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PHYSICAL REVIEW D, VOLUME 64, 023512

Enhancement of superhorizon scale inflationary curvature perturbations
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We show that there exists a simple mechanism which can enhance the amplitude of curvature perturbations
on superhorizon scales, relative to their amplitude at horizon crossing, even in some single-field inflation
models. We give a criterion for this enhancement in general single-field inflation models; the condition for a
significant effect is that the quantigg/H become sufficiently small, as compared to its value at horizon
crossing, for some time interval during inflation.
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I. INTRODUCTION 7'
Re+2—Re+ k?R.=0, 3
The standard, single-field, slow-roll inflation model pre-
dicts that the curvature perturbation on comoving hypersur- ) ) o
faces,R., remains constant from soon after the scale crosse4here the prime denotes the conformal time derivative,
the Hubble horizon, giving the formuld.,2] d/d7n, andz=a¢/H. One readily sees that on superhorizon
scales, when the last term can be neglected, there exists a
H?2 solution withR . constant, which corresponds to the growing
Rc%Rc(tk)”(ﬁ (1) adiabatic mode.
TP =an However, this does not necessarily mean tRat must
, - i L stay constant in time after its scale crosses the Hubble hori-
whereH is the Hubble parameted; is the time derivative of ;5 | fact, if the contribution of the other independent
the mﬂauon field, andty is a t|me.shortly after hprlzon mode (i.e. the decaying modeto R, is large at horizon
crossing. However, one may consider a model in whichyosqing 2 will not become constant until the decaying
slow-roll is violated during inflation. Recently, Leach and ) 4e dies out. The important point here is that the decaying
Liddle [3] studied the behavior of the curvature perturbationy,qe is, by definition, the mode that decays asymptotically
in @ model in which inflation is temporarily suspended, find-j, yhe fyture, but it does not necessarily start to decay right
ing a large amplification of the curvature perturbation rela-ger horizon crossing. In what follows, we show that there
tive to its value at horizon crossing for a range of scale§pqeed exists a situation in which the decaying mode can
extending significantly beyond the Hubble horizon. stay almost constant for a while after the horizon crossing
In this short paper, we consider single-field inflation mod-peore it starts to decay. In such a case, the contribution of
els and analyze the general behavior of the curvature pertufne o modes to the curvature perturbation is found to al-
bation on superhorizon scales. We show analytically whemy, gt cancel at horizon crossing. This gives a small initial
and how this large enhancement occurs. We find that a ne%{mplitude ofR., but results in a large final amplitude fa,
essary condition is that the quantiB=a¢/H becomes after the decaying mode becomes negligible.
smaller than its value at the time of horizon crossing. We et u(#) be a solution of Eq(3) for any givenk. For
then present a couple of integrals which involve the abovenuch of the following discussion it is not necessary to

quantity and which give a criterion for enhancement. specify the nature of the solutiom, but for clarity let us
identify it straightaway as the late-time asymptotic solution

Il. ENHANCEMENT OF THE CURVATURE at n, (taking n, for instance as the end of inflatipnFor

PERTURBATION any other solutiony (%), independent ofi( 7), it is easy to

We assume a background metric of the form show from Eq.(3) that the WronskiatW=v'u—u’v obeys

ds?= —dt?+a?(t) 5;;dx dx’ z'
o W =—-2—W, (4)
=a?(n)(—dn*+ &;dxdx). 2) z

On this background the growing mode solution of the curva—4nd hencen« 1/z2. Therefore we have
ture perturbation on comoving hypersurfaces is known to
stay constant in time on superhorizon scales in the absence ,
of any entropy perturbatiofi,2,4—6. This follows from the (U> N (5)
equation forR,: '
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Hence the decaying mode, which vanishes ag— 7, ,

7 dn’
may be expressed in terms of the growing magdeas Re~A+ Bf 7

M 22(7],) ,

(12

d—n_ whereA andB are constants.
7. 2%(n' )U*(n') The requirement that—0 asz— 7, uniquely identifies
the decaying mode as proportionalﬁfy)*d17’/22(77’) in Eq.
(12), but one is always free to include arbitrary contributions
from the decaying mode in the growing mode. Nonetheless,
it is convenient to identify the constaAtin Eq. (12) as an

v(m)u(n)

Without loss of generality, we may assurmne-u at some
initial epoch, which we take to be shortly after horizon cross
ing, n=n (<7,). Thenv is expressed as

