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Abstract

The goal of this paper is to illustrate the efficiency and the stability of the near-cloaking
structures proposed in [4] and [5]. These new structures are, before using transformation op-
tics, layered structures and are designed so that their first contracted generalized polarization
tensors (in the quasi-static limit) or scattering coefficients (in the case of the Helmholtz equa-
tion) vanish. Inside the cloaking region, any target has near-zero boundary or scattering cross
section measurements. We numerically show that this new construction significantly enhances
the invisibility cloaking effect for the conductivity and the Helmholtz equations and is quite
robust with respect to random fluctuations of the material parameters around their theoretical
values. We finally extend our multi-coated construction to the enhanced reshaping problem.
We show how to make any target look like a disc with homogeneous physical parameters.
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1 Introduction

The cloaking problem is to make a target invisible from far-field wave measurements [22, 15, 10,
9, 16, 18]. Many schemes are under active current investigation. These include exterior cloaking
in which the cloaking region is outside the cloaking device [19, 20, 8, 7, 2, 1], active cloaking [11],
and interior cloaking, which is the focus of our study.

In interior cloaking, the difficulty is to construct material parameter distributions of a cloaking
structure such that any target placed inside the structure is undetectable to waves. One approach is
to use transformation optics [22, 10, 9, 27, 12, 23]. It takes advantage of the fact that the equations
governing electrostatics, electromagnetism, and acoustics have transformation laws under change
of variables. This allows one to design structures that steel waves around a hidden region, returning
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them to their original path on the far side. The change of variables based cloaking method uses a
singular transformation to boost the material properties so that it makes a cloaking region look like
a point to outside measurements. However, this transformation induces the singularity of material
constants in the transversal direction (also in the tangential direction in two dimensions), which
causes difficulty both in the theory and applications. To overcome this weakness, so called ‘near
cloaking’ is naturally considered, which is a regularization or an approximation of singular cloaking.
In [14], instead of the singular transformation, the authors use a regular one to push forward the
material constant in the conductivity equation describing the static limit of electromagnetism, in
which a small ball is blown up to the cloaking region. In [13], this regularization point of view is
adopted for the Helmholtz equation. See also [17, 21].

In [4, 5], a new cancellation technique in order to achieve enhanced invisibility from mea-
surements of the Dirichlet-to-Neumann map in electrostatics and the scattering cross section in
electromagnetism is proposed. The approach is to first design a multi-coated structure around
a small perfect insulator to significantly reduce its effect on boundary or scattering cross section
measurements. One then obtains near-cloaking structure by pushing forward the multi-coated
structure around a small object via the standard blow-up transformation technique.

The purpose of this paper is to study the performances of the invisibility cloaks proposed in [4]
and [5], and compare them with those based on (regularized) transformation optics [14, 13]. We
show that they are quite robust with respect to random fluctuations of their material parameters
around the theoretical values. We also extend the new construction in [4] and [5] to reshaping
problems.

Practical performances of cloaks can be evaluated in terms of invisibility and complexity. In-
visibility tells how difficult it is to detect the cloaked object. Complexity reflects how difficult it
is to produce the cloak in practice. It takes into account possible singularities, high or low values,
and anisotropy of the parameter distributions.

The approach developed in [4] and [5] is to drastically reduce the visibility of an object by mak-
ing contracted generalized polarization tensors (GPT) or scattering coefficients of the multi-coated
structure vanish (up to some order). This is achieved using a properly designed layered-structure,
combined with the usual change of variable. To compare (in)visibility, we use scalar functions. For
the conductivity problem, we choose the eigenvalues of the Dirichlet-to-Neumann map which are
linked to the contracted generalized polarization tensors. Similarly, for the Helmholtz problem,
we consider the singular values of the far-field operator which are functions of the scattering co-
efficients. Given bounded material properties and a finite signal-to-noise ratio, we show that the
new structures proposed in [4] and [5] yield significantly better invisibility than those based on
standard transformation optics. Indeed, we show that the newly proposed cloaks are sufficiently
stable with respect to their basic features (values of the parameters and width of the layers).

When considering near cloaking for the Helmholtz equation, we prove that it becomes increas-
ingly difficult as the cloaked object becomes bigger or the operating frequency becomes higher.
The difficulty scales inversely proportionally to the object diameter or the frequency. Another
important observation is that the reduction factor of the scattering cross section is higher in the
backscattering region than in the forward one. This is due to the creeping waves propagating in
the shadow region. We show that the cloaking problem becomes easier if only scattered waves at
certain angles are visible.

Finally, we extend our construction to the enhanced reshaping problem. We show how to make
any target look like a disc with homogeneous physical parameters.

2 Enhancement of near cloaking in the quasi-static limit

2.1 Principles

To explain the principle of our new construction of cloaking structures, we review the results on
the conductivity equation obtained in [4].
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Let Ω be a domain in R2 containing 0 possibly with multiple components with Lipschitz bound-
ary. For a given harmonic function H in R2, consider{

∇·
(
σ0χ(R2 \ Ω) + σχ(Ω)

)
∇u = 0 in R2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,
(2.1)

where σ0 and σ are conductivities (positive constants) of R2 \ Ω and Ω, respectively. Here and
throughout this paper, χ(Ω) (resp. χ(R2 \Ω)) is the characteristic function of Ω (resp. χ(R2 \Ω)).

