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Abstract

After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was

increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular

vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have

been identified as essential signaling mediators under both physiological and pathological conditions, and they

appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs

have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-

associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues,

including EVs from other cells, has been shown to influence the contents and biological activities of subsequent

MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive

effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and

subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based

cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a

clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions

and suggestions for knowledge gaps to be filled.
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Background

Extracellular vesicles (EVs) are powerful biological en-

tities released by cells that contain molecules that can

promote changes in their targets. EVs have therefore

been studied for clinical applications as vaccines, immu-

nosuppressants, or stimulators of repair and differenti-

ation processes [1–3]. EV is an umbrella term that

includes a variety of different released vesicles such as

exosomes and microvesicles (MVs). The term “exo-

somes” is often used to describe vesicles that originate

from the fusion of endosomal-originated multivesicular

bodies with the plasma membrane. This biogenesis sets

them apart from other EVs, for example, those that are

released through the budding of the plasma membrane,

which are usually referred to as MVs [4]. Because of

their distinct biogenesis, MVs are usually larger than

exosomes (typically, exosomes are less than 200 nm in

diameter, while MVs can range in size up to 1000 nm in

diameter), but overlapping of these size ranges can

occur. Different isolation protocols focus on the separ-

ation of a fraction enriched in exosomes, MVs, or both

[5]. Because the study of EVs is a recent field, many

studies have used heterogeneous nomenclature when

reporting data regarding EVs. It is common to find

terms such as “exosomes,” “MVs,” and “microparticles”

referring to an indistinct population of EVs [5]. For the

sake of uniformity, we are here including all of these

studies under the term “EVs.”

Although many functions have been ascribed to EVs,

especially involvement in cellular communication, their

roles in vivo are still poorly understood. There are likely

still major functions and effects that remain unknown,

and the immunological effects of EVs released by differ-

ent cells in pathological states are still poorly studied.

On the other hand, because the sorting of molecules to
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these vesicles and the patterns of EV release are known

to be reflective of their originating cell type and physio-

logical state, the EV fraction of extracellular fluids can

be very informative. Consequently, substantial attention

has been directed towards the use of “liquid biopsies”

containing EVs from injured tissue and tumors for de-

tection of disease biomarkers in the hope of developing

less invasive diagnostic procedures with high sensitivity

and specificity [6]. The sorting of molecules into EVs is

still a somewhat obscure process, but it clearly involves

the enrichment of distinct proteins and nucleic acids.

Particular attention has been given to the protein and

RNA content of EVs as agents for altering gene and pro-

tein expression in target cells [7].

Currently, the focus on secreted vesicles from stem

cells has been most extensively directed to mesenchymal

stem cells (MSCs), which are also called mesenchymal

stromal cells. These cells are multipotent cells that can

be isolated from a variety of adult tissues [8]. The most

studied MSCs are isolated from bone marrow (BM-

MSCs), adipose tissue (AD-MSCs), or umbilical cord

blood (UC-MSCs). The isolated MSCs have been gener-

ally heterogeneous and containing stem cells, committed

progenitors, and differentiated cells [9]. Hereafter, we

will discuss MSCs broadly and independently of their

tissue of origin. When not mentioned in the text, the tis-

sue from which the cells were derived is stated in the ta-

bles included in this review.

Although there are no specific markers for MSCs, they

are usually characterized by their ability to differentiate

into at least three lineages of cells of mesodermal origin

(osteoblasts, chondroblasts, and adipocytes) upon chem-

ical induction in vitro [10] as well as by the absence of

hematopoietic lineage markers but the presence of sur-

face-associated markers such as CD44 and CD90 [11].

MSCs support their niches in vivo by nurturing and pro-

moting the proliferation and differentiation of surround-

ing cells. When transplanted for cell therapy, these cells

migrate to sites of inflammation and injury and are well

known for their ability to promote immunomodulation

and tissue repair in a wide range of disease models [12].

Nevertheless, they typically do not permanently engraft

in the injured tissue when transplanted without a scaf-

fold, and thus they only transiently influence the target

tissues.

The secretomes of MSCs and their vesicles are of par-

ticular interest because these cells are mostly intended

to be used for cell therapy due to their paracrine/endo-

crine effects rather than their differentiation potential

[13–16]. Besides the soluble factors present in these

cells’ secretomes, such as growth factors and cytokines,

the supernatant of MSC cultures is enriched with EVs.