D(7) approximate solution for the growing moda, on suffi-
v(m)=u(n) 57— (6) ciently large scales. Thus we put the lowest order solutions
D () for u andv as
where
D(7)
Ug=const, vg=Uyg—=—, (13
D(?])_SH fn*dn/zz( 7]k)U2( 7]k) (7) Dk
- k ’ o . . . .
U (9" )u¥(n") where, and in the rest of the papBx( ») is the integral given

by Eq. (7) but with u approximated byug:
and, for convenience, the conformal Hubble parameéter y Ea.() PP Yo

=(a'la), at p= 7 is inserted to mak® dimensionless. In - 2(m)

terms ofu and v, the general solution ok, may be ex- D(77)~3ka dn'——-. (14

pressed as 7 z°(7")
Re(m)=au(n)+pv(n), (8) As long as slow roll is satisfied, the long-wavelength so-

lutions uy andvq used above are accurate enough for super-
wherea and 3 are constants and we assume S=1 with-  horizon modes. However, corrections to the growing moede
out loss of generality. Thus, if the amplitude®f at horizon  due to the effect of finite wave numbkmay become sub-
crossing differs significantly from that of the growing mode, stantial if there is an epoch at which slow roll is viola{éd

au(mn,), it can only be becausg|>1. and it becomes important to include these in the definition of
Using Eq.(6) and notinga+3=1, R, and R, at the the growing mode.
initial epoch = 7, are given by In order to include the effect of a finite wave numbler,

the growing mode solution can be rewritten in the form
Re(m) =ulmy),

[

_ 2n
, , 3(1- @) Hyu( ) u(y)= 2 un(m)k™, (15
Ri(m)=u" (7 - S ) "o
where Eq.(3) requires
whereD,=D(#,). Thena can be expressed in terms of the
initial conditions as

!

Uﬁ+1+27Ur,1+1:_Un- (16)

R U (10

a:1+Dk3Hk Note that, starting fronug=const, each successive correc-

tion obtained as a solution of the second-order equation for
If we assumeR(7,) to be a complex amplitude determined Yn+1 has two arb_itrary constants of .integration. In particular
by an initial vacuum state for quantum fluctuations, thenthe O(k?) correction tou, can be written as

R/ (HR.) at the time of horizon crossing will be at most of

1 {Ré u’

7= "Mk

) SR ~Uy+[C,+ +
order unity. This implies thdk|, and hencég|, can become U=UoH+[C1HCoD () +F(77)]uo, (7
large if Dy>1 or (Dy/H,)|u'/u[>1. where
I1l. LONG-WAVELENGTH APPROXIMATION , [ dy’ 7,
| o - Fop=ie [ " [ #anay. as
Equation(3) can be written in terms of the canonical field n z°(n")

perturbationQ=2zR, as
The O(k?) effect cannot be neglected if this integral be-
" 2 B comes larger than unity. As may be guessed from the form of
Q"+ k Iyl Q=0. (12) the integral, such a situation appears if there is an epoch
during whichz?(5)<z?(7,). To be specific, let us assume
From this we see that the general solution K8<|z"/z| is  z(n)<z.=z(n) for 5> 79(> 7). ThenF(7) will become
given approximately by large and approximately constant fag< <z, and will

1"
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decay whenn>7y. This behavior is quite similar to the Vo+AL(d— ) for ¢> g,
behavior of the lowest order decaying m iven in V =
ying maeg ) g (D= VorA_(d— o) for d<dy.

Eqg. (13). In other words, the growing mode can be substan-

gally gontamlgated dbyt a compcl)nent tgat behavez I'kebth.eff the change in the slope is sufficiently abriypi, then the

cgﬁzilallrr:?omola?,eagca:egan no longer be assumed as BeING,,\_roll can be violated and fak, >A_>0 the field enters
9 ’ a friction-dominated transieribr “fast-roll” ) solution with

However, we can use our freedom to pick the two arbi--. . ) - .
trary constants of integratio€;=0 and C,=—F,/D,, %=~ —3H® [3]until the slow-roll conditions are once again

(23

whereF, =F(#,), in the solution foru so that satisfied:
D(7) . TAL for ¢> ¢y,
u== 1_Fk Dk +F(77) Ug, (19) 3H0¢_[_A_(A+_A)e3HOA’[ for ¢<¢O
(24)

and thenu—uy when n— n, and again whenp— 7, .