If the harmonic function H admits the expansion

H(x) = H(0) +

∞∑
n=1

rn
(
acn(H) cosnθ + asn(H) sinnθ)

)
with x = (r cos θ, r sin θ), then we have the following formula

(u−H)(x) = −
∞∑

m=1

cosmθ

2πmrm

∞∑
n=1

(
M cc

mna
c
n(H) +M cs

mna
s
n(H)

)
−

∞∑
m=1

sinmθ

2πmrm

∞∑
n=1

(
Msc

mna
c
n(H) +Mss

mna
s
n(H)

)
as |x| → ∞. (2.2)

The coefficients M cc
mn,M

cs
mn,M

sc
mn, and Msc

mn are called the contracted generalized polarization
tensors.

In [4], we have constructed structures with vanishing contracted generalized polarization tensors
for all |n|, |m| ≤ N . We call such structures GPT-vanishing structures of order N . For doing so,
we use a disc with multiple coatings. Let Ω be a disc of radius r1. For a positive integer N , let
0 < rN+1 < rN < . . . < r1 and define

Aj := {rj+1 < r = |x| ≤ rj}, j = 1, 2, . . . , N. (2.3)

Let A0 = R2\Ω and AN+1 = {r ≤ rN+1}. Set σj to be the conductivity of Aj for j = 1, 2, . . . , N+1,
and σ0 = 1. Let

σ =

N+1∑
j=0

σjχ(Aj). (2.4)

Because of the symmetry of the disc, one can easily see that

M cs
mn[σ] =Msc

mn[σ] = 0 for all m,n, (2.5)

M cc
mn[σ] =Mss

mn[σ] = 0 if m ̸= n, (2.6)

and
M cc

nn[σ] =Mss
nn[σ] for all n. (2.7)

Let Mn =M cc
nn, n = 1, 2, . . ., for the simplicity of notation. Let

ζj :=
σj − σj−1

σj + σj−1
, j = 1, . . . , N + 1. (2.8)

The following is a characterization of GPT-vanishing structures. See [4].

Proposition 2.1 If there are non-zero constants ζ1, . . . , ζN+1 (|ζj | < 1) and r1 > . . . > rN+1 > 0
such that

N+1∏
j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for l = 1, 2, . . . , N, (2.9)
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then (Ω, σ), given by (2.3), (2.4), and (2.8), is a GPT-vanishing structure of order N , i.e., Ml = 0
for l ≤ N . More generally, if there are non-zero constants ζ1, ζ2, ζ3, . . . (|ζj | < 1) and r1 > r2 >
r3 > . . . such that rn converges to a positive number, say r∞ > 0, and

∞∏
j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for every l, (2.10)

then (Ω, σ), given by (2.3), (2.4), and (2.8), is a GPT-vanishing structure with Ml = 0 for all l.

Let (Ω, σ) be a GPT-vanishing structure of order N of the form (2.4). We take r1 = 2 so that
Ω is the disk of radius 2, and rN+1 = 1. We assume that σN+1 = 0 which amounts to that the
structure is insulated along ∂B1. For small ρ > 0, let

Ψ 1
ρ
(x) =

1

ρ
x, x ∈ R2. (2.11)

Then, (B2ρ, σ ◦Ψ 1
ρ
) is a GPT-vanishing structure of order N and it is insulated on ∂Bρ.

For a given domain Ω and a subdomain B ⊂ Ω, we introduce the DtN map ΛΩ,B [σ] as

ΛΩ,B [σ](f) = σ
∂u

∂ν

∣∣∣∣
∂Ω

(2.12)

where u is the solution to 
∇ · σ∇u = 0 in Ω \B,
∂u

∂ν
= 0 on ∂B,

u = f on ∂Ω

(2.13)

where ν is the outward normal to ∂B. Note that with Ω = B2, ΛΩ,Bρ [σ ◦Ψ 1
ρ
] may be regarded as

small perturbation of ΛΩ,∅[1]. In fact, a complete asymptotic expansion of ΛΩ,Bρ [σ ◦Ψ 1
ρ
] as ρ→ 0

is obtained and it is proved that∥∥∥ΛΩ,Bρ

[
σ ◦Ψ 1

ρ

]
− ΛB2,∅[1]

∥∥∥ ≤ Cρ2N+2

for some constant C independent of ρ, where the norm is the operator norm from H1/2(∂Ω) into
H−1/2(∂Ω). We then push forward σ ◦Ψ 1

ρ
by the change of variables Fρ,

Fρ(x) :=



( 3− 4ρ

2(1− ρ)
+

1

4(1− ρ)
|x|

) x

|x|
for 2ρ ≤ |x| ≤ 2,(1

2
+

1

2ρ
|x|

) x

|x|
for ρ ≤ |x| ≤ 2ρ,

x

ρ
for |x| ≤ ρ,

(2.14)

in other words,

(Fρ)∗(σ ◦Ψ 1
ρ
) =

(DFρ)(σ ◦Ψ 1
ρ
)(DFρ)

T

|det(DFρ)|
◦ F−1

ρ . (2.15)

Note that Fρ maps |x| = ρ onto |x| = 1, and is the identity on |x| = 2. So by invariance of DtN
map, we have

ΛB2,B1

[
(Fρ)∗(σ ◦Ψ 1

ρ
)
]
= ΛB2,Bρ

[
σ ◦Ψ 1

ρ

]
(2.16)

Thus we obtain the following theorem, which shows that using GPT-vanishing structures we achieve
enhanced near-cloaking.

