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Exact, self-consistently calculated eigenfunctions and eigenvalues of the valence band in degenerate asym-
metric double quantum wells are obtained from the full 434 Luttinger Hamiltonian for different hole densities.
We found the solutions to be extremely sensitive to the charge density. The charge induces an extra asymmetry
in the confining potential and leads to a smaller separation of the hole levels in the adjacent wells. This strongly
enhances the different leakage of wave functions with opposite magnetic moment, called spin-dependent hole
delocalization~SDHD!. Furthermore, it is shown that the SDHD of the heavy-hole states can be enhanced by
increasing the confinement of the light-hole states through adjustment of the height of the confining barriers.
The theoretical results are shown to be in excellent agreement with transport and optical experiments, which
are proven to be largely determined by space-charge effects.

PACS number~s!: 73.20.Dx, 73.40.Kp, 78.66.Fd

I. INTRODUCTION

In the past decades the energy bands of low-dimensional
semiconductor structures have been intensively studied, both
by experimental and theoretical means. For theJ51/2 elec-
tron states, originating fromS-type molecular orbitals, an
almost parabolic behavior was found. Only for large wave
numbers and high magnetic fields are the deviations from
parabolicity significant. The valence band, in contrast, is
strongly non-parabolic. Since the hole states are formed from
P-type molecular orbitals~L51!, the spin-orbit interaction
becomes important and splits the hole states in a split-off
duplet with J51/2 and a heavy-hole–light-hole quadruplet
with J53/2. The interactions between these bands result in
strongly nonparabolic dispersion relations. Due to this com-
plexity, it has only recently been recognized that structures
can be developed that take advantage of the physical prop-
erties of the valence band, both to explore new physics and
to improve device performance.1

One of the aforementioned structures that has been inten-
sively studied in the past few years is the asymmetric double
quantum well~ADQW!,2–8 consisting of two~single! QW’s
of different width, separated by a tunnel barrier; see Fig. 1.
As a device application, such structures can, e.g., be used as
bias-voltage tunable infrared detectors2,3 or as velocity
modulation transistors.4 More fundamentally, ADQW’s can
show strong tunneling-dependent level broadening when the
scattering intensities in the left and right wells are different.5

One of the most interesting features is the different leakage
of hole wave functions of different magnetic moment, lead-
ing to a macroscopicseparation of ‘‘spin-up’’ and ‘‘spin-

down’’ states. This effect was coined ‘‘spin-dependent hole
delocalization’’~SDHD! by Goldoni and Fasolino.6,7 Due to
the asymmetry of the potential, the Kramers degeneracy of
the hole levels is lifted, leading to spin-~mJ563/2,61/2!
dependent hole delocalization, even when there is no reso-
nance between levels in the left and right well.

In most theoretical work5–8 the effects of band filling on
the hole states are not taken into account. These are essential
to explain most experimental results quantitatively and as we
point out, even qualitatively. In this paper we will show the
extreme sensitivity of the hole energy levels and optical os-
cillator strengths on the presence of a degenerate hole gas.
Furthermore, we will show that the SDHD is strongly en-
hanced when the band bending resulting from the presence
of holes is included.

This paper will be organized as follows. In Sec. II the
theoretical framework in which the numerically exact solu-
tions of both the Schro¨dinger and Poisson equations are ob-
tained will be presented. In Sec. III numerical results will be
presented, which will be compared with experiments in Sec.
IV. A summary will be given in Sec. V.

II. THEORY

In this section we will outline our approach to solve the
Luttinger Hamiltonian. We have used a commercially avail-
able routine to obtain exact eigenvalues and eigenfunctions
from a set of coupled first-order differential equations. The
routine used solves a two-point boundary-value problem, de-
scribed by a set of coupled first-order differential equations,
using a deferred correction technique and Newton iteration.9
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Since this method is not limited by a~finite! basis set of
functions to expand the eigenstates, it is numerically exact,
i.e., within a user-specified tolerance, typically 1025. This is
similar to expanding the eigenfunctions in an infinite basis
set.

