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Abstract: The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films
grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown
films with different Sr (0.05 ≤ x ≤ 0.3) and Mn excess (y > 1) concentrations were nanostructured with
vertically aligned column-shaped crystallites spread perpendicular to the film plane. It was found
that microstructure, resistivity, and magnetoresistive properties of the films strongly depend on the
strontium and manganese concentration. All films (including low Sr content) exhibit a metal–insulator
transition typical for manganites at a certain temperature, Tm. The Tm vs. Sr content dependence for
films with a constant Mn amount has maxima that shift to lower Sr values with the increase in Mn
excess in the films. Moreover, the higher the Mn excess concentration in the films, the higher the Tm

value obtained. The highest Tm values (270 K) were observed for nanostructured LSMO films with
x = 0.17–0.18 and y = 1.15, while the highest low-field magnetoresistance (0.8% at 50 mT) at room
temperature (290 K) was achieved for x = 0.3 and y = 1.15. The obtained low-field MR values were
relatively high in comparison to those published in the literature results for lanthanum manganite
films prepared without additional insulating oxide phases. It can be caused by high Curie temperature
(383 K), high saturation magnetization at room temperature (870 emu/cm3), and relatively thin grain
boundaries. The obtained results allow to fabricate CMR sensors for low magnetic field measurement
at room temperature.

Keywords: colossal magnetoresistance; low-field magnetoresistance; manganite films; nanostruc-
tured thin films; MOCVD technology; magnetic field sensors

1. Introduction

The increasing demand in magnetic field sensors and high-performance magnetome-
ters has resulted in the rapid advance of various sensor technologies [1]. Different areas
of sensor applications require diverse properties, from high sensitivity and detectivity
for biomedical applications to a wide range of magnetic field sensing for industrial and
scientific applications. Recent technological progress allows the fabrication of compact,
small physical dimension sensors with increased sensitivity and reduced cost for mass
production. It was predicted that the growth of the magnetoresistive (MR) sensor market
will come at the expense of Hall Effect technology or combination with it due to higher

Sensors 2022, 22, 4004. https://doi.org/10.3390/s22114004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114004
https://doi.org/10.3390/s22114004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0912-4563
https://orcid.org/0000-0002-6552-0862
https://orcid.org/0000-0002-1815-357X
https://orcid.org/0000-0002-8864-100X
https://orcid.org/0000-0002-6152-4612
https://orcid.org/0000-0002-0824-5120
https://doi.org/10.3390/s22114004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114004?type=check_update&version=2


Sensors 2022, 22, 4004 2 of 14

sensitivity and more widespread applications [1,2]. Magnetoresistive sensors are also
important for sensing oscillator methods, which have high sensitivity and accuracy [3–5].
Among commercially available MR sensors, the performance of which is based on such
physical phenomena as anisotropic, tunneling, and giant magnetoresistance (AMR, TMR,
and GMR, respectively) [1,6], the colossal magnetoresistance effect (CMR) is also promising
for future sensor development technologies [7], including high-field applications [8,9]. For
a long time, the main disadvantages of the CMR effect—high sensitivity to ambient tem-
perature variations and low room-temperature sensitivity to the magnetic field—were the
main obstacles in the development of CMR sensor technologies up to higher technological
readiness levels (TRL) [10].

The most intensive studies were performed on doped perovskite manganites ex-
hibiting the CMR effect [11,12]. It was demonstrated that polycrystalline manganites
exhibit high magnetoresistance values in a wide range of temperatures lower than the
phase transition from paramagnetic to ferromagnetic state, in contrary to good quality
monocrystalline or epitaxial manganites, showing high MR values only in the vicinity
of the Curie temperature [13]. Due to close interplay between structural, magnetic, and
transport properties, the manganites have a number of features useful for magnetic sensor
development, which can be tuned over wide range of temperatures and magnetic fields. It
was demonstrated that nanostructured La1−xSrxMnO3 (La-Sr-Mn-O, LSMO) manganite
films can be used for the development of magnetic sensors, which are capable of measuring
the magnitude of pulsed magnetic fields in very small volumes (so-called CMR-B scalar
sensors) up to very high magnetic fields [8,14]. Such sensors were used for the magnetic
field measurement during electromagnetic acceleration in railguns and superconducting
systems [15,16], the magnetic field distribution in non-destructive pulsed-field magnets [17],
and evaluation of welding quality during magnetic welding of metals [18]. The possibility
to tune temperature and magnetic field ranges of operation of CMR sensors by changing
deposition temperature and film thickness was demonstrated [19]. However, for conven-
tional biomedical or industrial applications, sensors operating at room temperature and
measuring much lower magnetic fields are required.