Theorem 2.2 ([4]) Let the conductivity profile σ be a GPT-vanishing structure of order N such
that σN+1 = 0. There exists a constant C independent of ρ such that∥∥∥ΛB2,B1

[
(Fρ)∗(σ ◦Ψ 1

ρ
)
]
− ΛB2,∅[1]

∥∥∥ ≤ Cρ2N+2. (2.17)
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2.2 Performances

The purpose of this section is to compare through numerical computations the cloaking effect of
the near cloaking of Kohn et al [14] and the enhanced near cloaking proposed in [4] and reviewed
in the previous subsection. The comparison is done by means of the eigenvalues of the DtN maps
ΛB2,B1 [(Fρ)∗(1)] and ΛB2,B1 [(Fρ)∗(σ ◦Ψ 1

ρ
)] where Fρ is the diffeomorphism defined by (2.14) and

σ is the GPT-vanishing structure of order N as defined in (2.4). The first one is the DtN map of
the near cloaking structure and the latter one is that of the enhanced near cloaking structure. We
assume that the core is insulated, namely, σN+1 = 0 for the GPT-vanishing structure σ of order
N .

Recall from [4] that(
ΛB2,B1

[(Fρ)∗(σ ◦Ψ 1
ρ
)]− ΛB2,∅[1]

)
(e±ikθ) =

kρ2kMk[σ]

πk2−2k+1 −Mk[σ]ρ2k
e±ikθ, k ∈ N, (2.18)

where Mk[σ] is the condensed GPT of order N associated with the structure σ. It is worth
emphasizing that here we used (2.16). In particular, one can see that(

ΛB2,B1 [(Fρ)∗(1)]− ΛB2,∅[1]
)
(e±ikθ) = −k

2

2(ρ2 )
2k

1 + (ρ2 )
2k
e±ikθ, k ∈ N. (2.19)

Let λk, j = 1, 2, . . ., be the eigenvalues of ΛB2,∅[1] in decreasing order. Let λkWC, λ
k
NC and λkEC

be the eigenvalues (in decreasing order) of ΛB2,B1 [1], ΛB2,B1 [(Fρ)∗(1)] and ΛB2,B1 [(Fρ)∗(σ ◦Ψ 1
ρ
)],

respectively. (WC, NC and EC stand for ‘Without Cloaking’, ‘Near Cloaking’ and ‘Enhanced
Cloaking’, respectively.) Here ΛB2,B1 [1] is the DtN map where the conductivity of the annulus
B2 \B1 is 1 and the core B1 is insulated.

One can compute λk and λkWC explicitly, and λkNC using (2.19). The computation of λkEC using
(2.18) requires an explicit form of σ, which is quite difficult if N is large. So we compute it
numerically. For that we use the GPT-vanishing structure of order N for N = 1, . . . , 6, which was
computed numerically in [4]. Figure 2.1 shows the results of computation when N = 3 and 6. We
emphasize that the conductivity fluctuates on coatings near the core. When N = 3, the maximal
conductivity is 5.5158 and the minimum conductivity is 0.4264; When N = 6, they are 11.6836
and 0.1706.

Figure 2.2 shows the log10 of (1, 1)-entry of the conductivities (matrices) obtained by applying
the transform (2.15) to cloaking structures, i.e., log10((Fρ)∗(σ ◦ Ψ 1

ρ
))11 for different N . The

structures for different values ofN are quite similar. They are obtained by segmenting the structure
for N = 0 into concentric layers and multiplying the anisotropic conductivity in each layer by the
corresponding value in the conductivity profile of the GPT-vanishing structure.

Figure 2.3 shows the log10 of the discrepancies of the eigenvalues of the DtN maps for different
structures. The black line represents log10 |λkWC − λk|, the blue one log10 |λkNC − λk|, and the
other colored ones log10 |λkEC − λk| when GPT-vanishing structures of order N = 1, . . . , 6 are
used. We observe, in accordance with (2.19), the quasi-geometric discrepancy of the perturbation

triggered by a hole with ratio
(
ρ
2

)2
. We also see that the DtN associated with the GPT-vanishing

cloaking structure of order N has almost the same first N eigenvalues as the one for homogeneous
background with conductivity 1. Moreover, GPT-vanishing structures are much less visible than
those obtained by the blow-up of an uncoated small hole. Note that the supk |λkNC−λk| is reached
at k = 1 for the near cloaking (perturbation of eigenvalues is non-increasing) and at k = N + 1
when a GPT-vanishing structure of order N is used.

