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ABSTRACT A line-scanning ophthalmoscope (LSO) is a retinal imaging technique that has the char-

acteristics of high imaging resolution, wide field of view, and high imaging speed. However, the high-

speed imaging with rather short exposure time inevitably reduces the signal intensity, and many factors,

such as speckle noise and intraocular scatter, further degrade the signal-to-noise ratio (SNR) of retinal

images. To effectively improve the image quality without increasing the LSO system’s complexity, the post-

processing method of image super-resolution (SR) is adopted. In this paper, we propose a learning-based

multi-frame retinal image SR method that directly learns an end-to-end mapping from low-resolution (LR)

image sequences to high-resolution (HR) images. This network was validated on down-sampled and real

LSO image sequences. We evaluated the method on a down-sampled dataset with the metrics of peak signal-

to-noise ratio (PSNR), structural similarity (SSIM), and perceptual distance. Moreover, the power spectra

and full width at half maximum (FWHM)were used as the no-reference image quality assessment (NR-IQA)

algorithms to evaluate the reconstruction results of the real LSO image sequences. The experimental results

indicate that the proposed method can significantly enhance the SNR of LSO images and efficiently improve

the resolution of LSO retinal images, which has great practical significance for clinical diagnosis and

analysis.

INDEX TERMS Line-scanning ophthalmoscope, retinal images, multi-frame image super-resolution,

learning-based.

I. INTRODUCTION

Retinal imaging is one of the most common modalities of

clinical practice in diagnosing retinal diseases. The confocal

scanning laser ophthalmoscope (CSLO) [1] is a confocal

imaging technique that can produce high-resolution retinal

images by two-dimensional (2D) scanning illumination and

filtration of stray light through a confocal arranged pin-

hole. However, the 2D scanning of the CSLO results in an

imaging speed usually lower than 20 Hz, such a low imag-

ing speed will cause serious intra-frame jitter and severely

The associate editor coordinating the review of this manuscript and
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blur the retinal images. Thus, an improved line-scanning

ophthalmoscope (LSO) technique [2] based on line-beam

illumination and probing imaging is used for retinal imag-

ing, which can greatly improve imaging speed, typically

above 100 Hz. The most direct solution to increase imag-

ing speed is to reduce the exposure time and control the

exposure available. As the exposure decreases, the signal-

to-noise ratio (SNR) of the LSO images also decreases.

Moreover, affected by speckle noise, intraocular scatter, and

other factors, the quality of LSO images will be further

degraded, and important fine morphological features will be

further obscured, creating a challenge to any follow-up image

analysis, such as retinal vessels segmentation and lesion
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segmentation and recognition. An appropriate image post-

processing approach is indispensable to compensate for the

limitations of the LSO retinal imaging procedure.

Image super-resolution (SR) is an effective and widely

used post-processing method for image-quality improvement

that has been utilized for various medical imaging modal-

ities [3]–[6]. Algorithms that tackle the super-resolution

problem can be mainly classified as either reconstruction-

or learning-based. Reconstruction-based methods can be

divided into frequency- and spatial-domain methods.

In frequency- domain methods, under the assumption of

limited signal bandwidth in the original scene, using the

properties of the Fourier transform, formulas for restoring

a high-resolution (HR) image can be given [7]–[10]. This

method’s disadvantage is that it is limited to global motion,

hence it only works for planar shifts and rotations [11], [12],

so frequency-domain methods are ineffective with multi-

frame image SR. In spatial-domain methods, an HR image

with an improved SNR is reconstructed from multiple low-

resolution (LR) frames by exploiting sub-pixel motion in

an image sequence [13], [14]. Spatial-domain methods are

commonly used in retinal image SR tasks. Murillo et al. [15]

presented the first retinal image super-resolution method for

scanning laser ophthalmoscopes (SLOs), which is effective

in improving image quality. In Köhler’s work [13], natural

eye movements during an examination were used as cues

to reconstruct HR retinal images from LR retinal video

sequences. Spatial-domain methods are sensitive to the accu-

racy of image registration [16]. All of the above methods only

super-resolve regions of interest (ROIs) or images with small

fields of view (20◦ or 25◦), making the registration of such

images much easier. The LSO retinal image has a wide field

of view (45◦) and is rich in retinal vessels, so the accurate

multi-frame registration of the entire LSO retinal image is a

complicated and challenging task, and inaccurate registration

will greatly affect the quality of image super-resolution.