It was found that polycrystalline films exhibit a so-called low-field magnetoresistance
(LFMR) effect, which is usually explained by spin-polarized tunneling of charge carriers
in high structural quality crystallites through disordered grain boundaries (GBs) [20,21].
The LFMR exhibits the highest values at low temperatures and could be recognized by
the abrupt change in film resistance under an applied weak magnetic field. Theoretically,
it is predicted not to exceed ~33% [20,21]. However, for doped lanthanum manganites,
the LFMR usually vanishes at room temperature. It was found that LFMR in manganites
could be increased by special engineering of various boundaries in the films, including
grain boundaries (GBs), phase boundaries (PBs), ferromagnetic domain boundaries (DBs),
and interfacial effects between film and a substrate [22–24]. Usually, high LFMR values
are associated with a large number of grain boundaries having noncollinear spin structure,
good connectivity between the crystallites, and a high saturation magnetic moment of
an individual crystallite [25]. The decrease in crystallite dimensions results in a higher
amount of grain boundary material, which is desirable; however, it could cause the decrease
in the saturation magnetic moment of the crystallites. A lot of efforts were undertaken
to increase the LFMR by introducing the second insulating phase during the growth of
the films or fabrication of thin film junctions with an insulating layer. For example, very
high LFMR values up to 83% were obtained below 20 mT at 4.2 K for specially grown
La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 thin film junctions [26]. As LFMR is largely
controlled by grain boundary and interfacial effects, especially high LFMR values could be
achieved in two-phase vertically aligned nanocomposite (VAN) films with well-ordered
vertical phase boundaries [27]. Such VAN systems, usually composed of a ferromagnetic
phase, such as La-Sr-Mn-O, and an insulating one, such as NiO, ZnO, CeO [28–30], etc.,
provide the possibility to tune their magnetoresistance values and other main parameters
in a wide range depending on the relative amount of these phases. In [31], the authors
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give a comparison of LFMR values obtained from the literature in various nanocomposites
and nanostructures as well as present their own results on synthesized nanoparticles ex-
hibiting enhanced LFMR in comparison with large crystallites and bulk material. However,
it has to be mentioned that the fabrication of nanocomposites with reliable properties
requires advanced technologies, which could be difficult to adapt for commercial produc-
tion. In [7], the authors demonstrated that the metal-organic chemical vapor deposition
(MOCVD) is one of the preferred techniques for production of high-quality manganite
nanostructures in a scalable and economic way. It allows to grow the self-formed vertically
aligned one-phase manganite nanostructures with tunable parameters [19]. For room
temperature applications, the films with increased phase transition temperature (Curie) are
required. It is known that for good quality epitaxial La1-xSrxMnO3 films, the “optimal”
composition x ≈ 1/3 gives the highest Curie temperature (TC) values [11]. However, for
polycrystalline or nanostructured films, TC as well as metal–insulator transition temper-
ature Tm could be affected by various other factors such as nonstoichiometric chemical
composition, strain, film thickness, disordered grain boundary material, etc.

In this paper, we present a comprehensive study of low-field magnetoresistive proper-
ties of single-phase nanostructured lanthanum manganite La1−xSrxMnyO3 films grown by
the pulsed injection (PI) MOCVD technique with different Sr content (x) and Mn excess
(y) and demonstrate the possibility to use these films for room temperature magnetic field
sensor applications.

