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Enhancement of metabolic rates 
of yeast flocculent cells through the use of polymeric additives 
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Abstract. The influence of several polymeric additives on specific 
glucose uptake rate of flocs of a S. cerevisiae strain - S. cerevisiae 
NRRL Y 265 was studied. A special continuous membrane micro- 
reactor was used to measure glucose uptake on the presence of cal- 
cium and of the tested additives - two cationic polymers - bis(poly- 
oxyethylene-bis(amine)) 20,000 and BPA 1,000 and one anionic 
polymer -- Magna Floc LT25. 

An increase on glucose uptake rate was always observed when 
comparing with calcium bound flocs. For bis(polyoxyethylene- 
bis(amine)) 20,000 the increase was only 19% but for BPA 1,000 a 
value of more than 50% was observed. For Magna Floc LT25 a two 
fold increase was measured. 

The determination of floc size and porosity in the presence of the 
additives indicated that, on the basis of these parameters, it was not 
possible to explain the observed glucose uptake rates. The floc 
porosites in additive bound flocs were similar and 10% larger than 
for calcium bound flocs and glucose uptake rate was larger for the 
largest flocs - Magna Floc LT25 bound flocs were the largest fol- 
lowed by BPA t,000, bis(polyoxyethylene-bis(amine)) 20,000 and 
calcium bound flocs. These values disagree with what should be 
expected in diffusion controlled processes. 

The calculation of intercellular floc distance indicated that poly- 
meric additives act on the reduction of diffusional limitations by 
increasing the available flux area for glucose inside the flocs. By 
analysing different kinds of packings, it was also observed that the 
packing arrangement for yeast cells in flocs is close to the cubic 
packing. The simulation of this arrangement for the obtained floc 
sizes confirmed that the 10% increase in floc porosity is sufficient to 
explain the increase in the available flux area. 

1 Introduction 

One of the main advantages of the systems that  use flocculat- 
ing microorganisms - bacteria  or  yeast - is the possibil i ty of 
obtaining high cell density concentrations,  thereby increas- 
ing the volumetric conversion rate of the reactor  [1-8] .  

However,  microbial  aggregates are characterized by rela- 
tively low specific reaction rates. Nutr ients  have to reach 
the cells inside the flocs by diffusing into the floc particles 
[9-13] .  

The diffusion of a solute into the floc particles, expressed 
as effective diffusivity is a function of: 

- solute diffusivity in the medium 
- floc size 
- floc porosi ty  
- floc tor tuosi ty 

In most cases, the substrate diffusion rate towards  the in- 
trafloc cells is lower than the cellular metabol ic  rate and 
therefore substrate cannot  be metabol ized at the highest 
possible rate. In such cases, it is said that  the overall  react ion 
is mass transfer limited rather  than biochemically limited. In  
order  to obta in  maximum productivity,  mass  transfer l imita- 
tions should be minimized. 

Adjacent  cells of flocculent strains are l inked to each 
other through bridges where calcium ions play an impor tan t  
role [14-18].  One possible way to circumvent mass transfer 
l imitat ions could be the use of additives that  may  act as 
bridge extenders, thereby enlarging the accessible space be- 
tween cells [19]. 

In this work, the measurement  of specific glucose uptake 
rate in a cont inuous microreactor  allowed for the analysis of 
the influence of several additives in the reduction of diffu- 
sional l imitat ions in a flocculating strain of S. cerevisiae - 
S. cerevisiae N R R L  Y 265. 

Simultaneous floc size analysis and intrafloc void volume 
determinat ions were made to try to correlate the change in 
glucose uptake rate with the physical  characteristics of the 
flocs that  control  effective glucose diffusivity. 

2 Materials and methods 

2.1 Materials 

Two strains of Saccharomyces cerevisiae were used: 

- flocculating one - S. cerevisiae N R R L  Y 265 
- a non flocculating one - S. cerevisiae sake 

The medium, per cubic meter of tap water, was composed of 

K H 2 P O  4 5 kg 
(NH4)2SO 4 2 kg 
M g S O 4 " 7 H 2 0  0 .4kg 
Yeast extract 1 kg 
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The concentration of calcium chloride, when used, was 
1 " 1 0  - 3  M .  

