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Abstract: A Substitution box (S-box) is an important component used in symmetric key cryptosystems
to satisfy Shannon’s property on confusion. As the only nonlinear operation, the S-box must be
cryptographically strong to thwart any cryptanalysis tools on cryptosystems. Generally, the S-
boxes can be constructed using any of the following approaches: the random search approach,
heuristic/evolutionary approach or mathematical approach. However, the current S-box construction
has some drawbacks, such as low cryptographic properties for the random search approach and the
fact that it is hard to develop mathematical functions that can be used to construct a cryptographically
strong S-box. In this paper, we explore the non-permutation function that was generated from the
binomial operation of the power function to construct a cryptographically strong S-box. By adopting
the method called the Redundancy Removal Algorithm, we propose some enhancement in the algorithm
such that the desired result can be obtained. The analytical results of our experiment indicate
that all criteria such as bijective, nonlinearity, differential uniformity, algebraic degree and linear
approximation are found to hold in the obtained S-boxes. Our proposed S-box also surpassed several
bijective S-boxes available in the literature in terms of cryptographic properties.

Keywords: s-box; cryptographically strong s-box; binomial power function; non-permutation
function; redundancy removal algorithm

MSC: 11T71; 94A60; 68P25

1. Introduction

At a fundamental level, Claude Shannon’s properties of confusion and diffusion [1]
often made for bench marking the security of a symmetric encryption. Confusion is
defined as the complexity of the relationship between secret-key and cipher-text while
diffusion is defined as the degree of influence of single input bit changed in the resulting
ciphertext. To realize the confusion and diffusion of a symmetric encryption, several layers
of substitution and permutation operation, called Substitution-Permutation Networks
(SPNs), are applied. The substitution layer is a nonlinear operation used to improve the
overall confusion of the encryption. On the contrary, the permutation layer is a linear
operation that increases the measure of diffusion.

In symmetric encryption, the substitution layer is typically referred to as Substitution
box (S-box). An S-box plays a crucial role against various cryptanalysis. Therefore, an
S-box needs to be cryptographically strong by at least having high nonlinearity, low
differential uniformity, a high algebraic degree and complex algebraic expression to resist
cryptanalysis, such as differential attack first introduced by Biham and Shamir [2], linear
attack described by Matsui [3], higher order differential attacks that were introduced by
Lai [4] and Knudsen [5], interpolation attacks introduced by Jakobsen and Knudsen [6]
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and, lastly, algebraic attack introduced by Courtois and Pieprzyk [7]. As a result, research
to improve the cryptographic properties of an S-box and its implementation efficiency can
be found in the literature. To date, most published constructions of an S-box are based on
the bijective functions of elements of four or eight bits.

1.1. Problem Statement

Over the last 20 years, there has been great progress in the field of nonlinear power
functions which serve as an S-box. The most successful and widely used technique is
the one adopted by the Advanced Encryption Standard (AES) [8] that makes use of the
multiplicative inverse function over a finite field F28 . Often, the cryptographic properties
exhibited by AES’s S-box become a benchmark for other researchers to construct their
S-boxes. This is because AES S-box is conjectured as having optimal cryptographic
properties [9] with respect to resistance against linear, differential and algebraic attacks.

Nonlinearity, which is one of the cryptographic properties of S-box, remains a great
challenge for future research. Among the main considerations in constructing a new S-box
is the following question: Are there more optimal cryptographic properties than the one achieved
by AES’s S-box? In other words, this question exclusively relates to the nonlinearity property
achieved by an AES S-box. Although there were many new constructions proposed in
the last 20 years, the cryptographic properties achieved by AES S-box remain unbeatable.
Therefore, we aim to further explore the construction of an S-box.

Our main interest is the construction of bijective S-boxes when n is even, (i.e., n = 8).
Most of our research relates to the non-permutation of binomial power functions over
F28 . The design criteria of an S-box are affected by resistance against the main attacks on
block ciphers [10], as mentioned earlier. All these attacks contribute to the countermeasures
of cryptographically strong S-boxes.

1.2. Contribution

Generally, S-box construction can be categorized into three generic methods which
are random search, heuristic method and mathematical function approaches. There also
exist S-box constructions that combine all or several of these generic methods to produce
their desired result. In this paper, we are more interested in exploring and enhancing the
S-box construction from a non-permutation power function as previously proposed by
Mamadolimov et al. [11] and subsequently improved by Isa et al. [12]. Their method
starts with the binomial operation of power functions over a finite field to select the initial
S-box. The main criteria in selecting the initial S-box are that the S-box must exhibit
optimal cryptographic properties, except balancedness. Then, using a heuristic algorithm
known as the Redundancy Removal Algorithm, the final result with the permutation function
is produced.

We improve the method by examining the properties exhibits from binomial power
functions in more detail. This includes the main cryptographic properties (i.e., NL, DU
and AD) and its redundant elements, since composition of two power functions are prone
to produce a non-permutation power function [13]. From there, several other steps such
as elements exchange and elements rotation are conducted to produce final S-box with
desired cryptographically strong properties. The final S-box that we obtained exhibits
better cryptographic properties compared to S-box with the same construction proposed
by Mamadolimov et al. [11] and Isa et al. [12].

1.3. Organisation

The rest of the paper is organized as follows. In the second section, we discuss the
security requirements for an S-box and the available S-box design methods in the literature. In
the third section, we present some preliminaries and our proposed S-box construction.
Following this, in the fourth section, we provide a discussion and comparative analysis
between our findings and the S-boxes available in the literature. We conclude our paper in
last section.
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2. Security Requirement and S-Box Design Methods
2.1. S-Box Properties

An S-box plays a crucial role in resisting cryptanalysis. A cryptographically strong
S-box is classified based on its exhibited cryptographic properties. Moreover, an S-box must
exhibit high nonlinearity, low differential uniformity, a high algebraic degree and complex
algebraic expression to resist cryptanalysis, such as linear [3], differential [2], algebraic [7]
and interpolation [6] attacks. Therefore, a lot of research is still in place to investigate and
strengthen the cryptographic properties of each S-box proposed.

There is also much research conducted in designing and constructing an S-box. Typically,
the measurement of cryptographically strong S-box properties depends on assumptions.
To avoid more confusion in determining a cryptographically strong S-box, Carlet takes
responsibility by facilitating and simplifying the desired properties in designing good S-
boxes [14]. In particular, the desired properties suggested by Carlet [14] and later followed
by Piret et al. [15], are bench-marked against AES’s S-box. This is because AES’s S-box is
already conjectured as having the optimal cryptographic properties [9].

Therefore, based on the suggestions made in [14,15], we set the desired values for
each of the S-box properties to be considered cryptographically strong, as summarized in
Table 1. The following subsections explain each property in detail.

Table 1. Desired Value for Cryptographically Strong S-boxes.

Properties Desired Value

High Nonlinearity 100 < NL ≤ 120
Low Differential Uniformity 2 ≤ DU ≤ 6

High Algebraic Degree 4 ≤ AD ≤ 7
Low Linear Approximation 8 ≤ LA < 28

Algebraic Complexity Complex
Fixed & Opposite Fixed Points None/Low

Balanced Output Permutation

Let F be a finite field with 2 elements, while F2n is a finite field with 2n elements.
An n× n S-box is a Boolean map:

F : F2n → F2n = ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

where f1(x1, . . . , xn) to fn(x1, . . . , xn)) are called as component functions of F.

2.1.1. Nonlinearity (NL)

Let c = (c1, c2, . . . , cn) be a nonzero element in F2n and c · F = c1 f1 + c2 f2 + . . . + cn fn
be a linear combination of the coordinate Boolean functions ( f1, f2, . . . , fn) of F. The NL of
an S-box, F, is the Hamming distance between the set of all affine functions over F2n and the
set of all non-constant linear combinations of component functions of F, as defined below:

NL(F) = min
c∈F2n ,c 6=0

NL(c · F)

Claude [14] suggested that the value of NL should be as close as possible to the best-
known NL (i.e., NL ≈ 112) to thwart linear cryptanalysis [3]. In our study, we set the
minimum threshold for NL as 100 (i.e., NL > 100).

2.1.2. Differential Uniformity (DU)

By excluding the trivial entry case (i.e., a = b = 0) from the difference distribution
table, the largest value present in the table can determine the value of DU. The value of DU
is defined as follows:
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DU(F) = max
a,b∈F2n ,a 6=0

|{x ∈ F2n : F(x + a) + F(x) = b}|

A smaller value of DU is preferable [14]. In our case, we determine that the value of
DU must lie in the range of 2 ≤ DU ≤ 6 to resist differential cryptanalysis [2].

2.1.3. Algebraic Degree (AD)

deg( f ) is denoted from the number of variables in the largest monomial for the
component function f of an S-box. Therefore, the AD of an S-box is determined by the
maximum degree of all component functions, as follows:

AD(F) = max{deg( f1), deg( f2), . . . , deg( fn)}

The value of the AD of an S-box must be high [14] in order to resist higher order
differential cryptanalysis [5]. In our study, we set AD ≥ 4.

