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Abstract

Background: The CXCL12-CXCR4 signaling axis in malignant tumor biology has increased in importance, and these

peptides are implicated in tumor growth, invasion and metastasis. The aim of our study was to examine the

important role of the axis in pancreatic cancer (PaCa) cells’ relationship with stromal cells in gemcitabine-resistant

(GEM-R) tumors and to confirm the effectiveness of CXCR4 antagonists for the treatment of GEM-R PaCa cells.

Methods: We established two GEM-R PaCa cell lines using MIA PaCa-2 and AsPC-1 cells. The expression of CXCR4

mRNA in PaCa cells and the expression of CXCL12 mRNA in fibroblasts were examined by reverse transcription

polymerase chain reaction (RT-PCR). The expression of CXCR4 protein in PaCa cells was examined by immunosorbent

assay (ELISA) and immunocytochemistry. Using Matrigel invasion assays and animal studies, we then examined the

effects of two CXCR4 antagonists, AMD11070 and KRH3955, on the invasiveness and tumorigenicity of GEM-R

PaCa cells stimulated by CXCL12.

Results: We found that the expression of CXCR4 in GEM-R PaCa cells was significantly enhanced by GEM but not

in normal GEM-sensitive (GEM-S) PaCa cells. In RT-PCR and ELISA assays, the production and secretion of CXCL12

from fibroblasts was significantly enhanced by co-culturing with GEM-R PaCa cells treated with GEM. In Matrigel

invasion assays, the invasiveness of GEM-R PaCa cells treated with GEM was significantly activated by fibroblast-derived

CXCL12 and was significantly inhibited by CXCR4 antagonists, AMD11070 and KRH3955. In vivo, the tumorigenicity of

GEM-R PaCa cells was activated by GEM, and it was significantly inhibited by the addition with CXCR4 antagonists.

Conclusions: Our findings demonstrate that the CXCL12-CXCR4 signaling axis plays an important role in PaCa cells’

resistance to GEM. CXCR4 expression was significantly enhanced by the exposure to GEM in GEM-R PaCa cells but not

in GEM-S PaCa cells. Furthermore, CXCR4 antagonists can inhibit the growth and invasion of GEM-R PaCa cells. These

agents may be useful as second-line chemotherapy for GEM-R PaCa in the future.
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Background
Pancreatic cancer (PaCa) has the worst survival rate of

all cancers. PaCa remains the fourth leading cause of

cancer death in the United States [1]. With surgery,

radiotherapy and chemotherapy, the 5-year survival rate

of patients with PaCa remains less than 5 % [2]. There

has been some progress in the use of improved diagnostic

methods and development of novel targeted therapies.

Gemcitabine (GEM) was approved in 1997 as a first-line

chemotherapeutic drug for patients with locally advanced

or metastatic PaCa [3]. GEM remains the standard treat-

ment for pancreatic cancer patients. However, it has not

proven very effective clinically, and improvement in a pa-

tient’s survival undergoing GEM therapy is minimal [4].

Clinical experience has shown that there is a transient ef-

fect of GEM therapy on PaCa after beginning chemother-

apy; however, resistance to GEM readily appears.

Recently, the role of chemokines in malignant tumor

biology has increased in importance because studies

have shown that these peptides may influence tumor

growth, invasion, and metastasis [5–14]. We have re-

ported that two chemokines, CXCL8 and CXCL12, play

important roles in the angiogenesis of PaCa [5]. The

functional roles of CXCR4 in cell migration [14, 15] and

cell proliferation [16] in response to CXCL12 have been

suggested in malignant diseases. Furthermore, activation

of the CXCL12-CXCR4 signaling axis is involved in con-

ferring chemoresistance to PaCa cells through potenti-

ation of intrinsic survival mechanisms [17].

CXCR4 antagonists were initially developed as new

drugs for the treatment of HIV-1 infection [18–20].

With the rapid increase in our knowledge of non-HIV-

related functions of CXCR4, other potential applications

for treatment of cancer have emerged and have gradually

replaced the original intent to use CXCR4 antagonists as

anti-HIV drugs. There have been several reports describ-

ing the effects of CXCR4 antagonists (AMD3100,

AMD11070 and KRH3955) in the treatment of malig-

nant tumors, including breast cancer [21], small cell

lung cancer [22], cholangiocarcinoma [23], gastric can-

cer [24] and pancreatic cancer [17, 25, 26]. However, it

has not been reported whether the activated CXCL12–

CXCR4 signaling axis plays an important role in PaCa

cells’ resistance to GEM and whether CXCR4 antago-

nists can inhibit the activated signaling axis in GEM-

resistant (GEM-R) PaCa in vitro and in vivo.

The purpose of this study was to determine the roles

of the CXCL12–CXCR4 signaling axis in the relationship

between tumor and stromal cells in GEM-R PaCa. Fur-

thermore, we examined the therapeutic significance of

CXCR4 antagonists, AMD11070 and KRH3955, in pre-

venting the rescue effect of activated CXCL12-CXCR4

signaling. This is the first report that reveals the import-

ant role of the CXCL12-CXCR4 signaling axis in

enhancing resistance to GEM and the effect of CXCR4

antagonists on GEM-resistant PaCa cells.

Methods
Cell lines and culture conditions

Human pancreatic cancer (PaCa) cell lines MIA PaCa-2

and AsPC-1 and human dermal fibroblast were obtained

from the American Type Culture Collection (Rockville,

MD) and Kurabo Industries (Osaka, Japan), respectively.