The carbon source was glucose, whose initial concentra- 
tion was 50 kg m -  3 for yeast growth and 5 kg m -  3 on the 
experiments for the determination of specific glucose uptake 
rate. The pH was, in all experiments, adjusted to 4.0 + 0.1 by 
the addition of H3PO 4. The temperature was controlled at 
30~ For yeast growth, medium was autoclaved at 121 ~ 
during 30 minutes. 

2.2 Cell preparation 

Cells of both strains were grown for 24 hours in 1 liter 
Erlenmeyer flasks containing the above described medium. 
Then they were harvested by centrifugation. The flocculent 
cells were deflocculated by washing three times with a NaC1 
15 kg m-3  solution at pH 2, after that they were washed 
three times with ultrapure water. Flocculent cells were then 
ready to be incubated in the 5 kg m -  3 glucose medium with 
the desired additive. 

Such treated cells were used for measuring floc size, floc 
porosity and glucose specific uptake rate. 

S. cerevisiae sake cells were only washed three times with 
ultrapure water before being added to the desired medium. 

2.3 Analytical 

Glucose concentration was measured by the DNS method 
[20]. 

Biomass concentration was determined by measuring 
biomass dry weight [21]. 

2.4 Additives 

The charged polymers added to the medium were: 

- Bis (polyoxyethylene-bis (amine)) 20,000 - (P 20,000) 
- BPA 1,000 
- Magna Floc LT25 

Bis(polyoxyethylene-bis(amine)) 20,000 is a cationic te- 
travalent polyethylene glycol derivative with a molecular 
weight of 20,000 (obtained from SIGMA Co.). BPA 1,000 is 
a cationic polymer (quaternary amine) of styrene-divinyl- 
benzene (obtained from ROHM & HASS Co.). Magna Floc 
LT25 is a high molecular weight anionic polyacrylamide 
(obtained from ALLIED COLLOIDS Ltd.). 

In all experiments the additives concentration was 0.01% 
(w/v). 

2.5 Determination of sedimentation capacity 

The flocculation capacity of S. cerevisiae flocculating strain 
was assayed using a modification of the Helm sedimentation 
test [15]. 

After preparing the cells as previously described the sed- 
imentation capacity was measured as follows: 
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The cells were suspended in a 25 �9 1 0  - 6  m 3 beaker con- 
taining a 1 �9 10-3 M CaC12 ultrapure water solution and 
0.01% of the desired additive. At defined intervals, samples 
were taken from a fixed position in the beaker (level corre- 
sponding to 15 - 10 -6 m3). 

The normalized cell concentration, defined as the ratio 
between actual and initial cell concentration was plotted 
against sedimentation time. A sedimentation profile was 
obtained. 

Initial cell dry weight concentration in the beaker was 
4 k g m  -3. 

2.6 Measurement of specific glucose uptake rate 

The determination of this parameter was made in a specially 
designed continuous microreactor (Fig. 1). It consisted of a 
0.05 m thick plexiglass system formed by two chambers sep- 
arated by a 0.45 �9 10 -6 m membrane filter. The lower cham- 
ber had a volume of 40.45.10 -6 m 3 and was stirred with 
a magnetic bar. The volume of the upper chamber was 
4.81 �9 1 0  - 6  m 3. 

The cells were resuspended with the medium containing 
the desired additive and placed in the lower chamber of the 
microreactor. After completely tilling this chamber with this 
medium, the system was sealed and feeding started. Fresh 
medium with the additive was fed to the microreactor by a 
peristaltic pump at a dilution rate of 2 h -  1. Samples were 
collected from the outflow at defined intervals to determi- 
nate glucose consumption. The cell dry weight was deter- 
mined after each experiment. 

2.7 Floe size analysis 

Floc analysis was done by wet sieving the flocs through 
sieves of standard size. 

