and the observation sequence
is used up to that time as denoted by .

After introducing the forgetting factor , is modi-
fied to

(20)

In (20), the forgetting factor controls the balance between the
ability of the algorithm to track noise nonstationarity and the

reliability of the noise estimate,5 and
is the posterior probability for the hidden mixture component.
The posterior probability is computed using Bayes rule

where likelihood is approximated by a Gaussian
with the mean and variance of

(21)

Here, is the fixed variance (hyper-parameter) of the prior
noise PDF , which is assumed to be Gaussian (with the
fixed hyper-parameter mean of ). and in (21) are com-
putable quantities introduced in [8], [9] to linearly approximate
the relationship among noisy speech , clean speech , and
noise (all in the form of log Mel power spectra). The expres-
sions for these quantities are

and

respectively, where is an estimate for clean speech, imple-
mented in this work as the best matched Gaussian mean of
the mixture-of-Gaussian clean speech model described in Sec-
tion III, and is the Taylor series expansion point for noise,
which is iteratively updated by the MAP estimate in the M-step
described below.

B. M-Step

In the M-step, we estimate by setting

Noting from (21) that is a linear function of , we have

(22)
Substituting (21) into (22) and solving for , we obtain the

MAP estimate of noise

(23)

where

and

5In one of the extremes when � = 0, the algorithm would, with low esti-
mation reliability, closely track fast temporal changes of noise since only the
current frame is used for noise estimation. When � = 1, on the other hand, all
previous frames would be used for estimation (with an equal weight), increasing
the estimation reliability and sacrificing the fast-tracking capability.
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The and above can be efficiently computed by making
use of previous computation for and via recursion,
as in our earlier work for recursive ML noise estimation [8], [9],
based on the original proposal from [23] and on recent work
published in [3], [16]. For example, efficient recursive compu-
tation for as we have implemented in this work is

Note that the MAP estimate of (23) reverts to the ML estimate
derived in [8], [9], as expected, when is set to zero or when the
variance of the noise prior distribution goes to infinity. In either
of these extreme cases, the prior distribution of the noise would
be expected to provide no information as far as noise estimation
is concerned.

V. NOISE-ROBUST SPEECH RECOGNITION EXPERIMENTS

The MMSE estimator for clean speech features and the
sequential MAP noise estimate described so far in this paper
have been evaluated on the Aurora2 database, using the stan-
dard recognition tasks designed for this database [15], [11].
The database consists of English connected digits recorded
in clean environments. Three sets of digit utterances (Sets A,
B, and C) are prepared as the test material. These utterances
are artificially contaminated by adding noise recorded under a
number of conditions and for different noise levels (sets A, B,
and C), and also by passing them through different distortion
channels (for set C only). The HMMs used in our evaluation
experiments are specified by the Aurora2 task and trained using
the clean-speech training set.

A. Results Using Phase-Removed Vectors of True Noise

In this set of experiments, we use the MFCC’s and their
inverse cosine transform computed from true noise (available
in the Aurora2 database) as the deterministic noise in (17) to
evaluate the effects of various factors on the MMSE estimator’s
performance for noise-robust speech recognition. Other ob-
jectives of these experiments are to set the upper limit for the
possible performance, and to demonstrate the effectiveness of
incorporating the phase information in the speech distortion
process.

Table I shows percent accuracy results on the full set of
Aurora2 test data, when clean-speech HMMs are used, as
a function of the number of iterations ( ) for the MMSE
estimator of (17). The initial clean-speech estimate, used as
in (17) before any iteration in applying the MMSE estimator, is
obtained from the algorithm published in [7] that has largely
discarded the phase information in the speech corruption
process. This forms the baseline, against which the phase-sen-
sitive MMSE estimator is evaluated. The percent-accuracy
performance of the baseline is 84.80% averaged over Sets A,
B, and C.

