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Abstract

In this paper, we consider near cloaking for the full Maxwell equations. We extend the
method of [5, 6], where the quasi-static limit case and the Helmholtz equation are considered,
to electromagnetic scattering problems. We construct very effective near cloaking structures
for the electromagnetic scattering problem at a fixed frequency. These new structures are,
before using the transformation optics, layered structures and are designed so that their first
scattering coefficients vanish. Inside the cloaking region, any target has near-zero scattering
cross section for a band of frequencies. We analytically show that our new construction
significantly enhances the cloaking effect for the full Maxwell equations.
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1 Introduction

The cloaking problem is to make a target invisible from far-field electromagnetic measurements
[29, 20, 23, 13, 12, 21]. Many schemes for cloaking are under active current investigation. These
include exterior cloaking in which the cloaking region is outside the cloaking device [25, 1, 24, 11,
10, 2], active cloaking [15], and interior cloaking, which is the focus of our study.

In interior cloaking, the difficulty is to construct electromagnetic material parameter distribu-
tions of a cloaking structure such that any target placed inside the structure is undetectable to
waves. One approach is to use transformation optics [29, 13, 30, 33, 16]. It takes advantage of
the fact that the equations governing electromagnetism have transformation laws under change of
variables. This allows one to design structures that steel waves around a hidden region, returning
them to their original path on the far side. The change of variables based cloaking method uses
a singular transformation to boost the material properties so that it makes a cloaking region look
like a point to outside measurements. However, this transformation induces the singularity of
material constants in the transversal direction (also in the tangential direction in two dimensions),
which causes difficulty both in the theory and applications. To overcome this weakness, so called
‘near cloaking’ is naturally considered, which is a regularization or an approximation of singular
cloaking. In [19], instead of the singular transformation, the authors use a regular one to push
forward the material constant in the conductivity equation describing the quasi-static limit of elec-
tromagnetism, in which a small ball is blown up to the cloaking region. In [18], this regularization
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point of view is adopted for the Helmholtz equation. See also [22, 28]. More recently, Bao and Liu
[8] considered near cloaking for the full Maxwell equations. They derived sharp estimates for the
boundary effect due to a small inclusion with an arbitrary material parameters enclosed by a thin
high-conducting layer. Their results show that the near cloaking scheme can be applied to cloak
targets from electromagnetic boundary measurements.

In [5, 6] it is shown that the near cloaking, from measurements of the Dirichlet-to-Neumann
map for the conductivity equation and of the scattering cross section for the Helmholtz equation,
can be drastically enhanced by using multi-layered structures. The structures are designed so
that their generalized polarization tensors (GPTs) or scattering coefficients vanish (up to a certain
order). GPTs are building blocks of the far-field behavior of solutions in the quasi-static limits
(conductivity equations) and the scattering coefficients are ‘Fourier coefficients’ of the scattering
amplitude. The multi-layered structures combined with the usual change of variables (transfor-
mation optics) greatly reduce the visibility of an object. This fact is also confirmed by numerical
experiments [3].

The purpose of this paper is to extend the results of [5, 6] to Maxwell’s equation and show
that the near cloaking from cross section scattering measurements at a fixed frequency can be
enhanced by using layered structures together with the change of variables. Again the layered
structures are designed so that their first scattering coefficients vanish. It is also shown that inside
the cloaking region, any target has near-zero scattering cross section for a band of (low) frequencies.
We analytically show that our new construction significantly enhances the near cloaking effect for
the full Maxwell equations. It is worth mentioning that even if the basic scheme of this work is
parallel to that of [6], the analysis is much more complicated due to the vectorial nature of the
Maxwell equations.

The paper is organized as follows. In Section 2, we recall some fundamental results on the
scattering problem for the full Maxwell equations. In Section 3, we introduce the scattering
coefficients of an electromagnetic inclusion and prove that the scattering coefficients are basically
the spherical harmonic expansion coefficients of the far-field pattern. Section 4 is devoted to the
construction of layered structures with vanishing scattering coefficients. We also present some
numerical examples of the scattering coefficient vanishing structures. In Section 5, we show that
the near cloaking is enhanced if a scattering coefficient vanishing structure is used.

2 Multipole solutions to the Maxwell equations

In this section, we recall a few fundamental results related to electromagnetic scattering, which
will be essential in the sequel.

Consider the time-dependent Maxwell equations{
∇× E = −µ ∂

∂tH,
∇×H = ϵ ∂

∂tE ,

where µ is the magnetic permeability and ϵ is the electric permittivity.
In the time-harmonic regime, we look for the electromagnetic fields of the form{

H(x, t) = H(x)e−iωt,
E(x, t) = E(x)e−iωt,

where ω is the frequency. The couple (E,H) is a solution to the harmonic Maxwell equations{
∇×E = iωµH,
∇×H = −iωϵE.

(2.1)

We say that (E,H) is radiating if it satisfies the Silver-Müller radiation condition:

lim
|x|→∞

|x|(√µH× x̂−
√
ϵE) = 0,
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where x̂ = x/|x|. In the sequel, we set k = ω
√
ϵµ, which is called the wave number.

For m = −n, . . . , n and n = 1, 2, . . . , set Y m
n to be the spherical harmonics defined on the unit

sphere S. For a wave number k > 0, the following function

vn,m(k;x) = h(1)
n (k|x|)Y m

n (x̂) (2.2)

satisfies the Helmholtz equation ∆v+k2v = 0 in R3 \{0} and the Sommerfeld radiation condition:

lim
|x|→∞

|x|(∂vn,m
∂|x|

(k;x)− ikvn,m(k;x)) = 0.

Here, h
(1)
n is the spherical Hankel function of the first kind and order n which satisfies the Som-

merfeld radiation condition. Similarly, ṽn,m(x) is defined as

ṽn,m(k;x) = jn(k|x|)Y m
n (x̂), (2.3)

where jn is the spherical Bessel function of the first kind. The function ṽn,m satisfies the Helmholtz
equation in all R3.