The cell lines were maintained at 37 °C with 5 % CO2 in

a humidified atmosphere. The following media were

used: (1) MIA PaCa-2 cells were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM), (2) AsPC-1 cells

were incubated in Roswell Park Memorial Institute

(RPMI-1640) medium (Sigma Aldrich, St Louis, MO,

USA) supplemented with 10 % fetal bovine serum (FBS)

and antibiotics and (3) fibroblasts (FB) were maintained

in fibroLife S2 Comp kit (Kurabo Industries Ltd., Osaka,

Japan) supplemented with 2 % FBS.

Establishment of PaCa cell lines resistant to gemcitabine

Gemcitabine (GEM) was purchased from Toronto Re-

search Chemicals, Inc. (Toronto, Ontario, Canada). First,

we determined the half maximal inhibitory concentra-

tion (IC50) of GEM for MIA PaCa-2 or AsPC-1 cells

using the Premix WST-1 Cell Proliferation Assay System

(Takara Bio, Japan) according to the manufacturer’s in-

struction. Briefly, MIA PaCa-2 or AsPC-1 cells were

seeded at a density of 2 × 103 cells per 100 μL in 96-well

plates and allowed to adhere overnight. Then, cultures

were re-fed with fresh media containing various concen-

trations of GEM. After 72 h of incubation, absorbance

was measured at 450 nm in each well using a Spectra-

Max 340 spectrophotometer (Molecular Devices, CA,

USA). The IC50 of GEM for each pancreatic cancer line

was determined by constructing a dose-response curve.

Each pancreatic cancer cell line was passaged in the cell

lines’ IC50 concentration of GEM for 2 to 3 weeks. After

passage, we again determined the cell lines’ IC50 value

for GEM. Then, each pancreatic cancer cell line was pas-

saged in the cell lines’ re-determined IC50 concentration

of GEM for 2 to 3 weeks. The process was repeated at

increasing doses of GEM until the cell lines demon-

strated at least a 50-fold greater IC50 value for GEM

than the parental cell lines. The resultant cell lines were

resistant to GEM at a concentration of 20 μM.

Proliferation assay

The proliferation assay was conducted using the Premix

WST-1 Cell Proliferation Assay System (Takara Bio,

Japan) according to the manufacturer’s instruction.

Briefly, GEM-resistant (GEM-R) and GEM-sensitive

(GEM-S) MIA PaCa-2 or AsPC-1 cells were seeded at a

density of 2 × 103 cells per 100 μL in 96-well plates and
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allowed to adhere overnight. Then, cultures were re-

fed with fresh media containing various concentra-

tions (0–100 μM) of GEM. After 72 h of incubation,

absorbance was measured at 450 nm in each well

using a SpectraMax 340 spectrophotometer.

Enzyme-linked immunosorbent assays (ELISAs)

The expression of CXCR4 protein by GEM-R/S MIA

PaCa-2 and AsPC-1 cells was examined using the CXCR4

ELISA kit (USCN Life Science Inc., Wuhan, China)

according to the manufacturer’s instructions. A total

of 1 × 105 GEM-R/S cells were seeded in each

100 mm dish. Then, we added different concentra-

tions of GEM (0 – 20 μM), and the cells were incu-

bated for 72 h. After indicated treatments, cell lysates

were prepared. A total of 150 μg of protein was taken

for ELISA assay. Similarly, CXCL12 levels in the

supernatant from FB co-cultured with GEM-R/S MIA

PaCa-2 cells were determined using the CXCL12

ELISA kit (R&D, Minneapolis, MN, USA) according

to the manufacturer’s instruction. To determine the

synergistic effect of the tumor-stromal interaction, we

cultured FB (1.0 × 106 cells in 6-well plates) with or

without GEM-R/S [1.0 × 106 cells on inserts with 0.4-

μm pores (Thermo Scientific, Rockford, IL, USA)] for

72 h using a double chamber method. After the incu-

bation, the media were collected and microfuged at

1500 rpm for 5 min to remove particles. The super-

natants were frozen at -80 °C until use. A total of

150 μg of the protein was taken for ELISA assay.

RNA isolation and reverse transcription polymerase chain

reaction (RT-PCR)

Total RNA was extracted from cell pellets using an

RNeasy Plus Mini Kit (Qiagen, TX, USA), and RT-PCR

was performed using Superscript III First-strand Synthe-

sis SuperMix for qRT-PCR (Invitrogen, Carlsbad, CA,

USA). The concentration of each cDNA was measured

with a NanoDrop1000 (Thermo Fisher Scientific, DE,

USA) and adjusted to 40 ng/mL with diethylpyrocarbonate

(DPEC)- treated water. We performed real-time PCR with

FAM-labeled TaqMan probes (CXCR4: Hs00607978_s1;

CXCL12: Hs03676656_mH; GAPDH: Hs99999905_m1;

CXCR7: Hs00664172_s1 (Applied Biosystems, Foster City,

CA, USA)) and TaqMan Universal Master Mix (Applied

Biosystems) using Chromo4 (BioRad, MA, USA). PCR was

carried out by an initial incubation at 50 °C for 2 min,

followed by denaturation at 95 °C for 10 min and 50 cycles

of 95 °C for 15 s and 60 °C for 1 min.