When the MMSE estimator of (17) is applied iteratively to
update the initial estimate, dramatic performance improvement
is observed consistently across all three data sets. Performance
convergence occurs at around seven iterations. In Table II, we

TABLE I
EFFECTS OF THE TOTAL NUMBER OF ITERATIONS (R) ON THE MMSE

ESTIMATOR’S PERFORMANCE (PERCENT ACCURATE DIGIT RECOGNITION

RATE) FOR THE AURORA2 TASK. PHASE-REMOVED MFCC VECTORS OF

TRUE NOISE ARE USED FOR �n IN (17). THE BASELINE PERFORMANCE

IS 84.80% AVERAGED OVER THE THREE SETS

TABLE II
DETAILED RECOGNITION RATES (PERCENT ACCURATE) USING THE

PHASE-SENSITIVE MMSE ESTIMATOR AFTER THE SEVENTH ITERATION.
FOUR NOISE CONDITIONS: SUBWAY, BABBLE, CAR, EXHIBITION-HALL

NOISES; SNRS FROM 0 DB TO 20 DB IN 5-DB INCREMENT; SET-A
RESULTS WITH CLEAN SPEECH TRAINING

TABLE III
DETAILED DIGIT RECOGNITION RATES (PERCENT ACCURATE) USING THE

PHASE-SENSITIVE MMSE ESTIMATOR AFTER THE SEVENTH ITERATION. FOUR

NOISE CONDITIONS: RESTAURANT, STREET, AIRPORT, AND TRAIN-STATION

NOISES; SNRS FROM 0 DB TO 20 DB IN 5-DB INCREMENT; SET-B
RESULTS WITH CLEAN SPEECH TRAINING

list details of recognition rates (%) for each of the four noise
conditions and for each of the SNR’s in Set-A at the conver-
gence. The same results for Set-B and Set-C are presented in
Tables III and IV, respectively, with different noise types and
distortion conditions.

In Fig. 1, we plot the convergence curve for example speech
frames in the SetA test data when applying the MMSE estimator
of (17) iteratively. The 13 curves correspond to the 13 MFCCs
from the zeroth order to the 12th order. These MFCCs are com-
puted from the estimated log Mel power spectra of a 23 dimen-
sion using the cosine transform. Convergence of the estimated
quantities, at roughly the seventh iteration as illustrated in Fig. 1,
has been observed for many utterances that we have examined.
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TABLE IV
DETAILED RECOGNITION RATES (PERCENT ACCURATE) USING THE

PHASE-SENSITIVE MMSE ESTIMATOR AFTER THE SEVENTH ITERATION. FOUR

NOISE CONDITIONS: SUBWAY (AS IN SET-A) AND STREET NOISES (AS IN

SET-B), AND BOTH ARE MODIFIED BY PASSING THE NOISY SPEECH THROUGH

A DIFFERENT DISTORTION CHANNEL; SNRS FROM 0 DB TO 20 DB IN 5-DB
INCREMENT; SET-C RESULTS WITH CLEAN SPEECH TRAINING

This accounts for virtually no accuracy improvement after the
seventh iteration in Table I.

B. Comparisons With Spectral Subtraction

To further demonstrate the benefits of the MMSE estimator
of (17) in modeling the phase information, we use the same
phase-removed true noise for (phase-insensitive) spectral sub-
traction (SS) and perform the identical Aurora2 evaluation. The
SS algorithm is obtained by setting in (3) (as well as

), which gives

To avoid the possibility of taking logarithm of negative values
(when due to statistical variation arising from the random
phase in mixing speech and noise), we introduce the floor pa-
rameter according to

(24)

(25)

These two ways of using the floor, in combination of applying
the SS in the domains of direct Mel-scaled log spectra and of
MFCC’s as smoothed log spectra, result in four versions of the
SS algorithm. Their respective digit recognition accuracies (%)
as a function of the floor level are listed in Table V for Set A
of the Aurora2 test data, where phase-removed, Mel-scaled log
spectra (SS1 and SS2) or MFCCs (SS3 and SS4) are computed
from true noise waveforms. SS1 and SS3 make use of (25). SS2
and SS4 make use of (24). Note that the best accuracy, 95.9%,
still contains 54% more errors than that achieved by the con-
verged MMSE estimator (98.1% accuracy), which models by
a zero-mean Gaussian distribution rather than setting it to zero.