In the same manner, we can make solutions to the Maxwell system with the vector version of
spherical harmonics. Define the vector spherical harmonics as

Un,m =
1√

n(n+ 1)
∇SY

m
n (x̂) and Vn,m = x̂×Un,m, (2.4)

for m = −n, . . . , n and n = 1, 2, . . . . Here, x̂ ∈ S and ∇S denotes the surface gradient on the unit
sphere S. The vector spherical harmonics defined in (2.4) form a complete orthogonal basis for
L2
T (S), where L2

T (S) = {u ∈ (L2(S))3 | ν · u = 0} and ν is the outward unit normal to S.
Multiplying the vector spherical harmonics to the Hankel function, we can make the so-called

multipole solutions to the Maxwell system. To make the analysis simple, we separate the solutions
into transverse electric, (E · x) = 0, and transverse magnetic, (H · x) = 0. Define the exterior
transverse electric multipoles to (2.1) as ETE

n,m(k;x) = −
√
n(n+ 1)h(1)

n (k|x|)Vn,m(x̂),

HTE
n,m(k;x) = − i

ωµ
∇×

(
−
√
n(n+ 1)h(1)

n (k|x|)Vn,m(x̂)
)
,

(2.5)

and the exterior transverse magnetic multipoles as ETM
n,m(k;x) =

i

ωϵ
∇×

(
−
√

n(n+ 1)h(1)
n (k|x|)Vn,m(x̂)

)
,

HTM
n,m(k;x) = −

√
n(n+ 1)h(1)

n (k|x|)Vn,m(x̂).
(2.6)

The exterior electric and magnetic multipole satisfies the radiation condition. By the same way,

we define the interior multipoles (ẼTE
n,m, H̃TE

n,m) and (ẼTM
n,m, H̃TM

n,m) with h
(1)
n replaced by jn, i.e., ẼTE

n,m(k;x) = −
√
n(n+ 1)j(1)n (k|x|)Vn,m(x̂),

H̃TE
n,m(k;x) = − i

ωµ
∇× ẼTE

n,m(k;x),
(2.7)

and  H̃TM
n,m(k;x) = −

√
n(n+ 1)j(1)n (k|x|)Vn,m(x̂),

ẼTM
n,m(k;x) =

i

ωϵ
∇× H̃TM

n,m(k;x).
(2.8)

We will sometimes omit the wave number k in the notation of the multipoles.
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Note that we have

∇×ETE
n,m(k;x) =

√
n(n+ 1)

|x|
Hn(k|x|)Un,m(x̂) +

n(n+ 1)

|x|
h(1)
n (k0|x|)Y m

n (x̂)x̂, (2.9)

∇× ẼTE
n,m(k;x) =

√
n(n+ 1)

|x|
Jn(k|x|)Un,m(x̂) +

n(n+ 1)

|x|
j(1)n (k0|x|)Y m

n (x̂)x̂, (2.10)

where Hn(t) = h
(1)
n (t) + t

(
h
(1)
n

)′
(t) and Jn(t) = jn(t) + tj′n(t).

The solutions to the Maxwell system can be represented as separated variable sums of the
multipole solutions, see [27, Section 5.3]. With multipole solutions and the Helmholtz solutions in
(2.2) and (2.3), it is also possible to expand the fundamental solution to the Helmholtz operator.
For k > 0, the fundamental solution Γk to the Helmholtz operator (∆ + k2) in R3 is

Γk(x) = − eik|x|

4π|x|
. (2.11)

Let p be a fixed vector in R3. For |x| > |y|, the following addition formula holds (see [26, Section
9.3.3]):

Γk(x− y)p =−
∞∑

n=1

ik

n(n+ 1)

ϵ

µ

n∑
m=−n

ETM
n,m(k;x)ẼTM

n,m(k;y) · p

+
∞∑

n=1

ik

n(n+ 1)

n∑
m=−n

ETE
n,m(k;x)ẼTE

n,m(k;y) · p

− i

k

∞∑
n=1

n∑
m=−n

∇vn,m(k;x)∇ṽn,m(k;y) · p, (2.12)

with vn,m and ṽn,m being defined by (2.2) and (2.3).
Plane wave solutions to the Maxwell equations have the expansion using the multipole solutions

as well (see [17]). The incoming wave Ei(x) = ik(q× p)× qeikq·x, where q ∈ S is the direction of
propagation and the vector p ∈ R3 is the direction of polarization, is expressed as

Ei(x) = ik
∞∑
p=1

4πip√
p(p+ 1)

p∑
q=−p

[(
Vp,q(q) · c

)
ẼTE

p,q (x)−
1

iωµ

(
Up,q(q) · c

)
ẼTM

p,q (x)

]
, (2.13)

where c = (q× p)× q.

3 Scattering coefficients of an inclusion

Let D be a bounded domain in R3 with C1,α boundary for some α > 0, and let (ϵ0, µ0) be the pair
of electromagnetic parameters (permittivity and permeability) of R3 \D and (ϵ1, µ1) be that of D.
We assume that ϵ0, ϵ1, µ0, and µ1 are positive constants. Then the permittivity and permeability
distributions are given by

ϵ = ϵ0χ(R3 \D) + ϵ1χ(D) and µ = µ0χ(R3 \D) + µ1χ(D),

where χ denotes the characteristic function. In the sequel, we set k = ω
√
ϵ1µ1 and k0 = ω

√
ϵ0µ0.

For a given solution (Ei,Hi) to the Maxwell equations{
∇×Ei = iωµ0H

i in R3,
∇×Hi = −iωϵ0E

i in R3,
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let (E,H) be the solution to the following Maxwell equations:
∇×E = iωµH in R3,
∇×H = −iωϵE in R3,
(E−Ei,H−Hi) satisfies the Silver-Müller radiation condition.

(3.1)

We emphasize that along the interface ∂D, the following transmission condition holds:

[ν ×E] = [ν ×H] = 0. (3.2)

Here, [ν ×E] denotes the jump of ν ×E along ∂D, namely,

[ν ×E] = (ν ×E)
∣∣+
∂D

− (ν ×E)
∣∣−
∂D

.

Let ∇∂D· denote the surface divergence. We introduce the function space

TH(div, ∂D) :=
{
u ∈ L2

T (∂D) : ∇∂D · u ∈ L2(∂D)
}
,

equipped with the norm

∥u∥TH(div,∂D) = ∥u∥L2(∂D) + ∥∇∂D · u∥L2(∂D).

For a density φ ∈ TH(div, ∂D), we define the single layer potential associated with the fundamental
solutions Γk given in (2.11) by

Sk
D[φ](x) :=

∫
∂D

Γk(x− y)φ(y)dσ(y), x ∈ R3.

For a scalar density contained in L2(∂D), the single layer potential is defined by the same way.
We also define boundary integral operators:

Lk
D[φ](x) :=

(
ν×
(
k2Sk

D[φ] +∇Sk
D[∇∂D ·φ]

))
(x),

Mk
D[φ](x) := p.v.

∫
∂D

ν(x)×
(
∇x×

(
Γk(x− y)φ(y)

))
dσ(y), x ∈ ∂D.

In the same way, we define Sk0

D , Lk0

D , and Mk0

D associated with Γk0 instead of Γk. Then the solution
to (3.1) can be represented as the following:

E(x) =

{
Ei(x) + µ0∇× Sk0

D [φ](x) +∇×∇× Sk0

D [ψ](x), x ∈ R3 \D,

µ1∇× Sk
D[φ](x) +∇×∇× Sk

D[ψ](x), x ∈ D,
(3.3)

and

H(x) = − i

ωµ

(
∇×E

)
(x), x ∈ R3 \ ∂D,

where the pair (φ,ψ) ∈ TH(div, ∂D)× TH(div, ∂D) is the unique solution to
µ1 + µ0

2
I + µ1Mk

D − µ0Mk0

D Lk
D − Lk0

D

Lk
D − Lk0

D

(
k2

2µ1
+

k20
2µ0

)
I +

k2

µ1
Mk

D − k20
µ0

Mk0

D

[φψ
]
=

[
Ei × ν

iωHi × ν

]∣∣∣∣
∂D

.

