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Enhancement of the microwave magneto-Kerr effect in semiconductors is discussed for the
semiconductor being preceded by a semi-infinite dielectric and by a quarter-wave dielectric slab
for both plane-wave and guided-wave cases. Expressions are developed that relate the amount of
the enhancement to the relative permittivity of the dielectric. Experimental results are compared
to the theoretically obtained expressions for the quarter-wave case and the experimentally

obtained values compare favorably with the theory.

I. INTRODUCTION

When a linearly polarized electromagnetic wave is nor-
mally incident on a semiconducting slab that is immersed in
a static magnetic field, the transmitted and refiected waves
will, in general, be elliptically polarized with the major axis
of the ellipse rotated relative to the incident plane of polar-
ization. This is termed the Faraday effect in the transmitted
wave and the magneto-Xerr effect in the reflected wave. The
magneto-Kerr effect has received much attention in investi-
gating semiconductor transport parameters.’ It was dis-
cussed by Lax and Zwerdling” in 1960 and observed by
Brodwin et al.? in 1961. It has been analyzed and measured
by Brodwin and Vernon' in terms of R and &, the amplitude
and phase, respectively, of the ratio of the two orthogonally
polarized components of the reflected wave. The method of
measuring the magneto-Xerr effect used in this study was
discussed by Vernon and Dorschner.*

Although the magneto-Kerr effect is often more useful
for semiconductors with high conductivity than the Faraday
effect because the latter depends on the transmission of radi-
ation, the measurement of the magneto-Xerr effect may also
become difficult for semiconductors in which the ratio of
Hall mobility to static conductivity is smalil.

It is shown here both theoretically and experimentally
that the magneto-Xerr effect may be enhanced by placing
dielectric materials in front of the semiconductor. Analysis
is given for the case of normal incidence of a plane wave and
for a TE,, mode in a circular waveguide. The exact expres-
sions for R as well as approximate expressions for the case of
high-loss semiconductors, low magnetic fields, and small wr
are given (w is the angular frequency of the incident electro-
magnetic field and 7 is the semiconductor scattering time).

ii. THEORY OF THE MAGNETO-KERR EFFECT

In this study the semiconductor is treated as having a
complex conductivity associated with the free carriers as
well as having dielectric properties. When a static magnetic
field is applied along the {100] or {111] crystallographic di-
rection of n-type germanium or n-type silicon, the conduc-
tivity tensor o for high-frequency electric fields may be writ-
ten in the form for a magnetic field in the z direction as®
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o op, 0
o=} —0y, o, O
0 0 o3

This form of tensor is valid for any magnetic field orientation
with respect to crystallographic axis if the constant energy
surfaces for the carrier are spherical.

If we now consider the case of a plane wave propagating
in a semiconductor with permittivity €., permeability p,,
and conductivity tensor o, then the normal modes of propa-
gation are®

E,
= —ik 2)
E, ($1’E0) exp( — ik , z) {1
where
k% =% p,— iwopew . (2)
and
o, =0, Fioy, (wherei=+ —1). (3)

Note that E, and E_ are right-hand and left-hand circular-
ly polarized waves, respectively, for propagation in the posi-
tive z direction.

A linearly poiarized plane wave may be considered to be
a superposition of two counter-rotating circularly polarized
waves. Since these component waves are the normal modes
in the semiconductor, the reflection of a linearly polarized
plane wave normally incident upon the sample may be easily
analyzed by considering them separately.

Assume that the incident wave is polarized in the x di-
rection and that a static magnetic field is applied along the z
direction, the direction of propagation. Then the electric
field vectors for each component wave are

E,, =1E&, Fia,)exp( — ikz), (4)

where E,, and E,_ are the vector phasors for the right-
hand and the left-hand circularly polarized waves respec-
tively. Since the conductivities seen by the two normal
modes are o, as given by (3), each component wave sees a
different reflection coefficient given by

E, e = 7o
Eii s+ + 7o

s = )

© 1985 American Institute of Physics 3703

Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



where 7, are the two complex intrinsic wave impedances
of the semiconductor correspondingtoo , ,and E, , are the
reflected electric field components corresponding to E; , .
The reflected wave components are

E . =3Ela. Fid,)p . explikz). (6)
The reflected right- and left-hand circularly polarized waves

may be reexpressed in terms of the orthogonal Cartesian
components:

Erx = iEo( P+ +p_)exp(ikz),

E,, = iEoi(p. — p_lexplikz).

The total reflected wave will thus have two orthogonally
polarized wave components resulting in an elliptically polar-
ized wave in general.