In most theoretical studies10–14on valence bands that ap-
peared in the past decades, the hole eigenstates are expanded
in a limited set of basis functions and are calculated by ma-
trix diagonalization. This method is known to give rise to
significant deviations for larger wave numbers, unless the
number of basis functions is drastically increased.10 Other,
exact, methods15–17are applicable only to highly symmetric
structures, such as empty single quantum wells. The method
presented here is suited for any given potential, under the
limitation that a good starting solution can be generated.
Also the effects of strain or a magnetic field can easily be
included,18 and easy access to wave functions and their de-
rivatives is provided. However, in this paper we will be con-
cerned only with the asymmetric double quantum well in
zero magnetic field. To calculate the hole energy levels we
used the Luttinger Hamiltonian,19 with inclusion of warping,
in the spin-orbit basis withJz5~3/2,21/2,1/2,23/2!. The
confining potential is assumed to be parallel to thez axes and
hole energy is counted positive. The split-off band compo-
nents of the lowest hole levels of theJ53/2 multiplet are
known to be negligible,15 which reduces the Luttinger
Hamiltonian to 434. Furthermore, we will neglect lineark
terms, arising from the lack of inversion symmetry of the
GaAs crystal, since they only give rise to small energy
splittings11,20
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The Ui are the periodic Bloch functions in the basis
mJ5$3/2,21/2,1/2,23/2%. In order to reduce the numerical
effort we have applied the Broido-Sham transformation,11,21

making ~1! block diagonal. The remaining set of coupled
second-order differential equations is then transformed into
first order, giving two sets of six equations, when equations

for normalization and energy continuity are included. Stan-
dard boundary conditions are applied at the outer boundaries
of the calculation interval.

The choice between flux conservation or wave-function–
continuity imposing interface conditions~IC’s!, i.e., keeping
(1/m* )(dC/dz) or (dC/dz) continuous at the
interfaces,22,23 can be made by simply taking the Luttinger
parameters of the barrier material~Al xGa12xAs! different or
the same as those of the well material~GaAs!, respectively.
However, when flux-conserving IC’s are chosen, the Lut-
tinger parametersgi becomez dependent and no longer com-
mute with the operatorskz andk z

2. Therefore expressions of
the typeg ikz andg ik z

2 have to be replaced by their respec-
tive anticommutators.24 Since we will assume low Al content
~25%! barriers and focus on the lowest subbands, which pen-
etrate only a few atomic layers into the barriers, the differ-
ence between the two will be small and will generally fall
below experimental resolution. For the standard structure of
Sec. III we have listed the first heavy, light, and electron
levels in Table I for both interface conditions. In the remain-
der of this paper we have applied the wave function–
continuity imposing IC’s, unless stated otherwise. The pa-
rameters used in the calculations areg156.85,g252.1, and
g352.9 for GaAs andg153.45, g250.68, andg351.29 for
AlAs.25 Intermediate values are calculated using linear inter-
polation.

The actual calculation is split in two parts: a part fork50
in which self-consistency is obtained and one for finitek.
The k50 calculation starts with solving~1! for a flatband
potential, taking advantage of the fact that~1! decouples into
four Schrödinger-type equations, which are easily solvable.
The starting solutions for this procedure are generated as
even and odd combinations of half or whole-period sinuses,
localized entirely in the separate wells. For the lowest sub-
bands~a half period sinus in each well! the even combina-
tions correspond to the lowest energy; see Fig. 1.

The wave functions obtained in this way are used to cal-
culate the charge distributionr(z) in the system. Poisson’s
equation is then solved by numerical integration ofr(z) and
the charged acceptor distribution

]2

]z2
Vc~z!5

e

e0e r
r~z!. ~3!

TABLE I. Energies of the first two heavy, light, and electron
levels in a filled or empty ADQW~59.4- and 42.4-Å wells, 33.9-Å
barrier! with 40% Al barriers for two different interface conditions.
See the text for further explanation.