(3.4)
The invertibility of the system of equations (3.4) on TH(div, ∂D) × TH(div, ∂D) was proved in
[32]. Moreover, there exists a constant C = C(ϵ, µ, ω) such that

∥φ∥TH(div,∂D) + ∥ψ∥TH(div,∂D) ≤ C
(
∥Ei × ν∥TH(div,∂D) + ∥Hi × ν∥TH(div,∂D)

)
. (3.5)
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From (2.12) (with k0 in the place of k) and (3.3) it follows that, for sufficiently large |x|,

(E−Ei)(x) =
∞∑

n=1

ik0
n(n+ 1)

n∑
m=−n

(
αn,mETE

n,m(k0;x) + βn,mETM
n,m(k0;x)

)
, (3.6)

where

αn,m = −iωϵ0µ0

∫
∂D

ẼTM
n,m(k0;y) ·φ(y) + k20

∫
∂D

ẼTE
n,m(k0;y) ·ψ(y),

βn,m = −iωϵ0µ0

∫
∂D

ẼTE
n,m(k0;y) ·φ(y)− ω2ϵ20

∫
∂D

ẼTM
n,m(k0;y) ·ψ(y).

Definition 1. Let (φTE
p,q ,ψ

TE
p,q ) be the solution to (3.4) when Ei = ẼTE

p,q (k0;y) and Hi = H̃TE
p,q (k0;y),

and (φTM
p,q ,ψTM

p,q ) when Ei = ẼTM
p,q (k0;y) and Hi = H̃TM

p,q (k0;y). The scattering coefficients(
WTE,TE

(n,m)(p,q),W
TE,TM
(n,m)(p,q),W

TM,TE
(n,m)(p,q),W

TM,TM
(n,m)(p,q)

)
associated with the permittivity and the perme-

ability distributions ϵ, µ and the frequency ω (or k, k0, D) is defined to be

WTE,TE
(n,m)(p,q) = −iωϵ0µ0

∫
∂D

ẼTM
n,m(k0;y) ·φTE

p,q (y) dσ(y) + k20

∫
∂D

ẼTE
n,m(k0;y) ·ψTE

p,q (y) dσ(y),

WTE,TM
(n,m)(p,q) = −iωϵ0µ0

∫
∂D

ẼTM
n,m(k0;y) ·φTM

p,q (y) dσ(y) + k20

∫
∂D

ẼTE
n,m(k0;y) ·ψTM

p,q (y) dσ(y),

WTM,TE
(n,m)(p,q) = −iωϵ0µ0

∫
∂D

ẼTE
n,m(k0;y) ·φTE

p,q (y) dσ(y)− ω2ϵ20

∫
∂D

ẼTM
n,m(k0;y) ·ψTE

p,q (y) dσ(y),

WTM,TM
(n,m)(p,q) = −iωϵ0µ0

∫
∂D

ẼTE
n,m(k0;y) ·φTM

p,q (y) dσ(y)− ω2ϵ20

∫
∂D

ẼTM
n,m(k0;y) ·ψTM

p,q (y) dσ(y).

As we see it now, the scattering coefficients appear naturally in the expansion of the scattering
amplitude. We first obtain the following estimates of the scattering coefficients.

Lemma 3.1. There exists a constant C depending on (ϵ, µ, ω) such that∣∣∣WTE,TE
(n,m)(p,q)[ϵ, µ, ω]

∣∣∣ ≤ Cn+p

nnpp
, (3.7)

for all n,m, p, q ∈ N. The same estimates hold for WTE,TM
(n,m)(p,q), W

TM,TE
(n,m)(p,q), and WTM,TM

(n,m)(p,q).

Proof. Let (φ,ψ) be the solution to (3.4) with Ei(y) = ẼTE
p,q (k0;y) and Hi = − i

ωµ0
∇×Ei. Recall

that the spherical Bessel function jp behaves as

jp(t) =
tp

1 · 3 · · · (2p+ 1)

(
1 +O

(
1

p

))
as p → ∞,

uniformly on compact subsets of R. Using Stirling’s formula p! =
√
2πp(p/e)p(1 + o(1)), we have

jp(t) = O

(
Cptp

pp

)
as p → ∞, (3.8)

uniformly on compact subset of R with a constant C independent of p. Thus we have∥∥Ei
∥∥
TH(div,∂D)

+
∥∥Hi

∥∥
TH(div,∂D)

≤ C ′p

pp

for some constant C ′. It then follows from (3.5) that∥∥φ∥∥
L2(∂D)

+
∥∥ψ∥∥

L2(∂D)
≤ Cp

pp

for another constant C. So we get (3.7) from the definition of the scattering coefficients. �
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Suppose that the incoming wave is of the form

Ei(x) =

∞∑
p=1

p∑
q=−p

(
ap,qẼ

TE
p,q (k0;x) + bp,qẼ

TM
p,q (k0;x)

)
(3.9)

for some constants ap,q and bp,q. Then the solution (φ,ψ) to (3.4) is given by

φ =
∞∑
p=1

p∑
q=−p

(
ap,qφ

TE
p,q + bp,qφ

TM
p,q

)
,

ψ =

∞∑
p=1

p∑
q=−p

(
ap,qψ

TE
p,q + bp,qψ

TM
p,q

)
.

By (3.6) and Definition 1, the solution E to (3.1) can be represented as

(E−Ei)(x) =
∞∑

n=1

ik0
n(n+ 1)

n∑
m=−n

(
αn,mETE

n,m(k0;x) + βn,mETM
n,m(k0;x)

)
, |x| → ∞, (3.10)

where 
αn,m =

∞∑
p=1

p∑
q=−p

(
ap,qW

TE,TE
(n,m)(p,q) + bp,qW

TE,TM
(n,m)(p,q)

)
,

βn,m =
∞∑
p=1

p∑
q=−p

(
ap,qW

TM,TE
(n,m)(p,q) + bp,qW

TM,TM
(n,m)(p,q)

)
.

(3.11)

Using (3.10), (3.11) and the behavior of the spherical Bessel functions, we can estimate the
far-field pattern of the scattered wave (E − Ei). The far-field pattern (also called the scattering
amplitude) A∞[ϵ, µ, ω] is defined by

E(x)−Ei(x) =
eik0|x|

k0|x|
A∞[ϵ, µ, ω](x̂) + o(|x|−1) as |x| → ∞. (3.12)

Since the spherical Bessel function h
(1)
n behaves like

h(1)
n (t) ∼ 1

t
eite−in+1

2 π as t → ∞,

(h(1)
n )′(t) ∼ 1

t
eite−in

2 π as t → ∞,

one can easily see by using (2.9) that
ETE

n,m(k0;x) ∼
eik0|x|

k0|x|
e−in+1

2 π
(
−
√
n(n+ 1)

)
Vn,m(x̂) as |x| → ∞,

ETM
n,m(k0;x) ∼

eik0|x|

k0|x|

√
µ0

ϵ0
e−in+1

2 π
(
−
√
n(n+ 1)

)
Un,m(x̂) as |x| → ∞.