In addition, these methods have limited performance for

handling large scaling factors and they incur great compu-

tational cost. In summary, reconstruction-based methods are

unsuitable for LSO retinal-image super-resolution.

Deep learning [17] is a popular image super-resolution

approach with promising results. This method uses a large

number of LR and HR images in pairs as a priori information

to estimate missing high-frequency details by learning the

mapping relationship between LR and HR images. Gener-

ative adversarial networks (GANs) [18] have been demon-

strated to be powerful models for image generation that can

generate the details of images, and have been applied to

numerous image super-resolution tasks [19]–[21]. In terms

of retinal image super-resolution, Mahapatra et al. [21] pre-

sented a single-frame retinal image super-resolution method

based on the GAN and local saliency maps. However, to the

best of our knowledge, learning-based methods have not been

investigated for multi-frame retinal image super-resolution.

Similarly, work on learning-based methods for LSO image-

quality improvement is still lacking in the current literature.

In this paper, we propose a GAN-based method for

LSO retinal image sequence SR. Unlike reconstruction-based

methods, ours does not need to register the image sequences,

but directly learns an end-to-end mapping from LR image

sequences to HR images. In this approach, we first train the

initial multi-frame image super-resolution GAN (MSRGAN)

model on an LSO retinal image sequence dataset, to let the

network learn the mapping relationship from LR sequences

to HR images. Next, we use the retinal vessel enhancement

method [22] to process the target images (HR images), and

the processed images are taken as the new target images

(HR images) and put into the pretrained MSRGAN net-

work to further improve the reconstruction performance

of retinal vessels. The final model called the multi-frame

image enhancement and super-resolutionGAN (MESRGAN)

model, because it can achieve multi-frame LSO retinal image

super-resolution and retinal-vessel enhancement. The rest of

this paper is organized as follows. In section II, we discuss

the experimental setup, datasets, and proposed method. The

results of our method, and its quantitative and qualitative

evaluation, are presented in section III. In section IV, we sum-

marize our work and discuss the experimental results.

FIGURE 1. Structure diagram of LSO system (p: Pupil conjugate plane,
r: Retina conjugate plane).

II. METHODS

A. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 1. This

LSO system [23], [24] mainly consists of an illumination path

and an imaging light path. In the illumination part, the diver-

gent beam of light emitted from the laser source (λ = 641nm)

changes into parallel light after passing through a collimation

lens, and then changes to linear light after cylinder lens 1. The

linear light beam passing through the beam splitter will be

reflected by the scanning mirror (6320H, Cambridge Corpo-

ration) and then focused by the illumination lens, after which

it will enter the objective lens and reach the sample. In the

imaging light path, the light reflected from the focusing plane
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of the sample passes through the objective lens and collection

lens, and then is reflected by the scanning mirror and image

lens. After passing through cylinder lens 2, the information of

the retina can be captured by charge-coupled device (CCD).

The field of view of our imaging system is 45◦, and the lateral

resolution is approximately 10µm in the human retina.

B. DATASETS

Eight normal, healthy subjects (2 female, 6 male, rang-

ing in age from 22 to 35 years) were recruited for this

study. Video clips of human retinas at the spectral range

of 641 nm were captured sequentially. The captured retinal

image sequence datasets were divided into 1,344 subsets,

of which 1,200 were used for training and 144 for testing.

There were five images in each subset, and the resolution of

each image was 512 × 512. We down-sampled the images

by 4 to obtain images of resolution 128 × 128 as the input

images (LR images) of the network, and chose the centering-

frame images (512 × 512) as the target images (HR images).

Training data were augmented with random horizontal flips

and rotations following common data-augmentation meth-

ods [25]. Affected by Gaussian beam and limited exposure

available, the images captured from LSO system usually

suffer from heterogeneous illumination and low contrast.