Many examples of pre-clinical data suggest that the EVs

derived from MSCs carry over the therapeutic effects of

their originating cells, and using EVs instead of the cells

themselves can have advantages such as:

� Bypassing most of the safety concerns with regard to

cell therapy, such as cellular contamination with

oncogenic cells and uncontrolled cell division [16];

� Enabling a wide range of potential manipulations of

the particles for improvements in delivery and

desired effect; and

� Facilitating the development of methods to optimize

the use of MSCs to obtain a higher yield of final

therapeutic product because these cells often require

invasive procedures in order to be harvested [17].

MSCs are also very responsive to environmental

changes, showing different secretion profiles and pheno-

types upon different stimuli in vitro, which can be re-

lated to their great dynamics in responding to different

inflammatory or injured environments in vivo. Treat-

ment of MSCs with EVs derived from other cells such as

mast cells and epithelial cells influences their phenotype,

as do treatments with soluble factors and changes in the

cell culture conditions [18, 19]. It would be of great

interest for the scientific community to have more con-

trol over MSCs’ immunomodulation and differentiation

abilities in order to design more effective and specific

treatment strategies, both for direct cell therapy and for

EV-mediated therapy.

MSC-derived EVs have emerged as an attractive medi-

ator of immunomodulation and regenerative effects in

various animal models. EV-based approaches have

already been recognized as a safe and attractive thera-

peutic intervention, but one significant limitation is the

typically low yield of EVs. To overcome this, several

high-throughput procedures have been applied for large-

scale EV production. Recent studies have utilized EV-

mimetic nanovesicles produced from adipose stem cells

as well as tumor cells by serial extrusion in order to

overcome the low yield normally associated with natur-

ally produced EVs [20–22]. Moreover, in many previous

and ongoing studies, a variety of biophysical and bio-

chemical cues have been shown to contribute to the

therapeutic effect of EVs and to increase their level of

production.

EV-based therapy also faces challenges regarding the

purity of EV preparations [23]. Our PubMed literature

search with the terms “MSCs + extracellular vesicles +

exosomes + microvesicles” identified several different

methods for EV isolation (Fig. 1). More than half of the

articles used only ultracentrifugation, and about 27%

used commercial kits, mostly based on protein precipita-

tion protocols. Only about 19% of the articles used some

method that separated free secreted proteins from EVs

(e.g., density gradient, filtration, and anion-exchange). In
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order to bring unanimity to our common knowledge of

EV-derived functions, it is essential to study the true

components of MSC-derived EVs separately from se-

creted proteins. Producing clean MSC-EV preparations

will accelerate the translation of basics findings into

clinic practice.

In this review, we discuss the development of MSC-de-

rived extracellular vesicles (MSC-EVs) for therapeutic

applications. First, we will discuss components of MSC-

EVs and their roles in different in vivo and in vitro

models, and then we will discuss some of the possibil-

ities for manipulating MSCs in order to improve or alter

their secretion of EVs and thus improve their thera-

peutic potential.

Wherein lies the therapeutic potency of MSC-EVs?

MSCs fulfill their roles in the body via direct cell-to-cell

crosstalk as well as through the secretion of an extensive

spectrum of soluble factors [24]. Major soluble media-

tors secreted by MSCs include cytokines, growth factors,

and miRNA, which have a wide variety of therapeutic ef-

fects ranging from tumor modulation, immunosuppres-

sion, and angiogenesis to tissue regeneration [25–27].

Recently, several groups have begun to find another

functional component in conditioned media (CM) from

MSCs apart from these soluble factors. Bruno et al.

showed that fractioned MSC-CM by ultracentrifugation

suppressed acute tubular injury in mice, and this pel-

leted fraction included nanosized vesicular structures

[28]. Another group utilized the EV fraction acquired by

HPLC-derived size exclusion, which included vesicles

with EV marker proteins, to reduce the size of acute

myocardial infarction, which had already been accom-

plished in a previous study using MSCs and soluble fac-

tors [29]. In addition to the aforementioned studies

using MSC-CM to identify the therapeutically functional

EVs, there are about 126 published articles that address

the therapeutic function of EVs in a variety of disease

models. Here, we will highlight the MSC-EV-associated

cargos (proteins and nucleic acids) that have been shown

to have distinct functional effects (Fig. 2, Table 1, and

Additional file 1: Table S1).

Protein effectors within MSC-EVs

EVs generally include integral membrane proteins such

as tetraspanins, peripheral membrane proteins, and cyto-

solic proteins, and changes in the protein composition

of EVs have been shown to be associated with important

functional changes [30]. MSC-EVs also harbor numerous

protein components that have been suggested to be

linked with recovery from many diseases.

