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Cu2ZnSnS4ðCZTSÞ is a non-toxic earth abundant material and a promising quaternary

semiconductor compound of groups I � II � IV � VI having a kesterite symmetrical

structure. Due to its optimum direct bandgap, it has been considered as a suitable

material for absorber layers for photovoltaic cell applications. This paper presents the

numerical simulation and modeling of CZTS based thin film kesterite photovoltaic

cells using SCAP-1D software. The influence of device parameters such as the carrier

concentration, thickness, densities of absorber, buffer and window layers, defect densi-

ties and the temperature effect on the performance of the ZnO=CdS=CZTS=Mo photo-

voltaic cell structure are analyzed. Defect densities are added to the absorber layer and

the interface between the buffer layer and the absorber layer. This type of solar cell

does not comprise any toxic material and can lead to non-toxic thin film photovoltaic

cells with outstanding optical properties. In this work, promising optimized results had

been achieved with a conversion efficiency of 23.72%, a fill factor of 82.54%, a short-

circuit current (JscÞ of 44.87 mA=cm2, and an open circuit voltage ðVocÞ of 0.64V.

Published by AIP Publishing. https://doi.org/10.1063/1.5023478

I. INTRODUCTION

Semiconductor devices play a significant role in commercial applications and can be widely

used in power generation in the form of photovoltaics. Photovoltaic cells absorb the radiation

of sunlight and convert it into electrical energy.1 Non-crystalline and crystalline photovoltaic

cells are made from elemental and compound materials. Materials that exhibit higher conver-

sion efficiencies are of a crystalline group, and their cost of production is higher than those of

poly- and microcrystalline. Research gained more attention due to satisfactory performance,

low-cost manufacturing, reliability, and stability of poly- and microcrystalline families of mate-

rials.2 For the manufacturing of solar cells, thin film technology is one of the cost-effective and

efficient subjects of intense research in the photovoltaic industry. Thin-film photovoltaic cells

are very suitable for low and large-scale photovoltaic cell applications. In the current scenario,

economical and high-power conversion efficiency (PCE) photovoltaic devices without degrada-

tion of materials are fabricated for the generation of electricity.3 Silicon based photovoltaic

cells dominated the market for many years, and due to intensification in manufacturing capabili-

ties, thin film photovoltaic cells are gaining significance.4 For the manufacturing and production

of silicon based thin film solar cells, different major deposition techniques like sputtering, ther-

mal evaporation, molecular beam epitaxy, e-beam evaporation, close space sublimation, and

metal organic chemical vapor deposition techniques are attempted. So, the cost of the material,
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technology, and energy consumption used by these sophisticated fabrication techniques makes

the solar cell panel expensive.5

Cu In;Gað ÞSe2 ðalso known asCIGSÞ and related alloy based thin-film chalcopyrite photovol-

taic cells have already been presented in 2015, on the laboratory scale, they have a conversion

efficiency of about 21:7%, and these types of devices have a high absorption coefficient.2,6

The commercial production of CIGS photovoltaic cells is limited because of the higher cost

of using Gallium ðGaÞ and Indium ðInÞ: Kesterite solar cells utilizing CZTS ðCu2ZnSnS4Þ and

CZTSe ðCu2ZnSnSe4Þ and their alloys CZTSSe ðCu2ZnSn SxSe1�xð Þ4Þ are emerging as the most

auspicious replacement for chalcopyrite absorbers by replacing indium(In) with comparatively

inexpensive Zinc ðZnÞ and Gallium ðGaÞ with Tin ðSnÞ in the CIGS absorbers.7–9 The copper

zinc tin sulphide Cu2ZnSnS4 solar cell fabrication is very efficient and of low price for electric

power generation. The outstanding features of CZTS based solar cells made it very interesting

in the thin film community. For the manufacturing of a thin film photovoltaic cell, CZTS is con-

sidered as an ideal absorber material for an effective light absorber material. CZTS is a promis-

ing quaternary semiconductor compound of groups I � II � IV � VI having a kesterite symmet-

rical structure with a direct optical bandgap ranging from 1:4 eV to 1:5 eV (Refs. 10–13) and a

large absorption coefficient a > 104cm�1 .13–16 In 1997, the first CZTS (vacuum deposited) solar

cell is reported, having a power conversion efficiency of 0:66%.11 A conversion efficiency of