Immunocytochemical staining

The expression of CXCR4 protein in GEM-R/S MIA

PaCa-2 cells was detected by immunostaining. Three

days after treating with GEM, GEM-R/S PaCa cells were

washed twice with ice-cold PBS, fixed in 4 % paraformal-

dehyde for 20 min at room temperature and washed

twice with ice-cold PBS. The cells were then incubated

for 15 min in PBS containing 0.5 % Triton X-100,

washed with PBS, blocked in 1 % BSA in PBS for

30 min and incubated with rabbit anti-CXCR4 poly-

clonal antibody (1:100, Abcam, Cambridge, UK) at 4 °C

overnight. Subsequently, the cells were washed with

PBS, incubated with Alexa Fluor 488 goat anti-rabbit

IgG (H + L) (1:100, Life Technologies, Carlsbad, CA)

and mounted with Prolong® Gold Antifade Reagent

with DAPI (Life Technologies, Carlsbad, CA).

Invasion assay

In vitro invasion assays were performed using the BD

Bio-Coat Matrigel invasion assay system (BD Biosci-

ences, Franklin Lakes, NJ) according to the manufac-

turer’s instructions. Briefly, GEM-R/S cells (2.5 × 104

cells) were seeded into the Matrigel precoated Transwell

chambers consisting of polycarbonate membranes with

8.0 μm pores. The Transwell chambers were then placed

into 6-well plates, into which we added basal medium

only or basal medium containing various concentrations

of recombinant CXCL12. After incubating GEM-R/S

cells for 22 h, the upper surface of the Transwell cham-

bers was wiped with a cotton swab and the invading

cells were fixed and stained using Diff-Quick cell stain-

ing kit (Dade Behring, Inc., Newark, DE). The number

of invading cells was counted in 5 random microscopic

fields (200×). To confirm whether the invasive potency

of PaCa cells was increased by FB-derived CXCL12

and inhibited by the CXCR4 antagonists, AMD11070

(AdooQ BioScience, Irvine, CA) and KRH3955 (Kureha

Chemical Industry, Tokyo, Japan), we performed an inva-

sion assay for GEM-R/S cells using a double-chamber

method. Briefly, we co-cultured GEM-R/S cells (2.5 × 104

cells in Transwell chambers) with FB (1 × 104 cells in 6-

well plates) blocking with or without CXCR4 antagonists,

AMD11070 and KRH3955, at a concentration of 1 μM.

After incubation for 22 h, invading cells were counted in

the same manner.

Animals

All animal studies were conducted in accordance with

the guidelines established by the internal Institutional

Animal Care and Use Committee and Ethics Committee

guidelines of Nagoya City University.

Female BALB/c nu-nu mice (5 to 6 weeks old) were

obtained from Charles River (Sulzbach, Germany).

The animals were housed in standard Plexiglas cages

(8 per cage) in a room maintained at constant

temperature and humidity and in a 12 h/12 h light-

dark cycle. Their diet consisted of regular autoclaved

chow and water ad libitum. All animal experiments
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were approved by the authorities in our institute and

were in compliance with the institution’s guidelines.

Subcutaneous transplant animal model

A total of 2 × 107 MIA PaCa-2 cells were injected

subcutaneously into mice. Tumors were measured

weekly and tumor volume was documented. Tumors

were allowed to grow until they reached a volume of

1 cm3, at which time the mice were sacrificed and

the tumor tissue was harvested. For serial transplant-

ation, the harvested tumor tissues were chopped into

pieces approximately 1 to 2 mm3 in dimension.

Tumor pieces were implanted subcutaneously into the

mice. GEM and CXCR4 antagonists were adminis-

tered 3 weeks after tumor implantation as follows:

25 mg GEM/kg body weight, 1 mg AMD11070, and

1 mg KRH3955/kg body weight were given intraperi-

toneally every week.

Experimental protocol

Mice were randomly assigned to 1 of the following 6 treat-

ment groups (4 mice per group): group I was not given

any drugs; group II was given GEM alone; group III was

given AMD11070 alone; group IV was given KRH3955

alone; group V was given GEM plus AMD11070; group

VI was given GEM plus KRH3955. Therapy was contin-

ued for 4 weeks, and the mice were sacrificed 2 weeks

later. We calculated the tumor volume according to the

following formula: tumor volume (mm3) = d2 x D/2,

where d and D were the shortest and longest diameter, re-

spectively. Finally, the tumors were harvested from mice

after the treatment and fixed in formaldehyde for further

analysis.

Immunohistochemical analysis

Formalin-fixed, paraffin-embedded mouse tumor tissue

sections were mounted on 3-amino-propyltriethoxylsilane-

coated slides. Dewaxed paraffin sections were placed in a

microwave (10 min, 600 watts) to recover antigens before

staining. Antibodies used were as follows: rabbit anti-

CXCR4 polyclonal antibody, rabbit anti-SDF-1α polyclonal

antibody (1:50) and, rabbit anti-Hypoxia-Inducible

Factor (HIF)-1α monoclonal antibody (1:100) (Abcam,

Cambridge, UK), followed by secondary antibodies

conjugated to biotin. Peroxidase-conjugated streptavi-

din was used with 3,3-diaminobenzidine tetrahydro-

chloride (DAB) (Biocare Medical, Concord, CA, USA)

as the chromogen for detection. Hematoxylin was

used for nuclear counterstaining. CXCR4-positive

PaCa cells, CXCL12-positive stromal cells and HIF-

1α-positive PaCa cells exhibited DAB-positive (brown)

staining; negative cells were stained with the hematoxylin

counterstain only. The number of CXCR4-immunoreactive

cells in mouse specimens was expressed as a percentage of

the total number of cells that were randomly counted in 10

fields at × 400 magnification. For each image, a color

deconvolution method was used to isolate CXCL12-

positive and HIF-1α-positive DAB-stained cells from

CXCL12-negative and HIF-1α-negative hematoxylin-

stained cells. DAB and hematoxylin were digitally

separated using ImageJ software (version 1.46c; WS

Rasband, National Institutes of Health, Bethesda,

MD, USA, http://rsb.info.nih.gov/ij/) and an ImageJ

plugin for color deconvolution that calculated the

contribution of DAB and hematoxylin, based on

stain-specific red-green-blue (RGB) absorption. Fol-

lowing deconvolution, the scale was set to the

200 μm scale bar on each image. The measurement

parameter was integrated optical density (IOD). Op-

tical density was calibrated and the area of interest

was set as follows: hue, 0–30; saturation, 0–255; in-

tensity, 0–255. Then, the values were counted. The

IOD was log10 transformed [27].