Let R be the magnitude of the ratio of the two orthogo-
nal components of the reflected wave and § the phase differ-
ence between them as was done by Brodwin and Vernon.’
Then:

Re®=E_/E,
= —ilp,—p W ps+p )}
Hence
R=|p.—pVp+ +P—)l (7)
and
8= —w/2+argl(p, —p_Vp, +p_ )} {8)

Brodwin and Vernon' have given an approximate expression
for R for the case of

we, /o, €1, pB<«l, and o<1

R = uB(wey/0,)'?, (9)
where u is the Hall mobility, €, the static permittivity, and o,
the dc conductivity of the semiconductor. B is the static
magnetic flux density. I't is seen from Eq. (9) that R becomes
very small when u becomes small and o, becomes large
thereby making the measurement of R difficult. Therefore, it
is desirable to increase R in the above cases to be able to
measure the semiconductor parameters with accuracy while
reducing concern for the minimum detectable R.

jik. PLANE WAVE PROPAGATION
A. Enhancement of /#

As previously discussed, when the sample conductivity
is large and the Hall mobility is small, a measurement of R is
difficult. It is possible, however, to couple more energy into
the semiconductor and increase the free carrier interaction
with the incoming electromagnetic wave. This increase in
the coupling of energy may be achieved through an imped-
ance transformation by a dielectric material. The magneto-
Kerr effect is enhanced as the reflected wave component
with the polarization orthogonal to that of the incident wave
increases while the reflected wave component with the po-
larization parallel remains almost unchanged.

B. Semi-infinite dielectric space

Now consider the case of semi-infinite dielectric space
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with permittivity €, preceding the semiconductor. FFor this
case the formulation of R and § of the magneto-Kerr effect is
identical to that of the free-space case discussed earlier ex-
cept that €, must be replaced by €, in Eq. (9). Note, however,
that the enhancement of R increases only as the square root
of the relative permittivity.

C. General development of dielectric enhancement

Consider the case of a plane polarized wave normally
incident upon a semiconductor surface with a dielectric me-
dium in front as shown in Fig. 1. Assume that the surfaces of
the dielectric and semiconductor are planes perpendicular to
the z direction and that the incident electric field is polarized
in the x direction and the static magnetic field is applied in
the z direction.

Each of the counter-rotating components of the incident
plane wave sees a different reflection coefficient at z = d and
z = 0. The intrinsic wave impedances of the semiconductor
for these two circuljarly polarized waves are

Z . = {iopy/lo . + ive)}'"?,

where o, of Eq. (3) can be written® as
o, =0/l +iwr - uB)]. (10)
Assuming that the dielectric medium is fossless and

making use of simple transmission line theory for the trans- -

formation of impedances, one can obtain the impedance seen
atz=d:
1o\ ?( cos B,d + il sin B,d
Z, == — , (11)
€, & cos Bod + isin B,d
where £, is the phase constant in the dielectric medium and

io[ler%) <)

The refection coefficients at z = d are then given by

Pi =Ziy —MZ1 + 70 (12)
where 7, = (1o/€,)'/? is the intrinsic impedance of free
space. Then the amplitude ratio R of the two orthogonal
components of the reflected wave at z = d may be obtained
from Eq. (7)
ro\l= V6, 1+ 1/8 )=+ /6 1 —1/€ )

(1= 16, N1+ 16 )+ (1 + Ve L N1 =16 )

(13)
where
fi;t =Zi3;/770' (14)
B ] *
& Mo £, Ho €5. ¥o .02
z=d =0

FIG. 1. Dielectric material of thickness d preceding the semiconductor.
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D. Quarter-wave dielectric

Now consider the case shown in Fig. 1 again and let
d = A,/4, where A, is the wavelength in the dielectric medi-
um. Then Eq. (11) becomes

7o o, 172
Zi_—_t =€, —1! s (15)
€ €,

where €,, and €,, are the relative permittivities for the dielec-
tric and semiconducting regions, respectively. From Egq.
(14),

172

3 =-1—(es,—-f"i) ; (16
€, W

substituting Eq. (16) for £, , , Eq. (13) can be written as

[€:,/liwe)] [{o, + iwe,)'? ~ (o_ + iwe,)''?]

1/2 € 172
(LA [(1 +i‘3€—’~)(1 +i“ii)] -é
ive, o, Vi

(17)

V. GUIDED WAVE PROPAGATION
A. General description

The magneto-XKerr effect is difficuit to measure in plane
waves at microwave frequencies, and since the two orthogo-
nally polarized waves of the dominant mode can propagate
equally well in a circular waveguide, measurements are
made for the TE,; mode in a circular waveguide using a dual
mode transducer.*

Consider the case of the dominant TE,; mode excited in
a circular waveguide filled with an isotropic semiconductor
with a lossless dielectric material in front as shown in Fig. 2.
Assume that a small static magnetic field is applied longitu-
dinally in the z direction. Only the dominant modes need be
considered here since all the higher modes which are gener-
ated at the dielectric-semiconductor interface have ampli-
tudes second order or higher in magnetic field.” Champlin®
gives the propagation constants for the two counter-rotating
circularly polarized TE,, waves in the semiconductor by em-
ploying perturbation methods for low magnetic fields
(uB<l}as

K. = 0o, — iopyo, 5 Ko — K3, (18)

where ¥ = 0.838, and X, is the cutoff wavenumber for the
dominant mode of the guide which is 1.841/a, a being the
radius of the waveguide.

