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Enhancement of Low-Contrast Curvilinear
Features in Imagery

Mark J. Carlotto

Abstract—A new method is described for enhancing low-con-
trast curvilinear features in imagery that combines directional fil-
tering with Fischler, Tenenbaum and Wolf’s algorithm for com-
puting minimum cost paths. The method exploits a phenomenon
called “the stability of lines over angle.” The idea is that when a di-
rectionally filtered image contains a line plus noise, minimum cost
paths tend to be aligned in the direction of the line with random
jumps between parallel paths. When the input image contains noise
only, the direction of minimum cost paths resemble random walks
with drift. As the direction of the filter changes, minimum cost
paths that follow true features persist and are more stable over
angle than those that follow noise. Adding them up in an accumu-
lator array over angle produces a larger number of votes along
signal paths than along noise paths. This provides a means for en-
hancing trajectories of low-contrast features. Several examples il-
lustrate the enhancement of forest trails in USGS aerial imagery,
linear features on Mars, and roads in synthetic aperture radar im-
agery.

Index Terms—Image enhancement, algorithm, low-contrast
curvilinear feature extraction, track-before-detect.

I. INTRODUCTION

T
HE ability to enhance, track, and detect low-contrast curvi-

linear features is important in a variety of image anal-

ysis applications. One is in finding fine-scale cartographic and

micro-terrain features such as trails and small streams in aerial

imagery. These features are often not contained in cartographic

databases and yet can be important in route planning, terrain

analysis, and cross-country mobility assessment. Another is the

detection of lineaments (e.g., fault lines, aligned volcanoes, and

other surface features) in terrestrial and planetary satellite im-

agery. Lineaments are often very subtle, and sometimes overlaid

by more recent surface processes making their detection and lo-

calization difficult. A third example is the extraction of roads

and other similar features in synthetic aperture radar (SAR) im-

agery. The coherent nature of SAR creates speckle noise which

limits the usefulness of conventional edge and line detectors.

Directional (matched) filters, Hough, and Radon transforms

can be used to detect straight lines and other features of known

shape. Jao et al. [7] describe a coherent spatial filtering approach

for SAR. Copeland [1] developed a localized Radon transform

for detecting short linear features such as ship wakes in SAR im-

agery. Curvilinear features present a greater challenge. If their
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shape is not known in advance, it is not possible to construct a

matched filter.

Tracking techniques provide an alternative approach.

McKeown and Denlinger [5] survey techniques for tracking

high-contrast roads in images. Edge linkers segment the image

into edges (or lines) and connect the segments together using

a model of the feature. Region-based followers operate on a

similar principle. Given a starting point and direction, a corre-

lation tracker moves out by matching a surface model of the

feature (e.g., the cross-sectional intensity profile) to the image

perpendicular to the direction of advance, using a path model

to control the search process.

Techniques where tracking follows detection do not work

well in low-contrast situations where the feature of interest is

at, or below, the noise level. Instead a track-before-detect ap-

proach can be used which accumulates evidence along alterna-

tive track (feature) hypotheses before making a detection de-

cision. Track-before-detect techniques have been developed for

moving target indication (MTI) detection in video data [8]–[10].

Samadani and Vesecky [6] describe a single image SAR curvi-

linear feature detection technique based on a track-before-detect

approach, which uses maximum a posteriori estimation together

with statistical models for speckle noise and the curve genera-

tion process to find the most probable estimate of the feature

given the image data.

Motivated by the track-before-detect approach, a new tech-

nique for enhancing low-contrast curvilinear features in images

is proposed that combines directional filtering with Fischler,

Tenenbaum, and Wolf’s algorithm [3] for computing min-

imum cost paths. The is a track-before-detect algorithm that

was originally developed for detecting high-contrast roads in

low-resolution imagery. Roads are extracted interactively by

following a minimum cost path back from a user-specified end

point to either a starting point or edge. Instead of using the

algorithm interactively for detection, a different application is

described here in which it is used, in effect, as a filter to en-

hance low-contrast features. The goal is to do this automatically

without knowledge of a feature’s shape, direction, or endpoints.

The plan of the paper is as follows. Section II reviews the

algorithm and shows how its performance varies with the

input signal to noise ratio (SNR). It describes how low-con-

trast features can be detected by using a directional filter be-

fore the algorithm to increase the SNR. When the endpoints

are not specified, the can be used in a different way to en-

hance low-contrast features by computing minimum cost paths

between all edge/point combinations on opposite sides of an

image and adding up the resultant paths in an accumulator array.