Nuclear factor-kappa B (NF-κB) activity

The activity of NF-κB was measured using NF-κB (p65)

transcription factor assays. A total of 1 × 105 GEM-R/S

cells of MIA PaCa-2 cells were seeded in 100-mm dishes

and incubated with different concentrations of GEM for

72 h. After indicated treatments, nuclear proteins were

extracted using NE-PER Nuclear and Cytoplasmic Ex-

traction Reagents (Thermo Scientific, IL, USA). The

concentrations of nuclear proteins were measured using

a Pierce BCA Protein Assay Kit (Thermo Scientific), and

protein concentrations were adjusted for equal loading

(200 μg/mL). The levels of NF-κB p65 protein detected

with the NF-κB p65 ELISA kit (Invitrogen, USA) accord-

ing to the manufacturer’s instructions.

Statistical analysis

All measurement data were expressed as means ±

standard deviation (SD). They were calculated for ex-

periments performed in triplicate (or more). Multiple

group comparisons were performed by using one-way

analysis of variance (ANOVA) followed by the Dunnett

test, and Bonferroni tests were used for post hoc 2-sample

comparisons. A two-sided p-value of less than 0.05 was

considered statistically significant. All statistical analyses

were performed using EZR (Saitama Medical Center, Jichi

Medical University, http://www.jichi.ac.jp/saitama-sct/Sai-

tamaHP.files/statmedEN.html; Kanda, 2012), a graphical

user interface for R (The R Foundation for Statistical

Computing, Vienna, Austria, version 2.13.0). More pre-

cisely, EZR is a modified version of R Commander (ver-

sion 1.6-3) that was designed to add statistical functions

frequently used in biostatistics.
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Results
The effect of GEM on the proliferation of GEM-R PaCa

cells in vitro

We first determined how GEM affected the prolifera-

tion of PaCa cells that were sensitive or resistant to

the drug. We used 2 GEM-R PaCa cell lines, MIA

PaCa-2 and AsPC-1. With these 2 cell lines, we found

that GEM significantly inhibited GEM-S cell prolifera-

tion in a dose-dependent manner (P < 0.01); however,

it could not inhibit GEM-R cell proliferation at the

doses used (Fig. 1a, MIA PaCa-2; Fig. 1b, AsPC-1).

The expression of CXCR4 in GEM-R PaCa cells was enhanced

by GEM

The expression of CXCR4 protein by PaCa cells was ex-

amined by means of ELISA assays. In MIA PaCa-2, the

expression of CXCR4 protein by GEM-S cells was sig-

nificantly inhibited by GEM in a dose-dependent man-

ner (P < 0.01) (Fig. 2a). In contrast, the expression of

CXCR4 protein by GEM-R cells showed a significant

dose-dependent enhancement by GEM (P < 0.01)

(Fig. 2b). In AsPC-1, there was no change of expression

of CXCR4 protein during GEM treatment of sensitive

cells (Fig. 2c). However, the expression of CXCR4

protein by resistant cells significantly increased in the

presence of GEM in a fashion that varied with the

dose (P < 0.01) (Fig. 2d). Furthermore, in RT-PCR,

there was no change of CXCR4 mRNA levels by GEM

treatment of sensitive MIA PaCa-2 cells (Fig. 3a). How-

ever, the level of CXCR4 mRNA in GEM-R cells was

significantly elevated by treatment with GEM in a dose-

dependent manner (P < 0.01) (Fig. 3b).

In immunocytochemical assays, staining of CXCR4

protein was primarily found in the cell membrane of

GEM-S and GEM-R cells. These cells were treated with

GEM at concentrations of 0 μM, 1 μM, 10 μM and

20 μM. The staining of CXCR4 in GEM-R cells was

enhanced by GEM as the dose was increased [CXCR4

(green) and DAPI (blue)] (Fig. 3c-j).

The secretion of CXCL12 from FB was enhanced by

co-culturing with GEM-R PaCa cells treated with GEM

To investigate the function of the CXCL12-CXCR4

signaling axis, we determined whether the secretion

of CXCL12 from FB was enhanced when FB were co-

cultured with PaCa cells. The expression of CXCL12

mRNA in FB was significantly enhanced by co-

culturing with GEM-R PaCa cells treated with GEM

(P < 0.01) (Fig.4a). Furthermore, the secretion levels of

CXCL12 protein from FB were significantly enhanced

by co-culturing with GEM-R PaCa cells treated with

GEM (P < 0.01) (Fig. 4b).

The role of CXCR4 in CXCL12-mediated invasiveness of

GEM-R PaCa cells: inhibition by CXCR4 antagonists

When GEM-R PaCa cells were exposed to GEM, the in-

vasive behavior of these cells was significantly enhanced

by stimulation with recombinant CXCL12 (P < 0.01)

(Fig. 5a). Moreover, the enhanced invasive behavior of

GEM-R PaCa cells was significantly inhibited by expos-

ure to CXCR4 antagonists (P < 0.01) (Fig. 5b). Further-

more, when GEM-R PaCa cells were exposed to GEM,

the invasive behavior of these cells was significantly ele-

vated by co-culturing with FB (P < 0.01) (Fig. 5c). The

activated invasive behavior of GEM-R PaCa cells was

significantly inhibited by treatment with neutralizing

CXCR4 antagonists (P < 0.01) (Fig. 5d). Photographs

show alterations of invasive behavior of the PaCa cells in

each treatment group (Additional file 1: Figure S1).