2.1.4. Linear Approximation (LA)

The LA of an S-box is defined as follows:

LA(F) = max
α,β∈F2n ,α 6=0

{#{X ∈ F2n |α · X = β · f (X)} − 2n−1}

where α ∈ F2n , β ∈ {F2n \ 0} and α · X, β · f (X) are evaluated over F2. The operation
α · X denotes the inner product of vectors α and input X of the S-box. β · f (X) denotes the
product of vectors β and output f (X) of the S-box.

By omitting the trivial case α = β = 0, the LA can be determined through the
maximum entry in linear approximation table of the S-box. The lower value of LA is
preferable in resistance against linear cryptanalysis [3]. Usually, the value of LA must be
less than 28 (i.e., LA < 28).

2.1.5. Algebraic Complexity (AlC)

The Lagrange interpolation polynomial is the polynomial P(x) of degree ≤ (n− 1)
that passes through n points (x1, y1 = f (x1)), (x2, y2 = f (x2)), · · · , (xn, yn = f (xn)) and is
given by:

P(x) =
n

∑
j=1

Pj(x),

where

Pj(x) = yj

n

∏
k=1,k 6=j

x− xk
xj − xk

The number of terms in Pj(x) determines whether an S-box has a simple or complex
algebraic expression, thereby classifying whether the S-box has a low or high algebraic
complexity. A complex AlC is needed to resist an interpolation attack [6] and other
concerning algebraic attacks [7].

2.1.6. Fixed Points (Fp) and Opposite Fixed Points (OFp)

For an S-box, a fixed point is defined as f (x) = x. This mean if an input x is given,
the output is also x. An opposite fixed point is defined as f (x) = x̄, where x̄ denotes the
bit-wise complement of x. The number of Fp and OFp should be kept as low as possible to
avoid any leakage in statistical cryptanalysis.

2.1.7. Balancedness

An n-variable Boolean function f is said to be balanced if wt( f ) = 2n−1, where wt( f )
is the Hamming weight of f for the n-variable. An S-box is called balanced if every
value in F2n occurs once. This implies that the function is bijective (also known as the
permutation function).
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2.2. S-Box Design Methods

In this section, we review several 8× 8 S-box constructions available in literature and
classify them into three generic methods which are random generation, evolutionary or
heuristic, and a mathematical function. In general, the classification of each S-box proposal
is based on its construction. As an example, random methods that use a pseudo-random
generator to generate a key and/or select a key randomly from its construction elements
are categorized as a random generation approach. Likewise, using mathematical functions
as the core of S-box construction will be categorized as a mathematical function approach.
The S-box constructions that use neither a random generator nor mathematical function can
be categorized as heuristic approaches. In addition, we also classify S-box constructions
that use more than one generic method as a Combination Method.

The random generation approach is the simplest technique to construct an S-box;
however, its disadvantage is that most of the final S-boxes generated do not achieve our
desired value for cryptographically strong S-boxes, as stated in Table 1. Conversely, the
mathematical function approach is the best technique with which to achieve the desired
S-box properties; however, it is difficult to find this function. For the heuristic approach, the
latest S-box construction proposals show an improvement compared to the early proposal
in terms of its S-box properties. Therefore, nowadays, researchers focus their attention
on exploring heuristic approaches to generate cryptographically strong S-boxes since the
implementation of this approach is convenient in both hardware and software.

To facilitate the classification of S-box construction, we divide the S-box design methods
into two subsections. The first subsection reviews the S-box constructions which are
implemented in the block ciphers proposal, while the second subsection reviews other
S-box constructions available in literature.

2.2.1. S-Boxes in Block Ciphers
Mathematical Function

The block ciphers SQUARE [16], BKSQ [17] and Rijndael [18,19] were developed by the
same designer in the late 1990s. All S-boxes in these three block ciphers were constructed
using similar transformations which take the multiplicative inverse over finite field F28 , as
suggested in [20]; then, an affine transformation over F2 is applied to the output bits. Rijndael
block cipher was then promoted as the Advanced Encryption Standard (AES) by the National
Institute of Standards and Technology (NIST) in 2001 [8]. Following the same construction
and transformations are the S-boxes used in block cipher Camellia [21], Mercy [22], ARIA [23],
SMS4 [24] and BC2 [25]. The S-box in HyRAL [26] block cipher was also constructed based on
multiplicative inverse over F28 using the irreducible polynomial of z8 + z4 + z3 + z + 1 with
two transformations performed beforehand, namely affine transformation (i.e., y = x⊕ 64)
and Gray code transformation (i.e., z = y⊕ (y << 1)). Therefore, HyRAL S-box is classified
as a mathematical function approach.

Another block cipher proposed in 2010 is called PP-1 [27]. The S-box construction
is classified as a mathematical function approach since they use a multiplicative inverse
procedure over finite field, similar to AES but with a randomly chosen primitive polynomial
(i.e., z7 + z2 + z + 1). In the studies of Fuller et al. [28] for removing linear redundancy in S-
boxes, they select several random pairs of S-box elements and rearrange four corresponding
S-box entries in such a way that the S-box produced is an involution S-box.

Heuristic

CS-Cipher [29] and CRYPTON [30] block cipher use a 3-round Feistel cipher to
generate 8× 8 S-box. In general, their S-box is constructed with concatenation of elements
generated in F24 and pre-determined parameters to produce 8 × 8 S-box. Using the
same construction is the S-box used in PICARO [15] block cipher. However, the S-box
generated in PICARO is a non-bijective S-box. The ZORRO [31] block cipher proposed an
improvement to PICARO’s S-box construction. They instantiate a 4-round Feistel network
with a monomial x3 generated in F24 . Then, they add an 8-bit linear transformation at the
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end of each round and lastly, an affine transformation to remove the fixed point. Unlike
PICARO, the final S-box of ZORRO is bijective but the construction classification technique
is the same, i.e., a heuristic approach.

S-box used in Skipjack [32] and FOX [33] block ciphers are also classified as a heuristic
approach. Although the real S-box construction in Skipjack is unknown, the research
of Biryukov and Perrin [34] on the reverse-engineering of S-boxes, concludes that the
Skipjack’s S-box construction is not the result of random generation. The method of S-box
construction used in the FOX block cipher consists of a three-round Lai–Massey scheme
to avoid a purely algebraic construction. The three rounds of the Lai–Massey scheme take
three different small S-boxes as the round function F.

Random Generation

CHAIN [35] block ciphers generate their S-box using random generation while
ANUBIS [36] block ciphers generate theirs using a pseudo-random number generator
with consideration of the involution S-box as a result. An involution S-box is where the
S-box has an inverse onto itself. Therefore, the same S-box can be used in encryption and
decryption processes. The S-box used in KHAZAD [37] block ciphers is an improvement of
ANUBIS’s S-box that uses linear shuffling. The same linear shuffling for S-box construction
is also adopted in the ICEBERG [38] block cipher.

KAMKAR [39] block ciphers use a key-dependent S-box. KAMKAR uses two different
generators of a quasi-random sequence of numbers to alternately trigger based on the
scanned cipher key. Then, the generators are used to generate two random numbers and
derive two integers between 0 and 255 to be used for swapping the location from the initial
S-box. In KAMKAR, the initial S-box is fixed with a linear power function (i.e., x over
F28). The iteration continues until all bytes are scanned and swapped.

Combination Method

The Hierocrypt [40] block cipher uses two different S-boxes, namely a high-level S-box
and lower-level S-box. For high-level S-box, the construction is based on bit permutation,
followed by a power polynomial of x247 over F28 using the irreducible polynomial of
z8 + z6 + z5 + z + 1. Lastly, an affine transformation over F2 is applied on the output. The
construction for a lower-level S-box is not described; therefore, we conclude that they used
the heuristic approach for lower-level S-box. Using the same approach, the CLEFIA [41]
block cipher employs two different S-boxes constructed using inverse function over F28 and
using four 4-bit random S-boxes for the second construction. Therefore, Hierocrypt’s and
CLEFIA’s S-box construction are combination methods because they use the mathematical
function approach for the first S-box and heuristic approach for the second S-box.

The KALYNA [42] block cipher adopted the S-box construction proposed by Kazymyrov
et al. [43], which was constructed based on gradient descent. This S-box construction is
basically an enhancement of the improved hill climbing method proposed by Gao et al. [44] in
2010. Generally, they generate an initial solution, S, which is a bijective S-box with a minimum
value of DU based on function F. The function F is basically determined as an inverse function
over finite field F28 . Then, they randomly swap a number of values in S to generate St as
the final S-box. Therefore, we classify this construction as a combination method since they
combine the mathematical function approach with the random generation approach.

2.2.2. Other S-Boxes Proposal

Aside from the S-boxes used in block ciphers, there exist a large number of S-box
construction proposals in the literature. We have reviewed, analyzed and categorized all
the S-box proposals that we have collected into random generation, heuristic, mathematical
function and combination methods.
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Random Generation

There are several S-box constructions that generate dynamic S-boxes which depend
on a key. Among others are the proposal in [45–48]. In particular, their construction begins
with an initial S-box, then a string of keys is generated to permute the content of the initial
S-box. Thus, a new S-box is constructed. Various methods are used to generate the keys
such as random generation, a pseudo-random number generator (PRNG) or a round key
obtained from the RC4 algorithm [49].