Therefore, all of the images in our dataset were preprocessed

by using contrast-limited adaptive histogram equalization

(CLAHE) [26] method, the preprocessed image as shown

in Fig. 2(b). CLAHE is a histogram equalization technique,

which chooses the clipping level of the histogram flexibility

by computing the local histogrammapping function.We used

Matlab’s adapthisteq function to equalize histogram, and the

clipping value used for all of the images was 0.02, a suitable

value to keep good visual effect of the images simultaneously

achieving the image contrast enhancement and heterogeneous

illumination compensation.

FIGURE 2. Preprocessed image results. (a) Original image. (b) CLAHE
enhanced image. (c) Retinal-vessel enhanced image.

Retinal vessels are the most important features in reti-

nal images. To let the network focus more on the learn-

ing of retinal vessels, we used a retinal-vessel enhancement

method [22] to process the target images, and we made

them the new target images [Fig. 2(c)] for retinal-vessel

enhancement training.

C. GENERATIVE ADVERSARIAL NETWORKS

Multi-frame image SR estimates a super-resolved image ISR
from a sequence of LR input images ImLR. To achieve this,

we train a generator network as a feed-forward convolutional

neural network GθG with parameters θG = {W1:L; b1:L}.

Here, {W1:L; b1:L} denotes the weights and biases of a deep

convolutional neural network that are obtained by:

θ̂ = argmin
θG

1

N

N
∑

n=1

lSR
(

GθG

(

ImnLR
)

, InHR
)

(1)

where lSR is the loss function, ImnLR is the LR image sequence,

and InHR is the HR image.

Inspired byGAN [18] andWassersteinGAN (WGAN) [27],

we further define a discriminator network DθD . Unlike most

training, which optimizes in an alternating manner along with

GθG to solve the adversarial min-max problem, we introduce

the Wasserstein distance as an indicator of the training pro-

cess. The Wasserstein distance has the desirable property

of being continuous and differentiable almost everywhere

under mild assumptions [28]. The Wasserstein distance is

informally defined as the minimum cost of transforming

the distribution of generated images to the distribution of

target images. Therefore, using the Wasserstein distance

W (ISR, IHR) to measure the difference between the super-

resolved image ISR and the HR image IHR can prevent gra-

dient vanishing and obtain better super-resolution results.

The adversarial min-max problem based on the WGAN is

defined as:

min
θG

max
θD∈L

E
IHR∼ptrain(IHR)

[D (IHR)]− E
ILR∼pG(ILZ )

[

D
(

GθG

(

ImLR
))]

(2)

where L is the set of 1-Lipschitz functions.

The general idea behind formula (2) is that it allows one

to train a generative model G with the goal of fooling a

discriminator D that is trained to distinguish super-resolved

images from HR images. With this approach, our generator

can learn to reconstruct SR images that are highly similar to

HR images and difficult to be distinguished by D.

The architectures of the proposed generator and discrimi-

nator networks are shown in Figs. 3 and 4, respectively. The

core of our generator network is a series of residual blocks,

each composed of two convolutional layers with kernel size

3 × 3. Each convolutional layer is followed by a rectified

linear unit (RELU) activation function. As shown in Fig. 3,

the first convolutional layer of the generator network extracts

spatial information individually from each of the five frames

in the input sequence. The second convolution takes a con-

catenation of the extracted spatial information from previous

steps. Then, the residual blocks learn the transformation func-

tion that provides the final solution. The centering frame is the

most important of all the input frames [29], so we directly add

the input centering frame to the output details to ensure that

the low-frequency details are better preserved in the training

process.

To discriminate generated SR images from real HR images,

we train a discriminator network proposed in [19], as illus-

trated in Fig. 4. The discriminator has 8 convolutional layers
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FIGURE 3. Proposed generator architecture. (Conv: Convolutional layer, Concat: Concatenate, RELU: Rectified linear unit activation layer).

FIGURE 4. Proposed discriminator architecture. (Conv: Convolutional layer, Concat: Concatenate, RELU: Rectified linear unit activation layer).

with number of kernels increasing by a factor of 2 from

64 to 512. Leaky RELU is used, and strided convolutions

reduce the image dimension when the number of features is

doubled. A fully connected layer follows the result of 512

feature maps to obtain the final discriminate results.