6:7% was reported for CZTS based photovoltaic solar cells in 2009.17 In 2011, the record con-

version efficiency was 8.4%.18 A conversion efficiency of 12.6% was reported for CZTSSe

in 2013.19 The Shockley Queisser ðSQÞ limit is the standard for comparing new photovoltaic

technologies. It defines the maximum possible solar energy conversion efficiency for a specific

material.20 According to the Shockley-Queisser limit, the optimum conversion efficiency of

around 28% is theoretically possible for a CZTS based solar cell by tuning the bandgap.21 But

still, it is not experimentally possible to achieve a conversion efficiency of 28% from a solar

cell because of the lack of understanding of material characteristics. Numerical analysis plays

a significant role in the better understanding of the material characteristics and also in the cell

performance. In 2010, the reported power conversion efficiency of the CZTS=CdS structured

photovoltaic cell by numerical analysis is about 7:55%.6 A conversion efficiency of 15% was

reported for the CZTS=CdS structure photovoltaic solar cell in 2016.22 A conversion efficiency

of 18:05% was presented for the CZTS=CdS structure solar cell in 2017.23

Numerical analysis of the kesterite-based ZnO=CdS=CZTS=Mo solar cell is proposed in

this work, and SCAP-1D is used for the simulation of a solar cell. Different parameters which

affected the performance of a photovoltaic cell are also explained. In our simulation, the thick-

ness of the absorber layer ðCZTSÞ varies from 1lm to 5lm and the bandgap energy is 1:45 eV.

The bandgap of the CdS buffer layer is higher than that of the absorber layer, and so, maximum

photons are absorbed in CZTS. Due to this, short-circuit current (Jsc) and open circuit voltage

(Voc) of the solar cell increases, which also increases the overall conversion efficiency of the

photovoltaic cell. The proposed results in this study will give a beneficial guideline for the

designing of high performance CZTS based solar cells.

II. SOLAR CELL DESIGN

Figure 1 visualizes the proposed ZnO=CdS=CZTS=Mo solar cell structure. Here, CdS and

CZTS are the buffer and absorber layers, respectively, and they are the key elements of the

proposed device. ZnO works as a window layer and molybdenum ðMoÞ as a back contact. These

key elements of a device are used for determining the electrical as well as photoelectric charac-

teristics of a solar cell. These are very helpful for the understanding of the performance of a

device through numerical analysis. Solar Cell Capacitance Simulator (SCAPS-1D) program is

used to analyze the performance of a photovoltaic device. The analysis is performed on the

parameters like the effect of temperature variations on the performance of the photovoltaic cell,

absorber layer dopant concentration and thickness, buffer layer dopant concentration and thick-

ness, and compensation ratio, and the effect of the illumination power of the sun has been inves-

tigated. This analysis helps to achieve a conversion efficiency of 23.72%.
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III. NUMERICAL MODELING AND MATERIAL PARAMETERS

For the better understanding of the performance of a device, the simulation software that can

be used for the numerical analysis of the device must be able to solve the semiconductor basic

equations like the continuity equation for holes and electrons and the Poisson equation relating

the charge to the electrostatic potential. The charge carrier transport equation and the basic equa-

tions are well explained in the study by Simya et al.24 Solar Cell Capacitance Simulator (SCAP-

1D) developed at the University of Gent, Belgium, is used to simulate the proposed solar cell.

SCAP-1D is a one-dimensional simulation program for the modeling of a device. This software

is designed to simulate and helps us to analyze the J-V characteristic curve, ac characteristics

(C-V and C-f), spectral response (QE) of a device, power conversion efficiency (PCE), fill factor

(FF), short-circuit current (Jsc), open circuit voltage (Voc), energy bands of materials used in the

solar cell, and concentration of different materials used in solving the semiconductor basic equa-

tions, i.e., the hole and electron continuity equation and the Poisson equation.24–26

Poisson’s equation used for semiconductor device simulation is

@

@x
e0er

@w

@x

� �

¼ �q p� nþ Nþ
D � N�

A þ
qdef

q

� �

: (1)

The continuity equations for holes and electrons are

�
@Jn
@x

� Un þ G ¼
@n
@t

; (2)

�
@Jp
@x

� Up þ G ¼
@p
@t

: (3)

Drift-diffusion equations for holes and electrons describe the carrier transport and are

expressed as

Jn ¼ �
lnn

q

@EFn

@x
; (4)