FIG. 2. A circular waveguide filled with a semiconductor and a dielectric
disk of thickness d.
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FIG. 3. Tapered dielectric rod preceding the semiconductor inside a circu-
lar waveguide.

B. Slowly tapered dielectric rod

First consider the hypothetical case of a semi-infinitely
long dielectric rod which is placed in a circular waveguide
preceding the semiconductor. This case is the guided wave
analog of the plane-wave case which was discussed in Sec.

Il B.
Since it is difficult to arrange a semi-infinitely long di-

electric rod inside a circular waveguide in a laboratory, a
dielectric rod a few wavelengths long with one end slowly
tapered would be used as an approximation for the semi-
infinite rod. The case being described is shown in Fig. 3. The
tapered section is assumed to be a few free-space wave-
lengths long and uniform so that there is negligible reflection
of the incident wave before reaching the dielectric-semicon-
ductor interface.

The complex wave impedance of the TE,, mode in the
semiconductor inside the circular waveguide is

Z,. =ou/K,, . (19)
where K, | is given by Eq. (18) and the wave impedance for
the TE,; mode in the circular dielectric rod is

Zy =oul/Kie, — K", (20)

&
where K, = w(uq€,)’? is the free-space wavenumber. The
reflection coefficients for the two counter-rotating circularly
polarized waves are

pg;t =(Zg;t _"Zgz)/(zg;t +Zg2)' (21)

R, and 5, are given by Eqs. (7) and (8). The subscript g de-
notes the guided wave parameters:

R3=Hpg+ —pg—)/(pg+ +Pg_)], (22)
5. = - Lar (5__—1__) 23
2 5 g P (23)

C. Dielectric slabs of finite thickness

As was done in the plane-wave case, the transmission
line analogy can be used to find the impedance seen at z = d
by the counter-rotating circularly polarized wave compo-
nents of the incident wave. This input impedance, denoted

by Z,, . , seen at z = d may be written as

, (z” cos (Kpd) + iZ,, sin(Kd)

= Z,, (24
#x "\ Z, cosiK,d) + iZ, , sin(ngd)) e 24

where K, = (K36, — K2)"/? is the phase constant in the
dielectric and d is the thickness of the dielectric slab. Then
the two reflection coeflicients corresponding to the normal
modes are
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Per =gy — o/ gy +Zg) ‘
=1 =1/, V(1 4+ 1/6,,) (25)

where Z,, is the wave impedance of the empty waveguide
and is given by

Zyo = o/ K5 — K2 (26)
and

bur =2y, /Zy. 27)
R, is given by substituting Egs. (25)}-(27) into (22).

D. Quarter-wave diefectric

For the special case of the dielectric slab being one-
quarter wavelength thick, d = 4., /4 in Eq. (24) where

Ap =21/K,,,
=27/(K ke, — K22
For this case Eq. (24) becomes
Zes =(ZaV/Z,.,
which, in turn, can be rewritten using Egs. (19), (20), and (18)
as

z _ wﬂo[wzﬂoﬂ — iopoloy, F ikoyp) — K%] 12
* Kie, —K?

(28)

V. APPROXIMATIONS FOR THE HIGH-LOSS PLANE-
WAVE CASE
A. Descriptions of approximations

For heavily doped semiconductors the static conductiv-
ity may be large. In addition, if the applied magnetic field is
small and o is in the millimeter microwave band or lower,
then the following inequalities exist:

g wr<€l. (29)

>1, uB<l,

These were the approximations used by Brodwin and Ver-
non' to obtain Eq. (9}.

B. Semi-infinite dielectric enhancement

As was previously mentioned, the expression for R in
Eq. (9} is modified for the case of the semi-infinite dielectric
by the use of €, = €,,€, instead of &,. Thus

RepuB(wey/a,)' %e)?, (30)

where €,, is the relative permittivity of the dielectric. It is
clear from Eq. (30} that R is enhanced by a factor of €}/>.