Mamadolimov et al. [50] also proposed an S-box construction based on random
generation. The initial S-box is represented as eight component functions. The first three
component functions are deterministically constructed, such that the highest nonlinearity
for each Boolean function is found. Then, the other five component functions are generated
randomly to complete the S-box.

However, the S-box construction using random generation has received less attention
among researchers. This might be because of the unfavorable cryptographic properties
exhibited by this approach.

Heuristic

The heuristic approach has received more attention from researchers, especially on
chaos-based S-box construction. This might be because chaos is a stochastic process in
nonlinear dynamic systems, thus satisfying the need for nonlinearity in block ciphers.
Among the popular chaotic maps used are the Chebyshev map [51,52], Baker map [53,54],
Lorenz systems [55,56], logistic map [57,58], neural network [59,60], piecewise linear chaotic
map [61,62], tent map [63,64] and Van Der Pol oscillator [65]. In general, chaos-based S-box
construction starts with the selection of an initial value in selected chaotic map. Then,
they iterate the chaotic map and use their defined technique to obtain an integer that lies
between 0 and 255. This procedure is repeated to generate another integer until all 256
elements of the 8× 8 S-box are fulfilled.

Furthermore, there are several S-box proposals that we categorized as heuristic
approaches, such as the S-box construction using hill climbing [43,66], Latin square [67],
analytical approach [68], genetic algorithm [69,70], simulated annealing [71,72], cellular
automata [73,74], ant colony optimization [75], artificial immune system [76] and bee
waggle dance [77]. Nature-inspired systems, such as genetic algorithms, work in reverse,
i.e., [70], gradient descent [43] (i.e., modified hill climbing), artificial immune system [76]
and bee waggle dance [77] show encouraging developments in S-box construction using
the heuristic approach.

Mathematical Function

The main criterion for categorizing S-box proposals as mathematical functions is
that designers use the same transformation as AES [8]. This includes either revising the
transformation [78–80] itself by using different irreducible polynomials or by adding
another affine transformations [81–84] in their construction.

Moreover, some S-box proposals using mathematical functions other than AES were
found in the literature, such as linear fractional transformation or projective general linear
group [85–87], trace-representation polynomial function [88], gray code encode [89], semi-
fields pseudo-extensions [90] and using finite field power functions [91]. All these S-box
constructions provide encouraging results and can be categorized among cryptographically
strong S-boxes.

Combination Method

Fuller et al. proposed 2-step tweaking [28] and 4-step tweaking [92] in order to avoid
linear redundancy and preserve the involution properties of an S-box, respectively. We
categorized their proposed techniques as a combination method since they used methods
such as divide and swap in the tweaking of the initial S-box that was generated based on
a multiplicative inverse function over F28 . Mamadolimov et al. [11] and Isa et al. [12,93]



Mathematics 2023, 11, 446 8 of 22

also proposed an S-box construction using a combination method. In this proposal, they
constructed an initial S-box based on the non-permutation power function followed by a
heuristic approach, which is an algorithm to make the S-box bijective as a final result.

3. S-Box Construction
3.1. Preliminaries

Table 2 is an example of a non-permutation power function generated over finite field
in F24 . In this case, we use x3. We can extract the following information: (1) DEL, (2) REL
and (3) NEL from Table 2.

Table 2. x3 over F24 .

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
x3 0 1 8 F C A 1 1 A F F C 8 A 8 C

DEL is a notation for Desired Element. A desired element only occurs once in a
permutation function, such that a bijective S-box is achieved. From Table 2, only one
element is found in the DEL category, which is the element 0.

REL is a notation for Repeated Elements. The repeated elements were obtained from
generated functions that occur more than once. From the analysis of Table 2, there are five
elements that fall into this category, which are the elements 1, 8, A, C and F. All five repeated
elements are found to be repeated three times.

NEL denotes the Non-existent Elements which means that the elements are ’missing’
from the generated function. This happens because the element that should exist has been
replaced by a repeated element. From Table 2, we can determine that there are a total of
10 elements that do not exist in x3 over F24 , which are 2, 3, 4, 5, 6, 7, 9, B, D and E.

After these three group of elements are obtained, a Redundancy Analysis Table will be
constructed. The Redundancy Analysis Table is a representation of bits error between all
elements in REL compared to the elements in NEL. Table 3 shows the redundancy analysis
table of x3 over the finite field F24 . For example, there are 3 bits that needs to be changed to
replace element 1 from REL with element 6 from NEL, as illustrated in Figure 1. Likewise,
the element F from REL has three options which only involve one bit change. The elements
listed from NEL are 7, B and E.

Table 3. Redundancy Analysis Table for x3 over F24 .

REL
NEL 2 3 4 5 6 7 9 B D E

1 2 1 2 1 3 2 1 2 3 2
8 2 3 2 3 3 4 1 2 1 2
A 1 2 3 4 2 3 2 1 2 3
C 3 4 1 2 2 3 2 3 0 1
F 3 2 3 2 2 1 2 1 2 1

3.2. Our Proposed Construction

Let xd denote a power function in F28 using the irreducible polynomial x8 + x4 + x3 +
x2 + 1, where d = {1, 2, . . . , 28 − 2} and x ∈ F28 . All power functions (i.e., xd) can be
classified into linearly non-equivalent functions using the squaring method [94], as shown
in Table 4. The first column of Table 4 represents the powers d that are non-equivalent to
each other. The second column lists all the equivalent power functions for each power d. For
instance, the power function x253 is equivalent to x127, as is the case with x191. Four more
columns in Table 4 denote the values of NL, DU, AD and LA produced by the underlying
power function. The NEL column lists the number of non-existent elements, while the REL
column lists the number of repeated elements in each of the involved power functions.
The last column denotes whether the power function is a permutation or otherwise, based
on the number given in columns NEL and REL (i.e., label ‘Y’ is given when NEL = REL = 0,
otherwise label ‘N’ will be given).
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Figure 1. Bits Error Representation.

Table 4. Classification of linearly non-equivalent power function, xd based on maximum NL in F28 .

d {d× 2 (mod28− 1 )} NL DU AD LA NEL REL PERM

127 254, 253, 251, 247, 239, 223, 191 112 4 7 16 0 0 Y
111 222, 246, 189, 123, 237, 219, 183 112 4 6 16 170 85 N
21 42, 84, 168, 162, 138, 81, 69 112 4 3 16 170 85 N
39 78, 156, 114, 228, 57, 201, 147 112 2 4 16 170 85 N
3 6, 12, 24, 48, 96, 192, 129 112 2 2 16 170 85 N
9 18, 36, 72, 144, 66, 132, 33 112 2 2 16 170 85 N

31 62, 124, 248, 241, 227, 199, 143 112 16 5 16 0 0 Y
91 182, 218, 214, 109, 181, 107, 173 112 16 5 16 0 0 Y
63 126, 252, 249, 243, 231, 207, 159 104 6 6 24 170 85 N
47 94, 188, 242, 121, 229, 203, 151 104 16 5 24 0 0 Y
19 38, 76, 152, 98, 196, 49, 137 104 16 3 24 0 0 Y
95 190, 250, 125, 245, 235, 215, 175 96 4 6 16 204 51 N
5 10, 20, 40, 80, 160, 130, 65 96 4 2 32 204 51 N
7 14, 28, 56, 112, 224, 193, 131 96 6 3 32 0 0 Y

37 74, 148, 82, 164, 146, 41, 73 96 6 3 32 0 0 Y
25 50, 100, 200, 70, 140, 145, 35 96 6 3 32 204 51 N
29 58, 116, 232, 142, 209, 163, 71 96 10 4 24 0 0 Y
11 22, 44, 88, 176, 194, 97, 133 96 10 3 24 0 0 Y
59 118, 236, 206, 217, 179, 103, 157 96 12 5 32 0 0 Y
55 110, 220, 230, 185, 115, 205, 155 96 12 5 32 204 51 N
13 26, 52, 104, 208, 134, 161, 67 96 12 3 32 0 0 Y
61 122, 244, 158, 233, 211, 167, 79 96 16 5 32 0 0 Y
23 46, 92, 184, 226, 113, 197, 139 96 16 4 32 0 0 Y
53 106, 212, 166, 154, 169, 83, 77 96 16 4 32 0 0 Y
27 54, 108, 216, 198, 177, 99, 141 80 26 4 48 170 85 N
87 174, 186, 234, 93, 117, 213, 171 80 30 5 48 170 85 N
43 86, 172, 178, 202, 89, 101, 149 80 30 4 48 0 0 Y
15 30, 60, 120, 240, 225, 195, 135 76 2 4 12 238 17 N
45 90, 180, 210, 150, 105, 165, 75 76 2 4 12 238 17 N
17 34, 68, 136 0 16 2 8 240 15 N

119 238, 221, 187 0 22 6 8 240 15 N
51 102, 204, 153 0 24 4 10 250 5 N
85 170 0 60 4 6 252 3 N
1 2, 4, 8, 16, 32, 64, 128 0 256 1 128 0 0 Y

Our construction starts with the generation of binomial power functions. F1 and F2
which are two different power functions selected over finite field F28 is added to produce a
new function F (i.e., F = F1 + F2). In total, there are C28−2