Level
~meV!

Empty structure p51.531016 m2

1

m*
]C

]z
continuous

]C

]z
continuous

1

m*
]C

]z
continuous

]C

]z
continuous

HH0 16.62 16.86 10.69 10.95
HH1 27.10 27.58 12.62 12.56
LH0 39.97 41.84 32.38 34.22
LH1 63.81 68.37 48.32 52.52
E0 60.89 65.93 66.76 71.74
E1 93.55 104.21 107.81 118.49
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The charge present in the wells is distributed over thek50
wave functions assuming parabolic bands with effective
masses given bym0/~g11g2! andm0/~g12g2! for heavy and
light bound bands, respectively, wherem0 is the electron rest
mass. The doping is assumed to be distributed over twod
layers on the left- and right-hand sides of the structure, in
such a way that no net voltage drop is present over the struc-
ture. In practice this means that the doping is almost equally
distributed. A weighted average of the new and old potentials
is then used to calculate the next iteration. This procedure is
iterated until the potential is stable within a predefined limit
~1025!. The final potential is then used for the calculation of
all hole levels at finitek from ~1!.

For highly degenerate systems the parabolic approxima-
tion for charge distribution over thek50 wave functions,
implicitly assuming that the wave functions are independent
of k, will induce an error inr(z), but this effect was checked
to be small. The lowest hole levels~HH0,1 and LH0,1! cal-
culated exactly were within 0.5 meV of those calculated in
the parabolic approximation ofr(z), for densities up to
1.531012 cm22. Because of the enormous difference in com-
putational effort, we will use the latter method.

III. NUMERICAL RESULTS

There are three relevant dimensions in any ADQW~the
width of both wells and their separating barrier! that deter-
mine the effects of charging on the energy levels and on the
SDHD. In the first place the lowest hole states need to be
well bound for all reasonable densities, yielding a minimum
well width of about 30 Å. Second, the lowestk50 solutions
are to be mainly localized in one of the wells, but need to
have amplitude in both wells. This means that the width of
the central barrier should be of the order of a few times the
penetration length of the heavy-hole wave function~'25–60
Å!. Furthermore, one wants to avoid the complexity and am-
biguity of many, hardly separated, bound states, occurring in
wide wells~.100 Å!. Within these limits, every ADQW be-
haves qualitatively the same, which allows us to consider
one typical structure as general. The structure under consid-
eration in this section consists of a 59.4-Å~21 ML of GaAs!
and a 42.4-Å~15-ML! well, separated by a 33.9-Å~12-ML!
barrier, with an Al content of 25%. In order to enhance the
confinement of the bound states, the outer barriers have an Al
content of 40%. The spacer layer between the doping and the
nearest GaAs/AlxGa12xAs interface is taken to be 33.9 Å.
The thickness of the confining barriers is chosen such that no
significant change of observables occurs upon a further in-
crease.

A. Zero in-plane wave vector

In Fig. 1 the wave functions of the first two light-and
heavy-hole levels are depicted, together with the first two
electron levels, for a sheet density of 1.531016 m22. As ex-
pected, the ground states of the heavy, light, and electron
levels are predominantly localized in the wide well and have
an even character with respect to the middle of the central
barrier, whereas the first excited states are odd-character
functions, localized mainly in the narrow well. More remark-
able is the density dependence of the energy separation be-
tween the first and second heavy-hole levels~HH0 and

HH1!; see Fig. 2. Upon the first introduction of charge, the
HH1 level rapidly shifts down to a few meV above the HH0
level at p'0.231016 m22. For higher sheet concentrations
the HH02HH1 separation remains independent of charge
density. This behavior is a direct consequence of the electro-
static effect of the space charge.