The following result holds.

Proposition 3.2. If Ei is given by (3.9), then the corresponding scattering amplitude can be
expanded as

A∞[ϵ, µ, ω](x̂) =
∞∑

n=1

−i−nk0√
n(n+ 1)

n∑
m=−n

(
αn,mVn,m(x̂) + βn,m

√
µ0

ϵ0
Un,m(x̂)

)
, (3.13)

where αn,m and βn,m are defined by (3.11).
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We emphasize that since {Vn,m,Un,m} forms an orthogonal basis of L2
T (S), the conversion of

the far-field to the near field is achieved via formula (3.10).
We now consider the case where the incident wave Ei is given by a plane wave eik·xc with

|k| = k0 and k · c = 0. It follows from (2.13) that

eik·xc =

∞∑
p=1

4πip√
p(p+ 1)

p∑
q=−p

[(
Vp,q(k̂) · c

)
ẼTE

p,q (k0;x)−
1

iωµ0

(
Up,q(k̂) · c

)
ẼTM

p,q (k0;x)

]
,

where k̂ = k/k0 ∈ S, and therefore,

ap,q =
4πip√
p(p+ 1)

(Vp,q(k̂) · c) and bp,q = − 4πip√
p(p+ 1)

1

iωµ0
(Up,q(k̂) · c).

Hence, the scattering amplitude, which we denote by A∞[ϵ, µ, ω](c, k̂; x̂), is given by (3.13) with
the coefficients αn,m and βn,m

αn,m =

∞∑
p=1

p∑
q=−p

4πip√
p(p+ 1)

[
(Vp,q(k̂) · c)WTE,TE

(n,m)(p,q) −
1

iωµ0
(Up,q(k̂) · c)WTE,TM

(n,m)(p,q)

]
,

βn,m =

∞∑
p=1

p∑
q=−p

4πip√
p(p+ 1)

[
(Vp,q(k̂) · c)WTM,TE

(n,m)(p,q) −
1

iωµ0
(Up,q(k̂) · c)WTM,TM

(n,m)(p,q)

]
.

(3.14)
These formulas tell us that the scattering coefficients appear in the expansion of the scattering
amplitude.

We now investigate the low frequency behavior of the scattering coefficients. Let Γ(x) :=
−1/(4π|x|) denote the fundamental solution corresponding to the case k = 0, and MD the associ-
ated boundary integral operator:

MD[φ](x) := p.v.

∫
∂D

ν(x)×
(
∇x×

(
Γ(x− y)φ(y)

))
dσ(y), φ ∈ TH(div, ∂D).

Analogously to (3.4), one can prove that there is a unique solution (φ(0),ψ(0)) ∈ TH(div, ∂D) ×
TH(div, ∂D) to the following equations:(µ1 − µ0)

(
µ1 + µ0

2(µ1 − µ0)
I +MD

)
0

0 (ϵ1 − ϵ0)

(
ϵ1 + ϵ0

2(ϵ1 − ϵ0)
I +MD

)
[ φ(0)

ωψ(0)

]
=

[
Ei × ν
iHi × ν

]∣∣∣∣
∂D

.

(3.15)
In fact, since ∂D is C1,α, MD is compact and we may apply the Fredholm alternative to prove
unique solvability of above equation. Moreover, we have

∥φ(0)∥TH(div,∂D) + ω∥ψ(0)∥TH(div,∂D) ≤ C(∥Ei × ν∥TH(div,∂D) + ∥Hi × ν∥TH(div,∂D)), (3.16)

with a constant C = C(ϵ, µ).
Let ρ be a small positive number and consider the boundary integral equation (3.4) with k, k0,

and ω replaced by ρk, ρk0, and ρω, respectively. Then, we have (see [14])

Mρk
D −MD = O(ρ2), Mρk0

D −MD = O(ρ2),

and
Lρk
D − Lρk0

D = O(ρ2).
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Since (
k2

2µ1
+

k20
2µ0

)
I +

k2

µ1
Mk

D − k20
µ0

Mk0

D = ρ2ω2

[
ϵ1 + ϵ0

2
I + (ϵ1 − ϵ0)MD +O(ρ2)

]
,

if we express the solution (φ,ψ) to (3.4) as (φ,ψ) := (φρ, ρωψρ), then it satisfies(
A+O(ρ)

)[ φρ

ρωψρ

]
=

[
Ei × ν
iHi × ν

]∣∣∣∣
∂D

,

where A is the 2-by-2 matrix appeared in the left-hand side of (3.15). From the invertibility of A,
it follows that there are constants ρ0 and C = C(ϵ, µ, ω) independent of ρ as long as ρ ≤ ρ0 such
that

∥φρ∥TH(div,∂D) + ρω∥ψρ∥TH(div,∂D) ≤ C
(
∥Ei × ν∥TH(div,∂D) + ∥Hi × ν∥TH(div,∂D)

)
. (3.17)

Lemma 3.3. There exists ρ0 such that, for all ρ ≤ ρ0,∣∣∣WTE,TE
(n,m)(p,q)[ϵ, µ, ρω]

∣∣∣ ≤ Cn+p

nnpp
ρn+p+1, (3.18)

for all n,m, p, q ∈ N, where the constant C depends on (ϵ, µ, ω) but is independent of ρ. The same

estimate holds for WTE,TM
(n,m)(p,q), W

TM,TE
(n,m)(p,q), and WTM,TM

(n,m)(p,q).

Proof. Let (φ,ψ) be the solution to (3.4) with Ei(y) = ẼTE
p,q (ρk0;y) and Hi = − i

ρωµ0
∇ × Ei.

Then, from (3.8), it follows that∥∥Ei,ρ
∥∥
TH(div,∂D)

+
∥∥Hi,ρ

∥∥
TH(div,∂D)

≤ Cp

pp
ρp,

where C is independent of ρ, and hence∥∥φρ
∥∥
L2(∂D)

+ ρ
∥∥ψρ

∥∥
L2(∂D)

≤ Cp

pp
ρp,

for ρ ≤ ρ0 for some ρ0. So we get (3.18) from the definition of the scattering coefficients in
Definition 1. �

4 S-vanishing structures

The purpose of this section is to construct multilayered structures whose scattering coefficients
vanish, which we call S-vanishing structures. The multi-layered structure is defined as follows: For
positive numbers r1, . . . , rL+1 with 2 = r1 > r2 > · · · rL+1 = 1, let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L, A0 := R2 \A1, AL+1(= D) := {x : |x| < 1},

and
Γj = {|x| = rj}, j = 1, . . . , L+ 1.