2 = 32,131 possible combination of
binomial power functions produced from this operation and none of them are permutation
function. We analyzed its repeated elements (REL) and non-existent elements (NEL), then
summarized the findings in Table 5.
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Table 5. Redundancy Analysis of Binomial Power Functions

NEL REL Total NEL REL Total NEL REL Total NEL REL Total NEL REL Total

1 15 1 1024 27 85 35 256 53 85 55 256 79 77 69 128 105 96 80 256
2 17 1 128 28 221 35 64 54 80 56 256 80 85 69 384 106 100 80 256
3 51 1 256 29 75 37 256 55 90 58 512 81 97 69 128 107 85 81 896
4 85 1 128 30 217 39 64 56 89 59 1024 82 187 69 192 108 125 81 256
5 16 2 128 31 45 41 128 57 88 60 256 83 78 70 128 109 175 81 512
6 254 2 1 32 81 41 512 58 92 60 384 84 92 70 768 110 104 82 256
7 253 3 2 33 85 41 256 59 75 61 256 85 94 70 128 111 105 83 256
8 252 4 4 34 214 42 64 60 99 61 768 86 96 70 128 112 97 85 256
9 251 5 4 35 85 43 512 61 195 61 64 87 93 71 256 113 105 85 128

10 40 6 128 36 213 43 256 62 84 62 128 88 185 71 64 114 171 85 256
11 250 6 4 37 50 46 128 63 85 63 256 89 84 72 128 115 90 86 128
12 248 8 12 38 82 46 256 64 89 63 768 90 92 72 256 116 102 86 128
13 247 9 8 39 90 46 512 65 193 63 64 91 75 73 640 117 120 86 128
14 246 10 8 40 210 46 64 66 84 64 128 92 93 73 256 118 170 86 64
15 245 11 32 41 209 47 64 67 88 64 384 93 97 73 256 119 96 88 256
16 244 12 8 42 75 49 128 68 96 64 256 94 99 73 640 120 104 88 256
17 243 13 32 43 99 49 256 69 192 64 128 95 123 73 256 121 102 90 256
18 80 16 128 44 207 49 256 70 89 65 640 96 183 73 320 122 160 96 64
19 240 16 96 45 206 50 128 71 191 65 128 97 92 74 256 123 99 97 128
20 239 17 112 46 85 51 256 72 94 66 256 98 93 75 128 124 100 98 128
21 68 18 128 47 125 51 128 73 85 67 256 99 181 75 320 125 108 100 128
22 238 18 16 48 205 51 224 74 93 67 256 100 84 76 256 126 144 112 64
23 64 22 256 49 72 52 256 75 97 67 256 101 108 76 256 127 113 113 128
24 51 25 512 50 84 52 640 76 189 67 64 102 179 77 1024 128 120 120 128
25 230 26 16 51 204 52 64 77 84 68 384 103 178 78 64 129 136 120 192
26 69 31 512 52 77 53 256 78 92 68 768 104 177 79 128 130 128 128 576

Overall Total 32,131

Table 5 lists the number of binomial power functions according to (NEL, REL) pairs.
As an example, there are a total of 1024 binomial power functions that produce 15 non-
existent elements over only one repeated element. In addition, there are a total of 576
generated binomial power functions that produce the same number of NEL and REL, which
are equal to 128. Other than that, we can categorize the generated binomial power functions
into 130 groups based on (NEL, REL) pairs.

Overall, our proposed algorithm in constructing cryptographically strong S-boxes is
illustrated in Figure 2, which is inspired by the S-box construction of Isa et al. [12]. Our
initial S-box is selected from the groups of binomial power functions that produce only
one (1) repeated element. This includes (NEL, REL) pairs of (15, 1), (17, 1), (51, 1) and (85, 1)
from Table 5.

In total, there are 1540 candidates that can be used for our initial S-box. However, this
number of candidates can be minimized to 200 using the squaring method [94] because of
its linearly non-equivalent properties, as shown in Table 6. The complete list of linearly
non-equivalent binomial power functions that produces one repeated element from these
four groups is included in Appendix A. In this study, we select and limit the selection of
the initial S-box to only one repeated element to preserve the cryptographic properties of
the newly generated function such that it is not compromised significantly.
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Figure 2. S-box Optimization Algorithm.

Table 6. Linearly Non-Equivalent Functions for REL = 1.

NEL REL Distinct Total Linearly Non-Equivalent Total

1 15 1 1024 136
2 17 1 128 16
3 51 1 256 32
4 85 1 128 16

Overall Total 1540 200

The construction continues with the addition of an S-box candidate with another
power function (i.e., F = F+ F3), where the selection of a new power function must not
include the previously selected power function. After a new function F is generated, we
extract the information of DEL, REL and NEL on the function, as described in Section 3.1.
If NEL contains no element, that means the function is already bijective. Then, we measure
its cryptographic properties and store it as the proposed S-box if it exhibits the desired
strong properties.

Otherwise, if NEL contains any element, we construct a redundancy analysis table by
determining all the elements in NEL and REL groups of F. Then, the bit errors rate between
all elements in NEL and all elements in REL are produced to complete the redundancy
analysis table. The bit error rate is the number of bit errors per unit time. In this study, the
bit errors range from a minimum of one (1) bit, up to the maximum of eight (8) bits since
we construct an 8× 8 S-box.

From the redundancy analysis table, we identify one current ’smallest’ bit error. If there
are several choices obtained from the table, the selection will be made randomly. Then, we
determine the actual element of NEL and REL that correspond with the selected smallest
bit error. Next, the exact location of the selected REL is identified in function F and lastly
we swap the element with the previously selected NEL (i.e., F(REL) = NEL). Similarly,
the selection will be made randomly if more than one option of the identified REL is located.
By selecting the smallest bit errors, we expect that the cryptographic properties of the newly
generated function will not be compromised significantly.

After the swapping process, we measure the cryptographic properties of this newly
generated function. We store it as the proposed S-box if it exhibits the desired strong
properties. Otherwise, the function will be denoted as Fp and rotated by n places. This
rotation step that we proposed is operated based on circular rotation either column-wise
(i.e., rotation of component function) or row-wise (i.e., rotation of elements in the function).
The purpose of this step is to increase the algebraic expression (i.e., no. of terms (#term)) of
the function Fp while preserving its cryptographic properties. Current construction, which
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exhibits the algebraic expression with simple terms, might expose ciphers using the S-box
to an interpolation attack [6]. From our observation, column-wise rotation does not impact
the cryptographic properties of the function. However, different to row-wise rotation, the
cryptographic properties might change significantly. Our analysis found that, for row-wise
rotations of 64, 128 and 192 places, the cryptographic properties of the S-box can preserved.

Then, another round of iteration will be conducted in our algorithm. The next iteration
contains a multiplication step of Fp with a coefficient α where α ranges from 0 to 255; it then
continues again with a redundancy analysis table. The stopping criteria that we fix in
our iterations are based on the final S-box produced that meets our requirement or based
on the cryptographic properties of Fp that are found to worsen (i.e., the cryptographic
properties exhibited are lower than the values stated in Table 1). In both cases, another set
of F = F1 + F2 will be selected for our next experiments.

Table 7 shows the optimal S-box obtained from the proposed method and is represented
as hexadecimal. The first column in Table 7 denotes the first four bits, while the first row
denotes the remaining four bits of the 8-bit input to the S-box. For instance, the input 71
gives the output CE, (i.e., F(71) = CE. For input 71, element 7 is selected from the first column
while element 1 is selected from the first row). The cryptographic properties exhibited by
this S-box meet all the desired values stated in Table 1.

Table 7. Optimal S-box using Proposed Technique.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8B C3 6E 5E 9B E9 03 68 BE BD 12 27 2C F4 BB 41
1 31 A3 8A 86 C8 38 94 3C 08 32 3E B5 56 ED 14 47
2 37 1B 7B DE 35 99 1F A0 81 65 8D 5B DC E3 79 9C
3 64 E5 90 06 D5 3A AE B4 DF 71 6D 16 A9 6C 25 BA
4 CF 9D 30 D3 EC A5 D8 B0 05 C1 6F 0E 7F D4 91 62
5 B9 E1 61 C9 D6 C6 43 E2 88 52 0B 87 4E 17 EF CC
6 60 2D 3F 78 2E 24 45 CB D1 C4 FC 1C 22 FE 4D 6B
7 B6 CE 07 6A 66 58 F8 0F 70 67 F5 98 74 D0 FD 82
8 3B FB B3 9A EE 75 F2 77 76 34 63 E7 29 10 36 44
9 4A 89 BC DB 18 2F DA FA 19 AB EB 7A 13 72 50 D2
A 9F 4F 96 F3 7C CA 7D C0 09 D7 B1 C5 57 73 48 04
B A6 5A 11 A7 93 97 1A 0D 26 0A C7 69 F0 3D 39 8E
C 00 20 A4 95 AC E6 40 59 23 92 A8 33 49 02 F1 AA
D 15 8F 5F 1E 80 53 4B 42 F6 7E 2B 01 9E E4 CD AF
E 5C 2A 55 F7 8C 28 0C E8 B8 5D 4C E0 84 21 FF A1
F B7 A2 B2 BF F9 DD 54 83 1D EA C2 85 51 AD 46 D9

NL = 108 DU = 4 AD = 7 LA = 20
(Fp/OFp) = (1/0) #term = 255 AlC = Complex PERM = Y

4. Discussion

Table 8 compares our obtained S-box with the existing 8× 8 cryptographically strong
S-boxes available in literature, as discussed in the previous section. Only S-boxes that
satisfy our prerequisite requirements are selected for comparison. The S-boxes were then
arranged based on the optimal cryptographic properties exhibits by each S-box, starting
with the highest NL, lowest DU, highest AD and, lastly, lowest LA. From there, we rank the
S-boxes based on these four properties. Also included in Table 8 are the number of terms
exhibited by an S-box and lastly the generic design method of each proposal.