Another important remark is in connection with [23], where the anisotropic conductivity of the
cloaking structure is segmented into concentric isotropic homogeneous coatings. By optimizing
the thickness and material parameters of the isotropic layers, one can achieve a good invisibility
performance. From a homogenization point of view, this construction is intriguing. In view of
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Figure 2.1: Conductivity profile (left) and GPTs (right) of the GPT-vanishing structure of order
N with the core conductivity being 0. The first row is when N = 3 and the second one for N = 6.
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Figure 2.2: log10 of (1, 1)-entry of the conductivities (matrices) obtained by applying the transform
(2.15) to the GPT-vanishing structures of different N : N = 0, 3, 6 from left to right. N = 0 means
no coating.

the discussion below, it seems that such a constructing using concentric isotropic layers (rank one
structures in homogenization) is an approximation of the anisotropic conductivity in the sense that
it minimizes the relative discrepancy between the DtN maps for only the first eigenvectors. The
formalization of this new approximate homogenization concept will be the subject of a forthcoming
work.
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Figure 2.3: Perturbations of the eigenvalues of the DtN map. The black line is for log10 |λkWC−λk|,
the blue one for log10 |λkNC − λk|, and the other colored ones for log10 |λkEC − λk| for N = 1, . . . , 6.

2.2.1 Comparison of invisibility

Based on previous observation, we introduce, for small ρ, the following measure of the invisibility
of a cloak: for a GPT vanishing structure σ of order N , let

βN
EC(ρ) := sup

k
|λkEC − λk|. (2.20)

It is worth emphasizing that λkEC depends on the radius ρ since it is an eigenvalue of ΛB2,B1 [(Fρ)∗(σ◦
Ψ 1

ρ
)]. For a given ρ, let

βNC(ρ) := sup
k

|λkNC − λk|. (2.21)

The measures of invisibility βNC(ρ) and βN
EC(ρ) are the largest perturbation due to the cloaking

structure of the eigenvalues of the DtN map when the hole of radius ρ is used for the near cloaking
and the enhanced near cloaking, respectively. We note that βNC(ρ) is achieved when k = 1 as
(2.19) shows.

To achieve invisibility without using layers (near cloaking) which is equivalent to the enhanced
cloaking of order N with the radius ρ, one has to use the hole of radius ρeq(N) such that

βNC(ρeq(N)) = βN
EC(ρ). (2.22)

One can see from (2.19) that

ρeq(N) = 2

√
βN
EC(ρ)

1− βN
EC(ρ)

. (2.23)

To obtain the same invisibility as a multi-coated structure of order 6 with ρ = 0.25 by using
the near cloaking (without layers), one has to transform the hole of radius ρeq ≈ 1.5× 10−6, which
will result in a much more singular conductivity distribution.
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2.2.2 Behavior with respect to noise in the conductivity values

In this section we study the stability of the proposed invisibility cloak with respect to errors on the
conductivities of the coatings. The number of layers is fixed to be 6. First we perturb all values of
the conductivity profile with a normal error of standard deviation proportional to the value:

σper
j ≡ σj(1 +N (0, η2)), j = 1, . . . , N,

with η ∈ [0, 0.5]. For each noise level, 5000 realizations are drawn and the corresponding invisibility
measure is computed.

Mean and standard deviation of the invisibility measure of the perturbed cloaks are plotted in
Figure 2.4 as a function of noise level.

5 10 15 20 25 30 35 40 45 50

noise level (%) on the conductivity of all layers
5 10 15 20 25 30 35 40 45 50

noise level (%) on the conductivity of all layers

Figure 2.4: Mean and standard deviation of the invisibility measure as function of the noise level:
the conductivity values are simultaneously perturbed. In dot is the visibility of the near cloaking
(without layers) for ρ = 0.25.

High values of the standard deviation for high noise levels may cause some problems. While
most of the realizations remain invisible (low mean value), a few ones may get quite visible.
We then perturb the value in each layer j0 individually keeping the others at their correct values:

σper
j0

= σj0(1 +N (0, η2)), σper
j = σj , j ̸= j0.

Figure 2.5 shows that the most sensitive conductivity value is the one of the outermost layer.
We now perform a statistical sensitivity analysis of the invisibility measure using Sobol indices.

The goal is to explain the fluctuations of the invisibility measure β(σ1, . . . , σN ) of the multi-layer
cloak in terms of the conductivities (σj)

N
j=1. The problem can be formulated as Y = f(X), where

Y is a scalar output, the input X is a vector of random variables, and f is a deterministic but
complex function. The Sobol indices are a set of nonnegative numbers that describe quantitatively
the effects of the input variables [24, 25]. They are based on the decomposition of the variance of
Y . See Appendix A.

In Figure 2.6 we choose all σi to be independent uniform random variables in the interval
[0.05, 5]. Figure 2.6 shows that the values of the conductivities have a direct (not throughout their
interaction) effect on the invisibility measure βN

EC since the total indices are close to the first-order
indices. Indeed, outer the layer higher its effect on the invisibility measure is.