Flocs treated as described in a previous section were 
placed in contact with the medium that contained the de- 
sired additive inside a 250 - 1 0  - 6  m 3 flask and stirred for 15 
minutes at the same speed that was used for the determina- 
tion of the kinetic parameters. 

I- lo3 -4 

~ A 
I .  6 0  ',,I 

F i g .  1. E x p l o d e d  v i e w  o f  t h e  c o n t i n u o u s  m i c r o r e a c t o r .  A - F e e d  
in le t ;  B - O u t l e t ;  C - O - r i n g ;  D - B u t t e r f l y  s c r e w  v a l v e s  (all  d i m e n -  

s i o n s  a r e  e x p r e s s e d  i n  10 - 6  m)  
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The content  o f  the flask was then poured  in the sieving 
device: a group of  six s tandard  size sieves - range 
37 �9 10 -6 m - 1 8 0  �9 10 -6  m. This system was vibrated for 5 
minutes at a low speed in order  to minimize floc destruction. 

2.8 Floc  poros i t y  analys is  

The porosi ty,  defined as the rat io between intrafloc water  
mass and  total  floc mass, was determined with a thermo- 
gravimetric balance (0.01 mg precision) using the procedure  
described by Ur ibe lar rea  [22]. 

2.9 Floc speci f ic  grav i ty  analys is  

Floc  specific gravity determinat ion was done using a 
2 5 . 1 0  -6  m 3 picnometer.  In this technique [9], the water  
mass (M0) displaced by a known flocs mass (MI)  was mea- 
sured. Flocs specific gravity is the rat io  M1/M0.  The flocs 
used in this procedure  were treated as for floc poros i ty  anal- 
ysis. 

3 R e s u l t s  a n d  d i s c u s s i o n  

When testing the influence of flocculation additives on glu- 
cose consumpt ion rate, our  initial purpose  was to check 
whether these additives would change the sedimentat ion ca- 
paci ty  of the flocs. 

The results obta ined with the sedimentat ion tests (Fig. 2) 
clearly showed that  the flocculation abil i ty of S. cerevisiae 
N R R L  Y 265 flocs was not  changed by the presence of the 
tested additives. The obtained sedimentat ion profiles were 
the same in every case. 

After confirming the maintenance of the flocculation ca- 
paci ty of the yeast  flocs, the measurement  of specific glucose 
uptake rate was made. 

These measurements  were made at a dilution rate of 
2 h -  1 and during a short  per iod (30-40  minutes). With  these 
experimental  condit ions it was assumed that  no cell growth 
would occur during the experiments.  Even assuming a max- 
imum specific growth rate as high as 0.4 h -  1, the cells would 
have a minimum doubl ing time of 1.7 h which validates the 
former assumption.  

In all experiments,  the agi ta t ion speed of the magnetic  bar  
was 200 r.p.m., assessed by a s t roboscopic  tachometer.  This 
speed, as previously shown [13], al lowed for the el imination 
of external diffusional l imitat ions in the flocs. 

Considering biomass concentrat ion X (kgm-3) ,  ex- 
pressed as cell dry weight, and S (kg m -  3) the glucose con- 
centrat ion in the medium at t ime t, the specific glucose con- 
sumption rate is defined as: 

+ qs = -- 1 I X .  d S / d t  (1) 

and so 

1 /2 ( .  d S  = - q s  " d t  (2) 
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Fig. 2. Floc sedimentation profile for the tested additives. �9 - Ca 2 +; 
P- - bis(polyoxyethylene-bis(amine)) 20,000; �9 - BPA t,000; o - 
Magna Floc LT25 

Table 1. Operating conditions and results for the diffusion experi- 
ments for the flocculating strain 

Additive Initial glu- Dry - qs - qs Correla- 
cose conc. weight (kg kg-  1 (av) tion co- 
(kg m-  3) (kg) �9 s-  1) efficient 