The results shown in Table V are somewhat surprising and
against the conventional wisdom. The conventional wisdom
holds that the main deficiency of spectral subtraction arises
from inaccuracy in frame-specific spectral estimation of the
noise. Now the surprising results of Table V demonstrate
that even when the exact noise spectra are provided, spectral
subtraction does not produce the exact spectra of clean speech.
Rather, the spectra produced from such spectral subtrac-
tion are still quite inadequate for high-performance speech
recognition. This suggests that the phase-sensitive term in

(27), , which has been ignored in the
conventional spectral subtraction accounts for its inadequacy.
Effective exploitation of this term, as in the phase-sensitive
model of the acoustic environment [(9)] and in the associated
phase-sensitive MMSE estimator [(17)], has significantly
reduced the recognition error rates shown in Table V to those
in Table I, successfully overcoming the inadequacy of the
conventional spectral subtraction.

C. Results Using Automatic Noise Estimates

In contrast to using the true noise log power spectral vector as
in (17) when applying the MMSE estimator to speech feature

enhancement just described, in this section are presented the re-
sults using the estimated noise vectors. The best technique we
have developed so far is the sequential MAP noise estimator de-
scribed in Section IV, where the prior distribution of the noise
is assumed to be diagonal Gaussian. In the current implemen-
tation and in the evaluation on the Aurora2 task, the mean and
variance of the Gaussian change from utterance to utterance in
the test data. They are fixed to be the sample mean and sample
variance of the first 20 frames in each separate test utterance,
which are assumed to be free of any speech material.

Applying the MAP noise estimator to the MMSE estimator
(one iteration) for clean speech, we obtain the percent-accuracy
performance results for all three sets of the Aurora2 test
data. The results are shown in the last column of Table VI,
using in (17) (with MAP-tracked noise as ) to score the
pre-trained clean-speech HMMs.6 This gives improvement
over the baseline performance (established in the work of
[7] using a phase-insensitive MMSE estimator and shown in
Column 2 in Table VI), where the initial clean speech vector

in (17) (i.e., without using the MMSE estimator) is used to
score the HMMs. Compared with the performance shown in
Column 3 of Table VI, the MAP-tracked noise (as described
in Section IV) also provides slight improvement over the use
of the sequential maximum likelihood (ML) noise estimator in
the otherwise identical experimental setup (i.e., using in (17)
with the ML-tracked noise as ). The algorithm for computing
the ML-tracked noise estimator can be found in [8], [9], which
gave the state-of-the-art performance in our earlier noise-robust
recognition system [11].

The results shown in Fig. 1 and Table I indicate that itera-
tions of the speech feature enhancement algorithm up to about
six reached a level of convergence, where an optimal recogni-
tion performance was achieved when true noise features were
used. This, however, did not happen when the estimated noise
features were used. In our experiments, with one iteration,
the performance was always improved as shown in Table VI.
More iterations either degraded or improved the performance
in an unpredictable manner. The cause of this behavior is
currently under investigation. Preliminary analysis illustrates
that the quality of the noise estimate appears to be responsible
for our empirical observation. This can be understood from

6Based on all of our earlier noise-robust speech recognition work on the
Aurora2 and other tasks [11], [5], any performance improvement achieved by
new feature enhancement techniques carries over from the clean-speech HMM
training case to the multi-style training case. In this paper, we will present the
results on the clean-speech HMM training case only.
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Fig. 1. Convergence curve showing the estimated clean speech MFCC’s (cep0–12) using (17) as a function of the iteration number. The 13-dimensional MFCCs
are computed from the estimated log Mel power spectra of 23 dimensions via cosine transformation.