2. Experimental Details
2.1. Film and Sample Preparation

Lanthanum manganite La1−xSrxMnyO3 (LSMO) films with different Sr (x) content
and excess of Mn (y) were deposited onto a polycrystalline Al2O3 substrate by using a PI
MOCVD technique. The temperature of the substrate was kept constant (750 ◦C) during
the growth process. The thickness of the films was estimated by using a profilometer and
it was found in the range of (350–360) nm. As precursors, toluene-dissolved La(thd)3,
Sr(thd)2, and Mn(thd)3 (thd is 2,2,6,6-tetramethyl-3,5-heptandionate) were prepared. A
2 Hz frequency was used to inject microdoses of approximately 3 mg of an organic solution
with a mixture of dissolved precursors. The flash evaporation of the microdoses was
performed at ~270 ◦C and the obtained vapor mixture was transported in the reaction
chamber towards the heated substrate by a gas flow (~95 l/h) of argon and oxygen with
ratio of 5:1, respectively. The growth rate of all investigated films was approximately
28 nm/min. Three groups of the films with different Mn excess y = Mn/(La + Sr) were
prepared: the composition of precursors’ solution was chosen to obtain the films with
constant content of Mn (y = 1.05, 1.10, and 1.15) while changing the composition of Sr
(x = 0.05–0.3). To obtain a pure perovskite phase of the films, the deposition conditions
were at first optimized by growing the films on monocrystalline LaAlO3 (LAO) substrates,
and only after that the films were deposited on polycrystalline Al2O3 substrates. Moreover,
both substrates (Al2O3 and LAO) were used during final growth of LSMO films with
various compositions for further comparison of their properties. After the deposition of
the films, the annealing at the same temperature (750 ◦C) for 10 min in a pure oxygen
atmosphere was performed and then the films were slowly (with ~4.7 ◦C/min rate) cooled
down to 350 ◦C. The samples were prepared by planar photolithography. For electrode
formation, a Cr sublayer with Ag contact pads were thermally deposited. After that, the
post-annealing was performed at 450 ◦C for 1 h in Ar atmosphere.

2.2. Characterization

The characterization of the grown films was performed by the following techniques.
The Inductively Coupled Plasma High-Resolution Mass Spectrometry (ICP-MS) was used
to determine the composition of the films. To study the surface morphology of the films a
Scanning Electron Microscope (SEM) (Hitachi SU70) was used. The crystalline structure of
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the films was investigated by using a Transmission Electron Microscope (TEM) (Tecnai G2
F20 X-TWIN) with an Energy Dispersive X-ray spectrometer (EDAX).

The resistivity ρ dependences on temperature were investigated by using a closed-cycle
helium gas cryocooler (Janis 4K) in the temperature range of T = (5–300) K. The measure-
ment of film’s magnetoresistance was performed in the same cryocooler positioning the sam-
ple holder between the poles of an electromagnet. The resistance vs. magnetic flux density
(B) dependencies were measured in the temperature range 250–300 K up to 0.8 T. During
the measurement, the temperature was kept constant with an accuracy of 0.1 K. The magne-
toresistance was calculated according to the equation MR(%) = 100 × [R(B) − R(0)]/R(0),
where R(B) and R(0) are field and zero-field resistance, respectively. Several samples
prepared from the same film were measured for the statistical analysis.

Magnetic characteristic measurements were carried out in magnetic fields up to 50 kOe
with an MPMS-5 SQUID (Quantum Design) magnetometer, and the dependences of the
magnetic moment on magnetic field at selected temperatures were recorded. The magnetic
hysteresis loops were measured after field-cooling at 1000 Oe in the temperature range
from 320 K down to 220 K. Magnetization measurements were performed at the Institute
of Physics of the Polish Academy of Sciences.