Let (µj , ϵj) be the pair of permeability and permittivity parameters of Aj for j = 1, . . . , L+1. Set
µ0 = 1 and ϵ0 = 1. We then define

µ =
L+1∑
j=0

µjχ(Aj) and ϵ =
L+1∑
j=0

ϵjχ(Aj), (4.1)
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which are permeability and permittivity distributions of the layered structure.

The scattering coefficients
(
WTE,TE

(n,m)(p,q),W
TE,TM
(n,m)(p,q),W

TM,TE
(n,m)(p,q),W

TM,TM
(n,m)(p,q)

)
are defined as be-

fore, namely, if Ei given as in (3.9), the scattered field E − Ei can be expanded as (3.10) and
(3.11). The transmission condition on each interface Γj is given by

[x̂×E] = [x̂×H] = 0. (4.2)

We assume that the core AL+1 is perfectly conducting (PEC), namely,

E× ν = 0 on ΓL+1 = ∂AL+1. (4.3)

Thanks to the symmetry of the layered (radial) structure, the scattering coefficients are much

simpler than the general case. In fact, if the incident field is given by Ei = ẼTE
n,m, then the solution

E to (3.1) takes the form

E(x) = ãjẼ
TE
n,m(x) + ajE

TE
n,m(x), x ∈ Aj , j = 0, . . . , L, (4.4)

with ã0 = 1. From (2.9) and (2.10), the interface condition (4.2) amounts to jn(kjrj) h(1)
n (kjrj)

1

µj
Jn(kjrj)

1

µj
Hn(kjrj)

[ãj
aj

]

=

 jn(kj−1rj) h(1)
n (kj−1rj)

1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)

[ãj−1

aj−1

]
, j = 1, . . . , L, (4.5)

where Hn(t) = h
(1)
n (t) + t

(
h
(1)
n

)′
(t) and Jn(t) = jn(t) + tj′n(t), and the PEC boundary condition

on ΓL+1 is [
jn(kL) h

(1)
n (kL)

0 0

] [
ãL
aL

]
=

[
0
0

]
. (4.6)

Since the matrices appeared in (4.5) are invertible, one can see that there are aj and ãj , j =
0, 1, . . . L satisfying (4.5) and (4.6). Similarly, one can see that if the incident field is given by

Ei = ẼTM
n,m(x), then the solution E takes the form

E(x) = b̃jẼ
TM
n,m(x) + bjE

TM
n,m(x), x ∈ Aj , j = 0, 1, ..., L (4.7)

for some constants bj and b̃j (b̃0 = 1). One can see now from (4.4) and (4.7) that the scattering
coefficients satisfy

WTE,TM
(n,m)(p,q) = WTM,TE

(n,m)(p,q) = 0 for all (m,n) and (p, q),

WTE,TE
(n,m)(p,q) = WTM,TM

(n,m)(p,q) = 0 if (m,n) ̸= (p, q),

and, since (4.4) and (4.7) hold independently of m, we have

WTE,TE
(n,0)(n,0) = WTE,TE

(n,m)(n,m),

WTM,TM
(n,0)(n,0) = WTM,TM

(n,m)(n,m) for − n ≤ m ≤ n.

Moreover, if we write

WTE
n := WTE

(n,0)(n,0) and WTM
n := WTM

(n,0)(n,0),
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then we have

WTE
n = − in(n+ 1)

k0
a0 and WTE

n = − in(n+ 1)

k0
b0. (4.8)

Suppose now that ẼTE
n,0 is the incident field and the solution E is given by

E(x) = ãjẼ
TE
n,0 (x) + ajE

TE
n,0 (x), x ∈ Aj , j = 0, . . . , L,

with ã0 = 1, where the coefficients ãj ’s and aj ’s are determined by (4.5) and (4.6). We have from
(4.5) that

[
ãj
aj

]
=

 jn(kjrj) h(1)
n (kjrj)

1

µj
Jn(kjrj)

1

µj
Hn(kjrj)

−1  jn(kj−1rj) h(1)
n (kj−1rj)

1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)

[ãj−1

aj−1

]
,

for j = 1, . . . , L. Substituting these relations into (4.6) yields[
0
0

]
= PTE

n [ε, µ, ω]

[
ã0
a0

]
, (4.9)

where

PTE
n [ε, µ, ω] :=

[
pTE
n,1 pTE

n,2

0 0

]
= (−iω)L

 L∏
j=1

µ
3
2
j ε

1
2
j rj

[jn(kL) h
(1)
n (kL)

0 0

]

×
L∏

j=1


1

µj
Hn(kjrj) −h(1)

n (kjrj)

− 1

µj
Jn(kjrj) jn(kjrj)


 jn(kj−1rj) h(1)

n (kj−1rj)
1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)

 . (4.10)

We then have from (4.9)

WTE
n = − in(n+ 1)

k0
a0 = − in(n+ 1)

k0

pTE
n,1

pTE
n,2

. (4.11)

Similarly, for WTM
n , we look for another solution E of the form

E(x) = b̃jẼ
TM
n,0 (x) + bjE

TM
n,0 (x), x ∈ Aj , j = 0, ..., L,

with b̃0 = 1. The transmission conditions become 1

εj
Jn(kjrj)

1

εj
Hn(kjrj)

jn(kjrj) h(1)
n (kjrj)

[b̃j
bj

]

=

 1

εj−1
Jn(kj−1rj)

1

εj−1
Hn(kj−1rj)

jn(kj−1rj) h(1)
n (kj−1rj)

[b̃j−1

bj−1

]
, j = 1, . . . , N + 1, (4.12)

and the PEC boundary condition on the inner most layer is[
Jn(kL) Hn(kL)

0 0

] [
b̃L
bL

]
=

[
0
0

]
. (4.13)

From (4.12) and (4.13), we obtain [
0
0

]
= PTM

n [ε, µ, ω]

[
b̃0
b0

]
, (4.14)
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where

PTM
n [ε, µ, ω] :=

[
pTM
n,1 pTM

n,2

0 0

]
= (iω)L

 L∏
j=1

µ
1
2
j ε

3
2
j rj

[Jn(kL) Hn(kL)
0 0

]

×
L∏

j=1

h(1)
n (kjrj) − 1

ϵj
Hn(kjrj)

−jn(kjrj)
1

ϵj
Jn(kjrj)


 1

ϵj−1
Jn(kj−1rj)

1

ϵj−1
Hn(kj−1rj)

jn(kj−1rj) h(1)
n (kj−1rj)

 . (4.15)

From the definition of WTM
n and (4.14), we have

WTE
n = − in(n+ 1)

k0

b0

b̃0
= − in(n+ 1)

k0

pTM
n,1

pTM
n,2

. (4.16)

It should be emphasized that pTE
n,2 ̸= 0 and pTM

n,2 ̸= 0. In fact, if pTE
n,2 = 0, then (4.9) can be

fulfilled with ã0 = 0 and a0 = 1. This means that there exists (µ, ϵ) on R3 \ D such that the
following problem has a solution:

∇×E = iωµH in R3 \D,
∇×H = −iωϵE in R3 \D,
(x×E)

∣∣
+
= 0 on ∂D,

E(x) = ETE
n,0 (x) for |x| > 2.