D. LOSS FUNCTION

To ensure that the generated images resemble the target

images, we require that the generator not only minimize the

adversarial loss, but also the content loss, which measures

the difference between the generated images and the target

images. Hence, we defined the function lSR, which is a com-

bination of content loss and adversarial loss, and is given by:

lSR = αlContSR + (1 − α)lAdvSR (3)

where α > 0 is an experimentally determined hyperparam-

eter that controls the contribution of each loss component.

Content loss is composed of feature-space loss and

pixel-space loss.

Feature-space loss is based on differences between

not pixels but high-level image feature representations

extracted from pretrained convolutional neural networks [30].

The feature-space loss used for our model is based

on the pretrained 19-layer convolutional neural network

(VGG-net) [31], which can help reconstruct high quality

images. The feature-space loss, which is also called VGG

loss, is calculated as the Euclidean distance between the

feature representations of a reconstructed imageGθG (I
m
LR) and

the target image IHR:

l
VGG/i,j
SR =

1

Wi,jHi,j

Wi,j
∑

x=1

Hi,j
∑

y=1

(φi,j(IHR)x,y−φi,j(GθG (I
m
LR))x,y)

2

(4)
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where φi,j is the feature map obtained by the jth convolution

before theith max pooling layer, and Wi,j and Hi,j are the

dimensions of φ.

Pixel-space loss is used to ensure that the generated images

do not depart greatly from the content in the correspond-

ing target images. Here, the pixel-space loss is provided by

the L1 loss instead of the traditional L2 loss, L1 loss is

defined as:

lrSR =
1

WH

W
∑

x=1

H
∑

y=1

∣

∣(IHR)x,y − (GθG (I
m
LR))x,y

∣

∣ (5)

We found that our network performed better when

trained with L1 loss rather than L2 loss, as discussed in

section III and IV.

Adversarial loss based on the Wasserstein GAN is

defined as:

lAdvSR =

N
∑

n=1

−DθD (GθG (I
m
LR)) (6)

WassersteinGAN loss canmeasure the training process of

the generator and discriminator. The smaller the Wasserstein

GAN loss the better trained the model. It is defined as:

lWSR =

N
∑

n=1

∣

∣DθD (GθG (I
m
LR) − DθD (IHR))

∣

∣ (7)

E. TRAINING FOR SUPER-RESOLUTION

Learning an end-to-end SR function GθG requires the esti-

mation of network parameters θG = {W1:L; b1:L}, which is

achieved by minimizing the loss function lSR in formula (3)

and the Wasserstein GAN loss in formula (7). We train the

MSRGAN model for 200 epochs using the RMSprop [32]

optimizer and a batch size of 16. The initial learning rate

is set to 10−4, and it is reduced by a factor of 0.1 after

each 100 epochs. We train the MSRGAN model for SR

scale factors of 2, 3, and 4. As illustrated in Fig. 2, all of

the LSO images in our dataset used for training and testing

are affected by speckle noise that is inherent in coherent

imaging systems. The general approach for de-speckling is

to take multi-frame LSO images and average the uncorrelated

noise [33]. However, this can cause the loss of some intensity

information. Therefore, images preprocessed by this method

are not conducive to accurate image SR reconstruction. Sur-

prisingly, the MSRGAN model cannot only reconstruct SR

retinal images from LR retinal image sequences but can

suppress the speckle noise of the LSO retinal images. The

details of this finding will be discussed in section IV.

F. TRAINING FOR RETINAL-VESSEL ENHANCEMNET

The MSRGAN model can reduce the detail of retinal vessels

while reducing the speckle noise of the image background.

Therefore, super-resolved retinal images reconstructed from

MSRGAN may blur the retinal vessels and even lose

some of their details. We use a retinal-vessel enhancement

method [22] to process the target HR images. Then we

put the processed HR images and the original LR image

sequences into the pretrained MSRGAN model and let the

network re-learn the function of retinal-vessel enhancement

and re-reconstruct the easily overlooked retinal vessel details.