In total, there are 39 S-boxes listed in Table 8 where we classify 16 ranks. The first rank
is occupied by the AES S-box which was constructed using multiplicative inversion in F28 .
There are 13 others S-box construction that are similar to AES’s S-box construction; thus,
they exhibit the same cryptographic properties as AES, which consists of (112, 4, 7, 16) for
its (NL, DU, AD, LA), respectively. So far, this multiplicative inverse technique over finite
field F28 leads to the best-known cryptographic properties for an 8× 8 S-box.

Ranked second is the S-box construction proposed by Li et al. [91]. Their S-box
construction exhibits cryptographic properties of (112, 4, 5, 16) for (NL, DU, AD, LA),
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respectively. Their S-box proposal is constructed in F29 using Quadratic APN functions
which are heuristically converted into an 8× 8 S-box as the final result.

There are also some authors that proposed several S-boxes such as Yang et al. [80],
Kazymyrov et al. [43], Ivanov et al. [70] and Isa et al. in [12,77,93]. The S-box constructions
proposed by Yang et al. [80] are ranked third, fourth and fifth and classified as mathematical
functions-generated methods, as multiplicative inverse, addition and multiplication are
only used in the algorithm. Ranked third and fifth are the S-boxes proposed by Ivanov
et al. [70] that use the reversed genetic algorithm on the initial S-box that was generated
beforehand using multiplicative inverse. Thus, we classify this algorithm as a combination
method that lies between the mathematical function approach and heuristic approach. The
third ranked S-box has the same nonlinearity as AES (i.e., NL = 112); however, the value for
differential uniformity is slightly higher which is DU = 6. By the same S-box construction,
Ivanov et al. [70] also produced S-boxes that are ranked seventh, ninth and tenth in Table 8.

We classify the S-box construction of Kazymyrov et al. [43] as random generation. This
is because the S-box is constructed by randomly swapping two elements in an initial function.
This step is repeated until their desired criteria are achieved. Their best proposed S-box
is ranked eleventh with cryptographic properties of (104, 8, 7, 24), while the other one is
ranked thirteenth.

Our proposed S-box construction is ranked sixth. The final S-box that we obtained
exhibits cryptographic properties of (108, 4, 7, 20). The S-box also produces a complex
algebraic expression of 255 terms. The best S-box by Isa et al. [93] shares the same rank of
sixth, while the other two proposed S-boxes are ranked eighth and ninth with cryptographic
properties of (108, 6, 4, 20) and (106, 6, 7, 22) for (NL, DU, AD, LA), respectively. However,
their S-box, which can be constructed using simple algebraic expression (i.e., only three
terms involved), might be vulnerable to an interpolation attack [6].

There are other S-boxes proposed by Isa et al. in [12,77] using the combination
method. Ranked seventh, Isa et al. [77] used an algorithm called Bee Waggle Dance on the
multiplicative inverse function. This construction produced an S-box with cryptographic
properties of (108, 6, 7, 20). Ranked tenth is the construction of Isa et al. [12], who used
an algorithm called the Redundancy Removal Algorithm on the non-permutation power
function that exhibits cryptographic properties of (104, 6, 7, 24). Mamadolimov et al. [11]
first introduced the original version of the Redundancy Removal Algorithm, which is ranked
twelfth and has cryptographic properties of (102, 8, 7, 26). Empirically, our proposed
construction, which is an inspired and enhanced version of the Redundancy Removal
Algorithm, managed to obtain cryptographically strong S-boxes that compare well with and
even outperform the originally proposed constructions [11,12].

From our observation, all the S-boxes listed in Table 8 are designed and constructed either
through mathematical functions or through combination methods between mathematical
functions and heuristic methods. So far, the best S-box that we found using random
generation is the S-box proposed by Kazymyrov et al. [43], which is ranked eleventh.
Nevertheless, this S-box exhibits DU = 8; thus, it fails to fulfill our cryptographically strong
criteria. In fact, the S-boxes ranked from eleventh to sixteenth all fail to fulfill our prerequisite
requirement for cryptographically strong S-boxes. The S-boxes are included in Table 8 for a
comparative analysis.

The research results that are included in the comparative analysis are obtained by
applying the security measurement using a mini-workstation with properties of Intel (R)
Core (TM) i7-6600U CPU @ 2.60 GHz, 16 GB of RAM, 64-bit Operating System and pre-
installed with MATLAB R2022a. All simulations were performed in MATLAB programming
language, and no external embedded devices were involved. Since MATLAB is a high-level
programming language, we did not conduct a computational complexity analysis of our
S-box construction.
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Table 8. S-Boxes Ranks.

Rank S-Box NL DU AD LA #Term Design Method

1

AES [8] 112 4 7 16 9

Mathematical

Hierocrypt [40] 112 4 7 16 255
Camellia [21] 112 4 7 16 254

ARIA [23] 112 4 7 16 9
CLEFIA [41] 112 4 7 16 254
HyRAL [26] 112 4 7 16 253

Yang et al. [80] 112 4 7 16 1
Cui et al. [82] 112 4 7 16 253

Hussain et al. [57] 112 4 7 16 254
Dumas and Orfila [90] 112 4 7 16 254

Gondal et al. [54] 112 4 7 16 251
Khan and Azam [79] 112 4 7 16 252

Tran et al. [89] 112 4 7 16 254
Kapalova et al. [84] 112 4 7 16 255

2 Li et al. [91] 112 4 5 16 217 Mathematical + Heuristic

3 Yang et al. [80] 112 6 7 16 250 Mathematical
Ivanov et al. [70] 112 6 7 16 253 Mathematical + Heuristic

4 Yang et al. [80] 110 4 7 18 253 Mathematical

5 Yang et al. [80] 110 6 7 18 253 Mathematical
Ivanov et al. [70] 110 6 7 18 254 Mathematical + Heuristic

6 This Paper 108 4 7 20 255 Mathematical + Heuristic
Isa et al. [93] 108 4 7 20 3 Mathematical

7 Ivanov et al. [70] 108 6 7 20 253 Mathematical + HeuristicIsa et al. [77] 108 6 7 20 253

8 Isa et al. [93] 108 6 4 20 3 Mathematical

9

Ivanov et al. [70] 106 6 7 22 252
Mathematical + HeuristicFuller et al. [28,92] 106 6 7 22 254

Hierocrypt [40] 106 6 7 22 253
Isa et al. [93] 106 6 7 22 3 Mathematical

10 Isa et al. [12] 104 6 7 24 255 Mathematical + HeuristicIvanov et al. [70] 104 6 7 24 255

11 KALYNA [42] 104 8 7 24 254 Heuristic
Kazymyrov et al. [43] 104 8 7 24 254 Random

12 Mamadolimov et al. [11] 102 8 7 26 254 Mathematical + Heuristic

13 Kazymyrov et al. [43] 100 8 7 28 254 Random

14 Picek et al. [69] 100 10 7 28 254 Heuristic

15 CLEFIA [41] 100 10 6 28 246 Mathematical

16 Picek et al. [69] 100 12 7 28 253 HeuristicSKIPJACK [32] 100 12 7 28 255

5. Conclusions

In this paper, we analyzed the cryptographic properties of binomial power functions.
Through our observation of the redundancy table, we discover that all binomial power
functions generated over a finite field F28 are not bijective. We modify and enhance the
method called the Redundancy Removal Algorithm to obtain cryptographically strong S-boxes.
Our proposed S-box exhibits cryptographic properties of (108, 4, 7, 20) for (NL, DU, AD,
LA), respectively; thus all our prerequisite requirements are fulfilled and the performance
of the original algorithm proposed by Mamadolimov et al. and Isa et al. is surpassed.

From our comparative analysis, the mathematical function remains the best method to
construct a cryptographically strong S-box. The production of a new mathematical function
that can challenge multiplicative inversion is an interest of many researchers. However,
recent research developments on combination methods of mathematical functions and the
heuristic approach show an encouraging trend in the construction of a cryptographically
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strong S-box. As for random generation, this method is unfavorable since there are no
recent developments driven by this approach.

In future work, our proposed S-box can be applied to a working encryption algorithm
to analyze its efficiency and accuracy. To achieve this, we have to convert our script into a
low-level programming language and implement it in an embedded device. We are also
interested in categorizing our S-box collections based on equivalence classes. To the best of
our knowledge, there are three types of equivalence classes in literature which are linear
and affine equivalence, extended affine (EA-) equivalent and Carlet–Charpin–Zinoviev
(CCZ-) equivalent.
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Appendix A

Appendix A.1

Table A1. Classification of Linearly Non-Equivalent Binomial Power Function with 15 to 1 Output.