Jp ¼ �
lpp

q

@EFp

@x
; (5)

where e0 and er are the permittivities of vacuum and the semiconductor, W is the electrostatic

potential, N�
A and Nþ

D are the densities of ionized acceptors and donors, p and n are the free

carrier concentrations, qdef is the defect charge density, Jp and Jn are the hole and electron

FIG. 1. Block diagram of a CZTS solar cell.
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current densities, and G is the generation rate. The continuity equation and Poisson equation

with suitable boundary conditions at the contacts and interfaces result in a system of coupled

differential equations in ðW; EFn; EFpÞ or ðW; n; pÞ. SCAPS-1D software computes a small sig-

nal and a steady state and solution of the system.24,27

The measure of a photovoltaic cell quality is the Fill Factor ðFFÞ. FF is premeditated

by equating the maximum power (Pmax) to the theoretical power (Pt) which would be output

at both the short circuit current (Jsc) and the open circuit voltage (Voc) as given in Eq. (6). The

ratio of the energy output from the photovoltaic solar cell to the energy input from the sun is

the power conversion efficiency PCEð Þ mathematically expressed in Eq. (7)

FF ¼
Pmax

Pt

¼
Vmax Imax

VOC JSC
; (6)

PCE ¼
VOC JSC FF

Pin

: (7)

The parameters need to be defined are the absorber layer thickness, electron-hole mobility,

intrinsic carrier concentration, electron affinity, bandgap, and doping density. For buffer and

window layers, similar parameters are also required which are listed in Table I. Here, p is the

hole concentration, n is the electron concentration in cm�3, and W is the thickness in lm. v is

the affinity in eV, Eg is the bandgap energy in eV, le is the electron mobility in cm2=Vs, lp
is the hole mobility in cm2=Vs, NV is the valence band effective density of state, and NC is the

conduction band effective density of states in cm�3. All the simulations are conducted under

AM 1.5 illumination. The input parameters used in our numerical analysis performed are listed

in Table I.

IV. RESULTS AND DISCUSSION

A. Energy band diagram

The energy band diagram for the proposed CdS=CZTS solar cells is shown in Fig. 2. This

energy band diagram is taken from the output of SCAPS for analysis purpose. The energy band

diagram helps in explaining the properties of the solar cells. For incident light photons, the

bandgap value that is optimal for most of the light to be absorbed for effective conversion effi-

ciency is greater than or equal to the maximum bandgap value of 1.4 eV.

B. J-V characteristics of the CdS/CZTS solar cell

Conversion of light energy into electrical energy is the main function of the photovoltaic

cell. In the dark condition, when there is no light, the photovoltaic solar cell is a large flat

diode and produces the exponential J-V curve. The cell gives an extremely smallest value of

current, which is due to minority carriers in the dark condition. The solar cell starts working

TABLE I. Simulation parameters for modeling of the CZTS based kesterite solar cell.18,22

Parameters p-CZTS (absorber layer) n-CdS (buffer layer) n-ZnO (window layer)

Thickness, W (lm) 4 0.05 0.2

Bandgap, Eg (eV) 1.45 2.4 3.3

Electron affinity, v (eV) 4.5 4.5 4.6

Dielectric permittivity, er 9 9 9

Effective density of states, NC (cm�3) 2.2 � 1018 1.8 � 1019 2.2 � 1018

Effective density of states, NV (cm�3) 1.8 � 1019 2.4 � 1018 1.8 � 1019

Electron mobility, le (cm
2/V s) 60 100 100

Hole mobility, lp (cm
2/V s) 20 25 25

Electron and hole concentration, n, p (cm�3) 7 � 1016 1 � 1017 1 � 1018
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under the light illumination condition, and current flows due to charge carriers generated by the

incidence photons. The J-V characteristic curve of the CdS=CZTS photovoltaic cell is illus-

trated in Fig. 3.

C. Effect of the CZTS absorber layer thickness

Power conversion efficiency ðPCEÞ is directly affected by the absorber layer thickness of a

device. The absorber layer ðCZTSÞ thickness effect on photovoltaic cell performance is shown

in Fig. 4. The effect of the thickness of the absorber layer is analyzed by altering the CZTS

absorber layer thickness from 1lm–5lm, while other material parameters of different layers are

kept unchanged. With the increase in the thickness of an absorber layer, JSC increases with an

increase in VOC. PCE also increases with FF up to a point of optimal thickness. After reaching

FIG. 2. Energy band illustration of the CZTS solar cell.