In Figure 2.7 we choose the conductivities to be uniform fluctuations of the optimal conduc-
tivities which give invisibility. The mean values are chosen to be the optimal conductivity values
and the variance is 0.1 times the optimal value.
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Figure 2.5: Mean and standard deviation of the invisibility measure as function of the noise level:
the conductivity values are perturbed individually. In dot is the visibility of the near cloaking
(without layers) for ρ = 0.25.
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sobol first order index
sobol total index

Figure 2.6: Sobol indices where the conductivities are chosen uniform random variables in the
interval [0.05, 5]. Layer 1 is the outermost layer.

Figure 2.7 shows that around the optimal conductivity values, the interaction of the layers is
very high since the total indices are much larger than the first-order indices. The layers affect the
invisibility measure much more through their interaction than individually as in Figure 2.6. This
is because of the high-nonlinearity of the invisibility measure in terms of the conductivities.
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Figure 2.7: Sobol indices where the conductivities are chosen uniform random variables around
the optimal values with relative variance equal to 0.1 the optimal values. Layer 1 is the outermost
layer.

3 Enhancement of near cloaking for the Helmholtz equation

3.1 Principles

In this subsection we review the principles of the enhanced near cloaking by means of the far-field
pattern or the scattering cross section for the Helmholtz equation, which was obtained in [5].

Let D be a bounded domain in R2 with Lipschitz boundary ∂D, and let (ϵ0, µ0) be the pair of
electromagnetic parameters (permittivity and permeability) of R2 \ D and (ϵ1, µ1) be that of D.
Then the permittivity and permeability distributions are given by

ϵ = ϵ0χ(R2 \D) + ϵ1χ(D) and µ = µ0χ(R2 \D) + µ1χ(D). (3.1)

Given a frequency ω, set k = ω
√
ϵ1µ1 and k0 = ω

√
ϵ0µ0. For a plane wave eik·x, where

k = k0(cos θk, sin θk), we consider the scattered wave u, i.e., the solution to the following equation: ∇ · 1
µ
∇u+ ω2ϵu = 0 in R2,

u− eik·x satisfies the outgoing radiation condition.

(3.2)

The far-field pattern A∞[ϵ, µ, ω] is defined to be

u(x)− eik·x = −ie−πi
4

eik0|x|√
8πk0|x|

A∞[ϵ, µ, ω](θk, θx) + o(|x|− 1
2 ) as |x| → ∞. (3.3)

Let um,m ∈ Z, be the solution to the following equation: ∇ · 1
µ
∇um + ω2ϵum = 0 in R2,

um(x)− Jm(k0|x|)eimθx satisfies the outgoing radiation condition,

(3.4)
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where Jm is the Bessel function of order m. The scattering coefficients Wnm, m,n ∈ Z, associated
with the permittivity and permeability distributions ϵ, µ and the frequency ω are defined by

Wnm =Wnm[ϵ, µ, ω] :=

∫
∂D

Jn(k0|y|)e−inθyψm(y)dσ(y), (3.5)

where ψm ∈ L2(∂D) is the unique potential such that

um(x) = Jm(k0|x|)eimθx + Sk0

D [ψ](x), x ∈ R2 \ D̄. (3.6)

Here Sk0

D is the single layer potential defined by the fundamental solution to the operator ∆+ k20.
We refer to [5] for a precise definition of ψm.

The following proposition, which says that the scattering coefficients are basically the Fourier
coefficients of the (doubly periodic) far-field pattern, holds.

Proposition 3.1 Let θ and θ′ be respectively the incident and scattered direction. Then we have

A∞[ϵ, µ, ω](θ, θ′) =
∑

n,m∈Z
i(m−n)einθ

′
Wnm[ϵ, µ, ω]e−imθ. (3.7)

Moreover, the scattering cross section S[ϵ, µ, ω], defined by

S[ϵ, µ, ω](θ′) :=

∫ 2π

0

∣∣A∞[ϵ, µ, ω](θ, θ′)
∣∣2 dθ, (3.8)

has the following representation in terms of the scattering coefficients Wnm:

S[ϵ, µ, ω](θ′) = 2π
∑
m∈Z

∣∣∣∣∑
n∈Z

i−nWnm[ϵ, µ, ω]einθ
′
∣∣∣∣2. (3.9)

Note that the optical theorem [6, 26] leads to a natural constraint on Wnm. In fact, we have

ℑm
∑

n,m∈Z
im−nei(n−m)θ′

Wnm[ϵ, µ, ω] = −
√
πω

2

∑
m∈Z

∣∣∣∣∑
n∈Z

i−nWnm[ϵ, µ, ω]einθ
′
∣∣∣∣2, ∀ θ′ ∈ [0, 2π].

(3.10)
In [5], we have designed a multi-coating around an insulated inclusion D, for which the scatter-

ing coefficients vanish. Such structures are transformed (by the transformation optics) to enhance
near cloaking for the Helmholtz equation. Any target placed inside such structures will have nearly
vanishing scattering cross section S, uniformly in the direction θ′. Let L be a positive integer. For
positive numbers r1, . . . , rL+1 with 2 = r1 > r2 > · · · > rL+1 = 1, let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L, A0 := R2 \A1, AL+1(= D) := {x : |x| < 1}.