If the direction of the feature is unknown a directional filter bank

(DFB) can be used before the algorithm as described in Sec-
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tion III to increase SNR. One way to enhance low-contrast fea-

tures is to place the DFB before the so that

all paths are computed from the same directionally filtered set

of costs. Another way applies the algorithm to separate di-

rectionally filtered images. This new algorithm known as track

enhancement using the stability of lines over angle (TESLA)

is described in Section IV. Using simulated data, it is shown

that TESLA outperforms in enhancing low contrast

curvilinear features. Additional examples are presented in Sec-

tion V illustrating the extraction of forest trails in USGS aerial

imagery, linear features on Mars, and roads in SAR imagery.

Extending the technique to multiband data is discussed in Sec-

tion VI. An Appendix contains a performance model for the

algorithm, which gives the expected number of errors along a

track as a function of the SNR.

II. ALGORITHM

Let be the nodes of a network. Define

as the cost to go from node to node . Ford [11] developed the

following iterative algorithm for finding the minimum cost path

through a network.

1) Initialize the values of the nodes as follows:

where is the starting node.

2) For each connected pair of nodes, if , we re-

place the value of the first node: ; otherwise,

it is left alone. This is repeated for all pairs of connected

nodes until no value changes. At that point, the value at a

node is the minimum path cost to get to that node from the

starting node.

3) The minimum cost path from the starting node to any node

in the network is obtained by moving from that node back-

wards to the starting node in the direction of decreasing

path cost.

The algorithm [3], a variant of Rosenfeld and Pfaltz’s

distance transform [4], is a 2-D implementation of Ford’s al-

gorithm. It was originally developed for tracking high contrast

features such as roads in optical imagery, and has subsequently

been augmented to include line contrast and curvature [13], and

extended to 3-D data [12].

The first step in the algorithm computes the minimum cost

to get to all pixels from a set of starting pixels. A series of alter-

nating top-to-bottom/bottom-to-top passes over two arrays,

and are performed, where and are the row and column

indices, respectively. The first array, which stores the path cost,

is set to zero at the starting location of the feature, and to a large

value everywhere else. The second array stores the costs, which

are derived from the input image. In the top-to-bottom pass, each

row is first processed left to right by

(1)

Fig. 1. F algorithm processing sequence.

and then right to left by

(2)

In the bottom-to-top pass, each row is processed right to left by

(3)

and then left to right by

(4)

iterations are repeated until no value changes.

Consider the following cost array:

Fig. 1 illustrates the operation of the algorithm on this array,

represented as a network. The array of path costs is initialized

(a), and processed by the top-to-bottom, left-to-right (b) and

right-to-left (d) operators to produce the path cost array (c).

The shaded squares are those cells (pixels) within the window

that contribute to the update. This is then processed by the

bottom-to-top, right-to-left (f) and left-to-right (h) operators

to produce the path cost array (e). One more application of

operators (b) and (d) produce the final array of path costs (g).

The algorithm stops after the next iteration in which none of

the values changes. The minimum cost path from the starting

node to the edge nodes is indicated in Fig. 1(g).

Next, consider the effect of noise on the algorithm. Fig. 2

shows four realizations of a constant amplitude horizontal line

in additive white Gaussian noise (AWGN) at SNRs of 3, 0, 3,

and 10 dB (a)–(d). The images have been contrast-stretched for

display purposes. The algorithm was applied to each image,

assuming the left starting point of the line and right destination
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Fig. 2. F algorithm results at four different SNRs (point-to-point).

TABLE I
COMPARISON OF PREDICTED AND ACTUAL F ALGORITHM PERFORMANCE

edge are known. The path computed by the algorithm is a

series of points where are

the row and column indices of the th point. The computed path

can also be represented as an image

otherwise
(5)

The path images computed by the algorithm are shown in

Fig. 2(e)–(h). We can estimate the probability of making an error

along the path as a function of SNR (Appendix A). At a level of

confidence of

(6)

where the correct path is pixels long. Predicted and

actual values show good agreement (Table I).

In an automated system, the endpoints are not available. If

we know the line of interest runs in a particular direction, one

strategy for finding it is as follows.

1) Mark one set of points (e.g., an edge of the image) as pos-

sible end points (set costs to zero).