Applying the following Green’s theorem on Ω = {x
∣∣ 1 < |x| < R},∫

Ω

(
E ·∆F+ curlE · curlF+ divE divF

)
dx

=

∫
∂Ω

(
ν ×E · curlF+ ν ·E divF

)
dσ(x)

with F = ETE
n,0 (x) and the PEC boundary condition on {x| = 1}, we have∫

|x|=R

(ν ×E) ·Hdσ(x) = ik0

∫
Ω

(|H|2 − |E|2)dx.

In particular, the left-hand side is real-valued. Hence,∫
|x|=R

|H× ν −E|2dσ(x) =
∫
|x|=R

(
|H× ν|2 + |E|2 − 2ℜ((ν ×E) ·H

)
dσ(x)

=

∫
|x|=R

(
|H× ν|2 + |E|2

)
dσ(x).

From the radiation condition, the left-hand side goes to zero as R → ∞, and it contradicts the
behavior of the hankel functions. One can show that pTM

n,2 ̸= 0 in a similar way. �
To construct the S-vanishing structure at a fixed frequency ω we look for (µ, ϵ) such that

WTE
n [ε, µ, ω] = 0, WTM

n [ε, µ, ω] = 0, n = 1, . . . , N

for some N . More ambitiously we may look for a structure (µ, ϵ) for a fixed ω such that

WTE
n [µ, ϵ, ρω] = 0, WTM

n [µ, ϵ, ρω] = 0
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for all 1 ≤ n ≤ N and ρ ≤ ρ0 for some ρ0. Such a structure may not exist. So instead we look for
a structure such that

WTE
n [µ, ϵ, ρω] = o(ρ2N+1), WTM

n [µ, ϵ, ρω] = o(ρ2N+1), (4.17)

for all 1 ≤ n ≤ N and ρ ≤ ρ0 for some ρ0. We call such a structure a S-vanishing structure of
order N at low frequencies. In the following section, we expand the scattering coefficients for low
frequencies and derive conditions for the magnetic permeability and the electric permittivity to be
a S-vanishing structure.

Suppose that (µ, ϵ) is an S-vanishing structure of order N at low frequencies. Let the incident
wave Ei be given by a plane wave eiρk·xc with |k| = k0 and k·c = 0. From (3.14), the corresponding

scattering amplitude, A∞[µ, ϵ, ρω](c, k̂; x̂), is given by (3.13) with the following αn,m and βn,m.
αn,m =

4πin√
n(n+ 1)

(Vn,m(k̂) · c)WTE
n [µ, ϵ, ρω],

βn,m = − 4πin√
n(n+ 1)

1

iωµ0
(Un,m(k̂) · c)WTM

n [µ, ϵ, ρω].

Applying (3.18) and (4.17), we have

A∞[µ, ϵ, ρω](c, k̂; x̂) = o(ρ2N+1) (4.18)

uniformly in (k̂, x̂) if ρ ≤ ρ0. Thus using such a structure the visibility of scattering amplitude is
greatly reduced.

4.1 Asymptotic expansion of the scattering coefficients

The spherical Bessel functions of the first and second kinds have the series expansions:

jn(t) =

∞∑
l=0

(−1)ltn+2l

2ll!1 · 3 · · · (2n+ 2l + 1)
,

and

yn(t) = − (2n)!

2nn!

∞∑
l=0

(−1)lt2l−n−1

2ll!(−2n+ 1)(−2n+ 3) · · · (−2n+ 2l − 1)
.

So, using the notation of double factorials, which is defined by

n!! :=

 n · (n− 2) . . . 3 · 1 if n > 0 is odd,
n · (n− 2) . . . 4 · 2 if n > 0 is even,
1 if n = −1, 0,

we have

jn(t) =
tn

(2n+ 1)!!

(
1 + o(t)

)
for t ≪ 1, (4.19)

and
yn(t) = −

(
(2n− 1)!!

)
t−n+1

(
1 + o(t)

)
for t ≪ 1. (4.20)
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We now compute PTE
n [ϵ, µ, t] for small t. For n ≥ 1,

PTE
n [ε, µ, t] = (−it)L

 L∏
j=1

µ
3
2
j ε

1
2
j rj

 znL
(2n+ 1)!!

tn + o(tn)
−iQ(n)

zn+1
L

t−n−1

0 0



×
L∏

j=1




iQ(n)n

µj(zjrj)n+1
t−n−1 + o(t−n−1)

iQ(n)

(zjrj)n+1
t−n−1 + o(t−n−1)

−(n+ 1)(zjrj)
n

µj(2n+ 1)!!
tn + o(tn)

(zjrj)
n

(2n+ 1)!!
tn + o(tn)




(zj−1rj)
n

(2n+ 1)!!
tn + o(tn)

−iQ(n)

(zj−1rj)n+1
t−n−1 + o(t−n−1)

(n+ 1)(zj−1rj)
n

µj−1(2n+ 1)!!
tn + o(tn)

iQ(n)n

µj−1(zj−1rj)n+1
t−n−1 + o(t−n−1)


 ,

where zj =
√
εjµj and Q(n) = (2n− 1)!!. We then have

PTE
n [ε, µ, t] =

 znL
(2n+ 1)!!

tn + o(tn)
−iQ(n)

zn+1
L

t−n−1 + o(t−n−1)

0 0

×

L∏
j=1


Q(n)znj−1

(2n+ 1)!!znj

(
n+

(n+ 1)µj

µj−1

)(
1 + o(1)

)
(−i)

(Q(n))2n

znj z
n+1
j−1 r

2n+1
j

(
1− µj

µj−1

)
t−2n−1(1 + o(1)

)
i
znj−1z

n+1
j r2n+1

j (n+ 1)

((2n+ 1)!!)2
(
1− µj

µj−1

)
t2n+1(1 + o(1)

) Q(n)zn+1
j

(2n+ 1)!!zn+1
j−1

(
n+ 1 +

nµj

µj−1

)(
1 + o(1)

)
 .

Similarly, for the transverse magnetic case, we have

PTM
n [ε, µ, t] =

 (n+ 1)znL
(2n+ 1)!!

tn + o(tn)
−inQ(n)

zn+1
L

t−n−1 + o(t−n−1)

0 0

×

L∏
j=1


Q(n)znj−1

(2n+ 1)!!znj

(
(n+

εj
εj−1

(n+ 1)

)(
1 + o(1)

)
(−i)

(Q(n))2n

znj z
n+1
j−1 r

2n+1
j

(
1− εj

εj−1

)
t−2n−1(1 + o(1)

)
i
znj−1z

n+1
j r2n+1

j (n+ 1)

((2n+ 1)!!)2

(
1− εj

εj−1

)
t2n+1(1 + o(1)

) Q(n)zn+1
j

(2n+ 1)!!zn+1
j−1

(
n+ 1 +

εj
εj−1

n

)(
1 + o(1)

)
 .