Vesicular protein effectors have been explored as a

treatment for ischemia and myocardial infarction by pro-

moting angiogenesis. For example, EVs from dental

pulp-derived MSCs harbor the Jagged-1 ligand protein,

which is an activator of Notch signaling, and they were

shown to be effective in activating angiogenic signals

[31]. Jagged-1-containing EVs triggered transcriptional

changes in Notch target genes in endothelial cells,

resulting in induced angiogenesis and capillary-like tube

information, and this angiogenic effect could be blocked

with an anti-Jagged-1 antibody. In addition to this, UC-

MSC-EVs have been shown to carry platelet-derived

growth factor-D (PDGF-D), which has been shown to be

effective in assisting tissue repair functions in infarcted

heart cells [32]. The recovery was abrogated by EVs iso-

lated from MSCs transfected with PDGF-D-siRNA, thus

suggesting that PDGF-D/PDGF receptor interactions

might play a crucial role in EV-mediated myocardial

repair.

In the context of bone regeneration, the therapeutic

effect of vesicular CD73 is demonstrated by Zhang et al.,

in which CD73 present on EVs from embryonic stem

cell-derived MSCs was able to repair osteochondral de-

fects in chondrocyte cultures together with greater infil-

tration of macrophages with an anti-inflammatory

phenotype. The role of CD73 in EVs was confirmed by

Akt and extracellular signal-related kinase (Erk) signal-

ing using a CD73 inhibitor [33]. Also, a neuronal

Fig. 1 Experimental methods for isolation of MSC-EVs. A total 126

articles were used to analyze the isolation method. Most studies

have been conducted using EVs isolated by ultracentrifugation and

with commercial kits such as ExoQuick-TC. TFF, tangential

flow filtration
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regeneration study was conducted to investigate the ef-

fect of BM-MSC-EVs for treating traumatic and degen-

erative ocular disease. It was shown that EVs harboring

the argonaute-2 (AGO-2) protein promoted significant

survival of retinal ganglion cells and regeneration of

their axons. The effect was diminished by EVs from MSCs

after knockdown of AGO-2, suggesting that AGO-2 is in-

volved in the regenerative effects of EVs [34].

On the basis of MSCs’ well-known immunomodula-

tory effects, MSC-EVs have also been described as anti-

inflammatory agents, thus rationalizing the use of EVs

for the treatment of immune diseases, including renal

injury. Harting et al. showed that the expression of cy-

clooxygenase 2 and prostaglandin E2 was increased in

BM-MSC-EVs, and these components partially contrib-

uted to the attenuation of pro-inflammatory cytokines in

splenocytes [35]. Moreover, the quenching effect of the

pro-inflammatory cytokine CCL2 by its receptor present

on BM-MSC-EVs led to reduced macrophage activation

and assisted in the repair of acute renal injury [36]. In

addition, delivery of 14-3-3ζ via EVs prevented the au-

tophagic tubule epithelial cell injury that is normally in-

duced by the chemotherapy drug cisplatin [37].

Interestingly, MSC-derived EVs are not limited to only

being beneficial in terms of tissue repair and anti-inflamma-

tory effects that can be used therapeutically, and cancer

cells can effectively exploit the MSCs’ function for their

own growth and immune escape. For example, fibroblast

growth factor 19, which is present in BM-MSC-EVs,

promotes nasopharyngeal carcinoma cell growth [38]. Simi-

larly, BM-MSC-EVs can deliver ubiquitin protein ligase E3

component n-recognin 2, which has proliferative and mi-

gratory effects on gastric cancer cells [39].

Overall, MSCs’ protein cargo can exert functional ef-

fects directly by quenching some of the factors that are

pro-inflammatory or by enhancing anti-inflammatory

factors. Some of the effects are likely to be combinatorial

effects together with other cargos, thus dissecting these

components one-by-one is a way forward in designing

more effective MSC-EVs.

Nucleic acids within MSC-EVs

a. DNA Many forms of nucleic acids can be found within

EVs, including DNA, mRNA, and miRNA. The existence

and localization of DNA in EVs is still controversial, and

there are no studies pointing towards the participation of

DNA in the therapeutic effects of MSC-EVs. Interestingly,

despite descriptions of pro-inflammatory effects of foreign

DNA present in vesicles from other origins and uptake of

them by MSCs [40, 41], we did not find any reports of in-

flammation induced by MSC-EV-associated DNA, sug-

gesting that these EVs’ immunosuppressive properties

might overcome this possible effect or that there is less

harmful DNA associated with MSC-EVs.

b. mRNA Few studies have attributed therapeutic effects

to mRNAs when compared to the long list of studies

Fig. 2 Components of MSC-derived EVs and their related therapeutic potential. The different circles show the suggested vesicular protein, mRNA,

and miRNA components mediating the immune modulation, regeneration, and tumor growth effects of MSC-EVs. Abbreviations: MSC,

mesenchymal stem cell; EVs, extracellular vesicles; PDGF-D, platelet-derived growth factor-D; COX2, cyclooxygenase 2; PGE2, prostaglandin E2;