Ca 2+ 5.81 0.342 6.00.10 -5 0.999 

5.04 0.450 

P20,000 4.98 0.383 

5.62 0.174 

BPA 1,000 5.67 0.152 

4.58 O.286 

Magna 5.48 0.146 
Floc LT 25 

5.54 0.142 

5.82 10 -5 

6.80 10 -5 

7.28 10 -5 

8.50- 10 -5 

9.23 10 -s 

11.38 10 -5 

11.87 10 -5 

5.92 - 10 -5 
__ 1.3 �9 10 -6 

7.05 �9 I 0-  5 
__3.3.10 -6 

8.90 - i0 -5 
+5.3.10 -6 

11.67.10 -5 
___3.3.10 -6 

0.999 

0.999 

0.998 

0.999 

0.999 

0.997 

0.999 

Thus, qs can be calculated by the slope of the straight line 
obtained by plot t ing S / X  against  time. Table 1 displays the 
condit ions of each experiment as well as the values obtained 
for the specific substrate consumpt ion rate and the correla- 
t ion coefficients for each straight hne. 

I t  is clear, from these results, that  the presence of the 
additive changed the glucose assimilat ion abili ty of the test- 
ed strain S. cerevisiae N R R L  Y 265. The additive bis(poly- 
oxyethylene-bis(amine)) 20,000 had  the smallest effect and 
only a 19% increase on specific glucose uptake rate was 
observed. On the other hand, there was a clear difference 
between the slope of the calcium straight line and the slopes 
of the BPA 1,000 and Magna  Floc  LT25 straight lines. F o r  
BPA 1,000 the increase on specific glucose uptake rate was 
50% and for Magna  Floc LT25 there was a 2 fold increase 
in this parameter .  
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Table 2. Operating conditions and results for the diffusion experi- 
ments for the non flocculating strain 

Additive Initial glu- Dry - q s  - q s  Correla- 
cose conc. weight (kg kg- ~ (av) tion co- 
(kg m- ~) (kg) �9 s- 1) efficient 

Ca 2+ 5.78 0.533 14.37 �9 10 -5 0.998 
14.57.10- 5 

_+ 1.3 �9 1 0  - 6  

5.78 0.386 14.77 �9 10- 5 0.999 

Magna 5.22 0.528 15.63 �9 10- 5 0.999 
Floc LT 25 15.03 - 10- 5 

+3.3 �9 1 0  - 6  

4.09 0.427 14.53 �9 10- 5 0.999 

Table 3. Measured floc parameters in the presence of the tested 
additives 

Additives Ca z + P 20,000 BPA 1,000 Magna Floc 
Parameter LT 25 

Floc size 45_+5 59+__5 69+__6 127+7 
(10-6 m) 
Floc porosity 50.2+1.1 55.0+2.2 55.6___2.3 57.8+3.3 
(%) 
- q s ' l O  - 5  5.92+0.13 7.05-+0.33 8.90+0.53 11.67___0.33 
(kg kg- 1 s- 1) 

Since the value obtained with Magna Floc LT25, was 
surprisingly high, we wondered if there was no influence of 
this polymer in the intrinsic metabolic activity of the yeast. 
In order to clarify any possible doubt, the influence of the 
additive in the glucose uptake rate of a non flocculating 
strain of S. eerevisiae was tested. Experiments performed in 
the described microreactor with S. eerevisiae sake in the 
presence of C a  2 + and of the additive Magna Floc gave the 
results presented in Table 2. The obtained straight lines were 
parallel and there was no difference in the specific glucose 
uptake rate of cells in the presence of C a  2 + or Magna Floc 
LT25. 

Also, as expected, the specific glucose uptake rate for 
S. cerevisiae sake was larger than for the flocculating strain 
in the presence of Magna Floe LT25. 

This confirms that the two fold increase in substrate con- 
sumption observed for the flocculating strain is due only to 
the physical effects caused by the additive, which most prob- 
ably causes a reduction in floc internal diffusional limita- 
tions. 