2) Compute the path costs to this set of points, and then find

the minimum cost path from each point in the other set of

(starting) points (e.g., along the opposite edge of the image)

to the nearest end point. Let be the minimum cost

path image computed from a start point to a set of

end points . The accumulated result over all start points

is . Repeat in opposite direction. In general,

paths computed in one direction differ from those com-

puted in the other direction, especially near the edges. They

differ because the algorithm itself is not symmetrical, com-

Fig. 3. Edge-to-edge F algorithm results.

Fig. 4. Receiver operating characteristic (ROC) for F algorithm.

puting paths from each point along one edge to the nearest

point on the other edge, and vice versa.

3) In order to capture all paths, we sum the minimum cost

path images in both directions between a pair of edges

.

If and are the left and right edges of an image, then the

sum represents possible horizontal paths; if they are the top and

bottom edges, then the sum represents vertical paths; other edge

pairs (e.g., top and right) give diagonal paths.

Fig. 3 shows what happens when the exact starting point is

unknown. The path of interest runs between the left and right

edges. If the edges are pixels in length, paths are gener-

ated which, when added together, produce an accumulated path

image containing a range of possible values between 0 and .

The value at a point in the accumulated path image is the number

of paths that go through that point. Locations with large values

are likely to lie along the feature we seek. Using the accumu-

lated path image as a detection statistic, the receiver operating

character (ROC) curve in Fig. 4 plots the probability of detec-

tion (Pd) versus the probability of false alarm (Pf) against truth

as a function of the detection threshold . Pixels

above threshold along the true line count as detections; others

are false alarms.

Also plotted in Fig. 4 are the values for the al-

gorithm assuming the starting point is known (Fig. 2), where

, , and is the number

of pixels in the image. These values occur at the “knee” of the

ROC curves, where the slope changes from to

, generally regarded as the operating point that

gives the best performance.

III. DIRECTIONAL FILTERING

Originally, small isotropic (nondirectional) filters were used

for tracking high contrast features using the algorithm [3].
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Fig. 5. Directional filtering improves performance of F algorithm.

Fig. 6. Directional filtering before the F algorithm (L = 10 pixels, 45 �

� � 135 ).

Given the relationship between SNR and accuracy, increasing

SNR prior to applying the algorithm should improve perfor-

mance. In AWGN, summing along the signal increases the SNR

by the length of the filter . The ROC curves in Fig. 5 show that

after filtering the 0-dB data Fig. 2(b) with an pixel filter

in the direction of the line, the performance of the algorithm

on that data is close to that of the 10-dB data Fig. 2(h).

If the direction of the feature is unknown and/or if it exhibits

significant curvature, filtering must be performed over a range

of possible directions. Let

(7)

be the output of the th filter

(8)

which sums along lines at an angle , where is the Dirac delta

function. To compute the maximum response over a range of

angles one can take the maximum value across the filters pixel

by pixel over those angles

(9)

Fig. 6 shows the results of preprocessing an image (a) through

a directional filter bank (b) prior to processing (c). As in the

example in Fig. 2, we assume the image contains a line orig-

inating from a known starting point along the left edge run-

ning in any direction between 45 and 135 to the right edge

(angles are measured relative to north). A bank of 18 filters

Fig. 7. Comparison of DFB and DFB + F results.

, pixels were used. The performance using

a directional filter bank (DFB) before the algorithm (known

as the ) is comparable to that obtained using a single

direction filter.

When the endpoints are not known we must use the edge-to-

edge version of the algorithm. In addition, if the direction

of the line is unknown, one must search over all angles. One

strategy is to filter over all directions, and compute possible

paths between all 6 pairs of edges. Fig. 7(a)–(c) are the DFB

outputs for the 3-, 0-, and 3-dB data. A bank of 36 filters

, pixels long were used from 0 to 180 .

Fig. 7(d)–(f) are the corresponding accumulated path images

. In addition to finding the path of the true line, the

algorithm also finds spurious paths through noise. The number

of these paths increases as the SNR decreases.

IV. TRACK ENHANCEMENT USING THE STABILITY

OF LINES OVER ANGLE (TESLA)

Instead of combining directional filter outputs into a single

image before processing, an alternative method (TESLA)

involves applying the algorithm to each directionally filtered

image and combining outputs in an accumulator array. The

method exploits a phenomenon which we call “the stability of

lines over angle.” The idea is this: When the input image con-

tains a line plus AWGN, minimum cost paths tend to be aligned

in the direction of the line with random jumps between parallel

paths. When the input image contains noise only, the direction of

minimum cost paths resemble random walks with drift. As the

direction of the filter changes, minimum cost paths that follow

true features persist and are more stable over angle than those

that follow noise. Adding them up in an accumulator array over

angle produces a larger number of votes along signal paths than

along noise paths. This phenomenon provides a means for en-

hancing trajectories of low-contrast features. Fig. 8(a) shows

paths for a 90 (horizontal) line in AWGN using filters from 0

to 90 at 10 increments. Note how the paths converge as the

angle of the filter approaches that of the line. Noise, on the other

hand, is less stable over angle Fig. 8(b).