3. Results and Discussion
3.1. Morphology and Microstructure of LSMO Films

SEM images of the surface morphology of the LSMO films grown with different Sr
content (x) and constant content of Mn excess (y = 1.15) are presented in Figure 1. The
surface of the films having x = 0.08 (see Figure 1a) contain mostly triangular-shaped
crystallites with some polygonal-shaped grains. Moreover, some larger islands of different
shapes and size of crystallites are observed, which can be caused by the peculiarity of
the polycrystalline substrate. It has to be noted that polycrystalline Al2O3 substrates are
made from an ingot that consists of grains of about 2 µm in dimension. When bulk ceramic
is cut into plates, the surface of the substrates is formed by grains of different sizes and
crystallographic planes. Therefore, during the initial growth process, the LSMO film starts
to grow on different planes and sizes of Al2O3 crystallites, which results in some islands
with different shape and size of the crystallites. One can see that some islands show well-
ordered crystallites with a triangular shape. As it is known, Al2O3 has a trigonal Bravais
lattice close to hexagonal. Most likely, in these places of the substrate the crystals of Al2O3
are oriented in the C-plane parallel to the surface, and at the initial stage of the film growth
the nuclei are oriented so that their pseudocubic axis [111] is perpendicular to the surface.
As a result, a well-oriented film texture is obtained. In other areas of the substrate surface,
the crystallites grow with a more disoriented structure. The surface morphology of the
films with x = 0.18 (Figure 1b) is a little bit different. These films consist of crystallites whose
surfaces are not only like triangles, but the elongated rectangular-shaped crystallites start
to dominate. A further increase in Sr content (Figure 1c, x = 0.30) leads to the dominance of
crystallites with this elongated rectangular surface. Moreover, islands with crystallites of a
smaller triangular shape also exist in all samples. The average dimensions of the crystallites
do not strongly depend on the Sr content. The most frequently found crystallite dimensions
are equal to 75 nm for x = 0.08, 80 nm for x = 1.18, and 85 nm for x = 0.3. The change in the
shape of the crystallite surface depending on the concentration of Sr atoms can be caused
by the deformation of the crystalline lattice or change in the crystalline structure. This can
result in the preference of crystallite crystalline orientation in a direction perpendicular to
the substrate surface. As a result, a different cut of the crystallite surface takes place.
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eral single crystal slabs. These slabs produce the macro-steps, which increase the interco-
lumnar region between crystallites. The increase in the Sr content leads to more perfect 
structures of the columns and in the grain boundary regions. The lateral surfaces of crys-
tallites and the boundaries between them are flat (see Figure 2b), with no zigzags or steps. 
Individual crystallites are monocrystalline, although rotated in the plane of the substrate. 
This is evidenced by the diffraction pattern shown in Figure 2c, in which one can see the 
spot diffraction pattern from several single crystallites. The films with Sr content x = 0.3 
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lanthanum manganites could be explained by a double-exchange interaction mechanism 
between Mn4+ and Mn3+ ions and a Jahn–Teller effect. One of the characteristics of the films 
is their resistivity dependence on temperature. These films exhibit a metal–insulator tran-
sition typical for manganites at a certain temperature, Tm. For monocrystalline films, this 
temperature is close to the Curie temperature (TC), and it is believed to be the highest at 
an Mn4+/Mn3+ ratio of 1/3 [11]. The doping of manganites with Sr atoms controls this ratio. 

Figure 1. SEM surface images of LSMO films with different Sr content (x) and constant content of
Mn/(La + Sr) (y = 1.15): (a) x = 0.08, (b) x = 0.18, (c) x = 0.3.

To understand the peculiarities of the growth of the films, TEM images were analyzed.
The low magnification cross-sectional TEM images of the films with an Sr content of 0.08
and 0.18 are shown in Figure 2a,b, respectively. As can be seen, the film consists of vertically
aligned columns, which are spread throughout the whole film thickness with their long
axis arranged perpendicular to the substrate. The typical column width in all films is about
60–75 nm on the upper side and 30–50 nm near the substrate.
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(y = 1.15): (a) x = 0.08, (b) x = 0.18. (c) Selected area electron diffraction pattern from the region shown
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For the films with an Sr content of 0.08, the microstructure is columnar, but very
porous with both inter- and intracolumnar voids outlining a pronounced dendritic pattern.
Moreover, a mixture of columns and separate crystallites are observed in these films,
especially in the regions close to the substrate. In addition, the contrast of the TEM images
within the columns reveals that the columns are not single crystalline and consist of several
single crystal slabs. These slabs produce the macro-steps, which increase the intercolumnar
region between crystallites. The increase in the Sr content leads to more perfect structures
of the columns and in the grain boundary regions. The lateral surfaces of crystallites and
the boundaries between them are flat (see Figure 2b), with no zigzags or steps. Individual
crystallites are monocrystalline, although rotated in the plane of the substrate. This is
evidenced by the diffraction pattern shown in Figure 2c, in which one can see the spot
diffraction pattern from several single crystallites. The films with Sr content x = 0.3 are
similar in structure to the films with x = 0.18.