GEM enhanced the growth of GEM-R PaCa cells in a nude

mouse model: inhibition by CXCR4 antagonists

On the basis of these results, we asked whether CXCR4

antagonists affected the growth of GEM-R PaCa cells in

Fig. 1 Effect of GEM on the proliferation of GEM-R and GEM-S PaCa cell lines. a The proliferation of GEM-R and GEM-S MIA PaCa-2 cells (b) and

AsPC-1 cells was determined using WST-1 assays. Values are expressed as means ± SD. Statistical significance was analyzed by using one-way

ANOVA followed by Dunnett’s test. **, P < 0.01; *, P < 0.05 versus the control (0 μM)
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vivo, either alone or in combination with GEM. Six experi-

mental conditions were tested (see Methods, Experimental

Protocol). Using mice implanted with GEM-R 4 weeks

earlier, the final tumor volume of group II (GEM+)

was significantly greater than that found in any of the

other groups (P < 0.01) (Fig. 6a). With GEM-S PaCa

cells, the tumor volume of group I (no treatment)

was significantly greater than groups II (GEM+), V

(GEM+ AMD+) and VI (GEM+ KRH+) (P < 0.01)

(Fig. 6b).

In GEM-R PaCa cells, tumor volumes in group V

(GEM+ AMD+) and groupVI (GEM+ KRH+) were sig-

nificantly less than groups III (AMD+) and IV (KRH+)

(P < 0.05) and group I (no treatment) (P < 0.01) (Fig. 6c).

There was no significant difference among groups I (no

treatment), III (AMD+) and IV (KRH+). However,

tumor volume in group II (GEM+) was significantly

smaller than groups III (AMD+) and IV (KRH+) (P <

0.05) (Fig. 6d).

The photographs show the differences of the final

tumor volume of all groups in GEM-R PaCa cells

(Fig. 6e) and in GEM-S PaCa cells (Fig. 6f ).

Immunohistochemical analysis of CXCR4 and CXCL12 in

implanted tumor tissue

CXCR4 protein was primarily identified in the cell mem-

brane of PaCa cells. In contrast, it was not detected in

normal stromal cells of noncancerous regions in PaCa

tissue. Staining of CXCR4 protein in GEM-R cells

treated with GEM was greatly enhanced (Fig. 6g-j). Sig-

nificantly more CXCR4-positive cells were observed in

GEM-R cells treated with GEM than GEM-R cells lack-

ing such treatment (P < 0.05), GEM-S treated with GEM

(P < 0.01) and GEM-S without GEM treatment (P < 0.01)

(Additional file 2: Figure S2A). Staining of CXCL12 pro-

tein primarily occurred in the cytoplasm of stromal cells

around PaCa cells, but it was not detected in PaCa tis-

sues. Staining of CXCL12 protein was greatly enhanced

Fig. 2 Alteration of CXCR4 protein expression in PaCa cells by GEM. PaCa cells were treated with different concentrations of GEM (0–20 μM) for

72 h. The concentrations of CXCR4 protein in a MIA PaCa-2 GEM-S, b MIA PaCa-2 GEM-R, c AsPC-1 GEM-S d and AsPC-1 GEM-R were measured

by ELISA. Values are expressed as means ± SDs. Multiple comparisons were performed by using one-way ANOVA followed by Dunnett’s

test. **, P < 0.01; *, P < 0.05 versus control (0 μM)
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in stromal cells around GEM-R treated with GEM

(Fig. 6k-n). CXCL12 IOD values in stromal cells

around GEM-R PaCa cells treated with GEM were

significantly enhanced compared with other groups

(P < 0.01) (Additional file 2: Figure S2B).

The activity of NF-κB in GEM-R PaCa cells was enhanced

by GEM

To examine the details of the molecular mechanisms,

the activity of NF-κB in GEM-R/S PaCa cells was mea-

sured by NF-κB (p65) transcription factor assay. The ac-

tivity of NF-κB in GEM-R MIA PaCa-2 cells was

significantly higher compared to GEM-S MIA PaCa-2

cells (P < 0.01) (Fig. 7a). Moreover, the activity of NF-κB

in GEM-R MIA PaCa-2 cells was significantly enhanced

by GEM dose dependently (Fig. 7b).

Immunohistochemical analysis of HIF-1α in implanted

tumor tissue

Similarly, since HIF-1α might regulate the expression of

CXCR4, we examined the expression of HIF-1α in im-

planted tumor tissue. Staining of HIF-1α protein in

GEM-R cells treated with GEM was greatly enhanced

(Fig. 7c). Significantly more HIF-1α-positive cells were

observed in GEM-R cells treated with GEM than GEM-

R cells lacking such treatment (P < 0.01), GEM-S treated

with GEM (P < 0.01) and GEM-S without GEM treat-

ment (P < 0.01) (Fig. 7d).

The expression of CXCR7 mRNA in GEM-R PaCa cells

Since CXCR7 is another receptor of CXCL12, we exam-

ined the CXCR7 expression in GEM-R/S MIA PaCa-2

cells by RT-PCR. In RT-PCR, the expression levels of

Fig. 3 Alteration of CXCR4 mRNA and protein expression in MIA PaCa-2 cells by GEM. PaCa cells were treated with different concentrations of

GEM (0 - 20 μM) for 24 h. a The CXCR4 mRNA levels in GEM-S and b in GEM-R were measured using RT-PCR (normalized to GAPDH expression).