Thus, as far as is possible, the growing mode solution mayor ¢<¢o we have

still be considered approximately constant on superhorizon

Scale§: A,eHOAt+(A+_A,)e_2HOAt
In order to evaluate the enhancement coefficier Eq. Z="d 3H2

(10) we requireu’/u at = 7, which will be non-zero. We 0

(25

find This decreases rapidly to a minimum valuey,
" 37, ~(A_ /A+)2/3Zo for A, >A_, which can cause a significant
— ~—F,. (200  change inR. on superhorizon scales.
uj,- e Dy First let us discuss the behaviorBf ). For a mode that
leaves the horizon in the slow-roll reginzegrows propor-
Then Eq.(10) for « may be approximated as tional to a while ¢> ¢, so that the integrand dd(#) re-
mains small. HenceD(#n)~D,, which implies R.(7)
Dy R¢ ~Rc(m) until =7y Even after the slow-roll condition is
a%HS_HkE_Fk’ (21) violated, R.(#») still remains constant untiz becomes

smaller thanz, and the integrand oD (%) becomes large

where Dy and F, are those given in the long-wavelength again. TherD(7) may decrease rapidly, unil. approaches
approximation, Eqs(14) and (18), and for definiteness we the asymptotic value fop— 7, , given by Eq.(22). Substi-
will take (k/H,)2=0.1. tuting the above solution far in Eq. (25) into Eq. (14) we

In slow-roll inflation, the time variation of is small and obtain

z increases rapidly, approximately proportional to the scale

3
factor a. Hence neither the integr&, nor F, can become + AL(L ﬂ) for k> (k/'Hy)Ho,
large. Soon after horizon crossirg@,/R.<H, so thata D~ A \He Kk 26
~1 and the standard resai( ﬂ)”Rc(_ﬂk) holds. However, K . A, [H k)3 for k= (KIH)H
if the slow-roll condition is violatedg$ may become very N K Ho kJ7H0:

small andz may decrease substantially to give a large value

of Dy andFy. (The case where actually crosses zero is which shows that foA, /A_>1, we haveD,>1 on scales
treated separately in the AppendiXhen at late times, we (A_/A,)Y*H,<k=(A. /A_)*H,.

have A similar behavior is expected fd¥( 7). Using again the
solution forz in Eq. (25), the double integral in Eq18) is
Re(my) = au(n,)~au(n) = aRe( 7). (22 evaluated to give
Thus the final amplitude will be enhanced by a fadtef, 1A [k H\®
which can be large iD,>1 or F,>1. EA_(_ —) for k> (k/I'Hy)Ho,
A\ He k
P 2a, k2 @7
IV. STAROBINSKY’S MODEL b for k< (kIHy)Ho.
5A_\Hy

As an example we consider the model discussed by Star-
obinsky[8], where the potential has a sudden change in itsl’hust>1 for (A_ /A Y2Hy<k=(A, IA_)Y5H,.

slope at¢= ¢, such that Combining the effects oD, and F,, we see that the
correction due td-, dominates on scalds<H, andD on
scalek>H,. In particular the spiky dip in the spectrum seen
lEquivalently, one can view this as exploiting the ambiguity in thein Fig. 1 atk~(A_/A;)Y?H, is caused by i.e., it is the
definition of the growing modei, to include part of the decaying O(k?) effect in the perturbation equati@8). To summarize,
modev, which as far as possible cancels out the variation,in the curvature perturbation is significantly affected by the dis-
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underlying spectrum as that produced during the subsequent

0 . ) ) O .
10 " slow-roll era. This is a manifestation of the “duality invari-
1072 ] ance” of perturbation spectra produced in apparently differ-
10~4 ] ent inflationary scenarigsl0].
O ] Starting from a particular asymptotic background solu-
o 1o-8 tion, z(#), one finds a two parameter family of solutions
10710 g ~ 7 dn’
10712 ] 2(n)=Cy2(n)+Csz(7) > o (28)
o R n z°(7n")
=3 102 10=1 100 1q1 2 a3
10710 710 k/19cf)o 107 107 10 which leavez”/z unchanged in the perturbation equati@d)

and thus generate the same perturbation spectrum from
FIG. 1. The power spectrum for the Starobinsky md@with ~ vacuum fluctuationg10] (up to the overall normalization
A, /A_=10" Plotted are the exact asymptotic value of the curva-C,). The variablez itself obeys the second-order equation
ture perturbatiork §(77*), the horizon-crossing valuﬂg(nk), and

the enhanced horizon-crossing amplitudéRg(nk) using the ) 2 5 H" H'?
long-wavelength approximation. The range of scales between the 2"+ W_SH +H'+2W—2—2 z=0. (29
dotted lines corresponds to modes leaving the horizon during the H

transient epoch, defined as the region whgre<0. Also plotted

. B . 2~ .
is the slow-roll amplitudeR 2 given by Eq.(31). Thus for a weakly interacting fielddfV/d¢$?~const) in a

quasi—de Sitter backgroundt & const) the equation can be

continuity at ¢~ ¢o even on superhorizon scales frokn approximated by the linear equation of motion

~(A_IAL)Y?Hy up tok~ (A, IA_)3H,.