Let (µj , ϵj) be the pair of permeability and permittivity of Aj for j = 0, 1, . . . , L + 1. Set µ0 = 1
and ϵ0 = 1. Let

µ =
L+1∑
j=0

µjχ(Aj) and ϵ =
L+1∑
j=0

ϵjχ(Aj). (3.11)

Exactly like the quasi-static regime, one can show using symmetry that

Wnm = 0 if m ̸= n. (3.12)

Let us define Wn by
Wn :=Wnn. (3.13)
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Given L (the number of layers), the radii, r2, . . . , rL, N , and ω, our purpose is to find, µ and ϵ so
that Wn[µ, ϵ, ρω] = 0 for |n| ≤ N . Here ρ be a small parameter. We call such a structure (µ, ϵ)
an S-vanishing structure of order N at low-frequencies. Such structure will be transformed by the
change of variables (2.15) to a cloaking structure for all frequencies less than ω. Compared to the
GPT-vanishing structure, we fix the radii of the layers and their number, and make the optimization
over the material parameters. Note that, for the GPT-vanishing structure, the number of the layers
is equal to the order of the structure. The following proposition was obtained in [5].

Proposition 3.2 For n ≥ 1, let Wn be defined by (3.13). We have

Wn[µ, ϵ, t] = t2n

W 0
n [µ, ϵ] +

(N−n)∑
l=1

Mn,l∑
j=0

W l,j
n [µ, ϵ]t2l(ln t)j

+ o(t2N ), (3.14)

where t = ρω, Mn,l := (L+1)(N −n) (L being the number of layers), and the coefficients W 0
n [µ, ϵ]

and W l,j
n [µ, ϵ] are independent of t.

In view of Proposition 3.2, to construct an (semi-)S-vanishing structure of order N at low
frequencies, we need to have a pair (µ, ϵ) of the form (3.11) satisfying

W 0
n [µ, ϵ] = 0, and W l,j

n [µ, ϵ] = 0 for 0 ≤ n ≤ N, 1 ≤ l ≤ (N − n), 1 ≤ j ≤Mn,l. (3.15)

Such a structure can be reconstructed numerically for small N . The following theorem holds.

Theorem 3.3 If (µ, ϵ) is an S-vanishing structure of order N at low frequencies, then there exists
ρ0 such that

A∞

[
(Fρ)∗(µ ◦Ψ 1

ρ
), (Fρ)∗(ϵ ◦Ψ 1

ρ
), ω

]
(θ, θ′) = o(ρ2N ), (3.16)

and
S
[
(Fρ)∗(µ ◦Ψ 1

ρ
), (Fρ)∗(ϵ ◦Ψ 1

ρ
), ω

]
(θ′) = o(ρ4N ), (3.17)

for all ρ ≤ ρ0, uniformly in θ and θ′.

Note the cloaking enhancement is achieved for all the frequencies smaller than ω.

3.2 Performances

A good scalar measure of the invisibility of a scatterer (for a given frequency) may be the maximum
of the scattering cross-section:

β(µ, ϵ, ω) = sup
θ∈ [0 2π]

S[µ, ϵ, ω](θ). (3.18)

If we consider a discretization of the directions θ, θ′ with Nθ values, then because of the behavior
of the scattering coefficients Wn, only a few coefficients will be significantly non-zero. The vectors
einθ (where θ = (θ1, . . . , θNθ

)) are orthogonal (for n ̸= m) in L2(]0, 2π[). Thus, from the expression
(3.7) of the far-field pattern, the singular values of the discretized operator are given by

σj = Nθ|Wn(j)|,

where n(j) is just sorting the Nθ largest scattering coefficients. Hence, we have a direct corre-
spondence between the scattering coefficients of the cloaking structure and the SVD of its far-field
pattern. Note that symmetry implies W−n =Wn, and we expect one singular value of multiplicity
1 (for n = 0) and a series of singular values with multiplicity 2.
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3.2.1 Comparisons of the performance

We give in Figure 3.1 the (real part of the) outer full field u, the outer scattered field us (the
field inside the cloak is not computed) and the scattering cross-section for the hole of unit radius
with Neumann boundary conditions in the three following situations: uncloaked hole, usual near
cloaking (with using layers), and 1 S-vanishing structure. The source wave is a plane wave in the
direction [1 0] (θ = 0) at frequency ω = π and ρ = 0.05. A few remarks are in order:
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Figure 3.1: Top: outer full field; middle: outer scattered field; bottom: scattering cross-section;
left: uncloaked hole; center: usual change of variables-based cloak; right: S-vanishing cloaking
structure of order one.

• while the change of variables-based cloak shows good performance (it makes the hole with
radius 1 looks like a hole with radius ρ), using an S-vanishing structure greatly improves
invisibility. This can be seen by inspecting the second and third rows in Figure 3.1

• the uncloaked hole has stronger forward scattering (on the right), while the cloaked structures
have stronger back-scattering (on the left). Actually, the cloaking structure reduces forward
scattering with higher order than backscattering. This seems to happen because the hole is
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of the size of the wavelength, thus leaves a shadow. The cloaked holes ”appear” of size ρ
which is much smaller than the wavelength 2π/ω and act mostly as weak reflectors.