Values are expressed as means ± SD. Multiple comparisons were performed by using one-way ANOVA followed by Dunnett’s test. **, P < 0.01;

*, P < 0.05 versus control (0 μM). c-f The expression of CXCR4 protein in GEM-S and g-j GEM-R was detected by immunostaining. CXCR4

(green) and DAPI (blue). Original magnification, ×200
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Fig. 4 Alteration of CXCL12 mRNA levels in fibroblasts (FB) resulting from co-culture with MIA PaCa-2 cells. FB were co-cultured for 24 h

with GEM-R or GEM-S MIA PaCa-2 cells treated with or without GEM using a double-chamber method. a The mRNA levels of CXCL12 in

FB were measured using RT-PCR (normalized to GAPDH expression). Furthermore, after FB were co-cultured with PaCa cells for 72 h, the supernatants

were collected from FB. b The concentrations of CXCL12 protein from FB were measured using an ELISA kit. Values are expressed as means ± SD.

Multiple comparisons were performed using one-way ANOVA followed by the Bonferroni test. **, P < 0.01; *, P < 0.05

Fig. 5 Alteration of invasiveness of PaCa cells by CXCL12 stimulation and by co-culture with FB. The invasiveness of GEM-R and GEM-S

MIA PaCa-2 cells was assessed by a double-chamber method using a Matrigel invasion assay system. PaCa cells were seeded into Matrigel

pre-coated Transwell chambers. These cells were allowed to migrate for 22 h. The cells that invaded through the membrane to the bottom of the

upper chamber were fixed, stained, photographed and counted. The number of invading cells was counted in 5 random microscopic fields (200×). a

The invasion assay was performed in basal medium containing recombinant CXCL12 (100 ng/mL) (c) and co-cultured with FB. b The effect of CXCR4

antagonists (AMD11070 and KRH3955) on the invasiveness of GEM-R PaCa cells treated with GEM activated by CXCL12 (d) and co-culturing with FB

was examined. Values are expressed as means ± SDs. Multiple comparisons were performed by using one-way ANOVA followed by Bonferroni test. **,

P < 0.01; *, P < 0.05
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CXCR7 mRNA in GEM-R Mia PaCa-2 cells were signifi-

cantly higher compared with GEM-S Mia PaCa-2 cells.

There was no change of CXCR7 mRNA levels by GEM

treatment of both GEM-R/S Mia PaCa cells (Additional

file 3: Figure S3).

Discussion
This study supports two conclusions. First, the resistance

to GEM in PaCa cells was associated with activation of

the CXCL12-CXCR4 signaling axis. Second, CXCR4 an-

tagonists could inhibit the activation of the signaling axis

and therefore restrain the invasive potency and tumori-

genicity of GEM-R PaCa cells.

With regard to the first conclusion, the resistance to

GEM in PaCa cells was associated with the activation of

the CXCL12-CXCR4 signaling axis. Many different che-

motherapeutic agents have failed to demonstrate any

survival advantage in patients with PaCa. GEM has been

the current standard of care for PaCa patients [3]; how-

ever, it has never proven to be very effective clinically

for advanced PaCa cases because of the cells’ resistance

to GEM. Improved therapeutic treatment will require a

better understanding of the mechanisms by which these

Fig. 6 In vivo tumorigenicity of GEM-R PaCa cells and inhibition by CXCR4 antagonists. The growth of subcutaneous implanted GEM-S and GEM-R

MIA PaCa-2 cells in nude mice. Mice were divided into 6 groups for each treatment: group I was not given any drugs, group II was given GEM,

group III was given AMD11070, group IV was given KRH3955, groupV was given GEM and AMD11070 and groupVI was given GEM and KRH3955.

The measurements of tumor volumes after implantation of a GEM-R or b GEM-S in each treatment group were plotted 4 weeks after beginning

of the treatment. Values are expressed as means ± SD. Multiple comparisons were performed by using one-way ANOVA followed by Dunnett’s

test, **, P < 0.01; *, P < 0.05 versus control (group II in GEM-R group, group I in GEM-S group at 4 weeks). The differences of tumor volumes after

implantation of GEM-R (c) or GEM-S (d) were measured and photos showed representative results of GEM-R (e) and GEM-S (f) in each treatment

group 4 weeks after beginning of the treatment. Values are expressed as means ± SD. Multiple comparisons were performed by using one-way

ANOVA followed by the Bonferroni test, **, P < 0.01, *, P < 0.05 among all groups. Expression of CXCR4 protein determined by immunohistochemical

staining (brown, CXCR4 protein, blue, nucleus) in implanted PaCa tumor: g GEM-S, h GEM-S treated with GEM, (i) GEM-R, (j) GEM-R treated with GEM.

The secretion of CXCL12 from stromal cells around PaCa cells by immunohistochemical staining (brown, CXCL12 protein, blue, nucleus) in

stromal cells, k stromal cells around GEM-S, l around GEM-S treated with GEM, m around GEM-R, n around GEM-R treated with GEM. Original

magnification, ×1000, scale bars, 20 μm
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tumors become chemo-resistant and the development of

strategies to overcome this resistance. Previous studies

have suggested a variety of mechanisms of chemoresis-

tance in PaCa, including the deregulation of key signaling

pathways (such as NF-κB [28], phosphatidylinositol 3-

kinase [PI3K]/Akt [29]), epithelial-mesenchymal transi-

tion (EMT) [30] and the presence of stromal cells [31].