3.2. Resistivity of Nanostructured LSMO Films: Dependence on Sr Content and Excess of Mn

It is known from the literature that the main magnetic and electrical properties of
lanthanum manganites could be explained by a double-exchange interaction mechanism
between Mn4+ and Mn3+ ions and a Jahn–Teller effect. One of the characteristics of the
films is their resistivity dependence on temperature. These films exhibit a metal–insulator
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transition typical for manganites at a certain temperature, Tm. For monocrystalline films,
this temperature is close to the Curie temperature (TC), and it is believed to be the highest
at an Mn4+/Mn3+ ratio of 1/3 [11]. The doping of manganites with Sr atoms controls this
ratio. Moreover, it was demonstrated that even in insulating LaMnO3 manganite films, an
excess of Mn can induce La vacancies, which result in an increase in Mn4+ amount [32]. For
nanostructured polycrystalline manganite films, this ratio could be different. It is caused by
lattice distortions and defects that are expected during growth, and affect the electrical and
magnetic properties of such films. Moreover, for the polycrystalline films, strong variations
in the electronic and magnetic properties can be achieved with defects such as La vacancies
induced by Mn excess in the films [33].

Measurements of resistivity vs. temperature dependences of nanostructured LSMO
films were performed to investigate the effect of variation in Sr/(La + Sr) and Mn/(La + Sr)
ratios on the metal–insulator transition temperature Tm values. The results are summarized
in Figure 3.
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LSMO/LAO (closed symbols) films with different y = Mn/(La + Sr) ratio (symbols). Curves—fit
to eyes.

There is a tendency that the higher the Mn/(La + Sr) ratio in the films, the higher the
Tm values obtained. Furthermore, at low Sr content, the Mn/(La + Sr) ratio has a stronger
influence on the electrical properties. The Tm versus Sr content has a maximum that slightly
shifts to lower Sr values with increasing y = Mn/(La + Sr) ratio in the films. It could be
explained by induced more La vacancies with the increase in Mn excess, which result in
an increase in Mn4+ amount [32]; therefore, less Sr is needed for the same Mn4+/Mn3+

ratio, which is important for transport properties in manganites. The dependence of Tm
on the Mn/(La + Sr) ratio for different Sr content shows that the Tm values saturate with
increasing Mn/(La + Sr) ratio in the films. This indicates that the Mn/(La + Sr) ratio and Sr
content x values of 1.15 and (0.17–0.18), respectively, result in the highest metal–insulator
transition temperatures. It is worth mentioning that for epitaxial films grown on LAO,
the maximum Tm is obtained for an Sr concentration of x ≈ 0.3 (see Figure 3). As can be
seen, in the range of 0.05 ≤ x ≤ 0.3, the Tm of epitaxial films is continuously increasing.
Moreover, it is higher than for films grown on the Al2O3 substrate. This difference can be
caused by the different microstructure of the films. For polycrystalline films, the conducting
mechanism is controlled not only by a double-exchange mechanism between manganese
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ions Mn3+–O2−–Mn4+, but also by the grain boundary resistivity and the relative quantity
thereof [34,35]. As a result, the resistivity of the films can vary greatly depending on the
disorder of grain boundaries and the relative quantity of their material.

Figure 4 presents examples of the resistivity ρ vs. temperature dependences for LSMO
films grown with constant Mn excess while changing Sr content (Figure 4a) and constant Sr
content, but different Mn excess (Figure 4b). One can see that all films exhibit a transition
from metal-like to an insulator-like resistivity dependence on temperature at a certain
critical temperature Tm corresponding to the resistivity maximum ρm (summary of Tm
values for all investigated films is presented in Figure 3). As it was already mentioned, the
increase in Sr content up to x = 0.17–0.18, while keeping the Mn content constant, results in
an increase in the Tm, while further increase in x results in a decrease in Tm. However, the
resistivity maximum ρm of these films decreases with the increase in x in the whole range
of Sr content (0.05 ≤ x ≤ 0.3) (see Figure 4a). The resistivity vs. temperature dependences
for LSMO films having different Mn excess and a constant x = 0.18 are presented in
Figure 4b. The x = 0.18 was chosen as an average of Sr content at which the films with
different Mn excess exhibit maxima of metal–insulator transition temperature (see Figure 3).
It can be seen from Figure 4b that for nanostructured LSMO films, Tm increases while
resistivity decreases, with an increase in Mn excess. Our recent study has shown that even
higher metal–insulator transition temperature Tm can be obtained (285 K) with a further
increase in Mn content up to 1.21 [36]. However, an increase in Mn y > 1.15 causes large
nonstoichiometry of the films, and it is difficult to control the homogeneity of the films
having only one LSMO phase. For this reason, to ensure a single LSMO phase in the films,
we kept the Mn excess in the films not higher than 1.15.
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3.3. Magnetoresistance of Nanostructured LSMO Films