This joint training model, calledMESRGAN, achieves multi-

frame LSO retinal image super-resolution, speckle noise

reduction, and retinal-vessel enhancement.

We train the MESRGAN model for 60 epochs, which we

find to be a suitable number to achieve convergence. Similar

to the training of the MSRGAN model, the batch size is 16,

and we use the RMSprop optimizer to update each gradient.

III. EXPERIMENTS AND RESULTS

The training process took place offline, using the dataset and

method described above, implemented in Python using the

Tensorflow (Version 1.8.0) library on a desktop computer

with an Intel Xeon E5-2620 CPU with 32 GB RAM, and

two NVIDIA GeForce GTX 1080Ti GPUs. It took 14 hours

to train the MSRGAN model and 6 hours to train the

MESRGAN model.

A. MSRGAN MODEL TEST RESULTS

We tested the MSRGAN model on the LSO retinal image

sequence dataset. First, we changed the loss function from

L2 to L1 and trained the model separately on scales of 2, 3,

and 4. The test was conducted on the 16 LSO retinal image

sequences of our test set, with the criteria of peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM), calcu-

lated as follows:

MSE =

∑N
n=1 (x

n − yn)

N
(8)

PSNR = 10 × lg

(

2552

MSE

)

(9)

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(10)

where,MSE is the mean square error; N is the size of image;

xn and yn are the nth pixel of original image x and processed

image y;µx ,µy are the average of x, y; σ
2
x , σ

2
y are the variance

of x, y; σxy is the covariance of x and y.

TABLE 1. Performance comparison with L1 loss and L2 loss on scale
factors 2, 3, and 4.

As described in Table 1, since greater magnification makes

reconstruction more difficult, the results obtained with larger

magnification are decreased to some extent. As shown in
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FIGURE 5. SR results comparison with L1 loss and L2 loss for scale factor
of 4. (a) Original HR image. Model trained with: (b) L2 loss. (c) L1 loss.

the upper part of Table 1, the MSRGAN model trained

with L1 loss clearly performs better across all scale factors

than when trained with L2 loss. PSNR and SSIM of the

model trained with L1 loss improved by 0.32 dB and 0.0118,

respectively, at 4× magnification. In addition, the perceptual

distance (PercepDist) [34]was used tomeasure the perceptual

quality of images. Smaller perceptual distance metrics imply

better perceptual quality and visual effects [20]. As illustrated

in the lower part of Table 1, the perceptual distance of the

model trained with L1 loss was 0.0045 lower than that trained

with L2 loss, at 4× magnification.

Fig. 5 shows the SR visual results comparison of

MSRGAN model when trained with L1 and L2 loss.

As expected, the model trained with L1 loss gives sharper

quality. This implies that appropriate selection of the loss

function can improve image reconstruction.

B. MESRGAN MODEL TEST RESULTS

Having demonstrated that L1 loss outperforms L2 loss in

reconstruction, we used L1 loss as the pixel-space loss to

train the MESRGAN model on scales of 2, 3, and 4. We also

tested the MESRGAN model on the 16 LSO retinal image

sequences of the test set.

To demonstrate the usefulness of the MESRGAN model,

we compared the results of the proposed model with several

state-of-the-art methods, included Bicubic, SRGAN [19],

VDSR [35], VSRnet [36], and SPMC-SR [37]. Among them,

Bicubic is one of the well-known classical SR method,

SRGAN and VDSR are two state-of-the-art single image

SR (SISR) models, VSRnet and SPMC-SR are two state-of-

the-art video SR (VSR) models. We trained and tested all

thesemodels on our LSO sequence datasets, and the centering

frame of sequences were used to train and test the SISR

models. The models were evaluated quantitatively with the

metrics of PSNR, SSIM, and PercepDist.