In addition, a report suggested a relationship between

Fig 7 The expression of both NF-κB and HIF-1α in GEM-R and GEM-S PaCa cells. (a) The expression of NF-κB in GEM-R/S PaCa cells. The activity of

NF-κB in GEM-R and GEM-S MIA PaCa-2 cells treated without GEM was measured by NF-κB (p65) transcription factor assay. Values are expressed

as means ± SD. Between-group statistical significance was determined using the Student’s t test. **, P < 0.01. (b) The effect of GEM on NF-κB

activity in GEM-R PaCa cells. GEM-R MIA PaCa-2 cells were treated with different concentrations of GEM (0–20 μM) for 72 h. The NF-κB p65

protein levels in GEM-R were measured. Values are expressed as means ± SD. Multiple comparisons were performed by using one-way ANOVA

followed by Dunnett’s test. **, P < 0.01; *, P < 0.05 versus control (0 μM). (c) The expression of HIF-1α in implanted PaCa tumor. The expression

of HIF-1α protein determined by immunohistochemical staining (brown, HIF-1α protein, blue, nucleus) in implanted PaCa tumor: (c-1) GEM-S,

(c-2) GEM-S treated with GEM, (c-3) GEM-R, (c-4) GEM-R treated with GEM. Original magnification, ×1000, scale bars, 20 μm. (d) Quantification

of immunostaining of HIF-1α protein by digital image analysis. For each image, the color deconvolution method was used to isolate HIF-1α-

positive DAB-stained cells from HIF-1α-negative hematoxylin-stained cells. The measurement parameter was IOD. Optical density was calibrated and

the area of interest was set as follows: hue, 0–30; saturation, 0–255; intensity, 0–255. The values were determined, and the IOD was log10 transformed.

Values are expressed as means ± SD. Multiple comparisons were performed using one-way ANOVA followed by Bonferroni test, **, P < 0.01; *, P < 0.05
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CXCR4 and cancer stem cells. The report indicated that

a subpopulation of migrating CD133+ CXCR4+ cancer

stem cells was essential for tumor metastasis [32].

Recently, several studies detected the expression of

CXCR4 and CXCL12 (also known as stromal-derived

factor-1 [SDF-1]) in PaCa and stromal cells around PaCa

cells. The CXCL12-CXCR4 signaling axis can promote

PaCa tumorigenesis and chemoresistance in PaCa cells

[17, 25, 26]. CXCR4, a member of the cell surface G-

protein-coupled, seven-span transmembrane receptor

family, is overexpressed in more than 20 types of human

tumors, including breast cancer, prostate cancer, colo-

rectal cancer, melanoma, neuroblastoma, and renal cell

carcinoma [7]. High expression of CXCR4 is observed in

the majority of PaCa tissues, and precancerous lesions

play a role in PaCa pathogenesis [33]. Furthermore, high

expression of CXCR4 correlates with poorer survival in

PaCa patients after resection [34]. CXCL12, a ligand for

CXCR4, is a chemokine that is constitutively secreted by

several organs including lung, liver, small intestine,

kidney, prostate, brain and skeletal muscle [35]. High

amounts of CXCL12 are produced by organs com-

monly affected by cancer metastasis, such as lung and

liver [14]. In CXCR4-positive PaCa cell lines, CXCL12

not only enhances chemotaxis, transendothelial migration

and Matrigel invasion, but also stimulates cell prolifera-

tion and protects them from serum deprivation-induced

apoptosis [36–38].

We focused on the relationship between the activated

CXCL12-CXCR4 signaling axis and PaCa cells’ resist-

ance to GEM. For that reason, we established two GEM-

R PaCa cell lines. This is the first report to examine the

importance of the CXCL12-CXCR4 signaling axis in re-

sistance to GEM using GEM-R PaCa cells. Our study re-

vealed that the expression of CXCR4 was significantly

enhanced by GEM in GEM-R PaCa cells. Furthermore,

when GEM-R PaCa cells were activated by GEM, they

greatly increased the secretion of CXCL12 from FB. The

invasiveness of GEM-R cells was also activated by

CXCL12. In vivo, the tumorigenicity of GEM-R cells was

enhanced by GEM. We confirmed that the CXCL12-

CXCR4 signaling axis between tumor and stromal cells

plays an important role in the invasiveness and tumori-

genicity of GEM-R PaCa cells.

The second conclusion of this study was that CXCR4

antagonists could inhibit the activation of the signaling

axis and could therefore restrain the invasiveness and

tumorigenicity of GEM-R PaCa cells. CXCR4 antagonists

were initially developed as new drugs for the treatment

of HIV-1 infection. Among them, AMD3100, a specific

antagonist of CXCR4, was initially considered to inter-

fere with HIV-1 fusion through coating [18]. However,

limitations of AMD3100 include a relatively short half-

life (3.5 - 4.9 h) and the need to administer it via

injection [39]. Furthermore, after long-term use, car-

diotoxicity was noticed in patients [40, 41]. Due to

those problems, clinical development was canceled.

AMD11070 is a novel, orally bioavailable, selective, and

reversible small-molecule antagonist of CXCR4 [19]. In

vitro, it inhibits the binding of CXCL12 to CXCR4 and in-

hibits CXCL12–induced signaling mechanisms [42]. In

two different ALL cells, equivalent concentrations of

AMD11070 produced a stronger effect than AMD3100

[43]. Furthermore, no apparent acute toxicity was ob-

served in oral bioavailability studies using AMD11070.