TABLE V
PERFORMANCE (PERCENT ACCURATE) FOR THE AURORA2 TASK (SET-A ONLY)

USING FOUR VERSIONS OF SPECTRAL SUBTRACTION (SS)

TABLE VI
MMSE ESTIMATOR’S PERFORMANCE (PERCENT ACCURATE) FOR THE

AURORA2 TASK USING SEQUENTIAL ML AND MAP NOISE ESTIMATES. THE

BASELINE RESULTS ARE FROM THE ALGORITHM PUBLISHED EARLIER AND

WERE USED AS x OF (17) TO INITIALIZE THE ITERATIVE MMSE ESTIMATOR.
THE REMAINING RESULTS ARE FROM THE MMSE ESTIMATE OF x̂ IN (17)

USING DIFFERENT POINT ESTIMATES OF THE NOISE

a careful examination of (2). It shows that the estimation
error in the noise power and the “phase” term of

contribute equally to accounting
for the observed noisy speech power . When the noise

estimation error exceeds the “phase” term, the speech feature
algorithm designed to exploit the “phase” term will naturally
lose its effectiveness and the converged estimate may be far
away from the desired clean speech estimate.

The results of Table VI demonstrate that even with the noise
being inaccurately estimated, the use of the phase information
in the speech distortion process for noise reduction is beneficial
for robust speech recognition under realistic conditions when
the algorithm’s iteration is appropriately controlled. The signif-
icantly lower recognition rates shown in Table VI than those in
Table I highlight the importance of accurate estimation of the
noise in enhancing the benefit of using the phase information.

D. Results on Sensitivity to Variances of the Phase Factor

The probabilistic, phase-sensitive model for the acoustic en-
vironment as presented in (9) and derived in Section II has only
one parameter set — the covariance matrix of the phase
factor , or the variances of individual vector components ,

under the diagonal covariance assumption.7

The parameter is estimated from a set of the Aurora2
training data, disjoint from any set (A or B or C) of test data. The
estimate is the sample variance computed from all the sample
values of ’s, which are computed using (28). (Data depen-
dence of this estimate is extremely low, as is expected from its
definition.) A linear regression line is fit to the computed
as a function of . The estimated variances of the phase factor,

, used in the experiments presented so far, are taken from
such a regression line fit and are shown in Table VII.

7The vector size is the total number of Mel-filter banks, and we use L = 23

for the experiments.
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TABLE VII
ESTIMATED VARIANCES OF THE PHASE FACTOR AS A FUNCTION OF THE MEL-FILTER BANK (l). INDEX l INCREASES FROM LOW-FREQUENCY TO

HIGH-FREQUENCY MEL-SCALED CHANNELS

TABLE VIII
PERCENT ACCURATE DIGIT RECOGNITION RATE AS A FUNCTION OF THE

VARIANCE OF THE PHASE FACTOR; SET A IN THE AURORA2 TEST DATA

To investigate the sensitivity of the recognition performance
based on the MMSE estimator (17) to the variances of the phase
factor, we artificially perturb the using a variable scaling.
The resulting digit recognition performance on Set A of the
Aurora2 test data is shown in Table VIII. The recognition re-
sults appear to be relatively robust against the variances over a
rather wide range.

VI. SUMMARY AND CONCLUSION

In this paper we present an MMSE speech feature enhance-
ment algorithm, capitalizing on a probabilistic and phase-sen-
sitive environment model for acoustic distortion. The model
effectively incorporates the phase relationship between the
clean speech and the corrupting noise during the process of
speech corruption via the use of the newly introduced phase
factor as a random parameter. The MMSE estimator based
on this phase-sensitive model is derived, which achieves high
efficiency by exploiting single-point Taylor series expansion to
approximate the joint probability of clean and noisy speech as
a multivariate Gaussian. This forms sharp contrast to the use
of the -point Taylor series expansion (one for each mixture
component in the clean speech model), which is computation-
ally very expensive as implemented earlier [14] based on a
phase-insensitive environment model.