For very low carrier concentrations, all charge will con-
dense in the lowest level, HH0. Since HH0 is mainly local-
ized in the wide well, the narrow well will be shifted down
with respect to the wide well by the resulting electrostatic
potential. Consequently, the HH1 level, having its maximum
amplitude in the narrow well, shifts down towards the HH0
level. Figure 1 illustrates this. A crossing of the HH0 and
HH1 levels is avoided by the fact that the density of states
~DOS! is almost the same for both levels: as soon as HH1
drops below the Fermi level, all extra charge is equally dis-
tributed over both wells, resulting in a status quo for the
relative positions of HH0 and HH1. This point is indicated
by the arrow in Fig. 2.

The density at which the HH0 and HH1 levels would
become degenerate can be obtained by a simple back-of-the-

FIG. 1. Energy positions and envelope functions of the first hole
and electron levels in a self-consistent potential at zero in-plane
wave vector. The hole density is 1.531016 m22. Hole levels: solid
line, HH0; dotted line, HH1; dashed line, LH0; dash-dotted line,
LH1. Electron levels, top to bottom:E0 andE1.

FIG. 2. Energies of LH1, LH0, HH1, and HH0 levels and Fermi
energy as a function of doping concentration for the standard struc-
ture ~see Fig. 1!.
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envelope calculation of the electrostatic potential of a single
charged plateV5ped/2e0e r . Taking d as the distance be-
tween the centers of both wells andV the potential difference
between HH0 and HH1 in thep50 situation, we find
p50.1631016 m22, in reasonable agreement with the exact
result. It is worthwhile to note that the above-described
alignment effect is not restricted to hole gasses, nor to the
specific dimensioning of the ADQW.

B. Nonzero in-plane wave vector

The effect of self-consistency on the dispersion relations
of an ADQW is depicted in Fig. 3. Clearly visible is the
downward shift of the first excited heavy- and light-hole
bands in the degenerate system@Fig. 3~b!#, compared to the
empty system@Fig. 3~a!#, due to the charge-induced band
bending. Note also the very similar dispersion curves for
HH0 and HH1, implying the equality of their DOS. The spin-
dependent hole delocalization for the empty and filled struc-
tures is represented in Fig. 4. Plotted is the expectation value
of the z operator,̂ z&5*C* zC dz with C the correspond-
ing envelope function, for both spin directions of HH0, LH0,
and HH1 versusuku in the ^10& direction. The zero of thez
axis is chosen at the leftd-doping layer. Note that the pres-
ence of charge does not affect^z& for HH0 and HH1 atk50,
but does so for the LH0. This is a result of the smaller pen-
etration length of the heavy-bound states, effectively localiz-

ing HH0 and HH1 almost completely in the separate wells,
making ^z& independent of their relative energy positions.
The results for the empty ADQW confirm the observation by
Goldoni and Fasolino6 that the HH0 state, in contrast to the
HH1 and LH0 states, does not show any appreciable spin-
dependent tunneling, i.e., the spin-up and spin-down states
are not macroscopically separated. However, the spatial
separation of spin-up and -down states atkÞ0 is clearly
enhanced for the filled system, resulting in almost equal
splittings for HH0 and HH1.

In Fig. 5 the light and heavy components of the envelope
functions are shown at maximum spin splitting~k52.63108

m21!. Only the components that are shifted towards the bar-
rier obtain significant amplitude in the opposite well and will
therefore ‘‘feel’’ the potential asymmetry and become delo-
calized. Quite remarkable is the change of parity of the HH0
and HH1 wave functions with respect to thek50 case: HH0
has one node and HH1 none. This is due to the fact that the
HH0 and HH1 have already anticrossed at the present wave
number@Fig. 3~b!# resulting in an exchange of character.