The TESLA algorithm (Fig. 9) combines multiple out-

puts, each computed at a given direction. For each direction, the

input image is rotated so that the filter direction is horizontal.

If the background is correlated, spatial whitening is performed
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Fig. 8. F paths for different directional filters.

Fig. 9. TESLA processing flow.

Fig. 10. TESLA summed path images at different input SNRs.

before the directional filter is applied. For positive-contrast fea-

tures, the filtered image is contrast-reversed so that bright fea-

tures have low cost. If the image is highly cluttered (i.e., con-

tains other competing features), histogram equalization is per-

formed. The edge-to-edge version of the algorithm is applied

to this rotated, filtered, and equalized image. The resultant ac-

cumulated path image is rotated back in the opposite direction

and summed with other accumulated path images from other di-

rections.

Fig. 10 shows the TESLA accumulated path images for the

same 3-, 0-, and 3-dB data. Again, pixel filters spaced

apart from 0 to 180 were used. ROC curves (Fig. 11)

compare and TESLA enhancement performance.

The performance of the drops off significantly below

Fig. 11. Comparison between DFB, DFB + F , and TESLA algorithms.

Fig. 12. Simulated S-curve.

0 dB (a), while that of the TESLA algorithm degrades more

gracefully (b).

The strategy of using directional filters to increase SNR be-

fore using the algorithm breaks down to some degree with

curved features. In places of high curvature, directional filtering

provides little if any enhancement along the curve. Fig. 12 is an

S-curve (a) in AWGN (b). The SNR is 0.4 dB. A comparison

of DFB (c) (d) and TESLA (e) results for and

shows DFB provides little enhancement of the curve,

misses the two bends, while TESLA responds to the

entire curve. A comparison of ROC curves (f) shows TESLA has

significantly better performance than . For a constant

false alarm rate (CFAR) detector operating at , the

TESLA Pd is 25% higher than . Fig. 13 provides an-

other example for a curve with a loop. In this case, TESLA’s Pd

is 53% higher. TESLA, thus, appears to better enhance low-con-

trast curvilinear features than DFB or .

V. IMAGE EXAMPLES

In most practical image exploitation situations, we often do

not know the signal amplitude, other than that it is larger or

smaller than the background (i.e., positive or negative contrast).
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Fig. 13. Simulated curve with loop.

For a positive contrast signal, large values of can be assigned

low costs; e.g.,

(10)

For example, the values map the input range

to the range of costs For negative contrast signals

(29) can be flipped; i.e.,

(11)

We have also found that, in practice, using histogram-equalized

costs produces much better results for closely spaced features,

and for highly cluttered backgrounds, as originally suggested by

Fischler et al. [3].

Several examples are now presented to illustrate the use of

the TESLA algorithm on collected imagery. The first involves

finding trails in aerial imagery over a hilly and wooded area

on Cape Ann, north of Boston, in Gloucester, MA (Fig. 14). A

known trail (dotted line) runs from east of Goose Cove Reser-

voir, northeast up past a large rock formation known as Whale’s

Jaw, and north up to the town of Rockport (a). Portions of the

trail are visible in an aerial image (b). The true location of the

trail was measured using a GPS receiver (c). The output from

the TESLA algorithm (d) finds the entire trail plus a few spu-

rious paths of lower value. The following algorithm parameters

(Fig. 9) were used: whitening on, contrast positive, his-

togram equalization on, filter length , and search direc-

tion 0 –180 in 5 increments.

The second example takes us from Gloucester to Mars.

Fig. 15(a) is a portion of a Mars Global Surveyor (MGS)

image in eastern Arabia Terra near 16.5 N latitude, 311.4

W longitude.1 The image shows a variety of natural features

including small craters, buttes and mesas left by erosion of

1http://www.msss.com/mars_images/moc/7_30_98_devil_rel/index.html

Fig. 14. Enhancing trails in USGS image.