Using the behavior of spherical bessel functions for small arguments, we see that pTE
n,1 and pTE

n,2

admit the following expansions:

pTE
n,1 [µ, ε, t] = tn

(
N−n∑
l=0

fTE
n,l (µ, ε)t

2l + o(t2N−2n)

)
(4.21)

and

pTE
n,2 [µ, ε, t] = t−n−1

(
N−n∑
l=0

gTE
n,l (µ, ε)t

2l + o(t2N−2n)

)
. (4.22)

Similarly, pTM
n,1 and pTM

n,2 have the following expansion:

pTM
n,1 [µ, ε, t] = tn

(
N−n∑
l=0

fTM
n,l (µ, ε)t2l + o(t2N−2n)

)
(4.23)

and

pTM
n,2 [µ, ε, t] = t−n−1

(
N−n∑
l=0

gTM
n,l (µ, ε)t2l + o(t2N−2n)

)
. (4.24)

for t = ρω and some functions fTE
n,l , g

TE
n,l , f

TM
n,l , and gTM

n,l independent of t.
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Lemma 4.1. For any pair of (µ, ϵ), we have

gTE
n,0 (µ, ε) ̸= 0 (4.25)

and
gTM
n,0 (µ, ε) ̸= 0. (4.26)

Proof. Assume that there exists a pair of (µ, ϵ) such that gTE
n,0 (µ, ε) = 0. Since pTE

n,2 [µ, ε, ρω] =
o(ρ−n−1), the solution given by (4.4) with a0 = 1 and ã0 = 0 satisfies

∇×
(
1

µ
∇×E

)
− ρ2ω2ϵE = 0 in R3 \D,

∇ ·E = 0 in R3 \D,

(ν ×E)
∣∣
+
= o(ρ−(n+1)) on ∂D,

E(x) = h(1)
n (ρk0|x|)Vn,0(x̂) for |x| > 2.

Let V (x) = limρ→0 ρ
n+1E(x). Using (4.20) we know that the limit V satisfies

∇×
(
1

µ
∇× V

)
= 0 in R3 \D,

∇ · V = 0 in R3 \D,
(ν × V )

∣∣
+
= 0 on ∂D,

V (x) = −
(
(2n− 1)!!)Vn,0(x̂) for |x| > 2.

Since Vn,0(x̂) = O(|x|−1), we get V (x) = 0 by Green’s formula, which is a contradiction. Thus
gTE
n,0 (µ, ε) ̸= 0. In a similar way, (4.26) can be proved. �

From Lemma 4.1, we have the following theorem.

Proposition 4.2. We have

WTE
n [µ, ε, t] = t2n+1

N−n∑
l=0

WTE
n,l [µ, ε]t

2l + o(t2N+1),

and

WTM
n [µ, ε, t] = t2n+1

N−n∑
l=0

WTM
n,l [µ, ε]t2l + o(t2N+1),

where t = ρω and the coefficients WTE
n,l [µ, ε] and WTM

n,l [µ, ε] are independent of t.

Hence, if we have (µ, ϵ) such that

WTE
n,l [µ, ϵ] = WTM

n,l [µ, ε] = 0, for all 1 ≤ n ≤ N, 0 ≤ l ≤ (N − n), (4.27)

(µ, ϵ) satisfies (4.17), in other words, it is a S-vanishing structure of order N at low frequencies.
It is quite challenging to construct (µ, ϵ) analytically satisfying (4.27). In the next section we get
some numerical examples of such structures.

4.2 Numerical examples

In this section we provide numerical examples of S-vanishing structures of order N at low frequen-
cies based on (4.27). To do this, the gradient descent method for the suitable energy functional is
used, as used in [5] and [6] to compute the enhanced near-cloaking structures for the conductivity
problem and the Helmholtz problem. As in [6], we symbolically compute the scattering coefficients.
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In the place of spherical Bessel functions and spherical Hankel functions, we put its low frequency
asymptotic expansions in (4.10) and (4.15), and symbolically compute WTE

n and WTM
n to have

WTE
n,l [µ, ϵ] and WTM

n,l [µ, ε].
The following example is a S-vanishing structure of order N = 2 made of 6 multilayers. The

radii of the concentric disks are rj = 2 − j−1
6 for j = 1, . . . , 7. From Proposition 4.2, the nonzero

leading terms of WTE
n [µ, ϵ, t] and WTM

n [µ, ϵ, t] up to t5 are

• [t3, t5] terms in WTE
1 [µ, ϵ, t], i.e., WTE

1,0 ,WTE
1,1 ,

• [t3, t5] terms in WTM
1 [µ, ϵ, t], i.e., WTM

1,0 ,WTM
1,1 ,

• [t5] term in WTE
2 [µ, ϵ, t], i.e., WTE

2,0 ,

• [t5] term in WTM
2 [µ, ϵ, t], i.e., WTM

2,0 .

Consider the mapping

(µ, ε) −→ (WTE
1,0 ,WTE

1,1 ,WTM
1,0 ,WTM

1,1 ,WTE
2,0 ,WTM

2,0 ), (4.28)

where, µ = (µ1, . . . , µ6) and ε = (ε1, . . . , ε6). We look for (µ, ε) which has the right-hand side of
(4.28) as small as possible. Since (4.28) is a nonlinear equation, we solve it iteratively. Initially,
we wet µ = µ(0) and ε = ε(0). We iteratively modify (µ(i), ε(i))

[µ(i+1) ε(i+1)]T = [µ(i) ε(i)]T −A†
ib

(i), (4.29)

where A†
i is the pseudoinverse of

Ai :=
∂(WTE

1,0 ,WTE
1,1 , . . . ,WTM

2,0 )

∂(µ, ε)

∣∣∣
(µ,ε)=(µ(i),ε(i))

,

and

b(i) =


WTE

1,0

WTE
1,1
...

WTM
2,0


∣∣∣∣∣∣∣∣∣
(µ,ε)=(µ(i),ε(i))

.

Example 1. Figure 4.1 and Figure 4.2 show computational results of 6-layers S-vanishing structure
of order N = 2. We set r = (2, 11

6 , . . . , 7
6 ), µ

(0) = (3, 6, 3, 6, 3, 6) and ε(0) = (3, 6, 3, 6, 3, 6) and
modify them following (4.29) with the constraints that µ and ε belongs to the interval between 0.1
and 10. The obtained material parameters are µ = (0.1000, 1.1113, 0.2977, 2.0436, 0.1000, 1.8260)
and ε = (0.4356, 1.1461, 0.2899, 1.8199, 0.1000, 3.1233), respectively. Differently from the no-layer
structure with PEC condition at |x| = 1, the obtained multilayer structure has the nearly zero
coefficients of WTE

n [µ, ϵ, t] and WTM
n [µ, ϵ, t] up to t5.