Similar behavior was observed in the model studied by z'+
Leach and Liddld 3] for false-vacuum inflation with a quar-
tic self-interaction potential9], whose power spectrum is L~ . .
shown in Fig. 2. In this model there is no discontinuity in the-l._he gene.ral solution(7) is relate_d to .the gsymptohc late-
potential, so the oscillations seen in Starobinsky’s model argme §o|ut|onz( 7) by the expression given in qu8). .
washed out. This means that the usual slow-roll res{iaking ¢~

In both cases our analytic estimate of the enhancement on (dV/d$)/3H] for the amplitude of the curvature perturba-
superhorizon scales is in excellent agreement with the ndions in Eq.(1),
merical results on all scales. Thus our approximate formula
for a given by Eq.(21) will be very useful for estimation of R~ —
the curvature perturbation spectrum in general models of
single-field inflation.

It may be noted that in the Leach and Liddle model themay continue to be a useful approximation even when the
long-wavelength conditiork?<|z"/z], is violated for modes actual background scalar field solution at horizon crossing is
k<H,. It is rather surprising that our long-wavelength ap-no longer described by slow roll, as was noted previously by
proximation still works very well for this model. Seto, Yokoyama and Kodanial] and seen in our figures.

2

V
2d7)2—2H2)z~o. (30)

3H3

2m(dVide) 3

1
k=H

V. INVARIANT SPECTRA VI. SUMMARY

A striking feature of these results is that the modes which We have found that in single-field models of inflation the
leave the horizon during the transient regime share the san@irvature perturbation can be enhanced on superhorizon

scales, provided tha¢/H becomes small compared to its

100F Nomerical | o ' ] value at horizon crossing. Violation of slow roll is a neces-
1072 sary, but not sufficient, condition for this to take place. We
10-4] ] have presented a quantitative criterion for this enhancement,

sl ] namely that either of the integra®, andF defined by Egs.

= 07 ] (7) and (18), respectively, become larger than unity. In the
& 1078 - long-wavelength approximatiork{<|z"/z|) these integrals
10-10 - ] are expressed in terms of the background quantty
10-12[ 1 =a¢/H, as givep by Eqgs(14) and (18), SO an ar)alytical

_qal ] formula for the final curvature perturbation amplitude may

10 e — — 5 ") = be derived without assuming slow roll inflation. In the case

10 10 k/xJO 10 of a weakly self-interacting field in de Sitter inflation we

recover the usual slow-roll formula for the amplitude of the
FIG. 2. Power spectrum for the false-vacuum quartic model asscalar perturbations even when the background solution is
in Fig. 1. far from slow-roll at horizon crossing.
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APPENDIX: IF ¢ CROSSES ZERO I
242C*(n— o)

(A5)

The case wherp and hencez changes its sign can be
treated as follows. For simplicity, let us assumehanges This should be extended to the regigre 77, as the solution
the sign only once ay= 7. Since the integraF, is still  (A3) which implies
well defined in this case, we focus on the intedpal.

In the vicinity of =7y, z can be expressed as-zy( 7 , ,
" : , n-edny 7 dy
—1no) Where zy=2'(7,). Hence the equation foR. be- v=ulim f _+f ————|, (A6)
comes w0\ Jn  Z2u? Jyerez?u®  zp%CPe
d? 2 d _ : =
F+ — ﬂ‘i‘k R.=0. (A1)  for »<7o. Thus introducing the functio®(7) by
Y — 7o
The two independent solutions can be found as D(7) im f’m*fd ,Z§Uﬁ+ J”* ,zﬁuﬁ_ 2 Zug
1 37_(|( e—0 n zu ot € K zu € Z(’)ZUS '
uwc(l—ng(n— 70)%+ |, (A2) (A7)

and D,=D(7,), whereu,=u(7), the decaying mode
. normalized tou at »= 7, is given by

1 2
5k (=m0 + -+

oo

/A/l]
(A3) ~
. _ D(7n)
It is apparent thati should be chosen as the growing mode, v(n)=u(n) —=—. (A8)
and it remains constant across the epageh7,. Dy

We requirev to describe the decaying mode. As before, ) _
we consider an integral expressionwoin terms ofz? andu. ~ Thus exactly the same argument applies to this case, by re-
Then placing the originaD, by the aboveD, .
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