FIG. 3. Dark Vs Light J-V characteristics.
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the optimal values, conversion efficiency will be constant, if we further increase the thickness,

PCE and FF will decrease. The increase in JSC with an increase in VOC is primarily due to more

absorption of photons of longer wavelength, and this will in turn affect the ratio of photo-

generated carriers. The optimal value of the thickness of the absorber layer is 4 lm.

D. Effect of the acceptor concentration of the absorber layer on device performance

The acceptor concentration simulation results are shown in Fig. 5. The acceptor concentra-

tion is varied from 1� 1015cm�3 to 1� 1018cm�3. Figure 5 illustrates that Jsc decreases with the

increase in the doping concentration, whereas Voc increases. The main reason behind is that with

the increase in the acceptor carrier concentration, the saturation current of a device also increases,

and then, resultantly Voc increases. Jsc decreases due to the fact that the higher carrier densities

will boost the recombination process and reduce the probability of the collection of the photon-

generated electrons. The photons of longer wavelength having less energy are deeply absorbed in

the CZTS layer. So, the collected conversion efficiency is more dependent on the influence of

the concentration density. From Fig. 5, it is very clear that FF and PCE also increase with the

increase in the carrier concentration in the absorber layer material. After reaching the optimal

value of the acceptor carrier concentration, PCE remains constant, whereas FF and Voc decrease

gradually. The optimal value taken for the acceptor carrier concentration is 7� 1017 cm�3.

E. Effect of the buffer layer thickness

The buffer layer thickness influence on the performance of a photovoltaic cell is also

explored. The buffer layer thickness is varied from 0:01lm to 0:1 lm. Simulated fallouts are

shown in Fig. 6. Figure 6 illustrates that with an increase in the buffer layer thickness, there is

no change in short-circuit current (Jsc), open circuit voltage (Voc), power conversion efficiency

ðPCEÞ, and Fill Factor (FF). So, this result is comprehended that the change in the thickness of

the buffer layer did not affect the output of the photovoltaic device. For designing a CZTS=CdS
based kesterite device absorber, the optimum thickness taken is 0:3lm.

FIG. 4. Effect of the absorber layer thickness on CZTS photovoltaic cells.
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F. Effect of the donor concentration of the buffer layer on device performance

The donor concentration simulation results are shown in Fig. 7. The donor concentration is

varied from 1� 1015cm�3 to 1� 1018cm�3. The figure illustrates that with the increase in the

doping concentration, Jsc and Voc almost remain constant, whereas the conversion efficiency

and fill factor of a device have a slight change with the increase in the doping concentration.

After reaching the optimum value, the conversion efficiency and fill factor of a device remain

constant and start to decrease if we further increase the doping concentration in the buffer layer.

FIG. 6. Effect of the buffer layer thickness on CZTS photovoltaic cells.

FIG. 5. Acceptor concentration in the absorber layer.
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So, the clinched optimal concentration value of the buffer layer taken is 1� 1017 cm�3. From

Fig. 7, with the increase in the doping concentration in the buffer layer, no major change is

obtained, which affects the working of the device. So, this result is comprehended that the

change in the concentration in the buffer layer did not affect the overall output of the photovol-

taic device.

G. Effect of working temperature on solar cell performance

In the performance of photovoltaic devices, working temperature plays a significant role.

The photovoltaic panels are installed in the open atmosphere. So, due to this increase in heat-

ing in the solar cell due to the sunlight, the performance of photovoltaic cells is affected. The

photovoltaic cell panels are operating at a temperature greater than 300K. The influence of

the working temperature on the proposed cell is also investigated. For investigation purpose,

we take the temperature in a range of 250K to 400K. The simulation results are shown in

Fig. 8.