C. Quarter-wave case
Using the approximations in Eq. (29), {10) becomes
o, =0,/[1+iler +uB)],

=~o0,/(1 + iuB),
~0,(1 FiuB). (31)
Using Eq. (31) in (17} yields
ReuB (wey/o,) %, (32)

when terms involving second or higher orders of uB, wey/o,,
and we, /o, are neglected. Notice that for this approximate
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expression (32), there exists a linear relationship between R
and €,,. This approximation breaks down when the value of
€,, approaches (0,/2weo)'/2 The functiona! relationship
between R and ¢,, for the quarter-wave case becomes nonlin-
ear when R approaches its maximum. It can be shown that
the maximum magneto-Kerr effect {the greatest R } is given
by

€, = [ €, + (0. /w6 ], (33)
Vi. APPROXIMATIONS FOR THE HIGH-LOSS, GUIDED

WAVE CASE
A. Tapered dielectric rod

For the high-foss case being considered here, the two
conductivity tensor elements o,, and o, may be approxi-
mated by neglecting terms involving w7 and (uB ) as follows:

Oa=0o uB. (34)

Hence, the propagation constants for the counter-rotating
wave components of a TE,; mode in a circular waveguide
may be written from Eq. (18):

Kg:t 2['K(z)é-xr _'Ki —lwﬂoa-s{}‘ ?iK#’B)}l/Z’

o( —~ iwpoo, ) {1 F ilkuB). (35)
Thus, for the case of the tapered dielectric rod shown in Fig.
3, Eq. (21) becomes

Por=—[1-22,, /7]
Then R, is approximately given by
Ry=~(€,, — K2/K 3} *kuB (wey/0,) %

If the enhancement factor E, is defined as the ratio of the
enhanced R, to the R, without dielectric enhancement, then
E, for the tapered dielectric rod is

€, — K2/K3I\'?
This approximate expression (36} is valid for values of €,,
satisfying
Zpl/Z,, »1,
which is typically about 50 for 0.2 {2 cm n-type germanium.

0, =0y,

(36)

B. Quarter-wave diefectric disk

For the high-loss case £, , of Eq. {27) is much greater
than unity and consequently (25) becomes

pgﬁ: ’:1 "‘2/§,'g:t .

Then
R~/ — V..
Since
Sigt =K:2/K30Kxx’ (37)

where K, and K, are propagation constants in the dielec-
tric region and empty guide respectively, the approximate
R, may be derived as

— (K. /K2 172
g = € — K/ O)l 5 xuB (Qfg) {38}
[1 —-(KC/KO)Z] / o,
Notice that for the case of no dielectric enhancement
Perger, Vemon, and Lee 3706



R, = [1 — (K./Ko)*} " *kuB (wey/a,)' 2. {39)
E, for the quarter-wave case is then
__ & — (K./Ko)

O~ (K /K
Comparing Egs. (40) and (36}, the dielectric enhancement by
a quarter-wave disk is seen to be increasing more rapidly
with €,, than by the tapered rod.

The approximations that were made to obtain (39) break

downwhen £, . of (37) approaches unity. This occurs when
€,, approaches a value given by

€, 0, /060) [ 1 — (K /K12 (41)

Also the magneto-Kerr effect for the guided wave appears to
reach its maximum value at a value of ¢,, given by Eq. (41)
for the quarter-wave case. The approximation in (41} indi-
cates that when the loss tangent of a semiconductor is large,
the relative permittivity of the dielectric should also be large
in order to have the maximum enhancement.

The dependence of R, (and E,) on the thickness of the
dielectric slab is shown in Fig. 4. These curves were calculat-
ed from Eq. (22) using (25)-(27)} for n-type germanium with
uB =0.1, 0,/we, = 15.8, wr =0.04, €, = 16.27, and K?

=33cm™%

(40)

|

Vil. EXPERIMENTAL RESULTS

Figure 4 shows the theoretically predicted values of the
enhancement factor E, for values of the dielectric relative
permittivity ranging from 1 to 9 for the quarter-wave case.
Also shown on Fig. 4 are the experimentally measured val-
ues of the enhancement factor over the same range of the
refative dielectric permittivity. The semiconductor sample
used was 0.2 £2 cm n-type germanium. The quarter-wave
dielectric slabs used were machined from appropriately
mixed stycast material. Tt was found that attention must be
paid to obtaining uniform thickness dielectric samples as
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FIG. 4. Enhancement of the magneto-Kerr effect vs disk relative dielectric
permittivity for the quarter-wave case.

well as to assuring that the samples were mounted flush to
the semiconducting sample. In all cases the sample mount
was rotated and the data checked to verify that the dielectric
sample was uniform and that the mounting of the sample
had been done properly.

As can be seen from Fig. 4, the experimental results
match very well with the predicted values. It should be noted
that the quality of the sample mount and of the sample ho-
mogeneity were especially important at larger values of €,,.
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