It is clear from Table 2 that MSRGAN outperformed other

state-of-the-art methods for all scale factors. MSRGAN sur-

passed Bicubic, SRGAN, VDSR, VSRnet, and SPMC-SR

model by 1.45dB, 0.88dB, 0.82dB, 0.46dB, 0.61dB in PSNR

and 0.1132, 0.0259, 0.0218, 0.0103, 0.0142 in SSIM when

the scale factor was 4. The perceptual distance of MSRGAN

model was 0.0326, 0.0263, 0.0248, 0.0055, 0.0008 lower than

those state-of-the-art methods, respectively, at 4× magnifi-

cation. MESRGAN model is the favored model for produc-

ing high SNR and visually pleasing frames, as determined

by PSNR and perceptual distance. MESRGAN surpassed

MSRGAN model by 0.72 dB in PSNR and 0.0201 lower in

perceptual distance at 4× magnification. This implies that

joint SR and retinal-vessel enhancement training can greatly

improve the performance of the network.

For qualitative comparison, Fig. 6 shows the images

that were super-resolved by the Bicubic, SRGAN, VDSR,

VSRnet, SPMC-SR, MSRGAN, and MESRGAN methods.

By zooming in on the regions highlighted with yellow

boxes, large differences can be observed. As expected,

MSRGAN model can better suppress speckle noise than

Bicubic, SRGAN, and VDSR methods. And the visual effect

of super-resolved images obtained by MESRGAN had much

sharper quality than those obtained by VSRnet, SPMC-SR

and MSRGAN, especially in retinal vessels.

C. RESULTS COMPARISON ON REAL LSO

RETINAL IMAGE SEQUENCES

To evaluate the effectiveness of the MESRGAN model in

image-quality improvement, it was applied to sets of real

LSO images (512 × 512) that had not been subjected to

resolution reduction. As illustrated in Fig. 7, compared to

the images super-resolved by the state-of-the-art methods, the

images super-resolved byMSRGAN look smoother, but their

TABLE 2. Performance comparison with state-of-the-art methods tested on scale factors 2, 3, and 4.
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FIGURE 6. SR results comparison for scale factor 4. (a) Original HR images. SR images from: (b) Bicubic method. (c) SRGAN model [19]. (d) VDSR
model [35]. (e) VSRnet [36]. (f) SPMC-SR model [37]. (g) MSRGAN (ours). (h) MESRGAN (ours).

FIGURE 7. SR results for scale factor 4. (a1, b1, c1) bicubic images. SR images from: (a2, b2, c2) SRGAN model [19]. (a3, b3, c3) VDSR model [35].
(a4, b4, c4) VSRnet [36]. (a5, b5, c5) SPMC-SR model [37]. (a6, b6, c6) MSRGAN model (ours). (a7, b7, c7) MESRGAN model (ours).

retinal vessels are also smoothed, which even results in the

loss of some small vessel details. Training the MESRGAN

model makes the model focus more on the reconstruction

of retinal vessels. As seen in Figs. 7(a7), 7(b7), and 7(c7),

the background of the super-resolved images was smoothed

and the retinal vessels were enhanced.

In the case of real LSO images, there was no ground-

truth image for evaluation of the results and a No-Reference

Image Quality Assessment (NR-IQA) algorithm was needed.

In our work the power spectra and full width at half

maximum (FWHM) were used to evaluate the methods’

performance.

The power spectra describe the amplitude of the spectral

power in the images that is distributed across the spatial

frequency. The power spectra of images in Fig. 7 are present

in Fig. 8. Figs. 8(a)-(c) show the respective power spectra

of Figs. 7(a1)-7(a7), 7(b1)-7(b7), and 7(c1)-7(c7). It can be

seen that the high frequencies probably correspond to noise.

The power spectra of Figs. 7(a4), 7(b4), 7(c4), 7(a6), 7(b6),

7(c6), 7(a7), 7(b7), and 7(c7) are rapidly decreased, the most
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FIGURE 8. Average power spectra of images in Fig. 7. Power spectra curves of (a) Figs. 7(a1)–7(a7), (b) of Figs. 7 (b1)–7(b7), and
(c) of Figs. 7(c1)–7(c7).

FIGURE 9. Normalized intensity statistics curves of images in Fig.7. Statistics curves of (a) Figs. 7(a1)–7(a7) at the position of line a,
(b) Figs. 7(b1)–7(b7) at the position of line b, and (c) Figs. 7(c1)–7(c7) at the position of line c.