CCR2, C-C chemokine receptor type 2; KGF, keratinocyte growth factor; Ang-1, angiopoietin-1; HGF, hepatocyte growth factor; IGF-1R, insulin-like

growth factor 1 receptor; IL-10, interleukin-10; UBR2, ubiquitin protein ligase E3 component n-recognin 2; FGF19, fibroblast growth factor 19
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Table 1 Overview of MSC-EV-related studies conducted in animal models and in vitro for various diseases

MSC origin Model In vivo/in vitro potency Associated molecule Ref.

H - AD Angiogenesis Increased angiogenic capacity of endothelial cells miR-125a [122]

H - AD Prostate cancer Decreased proliferation and increased apoptosis miR-145 [65]

H - BM Optic nerve crush Promoted regeneration of retinal ganglion cells axons Argonaute-2 [34]

H - BM Leukocyte activation (in vitro) Decreased inflammatory cytokines in leukocytes COX2/PGE2 [35]

H - BM Nasopharyngeal carcinoma Promoted nasopharyngeal carcinoma cell growth FGF19 [38]

H - BM Breast cancer Inhibited endothelial cell migration and tube formation
using supernatants from EV-treated breast cancer cells

miR-100 [123]

H - BM Intervertebral disc
degeneration

Inhibited nucleus pulposus cell apoptosis miR-21 [54]

H - BM Cardiomyocyte contractility
(in vitro)

Increased contractility miR-21p [124]

H - BM Gastric cancer Increased gastric cancer cell migration and invasion miR-221 [69]

H - BM Metastatic breast cancer Induced dormancy miR-23b [125]

H - BM Acute myeloid leukemia Different patterns of miRNA expression in EVs miR-26a-5p, miR-101-3p, miR-23b-
5p, miR-339-3p, miR-425-5p

[126]

H - BM Skeletal muscle regeneration Increased myogenesis and angiogenesis miR-494 [127]

H - BM Acute kidney injury Recovery from renal injury mRNA (CCNB1, CDK8, CDC6) [128]

H - DP Ischemia Increased angiogenesis Jagged1 [31]

H - EMB Osteochondral defect Increased cartilage repair CD73 [33]

H - END Cardiac infarction (in vitro) Anti-apoptotic/anti-angiogenic effects and cardioprotection miR-21 [59]

Human
glioma

Glioma stem cell activation
(in vitro)

Increased glioma stem cell tumorigenicity miR-1587 [129]

H - PL Hindlimb ischemia Increased proangiogenic effect VEGF/miR-126 [92]

H - UC Myocardial infarction Increased endothelial cell migration and tube formation PDGF-D [32]

H - UC Cisplatin-injured renal tubular
epithelial cells (in vitro)

Protected against cisplatin-induced injury in renal tubular
epithelial cells

14-3-3ζ [37]

H - UC Hypoxia-ischemia (in vitro) Anti-apoptotic effect miR-let-7e, miR-let-7a [130]

H - UC Hepatitis (in vitro) Protected against infection by hepatitis C virus miR-let-7f, miR-145, miR-199a,
miR-221

[66]

H - UC Sepsis Increased survival in mice and decreased inflammatory
cytokines in macrophages

miR-146a [85]

H - UC Skin defect Reduced scar formation and myofibroblast development miR-21, miR-23a, miR-125b, miR-145 [56]

H - UC Skin defect in diabetes Promoted healing of cutaneous wounds miR-let-7b [84]

M - BM Acute kidney injury Recovery from renal injury CCR2 [36]

M - BM Kidney transplantation Increased graft survival miR-146a [131]

M - BM Systemic sclerosis Increased osteogenesis and decreased adipogenesis miR-151-5p [132]

M - BM Breast cancer Decreased angiogenesis miR-16 [133]

M - BM Hematopoietic cell activation
(in vitro)

Decreased autophagy and rejuvenating effects depending
on age

miR-17, miR-34a (negative effect),
RNA (positive effect)

[134]

M - BM Alzheimer’s disease Prevented cognitive decline miR-21 [55]

M - BM Myocardial infarction Promoted cardiac protection miR-210 [91]

M - BM Hindlimb ischemia Restored blood perfusion and promoted angiogenesis miR-210-3p, VEGF [135]

M - BM Cardiac infarction Decreased cardiac fibrosis miR-22 [136]

M - BM Sepsis Recovered cardiac function miR-223 [137]

M - BM Gastric cancer Increased proliferation and migration UBR2 [39]

M - EMB Angiogenesis Increased angiogenic capacity of endothelial cells miR-30b [138]

R - AD Erectile dysfunction in
diabetes

Restored erectile function miR-126, miR-130a, miR-132,
miR-let7b, miR-let7c

[139]
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that show at least correlations between specific miRNAs

and observed outcomes, as can be seen in Table 1. The

stoichiometry of nucleic acids in EVs and the minimal

concentration of each miRNA or mRNA needed to pro-

mote a robust effect in recipient cells is also still a sub-

ject of intense investigation [42].