The magnetoresistances dependences on magnetic flux density (B) measured up to
0.2 T at room temperature (290 K) are presented in Figure 5. The magnetic field was applied
in parallel to the film plane. For nanostructured films with Sr content of x = 0.18–0.3, a
sharp increase in the negative magnetoresistance (the large decrease in electrical resistance)
at low fields is observed, which is followed by a slower background negative MR with
an increase in the magnetic field (see Figure 5a). These effects are usually called the low-
field magnetoresistance (LFMR) and high-field magnetoresistance (HFMR), respectively.
Furthermore, one can observe some positive MR changes at low magnetic fields, with
maxima attributed to the films’ coercive field. In our investigated samples, the LFMR
was strongly dependent on the concentration of Sr. It can be seen that for films with
x = 0.3, the LFMR is about –0.8% at 50 mT, while for films with x = 0.08, the LFMR
is about –0.48%. At higher fields (0.8 T, not presented in this figure), the HFMR was
found –4% and –2.5%, respectively. It has to be pointed out that for epitaxial films grown
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on monocrystalline LAO substrate the LFMR was not observed in all investigated films
(see Figure 5a for x = 0.3). This result could be a confirmation that the origin of the LFMR
is mostly related to the crystallite–grain boundary structure of the LSMO films, but not
with possible rearrangement of the crystal lattice caused by the change in Sr content. For
nanostructured films with different Mn excess (Figure 5b), the similar LFMR values were
obtained for y = 1.1 and 1.15, while for 1.05 the LFMR was very small. However, at 0.8 T
the highest LFMR = 4.5% was found for film with Mn excess ratio 1.1. Such increase in MR
at a higher field could be related with a slightly higher disorder level of grain boundary
material (confirmed by higher resistivity values). Therefore, the higher magnetic field could
align Mn moments and as a result the resistance change with magnetic field is larger. It
should be noted that the LFMR is usually not observed in epitaxial films or monocrystalline
manganites [20], but found in films with a large number of grain boundaries having a
noncollinear spin structure in which spin-polarized transport (tunneling) across the grain
boundaries dominates. The LFMR is more pronounced at low temperatures and depends
on the thickness and type of grain boundaries, because they decouple the neighboring
ferromagnetic (FM) grains and provide an energy barrier for spin-polarized tunneling of
electrons. The LFMR usually vanishes at room temperature, at which the grains become
paramagnetic. However, as we can see in Figure 5, this effect can be also obtained at
room temperature for the special chemical composition of nanostructured films. Such a
result is promising for the application of LSMO films for low magnetic field sensing at
room temperature. It is also worth noting that the LFMR continuously increases with
increase in Sr concentration. This is in contrast to the dependence of Tm on Sr content for
nanostructured films (see Figure 3), for which we observe a decrease in Tm when x > 0.2.
Moreover, the Mn excess significantly influences the LFMR values of the films. This effect
was observed at room temperature only for Mn concentration higher than y = 1.1. It can
be seen in Figure 5b that for Mn concentration y = 1.05 (almost stoichiometric films), the
LFMR is insignificant.
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As it was already mentioned, the low-field magnetoresistance is more pronounced
at low temperatures. The MR of nanostructured LSMO films with Mn excess y = 1.15
was measured in the temperature range of (250–290) K. Figure 6 presents summarized
results obtained at two magnetic flux density values: B = 0.05 T (a) and 0.8 T (b). One
can see that the MR values gradually increase with decrease in temperature and are the
highest for the films with x = 0.3. Therefore, the nanostructured films with chemical
composition La0.7Sr0.3Mn1.15O3 could be used for magnetic field sensor applications at
room temperature.
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To explain the reasons for the observed LFMR at room temperature, the studies of the
magnetization of the films were carried out.