The next step was the determination of floe size and floc 
porosity (Table 3), since diffusional limitations are controlled 
by these two parameters. First, the evaluation of floc poros- 
ity was made, using a thermogravimetric method. It is clear 
from these determinations that, when compared to calcium, 
a statistically significant increase (t-test and 95 % confidence 
interval) was observed in floc porosity in the presence of the 
tested polymeric additives. 

80 
% 

40 

0 

80 
% 

40 

i i 

0 

t,O 120 10"6m2()0 dp 40 120 10-6m200 dp 

Fig. 3. Floc size distribution for the tested additives. �9 - Ca 2+, I~ - 
bis(polyoxyethylene-bis(amine)) 20,000; �9 - BPA 1,000; o - Magna 
Floc LT25 

These values agree with reported data. For  the same cells, 
Netto [23] reported a floc porosity of 50% in the presence of 
calcium and Teixeira and Mota  [13] reported an identical 
value for floes of K. marxianus, also in the presence of cal- 
cium. These authors also mentioned a 10% increase in floe 
porosity of K. marxianus in the presence of one of the tested 
additives - BPA 1,000. 

This increase in porosity is not sufficient to explain such 
an increase in glucose consumption. Furthermore, the 
porosities for P20,000, BPA 1,000 and Magna Floe LT25 
being similar, there are significant differences in glucose con- 
sumption rates. 

The floc size for S. cerevisiae floes is the weighted average 
of the size distribution in the presence of the additives 
(Fig. 3). These values are a mean of six experimental determi- 
nations. It may be seen that the specific glucose uptake rate 
increases with the mean floe size, which disagrees with what 
should be expected in diffusion controlled processes. 

The size distribution data, together with floc porosity 
determinations, indicated that some other factor must be 
responsible for the significant increase in glucose uptake 
rate. It must be reminded that a 2-fold increase in glucose 
uptake rate was observed in the presence of Magna Floc 
when comparing with calcium and that Magna Floe bound 
floes are three times larger than Ca 2 + bound floes. 

Therefore it is of fundamental importance to find a pa- 
rameter that may constitute an explanation for the observed 
values of glucose consumption. For  each additive, the dis- 
tance 6 between each individual cell in the floc was estimat- 
ed. As a matter of fact, this parameter is a measure of the 
available flux area for glucose. To estimate this parameter, it 
was necessary to measure flocs specific gravity - d. The 
obtained calcium bound flocs specific gravity was 1.11. With 
this value, the specific gravity of the flocs bound by the tested 
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Fig. 4. Proposed model for yeasts floc packing 5 -~ 

Table 4. Floc specific gravity and floc void volume for the tested 
additives 

/ / 

0 I I 
0 011 0.2 0.3 10-6m 0.4. 

Additives Ca 2 + P20,000 BPA 1,000 Magna Floc 

Parameter LT25 

Floc specific gravity l . l t  1.10 1.10 1.09 
Floc void volume (%) 55.7 60.5 61.2 63.0 

Fig. 5. Variation of specific glucose uptake rate q~ with floc intercel- 
lular distance 6 for the tested additives. �9 - Ca 2 +; �9 - bis(poly- 
oxyethylene-bis(amine)) 20,000; �9 - BPA 1,000; o - Magna Floc 
LT25 

additives was calculated. These values and the correspond-  
ing floc void volumes are presented in Table 4. 

The addi t ional  following assumptions were made:  

- Yeast cells are approximate ly  spherical with a diameter  of 
6 . 1 0 - 6  m. 

- The distance between yeast cells in Ca 2 + flocs is zero. In 
other  words, this means that  with S. cerevisiae cells the 
minimum floc void volume is 55.7%. 

- The additive molecules are rigid and define the minimum 
distance 6 between each individual  cell in the flocs, accord- 
ing to the scheme (Fig. 4). 

- The distance 5 is the additive average length. 
The system formed by individual  cells bound  by an addi-  
tive behaves, for packing considerations,  like a set of 
spheres with a (6 + 5) �9 10 -6 m diameter,  packed as if they 
were yeast cells bound  by Ca 2+ molecules with a diameter  
of (6+5)  �9 10 .6  m. 