3.2.2 Behavior with respect to noise in the permeability and permittivity values

In this subsection we study stability of the proposed invisibility cloaks with respect to errors in the
permeabilities and permittivities of the vanishing S-coefficients structure. The number of layers is
fixed to be 1. First we perturb the permeability value with a normal error of standard deviation
proportional to the value:

µper
1 = µ1(1 +N (0, η2))

with η ∈ [0, 0.5]. Mean and standard deviation of the invisibility measure, given by (3.18), of
the perturbed cloaks are plotted in Figure 3.2 as a function of noise level. Then we perturb the

5 10 15 20 25 30 35 40 45 50

noise level (%) on the permeability of the layer
5 10 15 20 25 30 35 40 45 50

noise level (%) on the permeability of the layer

Figure 3.2: Mean and standard variation of the invisibility measure as function of the noise level
in the permeability value. In dot is the visibility of the near cloaking (without layers) for ρ = 0.05.

permittivity value as follows
ϵper1 = ϵ1(1 +N (0, η2))

with η ∈ [0, 0.5]. Mean and standard deviation of the visibility of the perturbed cloaks are plotted
in Figure 3.3 as a function of noise level. As in the conductivity case, the most sensitive parameter
values are those of the outermost layer.

3.3 Invisibility from limited-view measurements

In this subsection we consider the problem of designing a cloaking structure that makes any target
placed inside it invisible to waves for certain incidence and/or scattered directions.

Assume in Proposition 3.1 that θ ∈ (−ϕs, ϕs) and θ′ ∈ (ϕc −ϕi, ϕc +ϕi), where 0 < ϕs, ϕi < π.
Consider the multi-coated concentric disc structure. From (3.7), it follows that the scattering cross
section S[ϵ, µ, ω] of the multi-coated structure has the following representation in terms of the
scattering coefficients Wn:∫ ϕc+ϕi

ϕc−ϕi

S[ϵ, µ, ω](θ′) dθ′ =
4π4

ϕiϕs

∑
n,l∈Z

WnWlsinc(n− l)ϕi sinc(n− l)ϕs e
−i(n−l)ϕc . (3.19)
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Figure 3.3: Mean and standard variation of the invisibility measure as function of the noise level
in the permittivity value. In dot is the visibility of the near cloaking (without layers) for ρ = 0.05.

We contrast this with the full-aperture case (ϕs = ϕi = π), where S[ϵ, µ, ω](θ′) is given by

S[ϵ, µ, ω](θ′) = 2π
∑
n∈Z

|Wn|2

and is, by symmetry, independent of θ′. Therefore, in the limited-view case, in order to enhance
the near cloaking, one should make the first coefficients in the Taylor expansion of∑

n,l∈Z

Wn[µ, ϵ, t]Wl[µ, ϵ, t]sinc(n− l)ϕisinc(n− l)ϕse
−i(n−l)ϕc ,

in terms of t equal zero. Compared to the full-aperture case, combinations of scattering coefficients
are made to vanish.

3.4 Reshaping problem

In this subsection we propose to use a construction similar to the one in the last section to generate
a general illusion such that an arbitrary target appears to be like some other object of our choice
from scattering cross-section measurements. For simplicity, we take the object to be B2 with
given constant electromagnetic parameters ϵ2, µ2. Inside B2 we place a small hole ρB1. It is
known that ρB1 has a small effect on the scattering cross-section measurements. Now, using the
transformation optics, we push forward ρB1 to B1 keeping the boundary ∂B2 invariant. The
obtained electromagnetic distributions in B2 \B1 are anisotropic and any target placed inside B1

has the same scattering cross-section than B2 with electromagnetic parameters ϵ2, µ2. In order
to enhance the illusion effect, one can extend the idea of multi-coating. Here, we construct the
concentric disc structure in exactly the same manner as in the previous subsection but taking in
A0 (ϵ2, µ2) to be the pair of electromagnetic parameters instead of (1, 1).

4 Concluding remarks

The numerical stability study we presented is conclusive but some aspects may be improved.
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First, the noise acts on variables in the virtual space B2 \ ρB1 (i.e., before applying transfor-
mation optics). Indeed, the perturbed profiles (conductivity, permeability, permittivity) are in this
virtual space. To get in the real space, B2 \ B1, we have to compose them with the (anisotropic,
non-radially symmetric) change of variables. What we study is then the effect of an error (or an
approximation) in the algorithm to get the profile. It could also be practical and interesting to
study the effects of errors in the realization of the physical cloaks. The second point is that the
study is purely numeric. It would be interesting to better understand the functions that gives the
contracted GPTs (or the scattering coefficients) in terms of the material parameters and then to
show that a small variation in the material parameters results in a small variation in the contracted
GPTs (or the scattering coefficients), and thus in the invisibility. In other words, we have to show
that the function is at the very least locally convex around its local minima. Figure 4.1 shows such
a function for a 2-layer structure in the quasi-static limit.
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Figure 4.1: The contracted GPTs of a two-layered structure as a function of the material param-
eters.