A Linearly Equivalent Binomial Power Function to A

x1 + x31 x2 + x62, x4 + x124, x8 + x248, x16 + x241, x32 + x227, x64 + x199, x128 + x143

x1 + x46 x2 + x92, x4 + x184, x8 + x113, x16 + x226, x32 + x197, x64 + x139, x128 + x23

x1 + x61 x2 + x122, x4 + x244, x8 + x233, x16 + x211, x32 + x167, x64 + x79, x128 + x158

x1 + x76 x2 + x152, x4 + x49, x8 + x98, x16 + x196, x32 + x137, x64 + x19, x128 + x38

x1 + x91 x2 + x182, x4 + x109, x8 + x218, x16 + x181, x32 + x107, x64 + x214, x128 + x173

x1 + x106 x2 + x212, x4 + x169, x8 + x83, x16 + x166, x32 + x77, x64 + x154, x128 + x53

x1 + x121 x2 + x242, x4 + x229, x8 + x203, x16 + x151, x32 + x47, x64 + x94, x128 + x188

x1 + x136 x2 + x17, x4 + x34, x8 + x68, x16 + x136, x32 + x17, x64 + x34, x128 + x68

x1 + x151 x2 + x47, x4 + x94, x8 + x188, x16 + x121, x32 + x242, x64 + x229, x128 + x203

x1 + x166 x2 + x77, x4 + x154, x8 + x53, x16 + x106, x32 + x212, x64 + x169, x128 + x83

x1 + x181 x2 + x107, x4 + x214, x8 + x173, x16 + x91, x32 + x182, x64 + x109, x128 + x218
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Table A1. Cont.

A Linearly Equivalent Binomial Power Function to A

x1 + x196 x2 + x137, x4 + x19, x8 + x38, x16 + x76, x32 + x152, x64 + x49, x128 + x98

x1 + x211 x2 + x167, x4 + x79, x8 + x158, x16 + x61, x32 + x122, x64 + x244, x128 + x233

x1 + x226 x2 + x197, x4 + x139, x8 + x23, x16 + x46, x32 + x92, x64 + x184, x128 + x113

x1 + x241 x2 + x227, x4 + x199, x8 + x143, x16 + x31, x32 + x62, x64 + x124, x128 + x248

x7 + x22 x14 + x44, x28 + x88, x56 + x176, x112 + x97, x224 + x194, x193 + x133, x131 + x11

x7 + x37 x14 + x74, x28 + x148, x56 + x41, x112 + x82, x224 + x164, x193 + x73, x131 + x146

x7 + x52 x14 + x104, x28 + x208, x56 + x161, x112 + x67, x224 + x134, x193 + x13, x131 + x26

x7 + x67 x14 + x134, x28 + x13, x56 + x26, x112 + x52, x224 + x104, x193 + x208, x131 + x161

x7 + x82 x14 + x164, x28 + x73, x56 + x146, x112 + x37, x224 + x74, x193 + x148, x131 + x41

x7 + x97 x14 + x194, x28 + x133, x56 + x11, x112 + x22, x224 + x44, x193 + x88, x131 + x176

x7 + x127 x14 + x254, x28 + x253, x56 + x251, x112 + x247, x224 + x239, x193 + x223, x131 + x191

x7 + x142 x14 + x29, x28 + x58, x56 + x116, x112 + x232, x224 + x209, x193 + x163, x131 + x71

x7 + x157 x14 + x59, x28 + x118, x56 + x236, x112 + x217, x224 + x179, x193 + x103, x131 + x206

x7 + x172 x14 + x89, x28 + x178, x56 + x101, x112 + x202, x224 + x149, x193 + x43, x131 + x86

x7 + x187 x14 + x119, x28 + x238, x56 + x221, x112 + x187, x224 + x119, x193 + x238, x131 + x221

x7 + x202 x14 + x149, x28 + x43, x56 + x86, x112 + x172, x224 + x89, x193 + x178, x131 + x101

x7 + x217 x14 + x179, x28 + x103, x56 + x206, x112 + x157, x224 + x59, x193 + x118, x131 + x236

x7 + x232 x14 + x209, x28 + x163, x56 + x71, x112 + x142, x224 + x29, x193 + x58, x131 + x116

x7 + x247 x14 + x239, x28 + x223, x56 + x191, x112 + x127, x224 + x254, x193 + x253, x131 + x251

x11 + x26 x22 + x52, x44 + x104, x88 + x208, x176 + x161, x97 + x67, x194 + x134, x133 + x13

x11 + x41 x22 + x82, x44 + x164, x88 + x73, x176 + x146, x97 + x37, x194 + x74, x133 + x148

x11 + x71 x22 + x142, x44 + x29, x88 + x58, x176 + x116, x97 + x232, x194 + x209, x133 + x163

x11 + x86 x22 + x172, x44 + x89, x88 + x178, x176 + x101, x97 + x202, x194 + x149, x133 + x43

x11 + x101 x22 + x202, x44 + x149, x88 + x43, x176 + x86, x97 + x172, x194 + x89, x133 + x178

x11 + x116 x22 + x232, x44 + x209, x88 + x163, x176 + x71, x97 + x142, x194 + x29, x133 + x58

x11 + x146 x22 + x37, x44 + x74, x88 + x148, x176 + x41, x97 + x82, x194 + x164, x133 + x73

x11 + x161 x22 + x67, x44 + x134, x88 + x13, x176 + x26, x97 + x52, x194 + x104, x133 + x208

x11 + x191 x22 + x127, x44 + x254, x88 + x253, x176 + x251, x97 + x247, x194 + x239, x133 + x223

x11 + x206 x22 + x157, x44 + x59, x88 + x118, x176 + x236, x97 + x217, x194 + x179, x133 + x103

x11 + x221 x22 + x187, x44 + x119, x88 + x238, x176 + x221, x97 + x187, x194 + x119, x133 + x238

x11 + x236 x22 + x217, x44 + x179, x88 + x103, x176 + x206, x97 + x157, x194 + x59, x133 + x118

x11 + x251 x22 + x247, x44 + x239, x88 + x223, x176 + x191, x97 + x127, x194 + x254, x133 + x253

x13 + x43 x26 + x86, x52 + x172, x104 + x89, x208 + x178, x161 + x101, x67 + x202, x134 + x149

x13 + x58 x26 + x116, x52 + x232, x104 + x209, x208 + x163, x161 + x71, x67 + x142, x134 + x29

x13 + x73 x26 + x146, x52 + x37, x104 + x74, x208 + x148, x161 + x41, x67 + x82, x134 + x164

x13 + x103 x26 + x206, x52 + x157, x104 + x59, x208 + x118, x161 + x236, x67 + x217, x134 + x179

x13 + x118 x26 + x236, x52 + x217, x104 + x179, x208 + x103, x161 + x206, x67 + x157, x134 + x59

x13 + x148 x26 + x41, x52 + x82, x104 + x164, x208 + x73, x161 + x146, x67 + x37, x134 + x74

x13 + x163 x26 + x71, x52 + x142, x104 + x29, x208 + x58, x161 + x116, x67 + x232, x134 + x209

x13 + x178 x26 + x101, x52 + x202, x104 + x149, x208 + x43, x161 + x86, x67 + x172, x134 + x89

x13 + x223 x26 + x191, x52 + x127, x104 + x254, x208 + x253, x161 + x251, x67 + x247, x134 + x239

x13 + x238 x26 + x221, x52 + x187, x104 + x119, x208 + x238, x161 + x221, x67 + x187, x134 + x119

x13 + x253 x26 + x251, x52 + x247, x104 + x239, x208 + x223, x161 + x191, x67 + x127, x134 + x254

x17 + x47 x34 + x94, x68 + x188, x136 + x121

x17 + x62 x34 + x124, x68 + x248, x136 + x241

x17 + x77 x34 + x154, x68 + x53, x136 + x106

x17 + x92 x34 + x184, x68 + x113, x136 + x226

x17 + x107 x34 + x214, x68 + x173, x136 + x91

x17 + x122 x34 + x244, x68 + x233, x136 + x211

x17 + x137 x34 + x19, x68 + x38, x136 + x76

x17 + x152 x34 + x49, x68 + x98, x136 + x196

x17 + x167 x34 + x79, x68 + x158, x136 + x61

x17 + x182 x34 + x109, x68 + x218, x136 + x181

x17 + x197 x34 + x139, x68 + x23, x136 + x46

x17 + x212 x34 + x169, x68 + x83, x136 + x166

x17 + x227 x34 + x199, x68 + x143, x136 + x31

x17 + x242 x34 + x229, x68 + x203, x136 + x151

x19 + x79 x38 + x158, x76 + x61, x152 + x122, x49 + x244, x98 + x233, x196 + x211, x137 + x167

x19 + x94 x38 + x188, x76 + x121, x152 + x242, x49 + x229, x98 + x203, x196 + x151, x137 + x47

x19 + x109 x38 + x218, x76 + x181, x152 + x107, x49 + x214, x98 + x173, x196 + x91, x137 + x182

x19 + x124 x38 + x248, x76 + x241, x152 + x227, x49 + x199, x98 + x143, x196 + x31, x137 + x62

x19 + x139 x38 + x23, x76 + x46, x152 + x92, x49 + x184, x98 + x113, x196 + x226, x137 + x197
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Table A1. Cont.