The calculated distance between individual cells 5 (10- 6 m) 
in the flocs and specific glucose uptake rate qs (kg kg - 1 s - 1) 
are correlated by the equation:  

- q s  = 5 . 3 3 . 1 0 - 5 + 1 . 4 2  . 10 . 4 .  5 (3) 

with a c.c. of 0.90 and a percent  mean deviat ion of 10.5%. 
This relat ion is plot ted in Fig. 5. 

Considering that  the var ia t ion of floc size and floc void 
volume cannot  explain the observed values of glucose up- 
take rate it may  be advanced that  the tested additives act on 
the reduction of glucose diffusional l imitat ions mainly by 
increasing the intercellular distances in the flocs. Probably,  
a small increase in the void volume, may  increase significant- 
ly the intercellular distances, thereby changing the available 
flux area of glucose or any other  nutrient or  product .  

Al though this approach  seemed to be a good analysis of 
the available data,  the relatively low coefficient of correla- 
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40 80 120 10 -6 rn t60 dp 

Fig. 6. Simulated floc void volume e for different floc sizes dp and 
different interparticle distances 5 for cubic packing, a: 6 = 0; b: 
5 = 0.1; c: 5 = 0.2; d: 5 = 0.3; e: 5 = 0.4 (10 -6  m). �9 -experimental 
values for Ca 2+ bound flocs; �9 - experimental values for P 20,000 
bound flocs; �9 experimental values for BPA 1,000 bound flocs; 
o - experimental values for Magna Floc LT25 bound flocs 

tion led us to check, for different kinds of packing, how 
interparticle distance affects floc void volume. 

There are four possible arrangements  for monosized 
spherical particles [24]: the cubic, the or thorhombic ,  the te- 
t ragonal  sphenoidal  and the rhombohedral .  Theoretically, 
when the interparticle distance is zero, the available void 
volumes are, respectively, 47.64%, 39.54%, 30.19% and 
25.95%. Therefore we only considered the simulation of the 
cubic packing, since the theoretical  values for the void vol- 
umes of the other packings are much lower than the experi- 
mental  results. 

F o r  the cubic packing, the simulated floc void volumes 
for different floc sizes and different interpart icle distances 
and the experimental  values for floc size and floc void vol- 
ume for the tested additives are presented in Fig. 6. 
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F rom this analysis, several conclusions can be drawn:  

- The poros i ty  increases as the interparticle distance in- 
creases. 

- The packing arrangement  for yeast  cells flocs seems well 
characterized by the cubic packing. As a mat ter  of fact, the 
calculated floc void volumes assuming this packing ar- 
rangement and the calculated interpart icle distances are 
close to the experimental  values. 

- The presence of the additive may  explain the observed 
porosi ty  values, for yeast  flocs. 

This analysis reinforces the hypothesis that  the available 
flux area on yeast cell flocs is control led by the addi t ion of 
charged polymers. 

I t  may  be concluded that  flocculation additives can be 
used to reduce diffusional l imitat ions in the flocs and so 
increase the observed reaction rate. Such an improvement  is 
accomplished by increasing the available flux area for so- 
lutes, inside the flocs. Polymeric  additives - anionic and 
cationic - act by controll ing the distance between individual  
cells in yeast flocs. This hypothesis is confirmed by calculat- 
ing the floc void volume for cubic packing. Anyway, this 
analysis should be enlarged to a wider range of additives 
with well known physical  and chemical properties,  namely, 
dimensions, structure and charge. Also, it is impor tan t  to 
mention that  both  anionic and cationic additives may be 
used to reduce flocs diffusional limitations. Cationic addi-  
tives may act by binding negatively charged yeast cell walls. 
Anionic additives, most  likely, act by bridging calcium ions 
that  are bound to the yeast cell walls. 

The uti l ization of polymeric additives with the conse- 
quent increase in react ion rate may be of fundamental  im- 
portance to obta in  high product ivi ty  flocculating systems. 
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