TABLE 3. Resolution assessment of reconstructed real LSO retinal images in Fig.7.

is Figs. 7(a6), 7(b6), and 7(c6), then Figs. 7(a7), 7(b7),

and 7(c7). This indicates that the noise of the image which

super-resolved by the proposed method are effectively sup-

pressed and the image quality is improved. Since the high fre-

quencies also correspond to high-frequency details, the power

spectra of images reconstructed by the MESRGAN model

(blue curves) decrease more slowly than those reconstructed

by the MSRGAN model (green curves). This implies that

some retinal-vessel details are enhanced by the MESRGAN

model.

To demonstrate the validity of the proposed method in

the spatial resolution improvement of the reconstructed LSO

images, FWHM was used as the measurement metric, since

a higher resolution should result in a narrower FWHM. Here,

the spatial resolutionwas analyzed for the specified line of the

LSO images, shown with the yellow line in Figs. 7(a1), 7(b1),

and 7(c1). The location of each line is considered such that

it across a fine observable detail, and then the pixel inten-

sity of each pixel on this line can be counted. Fig. 9(a)

shows the normalized intensity statistics curves for the case

in Figs. 7(a1)-7(a7) at the position of line a, Fig. 9(b) shows

them for the case in Figs. 7(b1)-7(b7) at the position of line b,

and Fig. 9 (c) shows them for the case in Figs. 7(c1)-7(c7)

at the position of line c. As the plots and Table 3 illustrate,

the MESRGAN model provides a narrower FWHM than the

state-of-the-art methods or MSRGAN model. These results

demonstrate the ability of the proposed method in increasing

the spatial resolution of reconstructed LSO retinal images.
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FIGURE 10. SR reconstruction architecture of reconstruction-based method (spatial-domain).

IV. CONCLUSIONS AND DISCUSSIONS

In the work reported in this paper, the GAN was used to

extract spatial information from each input LR retinal frame

and then learn the mapping relation between LR retinal

image sequences and HR retinal images. In training the

MSRGAN model, we introduced pixel-space loss (L1 loss)

and feature-space loss (VGG loss) to help produce super-

resolution images of high perceptual quality. We found that

this model cannot only super-resolve multi-frame LSO reti-

nal images but can suppress their speckle noise. To fur-

ther improve the retinal-vessel reconstruction performance of

the MSRGAN model, we proposed an MESRGAN model,

which is a joint super-resolution and retinal-vessel enhance-

ment network. The proposed method was validated on down-

sampled LSO image sequences as well as real LSO image

sequences. The results demonstrate that the proposed method

can significantly enhance the SNR of LSO images and effi-

ciently improve the resolution of LSO retinal images, which

has great practical significance for clinical diagnosis and

analysis.

It should be noted that there are also several points need to

be discussed in experimental results.

1) Table 1 and Fig. 6 demonstrate that the model trained

with L1 loss outperforms L2 loss. The possible reason is that

using an L2 loss produces blurry images [38]–[40]. If the

probability distribution for an output pixel has two equally

likely modes, the L2 loss over the data will be minimized

by the averaged value of these two modes, even though the

averaged value has very low probability. In the case of an

L1 loss, this effect decreases, as the output value is themedian

of the set of equally likely values [38]. Therefore, the model

trained with L1 loss has higher PSNR and SSIM, lower

PercepDist.

2) In this study, all of the LSO image sequences in our

dataset used for training and testing were preprocessed by

CLAHE or retinal-vessel enhancement method. Since the

images captured by LSO were affected by speckle noise,

the preprocessedmethod can enhance the noise while enhanc-

ing the images. Figs. 6(c) and 6(d) are the results of single

image SR methods, speckle noise in these images are not

suppressed, even more serious. However, the speckle noise in

the images that super-resolved by multi-frame SR methods

[Figs. 6(e)-6(h)] are suppressed to some extent. In summary,

multi-frame SR methods contribute to speckle noise reduc-

tion. The possible explanation for the multi-frame learning-

based SR method’s good performance in de-speckling is that

the learning-based method is similar to the reconstruction-

based method (spatial-domain). As shown in Figs. 3 and 10,

these two kinds of methods can both be said to comprise

three key steps: motion-information estimation, image inter-

polation, and image reconstruction. Image interpolation is a

critical stage in transforming LR images into a desired HR

grid. In this stage, since the motion transformation between

LR images is arbitrary, the registered image always matches

to a non-uniformly-spaced HR grid. Thus, non-uniform inter-

polation is used to obtain uniformly spaced HR images.