A Linearly Equivalent Binomial Power Function to A

x19 + x154 x38 + x53, x76 + x106, x152 + x212, x49 + x169, x98 + x83, x196 + x166, x137 + x77

x19 + x169 x38 + x83, x76 + x166, x152 + x77, x49 + x154, x98 + x53, x196 + x106, x137 + x212

x19 + x184 x38 + x113, x76 + x226, x152 + x197, x49 + x139, x98 + x23, x196 + x46, x137 + x92

x19 + x199 x38 + x143, x76 + x31, x152 + x62, x49 + x124, x98 + x248, x196 + x241, x137 + x227

x19 + x214 x38 + x173, x76 + x91, x152 + x182, x49 + x109, x98 + x218, x196 + x181, x137 + x107

x19 + x229 x38 + x203, x76 + x151, x152 + x47, x49 + x94, x98 + x188, x196 + x121, x137 + x242

x19 + x244 x38 + x233, x76 + x211, x152 + x167, x49 + x79, x98 + x158, x196 + x61, x137 + x122

x23 + x53 x46 + x106, x92 + x212, x184 + x169, x113 + x83, x226 + x166, x197 + x77, x139 + x154

x23 + x83 x46 + x166, x92 + x77, x184 + x154, x113 + x53, x226 + x106, x197 + x212, x139 + x169

x23 + x143 x46 + x31, x92 + x62, x184 + x124, x113 + x248, x226 + x241, x197 + x227, x139 + x199

x23 + x158 x46 + x61, x92 + x122, x184 + x244, x113 + x233, x226 + x211, x197 + x167, x139 + x79

x23 + x173 x46 + x91, x92 + x182, x184 + x109, x113 + x218, x226 + x181, x197 + x107, x139 + x214

x23 + x188 x46 + x121, x92 + x242, x184 + x229, x113 + x203, x226 + x151, x197 + x47, x139 + x94

x23 + x203 x46 + x151, x92 + x47, x184 + x94, x113 + x188, x226 + x121, x197 + x242, x139 + x229

x23 + x218 x46 + x181, x92 + x107, x184 + x214, x113 + x173, x226 + x91, x197 + x182, x139 + x109

x23 + x233 x46 + x211, x92 + x167, x184 + x79, x113 + x158, x226 + x61, x197 + x122, x139 + x244

x23 + x248 x46 + x241, x92 + x227, x184 + x199, x113 + x143, x226 + x31, x197 + x62, x139 + x124

x29 + x59 x58 + x118, x116 + x236, x232 + x217, x209 + x179, x163 + x103, x71 + x206, x142 + x157

x29 + x74 x58 + x148, x116 + x41, x232 + x82, x209 + x164, x163 + x73, x71 + x146, x142 + x37

x29 + x89 x58 + x178, x116 + x101, x232 + x202, x209 + x149, x163 + x43, x71 + x86, x142 + x172

x29 + x119 x58 + x238, x116 + x221, x232 + x187, x209 + x119, x163 + x238, x71 + x221, x142 + x187

x29 + x149 x58 + x43, x116 + x86, x232 + x172, x209 + x89, x163 + x178, x71 + x101, x142 + x202

x29 + x164 x58 + x73, x116 + x146, x232 + x37, x209 + x74, x163 + x148, x71 + x41, x142 + x82

x29 + x179 x58 + x103, x116 + x206, x232 + x157, x209 + x59, x163 + x118, x71 + x236, x142 + x217

x29 + x239 x58 + x223, x116 + x191, x232 + x127, x209 + x254, x163 + x253, x71 + x251, x142 + x247

x29 + x254 x58 + x253, x116 + x251, x232 + x247, x209 + x239, x163 + x223, x71 + x191, x142 + x127

x31 + x61 x62 + x122, x124 + x244, x248 + x233, x241 + x211, x227 + x167, x199 + x79, x143 + x158

x31 + x91 x62 + x182, x124 + x109, x248 + x218, x241 + x181, x227 + x107, x199 + x214, x143 + x173

x31 + x106 x62 + x212, x124 + x169, x248 + x83, x241 + x166, x227 + x77, x199 + x154, x143 + x53

x31 + x121 x62 + x242, x124 + x229, x248 + x203, x241 + x151, x227 + x47, x199 + x94, x143 + x188

x31 + x151 x62 + x47, x124 + x94, x248 + x188, x241 + x121, x227 + x242, x199 + x229, x143 + x203

x31 + x166 x62 + x77, x124 + x154, x248 + x53, x241 + x106, x227 + x212, x199 + x169, x143 + x83

x31 + x181 x62 + x107, x124 + x214, x248 + x173, x241 + x91, x227 + x182, x199 + x109, x143 + x218

x31 + x211 x62 + x167, x124 + x79, x248 + x158, x241 + x61, x227 + x122, x199 + x244, x143 + x233

x37 + x127 x74 + x254, x148 + x253, x41 + x251, x82 + x247, x164 + x239, x73 + x223, x146 + x191

x37 + x157 x74 + x59, x148 + x118, x41 + x236, x82 + x217, x164 + x179, x73 + x103, x146 + x206

x37 + x172 x74 + x89, x148 + x178, x41 + x101, x82 + x202, x164 + x149, x73 + x43, x146 + x86

x37 + x187 x74 + x119, x148 + x238, x41 + x221, x82 + x187, x164 + x119, x73 + x238, x146 + x221

x37 + x202 x74 + x149, x148 + x43, x41 + x86, x82 + x172, x164 + x89, x73 + x178, x146 + x101

x37 + x217 x74 + x179, x148 + x103, x41 + x206, x82 + x157, x164 + x59, x73 + x118, x146 + x236

x37 + x247 x74 + x239, x148 + x223, x41 + x191, x82 + x127, x164 + x254, x73 + x253, x146 + x251

x43 + x103 x86 + x206, x172 + x157, x89 + x59, x178 + x118, x101 + x236, x202 + x217, x149 + x179

x43 + x118 x86 + x236, x172 + x217, x89 + x179, x178 + x103, x101 + x206, x202 + x157, x149 + x59

x43 + x223 x86 + x191, x172 + x127, x89 + x254, x178 + x253, x101 + x251, x202 + x247, x149 + x239

x43 + x238 x86 + x221, x172 + x187, x89 + x119, x178 + x238, x101 + x221, x202 + x187, x149 + x119

x43 + x253 x86 + x251, x172 + x247, x89 + x239, x178 + x223, x101 + x191, x202 + x127, x149 + x254

x47 + x77 x94 + x154, x188 + x53, x121 + x106, x242 + x212, x229 + x169, x203 + x83, x151 + x166

x47 + x107 x94 + x214, x188 + x173, x121 + x91, x242 + x182, x229 + x109, x203 + x218, x151 + x181

x47 + x122 x94 + x244, x188 + x233, x121 + x211, x242 + x167, x229 + x79, x203 + x158, x151 + x61

x47 + x167 x94 + x79, x188 + x158, x121 + x61, x242 + x122, x229 + x244, x203 + x233, x151 + x211

x47 + x182 x94 + x109, x188 + x218, x121 + x181, x242 + x107, x229 + x214, x203 + x173, x151 + x91

x47 + x212 x94 + x169, x188 + x83, x121 + x166, x242 + x77, x229 + x154, x203 + x53, x151 + x106

x53 + x158 x106 + x61, x212 + x122, x169 + x244, x83 + x233, x166 + x211, x77 + x167, x154 + x79

x53 + x173 x106 + x91, x212 + x182, x169 + x109, x83 + x218, x166 + x181, x77 + x107, x154 + x214

x53 + x218 x106 + x181, x212 + x107, x169 + x214, x83 + x173, x166 + x91, x77 + x182, x154 + x109

x53 + x233 x106 + x211, x212 + x167, x169 + x79, x83 + x158, x166 + x61, x77 + x122, x154 + x244

x59 + x119 x118 + x238, x236 + x221, x217 + x187, x179 + x119, x103 + x238, x206 + x221, x157 + x187

x59 + x239 x118 + x223, x236 + x191, x217 + x127, x179 + x254, x103 + x253, x206 + x251, x157 + x247

x59 + x254 x118 + x253, x236 + x251, x217 + x247, x179 + x239, x103 + x223, x206 + x191, x157 + x127

x61 + x91 x122 + x182, x244 + x109, x233 + x218, x211 + x181, x167 + x107, x79 + x214, x158 + x173

x61 + x181 x122 + x107, x244 + x214, x233 + x173, x211 + x91, x167 + x182, x79 + x109, x158 + x218

x119 + x239 x238 + x223, x221 + x191, x187 + x127

x119 + x254 x238 + x253, x221 + x251, x187 + x247
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Appendix A.2

Table A2. Classification of Linearly Non-Equivalent Binomial Power Function with 17 to 1 Output.