The white × is the value we get with the algorithm. Figure 4.1 confirms the numerical obser-
vation that the invisibility measure is more sensitive to σ1 (the outermost value) than to σ2.

Finally, since a GPT-vanishing structure has a stepwise constant conductivity σ ◦ Ψ 1
ρ
◦ F−1

ρ ,

it would be interesting to try to replace each anisotropic layer of the cloaking structure by two
equivalent isotropic layers as done in [23]. Using this idea we would end up with an isotropic
radially symmetric conductivity. It would be interesting to see its invisibility performance.

A Statistical sensitivity analysis

The goal is to explain the fluctuations of a scalar output Y in terms of the input random variables
X, when they are related through a deterministic but complex function f : Y = f(X). The
Sobol indices are a set of nonnegative numbers that describe quantitatively the effects of the input
variables. They are based on the decomposition of the variance of Y .
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A.1 Sobol indices

Let us assume that the output is of the form Y = f(X1, . . . , XN ) where f is a deterministic function
and the input random variables are real-valued and independent. Then there exist functions such
that the output can be written as

f(X1, . . . , XN ) = f0 +

N∑
i=1

fi(Xi) +
∑

1≤i<j≤N

fij(Xi, Xj) + · · ·+ f1...N (X1, . . . , XN ), (A.1)

where
E[fi1...is(Xi1 , . . . , Xis)fj1...jt(Xj1 , . . . , Xjt)] = 0 if (i1 . . . is) ̸= (j1 . . . jt).

In fact there is a unique solution to this problem which can be written in terms of the conditional
expectations of Y :

f0 = E[Y ],

fi(Xi) = E[Y |Xi]− f0,

fij(Xi, Xj) = E[Y |Xi, Xj ]− fi(Xi)− fj(Xj)− f0,

...

Using formula (A.1) the variance of Y , D = Var(Y ), can be written as

D =

N∑
i=1

Di +
∑

1≤i<j≤N

Dij + · · ·+D1...N ,

where

Di = Var
(
E[Y |Xi]

)
,

Dij = Var
(
E[Y |Xi, Xj ]− E[Y |Xi]− E[Y |Xj ]

)
,

...

The Sobol sensitivity indices are defined by

Si =
Di

D
, Sij =

Dij

D
, . . . .

Note that we have

Si ≥ 0 , Sij ≥ 0 , and
N∑
i=1

Si +
∑

1≤i<j≤d

Sij + · · ·+ S1...N = 1.

We can interpret the indices as follows:

• Si is the first-order index. It explains the part of the variance of Y that can be explained by
the fluctuations of Xi.

• Sij is the second-order index. It explains the part of the variance of Y that can be explained
by the interaction of the fluctuations of the variables Xi and Xj .

• The total number of Sobol indices is 2N − 1, which can be large and which makes the
sensitivity analysis not easy to interpret. One then introduces the N total sensitivity indices

STi = sum of all indices relative to Xi =

N∑
p=1

∑
{i}⊂(j1...jp)

Sj1...jp ,

which expresses the sensitivity of Y with respect to Xi by itself or through its interactions
with other variables.
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In practice one computes the first-order indices Si and the total indices STi for i = 1, . . . , N .
- If STi is small, then this means that the variable Xi has negligible effect.
- If Si is large then this means that the variable Xi has important effect by itself.
- If Si is small and STi is large, then this means that the variable Xi has important effects but
only through its interaction with other variables.

A.2 Monte Carlo estimation of the Sobol indices

The first-order index is

Si =
Di

D
=

Var(E[Y |Xi])

Var(Y )
.

The mean f0 = E[Y ] and variance D = Var(Y ) can be estimated by

f̂0 =
1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N ),

D̂ =
1

n

n∑
k=1

f(X
(k)
1 , ..., X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )2 − f̂20 ,

where (X
(k)
1 , . . . , X

(k)
N )k=1...n is a sample of size n of the input variables.

Di = Var(E[Y |Xi]) can be estimated by

D̂i =
1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )f(X̃

(k)
1 , . . . , X̃

(k)
i−1, X

(k)
i , X̃

(k)
i+1, . . . , X̃

(k)
N )− f̂20 ,

where (X̃
(k)
1 , . . . , X̃

(k)
N )k=1...n is a second sample of the input variables (independent of the first

one).
The total sensitivity index is

STi =
D̃i

D
, D̃i =

N∑
p=1

∑
{i}⊂(j1...jp)

Dj1...jp .

Using the same two samples as above, D̃i can estimated by

̂̃
Di =

1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )f(X

(k)
1 , . . . , X

(k)
i−1, X̃

(k)
i , X

(k)
i+1, . . . , X

(k)
N )− f̂20 .
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Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, sub-
mitted.

[3] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse
Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, Springer-
Verlag, New York, 2007.

[4] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near cloaking using generalized
polarization tensors vanishing structures. Part I: the conductivity problem, submitted.

18



[5] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near cloaking. Part II: the
Helmholtz equation, submitted.

[6] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interfer-
ence and Diffraction of Light, Cambridge University Press, 6 edition, Cambridge, 1997.
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