Figure 7 presents the temperature dependences of the field-cooled magnetization M
at a magnetic field of 1000 Oe. For the comparison of different films, the magnetization
was normalized to its value at 10 K. One can see that the M decreases with increase in
temperature, and the ferromagnetic–paramagnetic phase transition is observed in all films.
The phase transition temperature (Curie, TC) can be determined from the minimum of
derivative dM/dT. It was obtained that TC equals 300 K for the film with Sr concentration
of 0.08. In the other cases, due to limited range of the measurement temperatures, we
were only able to estimate TC from the Curie–Weiss law by fitting the experimental data to
the formula:

M =
a

T − θ
+ b, (1)

where a, b, and θ are fitting constants. The curves in Figure 7 present the fitting results.
For the films with x = 0.18 and 0.3, the following TC were estimated: 343 K and 383 K,
respectively. Thus, the TC of all films with Mn excess of 1.15 is higher than room temper-
ature, and this explains the LFMR effect observed at room temperature. In addition, it
should be noted that the TC for the film grown on the polycrystalline Al2O3 and monocrys-
talline LAO substrates is almost the same, and only the slope of the curves in the region
below the transition temperature differs. The studies performed by Chen et al. [37] and
Moshnyaga et al. [38] show that the interface strain has a significant effect on the TC of
the manganite-based composites films. In these studies, the interface strain between the
LSMO and NiO nanocolumns causes the LSMO to be in a tensile strain state along the
out-of-plane direction, resulting in the change in the length and angle of Mn–O–Mn bonds.
The electron transfer integral of the Mn3+–O2−–Mn4+ is decreased and the double-exchange
interaction is weakened, leading to the decrease in the TC. In our case, the films consist of
column-shaped crystallites, which are spread throughout the whole film thickness with
their long axis arranged perpendicular to the substrate. The typical column width in all
films is about 70–80 nm, and the width of the grain boundary is only about 2–3 nm. Such
structure with large enough crystallites separated by narrow grain boundaries in the films
with higher Mn and Sr content could be the reason why the TC of the films grown on
monocrystalline and polycrystalline substrates are similar.
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The magnetic hysteresis loops recorded after field-cooling at 1000 Oe in the tempera-
ture range from 320 K down to 220 K of the investigated nonstoichiometric (y = 1.15) films
are shown in Figure 8. The saturation magnetization (Msat) of the films with Sr content of
0.08 (Figure 8a) is smaller than that of the LSMO film with x = 0.3, which may be attributed
to the weakened double-exchange interaction and the spin disorder at crystallite–grain
boundary interfaces. For example, at temperature T = 220 K the maximal magnetization
of the films with x = 0.08 equals to M = 840 ± 10 emu/cm3, when for films with x = 0.3 it
is 1004 emu/cm3. These are quite large values. For comparison, it was shown in [39] that
even at a temperature of 10 K the maximal magnetization for stoichiometric La0.7Sr0.3MnO3
manganite films was obtained at only about 550 ± 10 emu/cm3. When comparing two
films with different Sr content, it can be seen that at 320 K for x = 0.08, M does not saturate
even at the 50 kOe magnetic field, whereas when x increases to 0.3, the M−H loops were
saturated already at 10 kOe with M = 870 ± 10 emu/cm3 at room temperature. It means that
at this temperature, films with Sr concentration of x = 0.08 are in the paramagnetic phase,
while films with x = 0.3 and y = 1.15 are in the saturated ferromagnetic state. Moreover, the
hysteresis of this film at room temperature is very narrow, and a coercive field is approx-
imately 2–3 mT. It should be noted that LFMR is associated with a large number of thin
grain boundaries having noncollinear spin structure, good magnetic connectivity between
the grains, and a high saturation magnetic moment of the grains. To increase the magnitude
of LFMR, many groups have attempted to grow the manganite-based nanocomposites
by incorporating to single-phase films a secondary insulator phase and to introduce the
artificial GBs [39–43]. Our research has shown that such results can be achieved without
incorporation of the second phase, just by growing single-phase vertically aligned nanos-
tructures with increased excess of Mn and the optimization of the chemical composition
Sr/(La + Sr) in the films. The increase in Sr content up to 0.3 when Mn excess in the films
exceeds 1.15 leads to an increase in saturation magnetization of the column-like crystallites
of the films even at room temperature. Moreover, such composition of the films allows to
obtain crystallites with decreased thickness of grain boundaries and improve their quality.
As a result, the LFMR in such nanostructured films could be observed at room temperature.
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For the application of manganite films as low magnetic field sensors, the sensitivity
of the measured signal response to magnetic field change is very important. In contrast
to GMR sensors, which magnetoresistance saturates at a certain low magnetic field, the
magnetoresistance of polycrystalline films exhibiting the CMR effect does not saturate up
to very high fields (only the slope of MR dependence on B is decreased). Therefore, the sen-
sitivity of CMR films can be described as the normalized value of the voltage change across
the sensor’s resistance RS with an increase in the magnetic field by 1 T: S = δ(Vout/V0)/δB.
The maximal value of sensitivity S = 137 mV/V·T at room temperature (T = 290 K) was
obtained almost constant up to 10 mT for the film with x = 0.3. Then, it gradually decreased
to S = 15 mV/V·T at a magnetic flux density B > 100 mT. The other films with x = 0.18
and x = 0.08 showed lower sensitivity values: S = 96 mV/V·T and S = 85 mV/V·T up
10 mT, respectively. A decrease in the temperature increases the MR of the films and their
sensitivity as well. The sensitivity of the film with x = 0.3 at T = 270 K was S = 185 mV/V·T
up to 10 mT, while at T = 250 K S = 235 mV/V·T. This provides the opportunity to have
more sensitive sensors with external cooling options if higher sensitivity is necessary.