B Linearly Equivalent Binomial Power Function to B

x1 + x120 x2 + x240, x4 + x225, x8 + x195, x16 + x135, x32 + x15, x64 + x30, x128 + x60

x7 + x75 x14 + x150, x28 + x45, x56 + x90, x112 + x180, x224 + x105, x193 + x210, x131 + x165

x11 + x45 x22 + x90, x44 + x180, x88 + x105, x176 + x210, x97 + x165, x194 + x75, x133 + x150

x13 + x30 x26 + x60, x52 + x120, x104 + x240, x208 + x225, x161 + x195, x67 + x135, x134 + x15

x15 + x49 x30 + x98, x60 + x196, x120 + x137, x240 + x19, x225 + x38, x195 + x76, x135 + x152

x15 + x83 x30 + x166, x60 + x77, x120 + x154, x240 + x53, x225 + x106, x195 + x212, x135 + x169

x15 + x151 x30 + x47, x60 + x94, x120 + x188, x240 + x121, x225 + x242, x195 + x229, x135 + x203

x15 + x202 x30 + x149, x60 + x43, x120 + x86, x240 + x172, x225 + x89, x195 + x178, x135 + x101

x15 + x236 x30 + x217, x60 + x179, x120 + x103, x240 + x206, x225 + x157, x195 + x59, x135 + x118

x15 + x253 x30 + x251, x60 + x247, x120 + x239, x240 + x223, x225 + x191, x195 + x127, x135 + x254

x23 + x210 x46 + x165, x92 + x75, x184 + x150, x113 + x45, x226 + x90, x197 + x180, x139 + x105

x29 + x165 x58 + x75, x116 + x150, x232 + x45, x209 + x90, x163 + x180, x71 + x105, x142 + x210

x31 + x150 x62 + x45, x124 + x90, x248 + x180, x241 + x105, x227 + x210, x199 + x165, x143 + x75

x37 + x105 x74 + x210, x148 + x165, x41 + x75, x82 + x150, x164 + x45, x73 + x90, x146 + x180

x45 + x79 x90 + x158, x180 + x61, x105 + x122, x210 + x244, x165 + x233, x75 + x211, x150 + x167

x45 + x181 x90 + x107, x180 + x214, x105 + x173, x210 + x91, x165 + x182, x75 + x109, x150 + x218

Appendix A.3

Table A3. Classification of Linearly Non-Equivalent Binomial Power Function with 85 to 1 Output.

D Linearly Equivalent Binomial Power Function to D

x1 + x120 x2 + x240, x4 + x225, x8 + x195, x16 + x135, x32 + x15, x64 + x30, x128 + x60

x7 + x75 x14 + x150, x28 + x45, x56 + x90, x112 + x180, x224 + x105, x193 + x210, x131 + x165

x11 + x45 x22 + x90, x44 + x180, x88 + x105, x176 + x210, x97 + x165, x194 + x75, x133 + x150

x13 + x30 x26 + x60, x52 + x120, x104 + x240, x208 + x225, x161 + x195, x67 + x135, x134 + x15

x15 + x49 x30 + x98, x60 + x196, x120 + x137, x240 + x19, x225 + x38, x195 + x76, x135 + x152

x15 + x83 x30 + x166, x60 + x77, x120 + x154, x240 + x53, x225 + x106, x195 + x212, x135 + x169

x15 + x151 x30 + x47, x60 + x94, x120 + x188, x240 + x121, x225 + x242, x195 + x229, x135 + x203

x15 + x202 x30 + x149, x60 + x43, x120 + x86, x240 + x172, x225 + x89, x195 + x178, x135 + x101

x15 + x236 x30 + x217, x60 + x179, x120 + x103, x240 + x206, x225 + x157, x195 + x59, x135 + x118

x15 + x253 x30 + x251, x60 + x247, x120 + x239, x240 + x223, x225 + x191, x195 + x127, x135 + x254

x23 + x210 x46 + x165, x92 + x75, x184 + x150, x113 + x45, x226 + x90, x197 + x180, x139 + x105

x29 + x165 x58 + x75, x116 + x150, x232 + x45, x209 + x90, x163 + x180, x71 + x105, x142 + x210

x31 + x150 x62 + x45, x124 + x90, x248 + x180, x241 + x105, x227 + x210, x199 + x165, x143 + x75

x37 + x105 x74 + x210, x148 + x165, x41 + x75, x82 + x150, x164 + x45, x73 + x90, x146 + x180

x45 + x79 x90 + x158, x180 + x61, x105 + x122, x210 + x244, x165 + x233, x75 + x211, x150 + x167

x45 + x181 x90 + x107, x180 + x214, x105 + x173, x210 + x91, x165 + x182, x75 + x109, x150 + x218

Appendix A.4

Table A4. Classification of Linearly Non-Equivalent Binomial Power Function with 51 to 1 Output.

C Linearly Equivalent Binomial Power Function to C

x1 + x52 x2 + x104, x4 + x208, x8 + x161, x16 + x67, x32 + x134, x64 + x13, x128 + x26

x1 + x103 x2 + x206, x4 + x157, x8 + x59, x16 + x118, x32 + x236, x64 + x217, x128 + x179

x1 + x205 x2 + x155, x4 + x55, x8 + x110, x16 + x220, x32 + x185, x64 + x115, x128 + x230

x5 + x56 x10 + x112, x20 + x224, x40 + x193, x80 + x131, x160 + x7, x65 + x14, x130 + x28

x5 + x107 x10 + x214, x20 + x173, x40 + x91, x80 + x182, x160 + x109, x65 + x218, x130 + x181

x5 + x158 x10 + x61, x20 + x122, x40 + x244, x80 + x233, x160 + x211, x65 + x167, x130 + x79

x5 + x209 x10 + x163, x20 + x71, x40 + x142, x80 + x29, x160 + x58, x65 + x116, x130 + x232

x7 + x109 x14 + x218, x28 + x181, x56 + x107, x112 + x214, x224 + x173, x193 + x91, x131 + x182

x7 + x211 x14 + x167, x28 + x79, x56 + x158, x112 + x61, x224 + x122, x193 + x244, x131 + x233

x11 + x62 x22 + x124, x44 + x248, x88 + x241, x176 + x227, x97 + x199, x194 + x143, x133 + x31
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Table A4. Cont.

C Linearly Equivalent Binomial Power Function to C

x11 + x113 x22 + x226, x44 + x197, x88 + x139, x176 + x23, x97 + x46, x194 + x92, x133 + x184

x11 + x215 x22 + x175, x44 + x95, x88 + x190, x176 + x125, x97 + x250, x194 + x245, x133 + x235

x13 + x115 x26 + x230, x52 + x205, x104 + x155, x208 + x55, x161 + x110, x67 + x220, x134 + x185

x13 + x166 x26 + x77, x52 + x154, x104 + x53, x208 + x106, x161 + x212, x67 + x169, x134 + x83

x19 + x70 x38 + x140, x76 + x25, x152 + x50, x49 + x100, x98 + x200, x196 + x145, x137 + x35

x19 + x172 x38 + x89, x76 + x178, x152 + x101, x49 + x202, x98 + x149, x196 + x43, x137 + x86

x19 + x223 x38 + x191, x76 + x127, x152 + x254, x49 + x253, x98 + x251, x196 + x247, x137 + x239

x23 + x74 x46 + x148, x92 + x41, x184 + x82, x113 + x164, x226 + x73, x197 + x146, x139 + x37

x23 + x125 x46 + x250, x92 + x245, x184 + x235, x113 + x215, x226 + x175, x197 + x95, x139 + x190

x25 + x127 x50 + x254, x100 + x253, x200 + x251, x145 + x247, x35 + x239, x70 + x223, x140 + x191

x25 + x178 x50 + x101, x100 + x202, x200 + x149, x145 + x43, x35 + x86, x70 + x172, x140 + x89

x25 + x229 x50 + x203, x100 + x151, x200 + x47, x145 + x94, x35 + x188, x70 + x121, x140 + x242

x29 + x182 x58 + x109, x116 + x218, x232 + x181, x209 + x107, x163 + x214, x71 + x173, x142 + x91

x29 + x233 x58 + x211, x116 + x167, x232 + x79, x209 + x158, x163 + x61, x71 + x122, x142 + x244

x31 + x82 x62 + x164, x124 + x73, x248 + x146, x241 + x37, x227 + x74, x199 + x148, x143 + x41

x31 + x235 x62 + x215, x124 + x175, x248 + x95, x241 + x190, x227 + x125, x199 + x250, x143 + x245

x37 + x190 x74 + x125, x148 + x250, x41 + x245, x82 + x235, x164 + x215, x73 + x175, x146 + x95

x43 + x94 x86 + x188, x172 + x121, x89 + x242, x178 + x229, x101 + x203, x202 + x151, x149 + x47

x47 + x251 x94 + x247, x188 + x239, x121 + x223, x242 + x191, x229 + x127, x203 + x254, x151 + x253

x53 + x155 x106 + x55, x212 + x110, x169 + x220, x83 + x185, x166 + x115, x77 + x230, x154 + x205

x53 + x206 x106 + x157, x212 + x59, x169 + x118, x83 + x236, x166 + x217, x77 + x179, x154 + x103

x55 + x157 x110 + x59, x220 + x118, x185 + x236, x115 + x217, x230 + x179, x205 + x103, x155 + x206
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