As an integral component of the enhancement algorithm
using the phase-sensitive MMSE estimator, a point estimator
for (nonstationary) noise is derived and presented based on a
new sequential MAP noise tracker. We show that under the
special case where the variance of the noise prior distribution
approaches infinity, the MAP noise estimator naturally reduces
to the ML counterpart as published earlier.

Experimental results obtained on the Aurora2 task demon-
strate the importance of exploiting the phase relationship in the
speech corruption process captured by the MMSE estimator.
The phase-sensitive MMSE estimator reported in this paper
performs significantly better than phase-insensitive spectral
subtraction (54% error rate reduction), and also noticeably
better than a phase-insensitive MMSE estimator as our pre-
vious state-of-the-art technique reported in [7] (6% error rate
reduction), both under carefully controlled experimental con-
ditions for connected noisy digit recognition. In particular, we
showed that spectral subtraction is a generated case of the new
technique presented in this paper by setting the phase factor to

zero. The Aurora2 recognition results demonstrate that such de-
generation hurts the performance significantly, offering direct
and quantitative evidence for the importance of including the
phase factor in the model as the main novelty of this work. The
experimental results also demonstrate superior performance of
the MAP noise tracker over the ML counterpart when they are
used in the otherwise identical MMSE estimator derived based
on the phase-sensitive model of acoustic distortion.

The phase-sensitive environment model presented in this
paper can be viewed as a generalization of the phase-insensitive
model described in [14], [7] in that the SNR-dependent residual
variances in the latter are automatically accommodated in the
former. The sample residual variances computed from the
phase-sensitive model shown in Table VII are invariant with
respect to the (instantaneous) SNR. On the other hand, the
sample variances derived from the phase-insensitive model
are much higher using the data files of low SNRs than those
with high SNRs. Since the (instantaneous) SNR is generally
unknown, it is impractical to automatically represent the
SNR-dependent variance in the phase-insensitive model of
[14], [7]. The phase-sensitive model presented in this paper
naturally overcomes this aspect of the weakness inherent in the
phase-insensitive model.

While we have presented positive results in Table VI for
the effectiveness of the phase-sensitive MMSE estimator for
clean speech using realistic noise trackers, the accuracy ob-
tained has been far below the results shown in Table I using
true noise. This highlights the crucial role of accurate noise
estimation in enhancing the use of the phase information. Ac-
curate (point) noise estimation is extremely challenging, since
noise is random and it is only possible to obtain a reliable
estimate of noise statistics, not its instantaneous realization. In
order to improve the phase-sensitive modeling technique for
speech enhancement, we are currently working on sequential
updating of noise statistics as the prior distribution, and on
incorporating posterior noise distributions into a new version
of the phase-sensitive MMSE estimator. Finally, based on the
dramatic performance improvement of the phase-insensitive
MMSE estimator by incorporating dynamic aspects of the
speech prior distribution [7], another promising research di-
rection is to strive for similar significant improvement on the
current phase-sensitive MMSE estimator after incorporating
the same type of dynamic information in a rigorous fashion.

APPENDIX

DERIVATION OF (3)

Starting from (2). After applying a set of Mel-scale filters (
in total) to the spectrum in the frequency domain, where
the filter is characterized by the transfer function
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(where ), we obtain a total of channel (Mel-
filter) energies of

(26)

with .
Denoting the various channel energies in (26) by

and

we simplify (26) to

(27)
where we define the “phase factor” as

(28)

Since , we have

The right-hand side above is the normalized inner product of two

vectors and , whose elements are

and . Hence

Further, we define the log channel energy (log-spectrum)
vectors

...

...

...

...

...

...

...

...

(29)

and define the vector of phase factors

...

...

Then, we rewrite (27) as

(30)

where the operation for two vectors denotes element-wise
product, and each exponentiation of a vector above is also an
element-wise operation.

To obtain the log channel energy for noisy speech, we apply
the log operation on both sides of (30)
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