Fig. 15. Enhancing tracks of dust devils on Mars.

the surrounding terrain, small dunes and drifts, and a mantle of

dust that varies in thickness. In the image two dark lines ex-

tending several kilometers/miles across the image are indicated

that are thought to be tracks left by dust devils traveling over

the Martian surface. Fig. 15(b) is the output of the TESLA algo-

rithm showing the tracks of two dust devils as well as a number

of weaker paths through clutter (crater rims, ridges, etc.). The

following parameters were used: whitening on, contrast

negative, histogram equalization on, filter length 10, and

search direction 80 –100 in 5 increments.

Returning to earth, we conclude with an example illustrating

the enhancement of small roads and trails in SAR imagery

[Fig. 16(a)]. The image is a desert scene in the western US.

Roads are relatively smooth and so have a low backscatter

relative to desert scrub (bright areas). Changes in background

brightness are caused by variations in the local incidence angle

(topography). The TESLA output [Fig. 16(b)] captures most of

the roads in the image (whitening off, contrast negative,

histogram equalization on, filter length , and search

direction 0 –180 in 5 increments).
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Fig. 16. Extracting roads from SAR imagery.

The run-time of the algorithm is linear in the

number of pixels times the number of directions,

for a C implementation

on a 933-MHz Mac PowerPC G4 processor. For the example in

Fig. 14, the run-time was about 2 min.

VI. SUMMARY

Methods that combine directional filtering with Fischler,

Tenenbaum and Wolf’s algorithm for computing minimum

cost paths were explored as a means for enhancing low-contrast

curvilinear features in images. A simple method of combining

the two uses a directional filter bank before the algorithm

. A new algorithm (TESLA) applies the algo-

rithm to individual cost images from each directional filter, and

adds the resultant minimum cost paths in an accumulator array.

On simulated images of curved features in AWGN, TESLA

shows 25%–50% increase in the probability of detection at a

constant false alarm rate over . Several

imagery examples involving the extraction of forest trails in

USGS aerial imagery, linear features on Mars, and roads in

SAR imagery show promising results.

For constant amplitude features in AWGN, the cost at a pixel

in the image is the normalized distance between the pixel value

and the feature amplitude. The cost of a track of length has

a distribution with degrees of freedom. A means for es-

timating the number of errors along a track as a function of the

input SNR was derived and shown to agree with experiment.

Extending and TESLA to multiband data is straightfor-

ward. Assuming a known signal spectrum , the cost at a pixel

(12)

where is the pixel value at location along the track, and

the spectral covariance of the noise. For spectral bands, the

total cost along a path of length has a distribution with

degrees of freedom.

APPENDIX

PERFORMANCE MODEL

Assume a constant amplitude signal in additive white

Gaussian noise

signal

noise
(A1)

where the are Gaussian with zero-mean and variance .

The Viterbi algorithm [2] finds the shortest path through a graph

(trellis) representing all possible state transitions. For (A1), the

“length” of a state transition is

(A2)

The first term is the same for all transitions and can be ignored.

The second term is the normalized (Mahalanobis) distance. We

define the cost of a transition to be proportional to this second

term

(A3)

The expected value of the cost of a pixel along a path is

signal

noise.
(A4)

The total cost along a track of length is

(A5)

which has a has a chi-square density, , with de-

grees of freedom. The expected value of the total cost of a track

without errors is , which is the minimum cost. Errors along

the path add to the total cost. To compute the number of errors

along the path at a level of significance, , we determine the

value of such that

(A6)

where

(A7)

is the cost of a path containing errors. Solving for gives

(A8)

where is the input signal-to-noise ratio.

This model can be used to estimate the number of errors along

a directionally filtered path. Let be the angle between a linear
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Fig. 17. (a) Directional filter and gain versus angle for (b) L = 5 and (c) L =

20.

Fig. 18. (Solid) Predicted and (dotted) measured errors as a function of angle.

feature, and a directional filter of length . The SNR at the output

of the filter as a function of angle is (Fig. 17)

(A9)

Inserting this into (A8) provides an estimate of the number of

errors as a function of angle

(A10)

This is an approximation since the output from the DFB is not

white but correlated in the filter direction. Fig. 18 plots the

predicted and actual error probabilities (number of errors di-

vided by ) versus angle for the 0- and 3-dB data

(Fig. 2) in 10 increments. As the angle, increases the model

(A10) over-estimates the number of errors. Generally, though,

the number of errors decreases with angle, implying that more

votes will tend to be accumulated at locations along the line.
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