The spin-dependent hole delocalization of the filled
ADQW is augmented with respect to the empty system by
two effects: first, by the extra asymmetry resulting from the
band bending and second, and most important, by the stron-
ger mixing between the HH0 and HH1 bands at finitek, due
to their small energy separation. To strengthen our argument

FIG. 3. ~a! Dispersion relation of an empty 59.4233.9242.4 Å
ADWQ. ~b! Same as~a!, but for a density of 1.531016 m22. Solid
lines, spin up,̂ 10& direction; dotted lines, spin down,^10&; dashed
lines, spin up,̂ 11&; dash-dotted lines, spin down,^11&.

FIG. 4. ~a! ^z& versusuku for the ADQW of Fig. 3~a! in the ^10&
direction. ~b! Same as~a!, but for Fig. 3~b!. Solid lines, HH, spin
up; dotted lines, HH, spin down; dashed lines, LH, spin up; dash-
dotted lines, LH, spin down. The shaded areas indicate the
Al xGa12xAs barriers.
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about the general character of the SDHD enhancement and to
prove that this enhancement is mainly due to an increase of
the coupling between HH0 and HH1 levels, we calculated
^z&(k) traces for different densities. The results are depicted
in Fig. 6. The main graph shows^z&(k) traces for an empty
well, for p50.2031016 m22 ~just before HH1 becomes
populated! and for p50.3031012 cm22 ~just after HH1 is
populated!. Note the strong increase of spin splitting of the
HH0 state at the density the HH1 band becomes populated.
This is also visible in the inset, where the maximum ‘‘mac-
roscopic’’ splitting ~u^z&up2^z&downu! between spin-up and
spin-down branches is shown for both HH0 and HH1. It is
important to note the stability of the spin splitting for densi-
ties abovep50.3031012 cm22, showing the relative unim-
portance of the increasing asymmetry of the structure.

Again it should be stressed that the enhancement of the
SDHD by charging effects is not restricted to the particular
structure discussed above. The reason is that both respon-
sible mechanisms, increasing asymmetry due to band bend-
ing and stronger mixing of HH0 and HH1 states due to their
decreased separation in energy, are inherent to any ADQW,

as shown in Sec. III A. However, the exact behavior of any
structure is a function of its particular dispersion relation and
wave functions and is therefore dependent on sample dimen-
sions.

Two more notes have to be made on the enhancement of
spin-dependent hole delocalization by charging effects. First,
the SDHD is, for both systems, induced by different cou-
plings with other hole levels for spin-up and -down states at
nonzerowave vector6 and does not require resonance of lev-
els. Second, the HH0-HH1 hybridization is not a result of a
direct coupling, since~1! does not contain direct coupling
terms between states with the sameumJu. Consequently, the
HH0-HH1 mixing must take place through interaction with
light-hole bands. It must be stated that the SDHD of the HH0
and HH1 wave functions cannot arise from a direct hybrid-
ization with LH0 and LH1 wave functions, respectively,
since this would result in a shift away from the central bar-
rier at k52.63108 m21 @Fig. 4~b!#.

The importance of well-bound LH states for the enhance-
ment of SDHD is illustrated in Fig. 7, where the maximum
spin splitting of HH0 and HH1 is depicted as a function of Al
concentration in the confining barriers. The Al content of the
central barrier is kept at 25%. Increasing this barrier only
reduces the SDHD, since it weakens the coupling between
the two wells. The SDHD is strongly enhanced when the Al
concentration in the confining barriers is more than 30%.
This coincides with a significant increase of the localization
of the lowest light-hole states~right y axis!, whereas the
localization of the lowest heavy-hole states is not signifi-
cantly modified forx.20%. Both the maximum spin split-
ting and the confinement of the LH states, as deduced from
the flattening of the LH energy curves, become saturated for
x.50%. It is interesting to note that, although the maximum
spin splitting is strongly modified by the Al concentrationx,
the wave number at which this occurs does not significantly
shift with x.

So far, it has been shown that the spin-dependent delocal-
ization of hole levels is strongly dependent on the interac-
tions between heavy- and light-hole bands. Due to the
warped nature of the valence bands, also a direction depen-
dence of SDHD is to be expected. Since the extrema in the

FIG. 5. Envelope function of wave-function components at
k52.63108 m21 in the ^10& direction for the 59.4233.9242.4 Å
ADQW with a density of 1.531016 m22. Solid lines, HH compo-
nent; dashed lines, LH component.