5 Enhancement of near cloaking

We make a cloaking structure based on the following lemma.

Lemma 5.1. Let F be a diffeomorphism of R3onto R3 such that F (x) is identity for |x| large
enough. If (E,H) is a solution to

∇×E = iωµH in R3,

∇×H = −iωϵE in R3,

(E−Ei,H−Hi) is radiating,

(5.1)
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Figure 4.1: This figure shows the graph of the material parameters and the corresponding coef-
ficients in WTE

n [µ, ϵ, t] and WTM
n [µ, ϵ, t] up to t5. The first row is of the no-layer case, and the

second row is of 6-layers S-vanishing structure of order N = 2 which is explained in Example 1. In
the third column, the y-axis shows (WTE

1,0 ,WTE
1,1 ,WTM

1,0 ,WTM
1,1 ,WTE

2,0 ,WTM
2,0 ) from the left to the

right.
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Figure 4.2: This figure shows the graph of WTE
n [µ, ϵ, t] and WTM

n [µ, ϵ, t] for various values of t.
The first row is of the no-layer case, and the second row if of 6-layers S-vanishing structure of order
N = 2 which is explained in Example 1. The values of WTE

n and WTM
n are much smaller in the

S-vanishing structure than in the no-layer structure.

then (Ẽ, H̃) defined by (Ẽ(y), H̃(y)) =
(
E(F−1(y)),H(F−1(y))

)
satisfies

∇× Ẽ = iω(F∗µ)H̃ in R3,

∇× H̃ = −iω(F∗ϵ)Ẽ in R3,

(ẼẼi, H̃− H̃i) is radiating,
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where (Ẽi(y), H̃i(y)) =
(
Ei(F−1(y)),Hi(F−1(y))

)
,

(F∗µ)(y) =
DF (x)µ(x)DFT (x)

det(DF (x))
, and (F∗ϵ)(y) =

DF (x)ϵ(x)DFT (x)

det(DF (x))
,

with x = F−1(y) and DF is the Jacobian matrix of F .
Hence,

A[µ, ϵ, ω] = A[F∗µ, F∗ϵ, ω].

To compute the scattering amplitude which corresponds to the material parameters before the
transformation, we consider the following scaling function, for small parameter ρ,

Ψ 1
ρ
(x) =

1

ρ
x, x ∈ R3.

Then we have the following relation between the scattering amplitudes which correspond to two
sets of differently scaled material parameters and frequency:

A∞

[
µ ◦Ψ 1

ρ
, ϵ ◦Ψ 1

ρ
, ω
]
= A∞[µ, ϵ, ρω]. (5.2)

To see this, consider (E,H) which satisfies
(∇×E) (x) = iω

(
µ ◦Ψ 1

ρ

)
(x)H(x) for x ∈ R3 \Bρ,

(∇×H) (x) = −iω
(
ϵ ◦Ψ 1

ρ

)
(x)E(x) for x ∈ R3 \Bρ,

x̂×E(x) = 0 on ∂Bρ,
(E−Ei,H−Hi) is radiating,

with the incident wave Ei(x) = eik·xĉ and Hi = 1
iωµ0

∇×Ei with k · ĉ = 0 and |k| = k0. Here Bρ

is the ball of radius ρ centered at the origin. Set y = 1
ρx and define(

Ẽ(y), H̃(y)
)
:=
((

E ◦Ψ−1
1
ρ

)
(y),

(
H ◦Ψ−1

1
ρ

)
(y)
)
=
((

E ◦Ψρ

)
(y),

(
H ◦Ψρ

)
(y)
)

and (
Ẽi(y), H̃i(y)

)
:=
((

Ei ◦Ψρ

)
(y),

(
Hi ◦Ψρ

)
(y)
)
.

Then, we have 

(
∇y × Ẽ

)
(y) = iρωµ(y)H̃(y) for y ∈ R3 \B1(

∇y × H̃
)
(y) = −iρωϵ(y)Ẽ(y) for y ∈ R3 \B1,

ŷ × Ẽ(y) = 0 on ∂B1,

(Ẽ− Ẽi, H̃− H̃i) is radiating

Remind that the scattered wave can be represented using the scattering amplitude as follows:

(E−Ei)(x) ∼ eik0|x|

k0|x|
A∞

[
µ ◦Ψ 1

ρ
, ϵ ◦Ψ 1

ρ
, ω
]
(c, k̂; x̂) as |x| → ∞,

and

(Ẽ− Ẽi)(y) ∼ eik0ρ|y|

k0ρ|y|
A∞ [µ, ϵ, ω] (c, k̂; x̂) as |y| → ∞.

Since the left-hand sides of the previous equations are coincide, we have (5.2).
Suppose that (µ, ϵ) is a S-vanishing structure of order N at low frequencies as in Section 4.

From (4.18) and (5.2), we have

A∞

[
µ ◦Ψ 1

ρ
, ϵ ◦Ψ 1

ρ
, ω
]
(c, k̂; x̂) = o(ρ2N+1) (5.3)
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Then, we define the diffeomorphism Fρ as

Fρ(x) :=



x for |x| ≥ 2,( 3− 4ρ

2(1− ρ)
+

1

4(1− ρ)
|x|
) x

|x|
for 2ρ ≤ |x| ≤ 2,(1

2
+

1

2ρ
|x|
) x

|x|
for ρ ≤ |x| ≤ 2ρ,

x

ρ
for |x| ≤ ρ.

We then get from (5.3) and Lemma 5.1 the main result of this paper.

Theorem 5.2. If (µ, ϵ) is a S-vanishing structure of order N at low frequencies, then there exists
ρ0 such that

A∞

[
(Fρ)∗(µ ◦Ψ 1

ρ
), (Fρ)∗(ϵ ◦Ψ 1

ρ
), ω
]
(c, k̂; x̂) = o(ρ2N+1),

for all ρ ≤ ρ0, uniformly in (k̂, x̂).

Remark that the cloaking structure
(
(Fρ)∗(µ ◦Ψ 1

ρ
), (Fρ)∗(ϵ ◦Ψ 1

ρ
)
)
in Theorem 5.2 satisfies the

PEC boundary condition on |x| = 1.

6 Conclusion

We have shown near-cloaking examples for the Maxwell equation. We have designed a cloaking
device that achieves enhanced cloaking effect based on the method of [5, 6] to electromagnetic
scattering problems. Any target placed inside the cloaking device has an approximately zero scat-
tering amplitude. Such cloaking device is obtained by the blow up using the transformation optics
of a multi-coated inclusion with PEC boundary condition. The cloaking device has anisotropic
permittivity and permeability parameters.
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