Open circuit voltage is directly affected by the temperature, and due to this, the overall

photovoltaic cell performance is also affected. With the increase in temperature, photovoltaic

cell performance decreases. Due to higher temperature, the material carrier concentration,

bandgaps, and electron and hole mobilities are affected and lower conversion efficiency from a

cell is achieved.28 Reverse saturation current J0 depends on the temperature due to which Voc

decreases with the increase in temperature. Reverse saturation current rises with temperature

rise, and this decrease in current is the main cause for the Voc decrease as given in Eq. (8).29

Electrons gain more energy from the increased operating temperature. These electrons are

unstable due to the higher temperature and are more likely to recombine with the holes before

reaching the depletion region. Figure 8 illustrates that with the increase in temperature, the

conversion efficiency of the device decreases. FF and Voc also decrease with the increase in

temperature, whereas Jsc increases

Je Vð Þ ¼ J0 exp
qVoc

kBT

� �

� 1

� �

: (8)

FIG. 7. Donor concentration in the buffer layer.
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H. Effect of defects on photovoltaic cell performance

The effect of the absorber layer defect on photovoltaic cell performance was analyzed in

this step. The density of these defects has a direct effect on the photovoltaic cell performance

because with the increase in the density of defects, the minority carrier lifetime reduces, and

with the reduction in the lifetime, the diffusion length of electrons and holes also reduces, thus

increasing the recombination loss in the absorber layer. Figure 9 shows the effect of absorber

defect density on solar cell performance.

The effect of interface defect density between CdS andCZTS on solar cell performance

was observed in this step using SCAPS. The trap density at the interface will lead to surface

recombination of light generated electron hole pair, and this will affect the performance of the

solar cell. Figure 10 shows the result of the interface defect density effect on Voc and Jsc. From

FIG. 8. Effect of temperature on the CZTS photovoltaic cell.

FIG. 9. Effect of the absorber layer defect on photovoltaic cell performance.
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Fig. 10, it is found that increasing the density of defects will reduce the Voc, but there will be a

slight decrease in Jsc, which occurs because when interface trap defect density increases, the

surface recombination also increases, and Fig. 10 shows the validation of the result of the effect

of interface recombination of solar cell performance.

I. Comparison with the experimental design solar cell results

For the comparison of simulation results with the experimental results, the value added

between the interface of CdS=CZTS is Nt ¼ 5� 1012 cm�2ð Þ. In Table II, the CZTS absorber

layer defect is shown.22,30

FIG. 10. Effect of interface defects on photovoltaic cell performance.

TABLE II. Defects in the CZTS absorber layer.

Defect properties Values

Energy level with respect to reference (eV) 0.6

Total Density ð1=cm3Þ Nt 1 � 1015

Capture cross-sectional area of electrons (cm2) de 4.4 � 10�15

Capture cross-sectional area of holes (cm2) dh 4.4 � 10�15

FIG. 11. Comparison of simulated results in SCAPS with experimental data presented in Ref. 31.
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Figure 11 illustrates the results of the CdS=CZTS solar cell simulated in SCAPS with

defects and compares them with the experimental result obtained in Ref. 31. After the defect

study, the results from experimental work were simulated using SCAPS software to validate the

proposed model. With more study of those defects, it is probable that we can enhance the effi-

ciency of the CdS=CZTS solar cell.

TABLE III. Output performance of the experimentally stated CZTS based kesterite solar cell from the literature.

Structure

Power Conversion

Effeciency, PCE ð%Þ

Short circuit current

density, JSC ðmA=cm2Þ

Open circuit

voltage, VOCðmVÞ

Fill factor,

FF (%) References

CZTS=CdS 3.59 13.6 635 41.9 31

CZTS=CdS 6.77 17.9 610 62 17

CZTS=CdS 8.4 19.5 661 65.8 18

CZTS=CdS 6.25 15.7 623 63.9 30

CZTS=CdS 6.77 17.9 610 62 32

CZTS=CdS 6.81 17.8 587 65 33

CZTS=CdS 1.3 7.13 582.4 32 34

CZTS=CdS 7.1 21.8 614.3 55.5 35

CZTS=CdS 6.7 19.9 592.4 57.6 35

CZTS=CdS 4.4 14.6 572.6 52.2 35

CZTS=CdS 4.0 16.1 546.7 45.8 35

CZTS=CdS 9.4 21.3 700 63 36

CZTS=CdS 2.6 14.2 650 28 36

CZTS=CdS 2.35 12.8 399.2 45.8 37

CZTS=CdS 1.68 4.6 723.3 51 38

CZTS=CdS 2.08 5.5 723.3 54 38

CZTS=CdS 6.44 17.59 584 62.89 39

CZTS=CdS 3.7 16.5 420 53 40 and 39

CZTS=CdS 4.1 13 541 59.7 41 and 39

CZTS=CdS 4.59 15.44 545 54.57 42

CZTS=CdS 4.31 16.34 518 50.93 42

CZTS=CdS 3.91 14.62 526 50.81 42

CZTS=CdS 6.77 17.9 610 62 42 and 39

CZTS=CdS 7.3 22 567 58.1 43 and 39

TABLE IV. Output performance of the simulation based stated CZTS based kesterite solar cell from the literature.