FIG. 6. ^z& versusuku for the 59.4233.9242.4 Å ADQW for
p50 ~solid lines!, p50.2031016 m22 ~dashed lines!, and
p50.3031016 m22 ~dotted lines!. The shaded area indicates the
central AlxGa12xAs barrier. Inset: maximum macroscopic spin-
splitting versus density. Circles, HH0; triangles, HH1.

FIG. 7. Left axis: maximum macroscopic spin splitting versus
Al concentration in the confining barriers of the standard structure.
Circles, HH0; triangles, HH1. Right axis: energies of the lowest
light and heavy states, together with the LH1 ‘‘effective bonding
energy,’’z.
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dispersion surface due to warping occur along the^10& and
^11& directions, we also calculated^z& in these directions; see
Fig. 8. The spin-dependent delocalization is clearly the most
pronounced in thê10& direction, which confirms our argu-
ment that the spatial separation of HH spin-up and -down
states arises from interactions with LH bands. The dispersion
relations of HH0 and HH1 in both directions are rather simi-
lar @Fig. 3~b!#, but the^11& direction shows far less anticross-
ing behavior between HH and LH than the^10& direction.
This results from a weaker interaction between light and
heavy bands in thê11& direction~see also the second remark
in the preceding paragraph!.

IV. EXPERIMENT

In order to check our calculations, the sample described in
Sec. III was grown with 25% Al barriers. The doping con-
centration was chosen such that the Fermi vector would lay
approximately at maximum spin splitting, i.e.,kF52.33108

m21 @Fig. 4~b!#. The aimed sheet density was 1.531016 m22.

A. Transport experiments

The ‘‘alignment’’ effect described in Sec. III A is con-
firmed by Shubnikov–de Haas measurements on the afore-
mentioned structure; see Fig. 9. A plot of 1/B versus the
extremum number~see the inset! revealed three distinct pe-
riodicities, with slopes related as 1:2:4. This is interpreted as
follows: In the high-field limit the Landau levels are nonde-
generate, so eachrxxminimum corresponds to a filling-factor
change of unity. In other words, Landau levels pass through
the Fermi level one by one. Therefore the low- and
intermediate-field regimes must correspond to the situations
where four and two Landau levels pass through the Fermi
level at the same time, respectively, and the filling factor
changes in steps of four and two at eachrxx minimum. The
values and positions of the Hall plateaus give further evi-
dence for this view. From both Shubnikov–de Haas and Hall
measurements we found a sheet density of 1.531016 m22.
From Fig. 2 it becomes clear that a Landau level broadening
of about 1 meV, which is quite reasonable, will prevent the
HH0 and HH1 Landau levels from being resolved in the
low-field regime. Since spin-up and -down states are also

degenerate at low fields, Landau levels will appear to be
fourfold degenerate. Upon increasing the magnetic field,
both the HH0-HH1 ‘‘degeneracy’’ and the spin degeneracy
are lifted. Since this will most likely occur at different field
strengths the described Shubnikov–de Haas behavior will
result.

B. Optical experiments

The necessity of self-consistency in degenerate systems is
shown by the simulation of photoluminescence excitation
~PLE! spectra of coupled quantum wells. The top panel of
Fig. 10 displays such a spectrum of the same structure as the
one on which the Shubnikov–de Haas measurements were
performed, accompanied by the photoluminescence~PL!
lines. The PL and PLE experiments were performed at 4.2 K,
using normal incident, unpolarized light from a Ti:sapphire
laser.

When we only take direct optical transitions into account,
the PLE intensity is proportional to the product of the square
of the matrix element and the joint density of states, inte-
grated over the fullk space:

I ~E!5E dk M~k!2d„Et~k!2E…5 R
E
dk

M ~k!2

¹Et~k!
, ~4!

where the matrix elementM (k) is given by

M ~k!5^CelectronupeuChole& if Eh.EF ,
~5!