The effectiveness of AMD11070 for malignant neoplasms

was also reported in melanoma and lymphoblastic

leukemia [43, 44]. Besides AMD11070, KRH3955 is also

known as a CXCR4 antagonist. We decided to establish

whether there was a similarity between the effect of

KRH3955 and AMD11070. It was synthesized and purified

by Kureha Corporation. KRH3955 showed oral bioavail-

ability of 25.6 % in rats, and its oral administration

blocked X4 HIV-1 replication in human peripheral blood

lymphocytes and in a severely immunodeficient mouse

system. The effect of KRH3955 on HIV was much higher

than that of AMD3100 and AMD11070 [20]. However,

there are no studies on the effect of KRH3955 on other

malignant diseases.

We focused on the effects of CXCR4 antagonists,

AMD11070 and KRH3955, on the invasiveness and

tumorigenicity of GEM-R PaCa cells and determined

whether these agents might represent a second line

of chemotherapy for GEM-R PaCa cells. Our study

revealed that when the invasiveness and tumorigen-

icity of GEM-R PaCa cells were activated by GEM, it

was inhibited by the CXCR4 antagonists in vitro and

vivo.

Previous report demonstrated that CXCR4 up-regulation

by gemcitabine correlated with time-dependent accumula-

tion of NF-κB and HIF-1α in the nucleus [45]. To examine

the details of the molecular mechanisms, the activity of

NF-κB in our GEM-R/S PaCa cells was measured by

NF-κB (p65) transcription factor assay. The activity of

NF-κB in GEM-R cells was significantly higher com-

pared to GEM-S cells and was significantly enhanced

by GEM dose dependently. Moreover, HIF-1α expres-

sion in GEM-R cells treated with GEM was greatly en-

hanced compared with GEM-R non-treated and GEM-S

cells. So we will elucidate further molecular mecha-

nisms of GEM-resistance in the next study.

CXCR7 is another receptor of CXCL12. Also, it is re-

ported that CXCR7 plays important role in cancer inva-

sion [46]. So besides CXCR4, we examined the

expression of CXCR7 in GEM-R/S PaCa cells. The ex-

pression of CXCR7 in GEM-R PaCa cells is higher than

GEM-S PaCa cells. So we may say that to some extent

CXCR7 plays a role in GEM resistance. We are going
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to elucidate the details of the mechanisms of CXCR7

for GEM-resistance in the near future.

Conclusion
In conclusion, we showed that GEM promoted the ex-

pression of CXCR4 in GEM-R PaCa cells and that acti-

vated GEM-R PaCa cells stimulated the secretion of

CXCL12 from stromal cells. Finally, the CXCL12-

CXCR4 signaling axis in GEM-R PaCa cells was acti-

vated by cooperative interactions between activated

GEM-R PaCa cells and stromal cells, and this activation

promoted GEM-R PaCa cell proliferation, invasion and

tumorigenicity. Importantly, we have demonstrated that

even when GEM-R PaCa cells were activated by GEM,

the blockage of the CXCL12-CXCR4 signaling axis by

CXCR4 antagonists had impacts on GEM-R PaCa cell

proliferation, invasion and tumorigenicity both in vitro

and in vivo. Interestingly, these findings were observed

only in GEM-R PaCa cells and not in GEM-S PaCa cells.

As far as we know, this is the first study showing that

one of several mechanisms of chemoresistance in PaCa

cells involves chemokines and their receptor, CXCL12.

We have shown that CXCR4 antagonists can inhibit the

development of GEM-R PaCa.
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Additional file 1: Figure S1. Invasiveness of GEM-R and GEM-S PaCa

cells and inhibition by CXCR4 antagonists. The photos showed alteration

of invasiveness of PaCa cells by co-culturing with FB, and effect of CXCR4

antagonists, AMD11070 (1 μM) and KRH3955 (1 μM), on the invasiveness

of PaCa cells. (JPG 874 kb)

Additional file 2: Figure S2. Quantification of immunostaining of

CXCR4 and CXCL12 protein by digital image analysis. (A) The number of

CXCR4 immunoreactive cells in mouse specimens was expressed as a

percentage of the total number of cells that were randomly counted in

10 fields at × 400 magnification. Furthermore, for each image, the color

deconvolution method was used to isolate CXCL12-positive DAB-stained

cells from CXCL12-negative hematoxylin-stained cells. The measurement

parameter was IOD. Optical density was calibrated and the area of interest

was set as follows: hue, 0–30; saturation, 0–255; intensity, 0–255. (B) The

values were determined, and the IOD was log10 transformed. Values are

expressed as means ± SD. Multiple comparisons were performed using

one-way ANOVA followed by Bonferroni test, **, P < 0.01; *, P < 0.05.

(JPG 295 kb)

Additional file 3: Figure S3. Alteration of CXCR7 mRNA expression in

MIA PaCa-2 cells by GEM. PaCa cells were treated with different

concentrations of GEM (0–20 μM) for 24 h. The expression of CXCR7

in GEM-R and GEM-S PaCa cells treated without GEM (A) was measured using

RT-PCR (normalized to GAPDH expression). Values are expressed as

means ± SD. Between-group statistical significance was determined

using the Student’s t test. **, P < 0.01. The CXCR7 mRNA levels in GEM-S (B)

and in GEM-R (C) were measured using RT-PCR (normalized to GAPDH

expression). Values are expressed as means ± SD. Multiple comparisons

were performed by using one-way ANOVA followed by Dunnett’s test.

**, P < 0.01; *, P < 0.05 versus control (0 μM). (JPG 374 kb)
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