Structure

Power Conversion

Effeciency, PCE ð%Þ

Short circuit current

density, JSC ðmA=cm2Þ

Open circuit

voltage, VOCðmVÞ

Fill factor,

FF (%) Reference

CZTS=CdS 8.4 19.5 749 57.48 22

CZTS=CdS 18.05 25.67 1020 69.26 23

CZTS=CdS 12.03 24.786 744.7 65.19 24

CZTS=CdS 13.41 19.31 1000.2 69.35 39

CZTS=CdS 10.4 20.3 772 66.5 44

CZTS=CdS 8.4 20.3 661 62.7 44

CZTS=CdS 22.63 51.925 780 55.83 45

CZTS=ZnSe 15.90 48.441 684 48.00 45

CZTS=CdS 10 23.96 640 65.2 46

CZTS=CdS 23.45 29.23 1118.8 71.70 47

CZTS=CdS 23.45 29.23 1118.8 71.70 47

CZTS=In2S3 11.68 26.66 770 56.96 48
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The obtained results of the CdS=CZTS solar cell along with defects and without defects

are given in Table V. These results are compared with the stated experimental and simulation

data, which are given in Tables III and IV.

The proposed results including the defects and excluding the defects of the CZTS based

kesterite solar cell are shown in Table V.

The results of our proposed simulation work with previous simulation work are given in

Fig. 12 and in Tables VI and VII.

TABLE V. Proposed results (with and without defects) of the CZTS based kesterite solar cell.

Structure

Power Conversion

Effeciency, PCE ð%Þ

Short circuit current

density, JSC ðmA=cm2Þ

Open circuit

voltage, VOC ðVÞ

Fill factor,

FF (%)

Without defects CZTS=CdS 23.72 44.87 0.64 82.54

With defects CZTS=CdS 3.67 15.57 0.637 42.8

Experimental data31 CZTS=CdS 3.59 13.6 0.635 41.9

FIG. 12. Comparison with the simulated results.6,22,23

TABLE VI. Comparison of functional parameters with previous simulations.

Structure

Power Conversion

Effeciency, PCE ð%Þ

Short circuit current

density, JSC ðmA=cm2Þ

Open circuit

voltage, VOC ðVÞ

Fill factor,

FF (%) Reference

CZTS=CdS 7.55 30.83 0.513 47.65 6

CZTS=CdS 8.4 19.5 0.749 57.48 22

CZTS=CdS 18.05 25.67 1.02 69.26 23

CZTS=CdS 23.72 44.87 0.64 82.54 Proposed

TABLE VII. Comparison of physical optimized parameters with previous simulations.

CZTS Reference 6 Reference 22 Reference 23 Proposed

Thickness (lm) 2.2 0.6 3 4

Acceptor concentration ðcm�3Þ 2� 1014 1� 1016 7� 1017 7� 1017
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V. CONCLUSION

In this work, we simulate the kesterite based ZnO;CdS;CZTS andMo solar cells on

SCAPS software. This work is very helpful for the understanding of researchers, who are inter-

ested in the manufacturing of CZTS based kesterite solar cells. Different parameters which

affected the performance of a photovoltaic cell and the conversion efficiency are explained. For

the In-depth understanding of a solar cell, J� V characteristic measures are not enough to

describe the behavior of a device because the response of the solar cell also depends on its

internal physical mechanism. Forgetting the confidence in the modeling of a solar cell, different

characteristics, as well as different possible conditions, are to be considered for simulation.

In this work, promising optimized results had been achieved with a conversion efficiency of

23.72%, a fill factor ðFFÞ of 82.54%, a short-circuit current ðJscÞ of 44.87 mA=cm 2, and an

open circuit voltage ðVocÞ of 0.64V. The results will give important guidance for the feasible

fabrication of higher efficiency CZTS based photovoltaic cells. From the accomplished results,

it is clear that improved performance can be achieved from the solar cell and numerical model-

ing plays a significant role.
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