M ~k!50 if Eh<EF .

Here Et5Eh1Ee1Egap, with Eh (Ee) the energy of the
involved hole~electron! level, with respect to the top~bot-
tom! of the valence~conduction! band,Egap is the band gap
of GaAs, andEF is the Fermi energy. The Fermi energy was
obtained by integration over the calculated dispersion sur-
face. The Stokes shift is accounted for byM (k), i.e., only
empty states~at T50! contribute to the PLE spectrum.

The dispersion relations and matrix elements were calcu-
lated for both interface conditions~flux or wave-function
continuity! in either a self-consistent or a non-self-consistent

FIG. 8. ^z& versusuku for the ADQW of Fig. 3~b! in the^10& and
^11& directions. Solid lines, spin up,^10&; dotted lines, spin down,
^10&; dashed lines, spin up,^11&; dash-dotted lines, spin down,^11&.

FIG. 9. Shubnikov–de Haas and Hall measurement on the stan-
dard ADQW with a carrier density of 1.531016 m22. Insert: 1/B of
the rxx minima versus order number~not filling factor! of the
minima. Note the three distinct periodicities, related as 1:2:4.
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calculation, yielding four different sets ofM (k) andEt(k).
The resultingI (E) are depicted in the lower panel of Fig. 10.
The only fitting parameter is a rigid shift in the band edge
commonly encountered in doped systems and known as
band-gap renormalization, which is used to position the first
PL peak, indicated by the arrow. The applied values are
around 7 meV for the ‘‘flux-conserving’’ calculations and
around 11.5 meV for the ‘‘continuous-wave-function’’ calcu-
lations, which seems reasonable.26 Clearly visible in Fig. 10,
there is excellent agreement between the experimental curve
and the self-consistent simulations, whereas the non-self-
consistent simulations deviate significantly from the experi-
mental curve. The choice of interface conditions seems a

rather arbitrary one for these calculations and it would be
unwise to draw any conclusions from the minor deviations
present. We will focus on the continuous-wave-function
simulation in our last remark concerning Fig. 10.

A more detailed comparison of self-consistent and non-
self-consistent calculated traces shows the need of calculat-
ing the exact matrix elements in order to obtain the correct
intensities in the PLE spectrum. For example, for both cal-
culations the onsets of the first PLE step~E0 to HH0 at
;1.59 eV! and of the second step~E1 to HH1 at;1.63 eV!
lay on approximately the right energy positions, when the
Moss-Burstein shift is properly taken into account. The sig-
nificant differences between both calculations around these
points arise mainly as a result of different matrix elements
since the DOS of each band are almost independent upon the
inclusion of the effects of the charge distribution.

V. SUMMARY

We have presented an exact and self-consistent method
for solving the coupled Poisson equation and the 434 Lut-
tinger Hamiltonian, with inclusion of anisotropy. The need
for the inclusion of Coulombic effects on an asymmetric
double quantum well has been investigated and shown to be
of great importance for a meaningful comparison with trans-
port experiments, as well as with optical experiments. In the
same structure, the spin-dependent hole delocalization be-
comes strongly enhanced by the self-consistency due to a
decrease of the energy separation between the first and sec-
ond heavy-hole subbands and an increase in the asymmetry
of the confining potential. The importance of confined light-
hole states for the SDHD was shown by variation of the
height of the confining barriers. Furthermore, the influence
of the interface conditions on the dispersion relations and
wave function was inspected and found to be of minor im-
portance for the structures under consideration.

Note added. During the preparation of this manuscript we
received a copy of work, prior to publication, by Goldoni
and Fasolino24 in which they present a very similar method
to solve the Luttinger Hamiltonian exactly for onek dimen-
sion. Both methods are flexible in nature and yield direct
access to wave functions.
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