4. Conclusions

It was concluded that the content of the doping element Sr and amount of Mn excess
in nonstoichiometric nanostructured La1-xSrxMnyO3 manganite films grown on polycrys-
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talline Al2O3 substrate has a great influence on the main transport and magnetic prop-
erties of these films. It was found that in the range of 0.05 ≤ x ≤ 0.3, all films exhibit a
metal–insulator transition typical for manganites at a certain temperature, Tm. The max-
imum value of Tm is determined by the concentrations of Sr and increases as the ratio
y = Mn/(La + Sr) increases. It can be caused by the Mn excess, which creates La vacancies
that lead to an increase in the Mn4+/Mn3+ ratio and enhanced ferromagnetic behavior of
the films. Moreover, the dependence of Tm versus Sr content has a maximum at x = 0.18
for films with y = 1.05, that shifts to lower Sr concentration (x = 0.15–0.17) with an increase
in Mn excess up to y = 1.15. At the same time, the Sr concentration in the films influences
the morphology and structure of the crystallites. Films with x = 0.3 and y = 1.15 have flat
lateral surfaces of vertically aligned crystallites and straight boundaries between them
without zigzags or steps, which are observed in the case of films with x = 0.08. Moreover,
contrary to the Tm change versus Sr content, the highest Curie temperature (TC = 383 K)
is obtained for nanostructured films with chemical composition x = 0.3 and y = 1.15, as
in epitaxial films grown on LAO substrate. The above-mentioned properties have a large
effect on the observed increased low-field magnetoresistance of these films. Moreover, the
enhanced room temperature LFMR could be explained not only by a high TC value, but
also taking into account the microstructure of the films and high saturation magnetization
value (M = 870 emu/cm3). The LFMR effect in these films takes place due to spin-polarized
tunneling of charge carriers in high structural quality crystallites, which are in saturated
ferromagnetic phase even at room temperature, through thin grain boundaries. As a result,
the magnetoresistance of (–1.23 ÷ –0.8)% at temperatures (250 ÷ 290 K) was achieved at a
magnetic field of 50 mT for manganite films without the introduction of a secondary insu-
lating phase, and only due to the adjustment of the chemical composition and conditions
of film growth.

In summary, it was concluded that vertically aligned nanostructured lanthanum man-
ganite films La1-xSrxMnyO3 with x = 0.3 and Mn excess of y = 1.15 grown on polycrystalline
Al2O3 substrates could be used for the development of magnetic field sensors with prede-
termined parameters for operation at room temperature to measure weak magnetic fields.
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