During this processing, LR images will be fused, and then

the uncorrelated speckle noise will be averaged.
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FIGURE 11. Comparison of downsampled images. (a) Original image (512 × 512). (b) Downsampled by ‘‘decimation’’ method with factor of 2.
(c) Downsampled by ‘‘bicubic’’ method with factor of 2. (d) Average power spectra of (b) and (c).

3) Floating-point Operations (FLOPs) were used to mea-

sure the time complexity of the proposed model. The formu-

las of FLOPs are shown as follows:

Time ∼ O

(

D
∑

l=1

M2
l · K 2

l · Clin · Clout

)

(11)

M =
(N − K + 2 × P)

S
+ 1 (12)

In formula (11), D is the number of convolutional layers;

Ml is the output feature map of the lth layer; Kl is the con-

volution kernel size of the lth layer; Clin is the input channel

of the lthlayer; Clout is the output channel of the lth layer.

In formula (12), input image size is N ; K is the convolution

kernel size; Padding is expressed as P, which equals to zero

if padding is ‘‘valid’’, otherwiseM directly equals to N when

padding is ‘‘same’’. S represents the step length of filter in

both vertical and horizontal directions in the original image.

The architecture of the proposed model are shown in

Figs. 3 and 4, the padding is ‘‘same’’ in this network. After

calculating, the FLOPs of the proposed generator and dis-

criminator is O(3.9 × 106N2) and O(7.28 × 107N2), and the

total time complexity of the proposed model is O(7.67 ×

107N 2), where N is the size of input image. Since the

MSRGAN and MESRGAN model have same architecture,

the total time complexity of them are the same. Note that the

training of our models were taken place offline, so the time

complexity of the models are acceptable.

4) Although the bicubic method is commonly used in

image or video SR tasks to acquired LR images, we used

decimation [41] method to down-sample the LSO image

sequences. As shown in Fig. 11, we down-sampled an image

using decimation and bicubic method by a factor of 2, respec-

tively. As can be seen from Figs. 11(b) and (c), bicubic

method is able to smooth the image, while decimationmethod

can reserve even enhance the noise of image. Since the size

of down-sampled images and original image are not same,

we evaluated down-sampled images using power spectra and

Blind Image Quality Index (BIQI) [42] as the NR-IQA algo-

rithms to quantitatively compare the influence of these two

methods on images. Fig. 11(d) describes the power spec-

tra of Figs. 11(b) and (c), and the high-frequencies power

of Fig. 11(b) (red curve) is higher than that of Fig. 11(c)

(black curve). As high-frequencies probably represent noise,

it implies that the image down-sampled by decimation has

more noise.

BIQI is a widely-used method for quantitatively evaluating

the quality of No-reference images. Given an image, a quality

score between 0 and 100 can be obtained using this method.

Higher BIQI score indicates poorer image quality. Here,

20 original LSO images were down-sampled by decimation

and bicubic method with scale factor of 2, respectively. The

average BIQI of the decimation down-sampled images is

60.15 and that of bicubic down-sampled images is 48.75.

In summary, compared with bicubic method, the down-

samplingmethod used in our study introduces more noise and

intensity loss. Super-resolving such low-quality and noisy

images is a challenging task. However, compared with other

state-of-the-art methods [19], [35]–[37], the method pro-

posed in this study performs better, which demonstrate the

usefulness of the proposed method. In addition, it is more

practical to use the decimation method, for the reason that

the images captured from LSO system are inevitably affected

by speckle noise. And using the images down-sampled by

the decimation method as the input can enhance the noise

suppression ability of the network to some extent.
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