In acute lung injury models and in pneumonia, the

mRNA for keratinocyte growth factor (KGF) has been

implicated in the immunomodulation observed with

MSC-EV treatment [43, 44]. In these studies, administra-

tion of an anti-KGF neutralizing antibody together with

the treatment abrogated the beneficial effect initially ob-

served on survival, and pretreatment of MSCs with

siRNA against KGF transcripts also partially inhibited

the anti-inflammatory effects of MSC-EVs as evidenced

by bronchoalveolar lavage fluid cellularity and the pres-

ence of inflammatory cytokines. The authors further hy-

pothesized that transcripts for angiopoietin-1, which is

also abundant in MSC-EVs, play an important role in re-

storing lung protein permeability and in resolving in-

flammation through the use of MSC-EVs in vitro [45]

and in a murine model of acute lung injury [46]. In fact,

angiopoietin-1 siRNA pretreatment of MSCs or MSC-EVs

led to a decrease in immunomodulation and permeability

recovery across human lung microvascular endothelial

cells in these models.

In an in vitro model of acute kidney injury, Ju and

co-workers have suggested a particular role for hepato-

cyte growth factor mRNA because vesicles treated with

RNase were shown to be ineffective in promoting dedif-

ferentiation and subsequent growth of tubular cells

[47]. In another in vitro model of acute kidney injury

induced by cisplatin, it was found that EV-associated

mRNA for insulin-like growth factor 1 receptor was im-

portant for the protection of proximal tubular epithelial

cells [48]. In a similar cisplatin-induced in vitro model,

interleukin (IL)-10 mRNA was also found to be trans-

ferred through MSC-EVs [49].

Furthermore, mRNA for the synthesis of type VII

collagen was found to be transferred in vitro to

recessive dystrophic epidermolysis bullosa cells to-

gether with the collagen protein itself [50]. This con-

dition is characterized by loss-of-function mutations

in the type VII collagen gene, and MSC-EVs might

therefore be a potential treatment for this disease.

c. miRNA Increasing evidence has been provided for

the effectiveness of miRNAs contained within MSC-EVs.

Many miRNAs that are involved in the therapeutic ef-

fects of MSC-EVs in different disease conditions are

shown in Fig. 2 and Table 1.

Because the field of miRNA has been most extensively ex-

plored in cancer-related research, some of these miRNAs

are known to be upregulated or are suggested to be markers

in specific cancer types. However, this does not necessarily

mean that the presence of these miRNAs in EVs represent a

pro-tumorigenic risk because it is often the combination of

multiple factors that is important for defining the ultimate

role of each molecule in this process. Nevertheless, it is im-

portant to keep in mind that oncogenic molecules might be

transferred through EVs and might influence the develop-

ment of tumors when there is a lack of onco-suppressor

genes in vivo [51]. On the other hand, there might be only

transient effects of this transfer in non-mutated cells [52].

Generally speaking, among the miRNAs that are most

frequently associated with the therapeutic properties of

MSC-EVs, miR-21, miR-19a, and miR-210 are linked to

cardiovascular diseases; miR-let-7b, miR-125a, and miR-21

are linked to wound healing; miR-21, miR-17-92, and miR-

133b are linked to neural damage; miR-223, miR-146a, and

miR-let-7c are linked to protection against hepatic and

renal injuries; and miR-221, miR-1587, and miR-23b are

linked to cancer-related effects (Fig. 2). Here, we will dis-

cuss in depth some of the miRNAs that are most often

cited as possible mediators of MSC-EVs’ effects.

� miR-21

Given that miR-21 has been shown to regulate cell

survival by stimulating proliferation and by inhibiting

Table 1 Overview of MSC-EV-related studies conducted in animal models and in vitro for various diseases (Continued)

MSC origin Model In vivo/in vitro potency Associated molecule Ref.

R - BM Renal fibrosis (in vitro) TGF-β induced epithelial mesenchymal transition in HK2 cells miR-294, miR-133b-3p [140]

R - BM Stroke Neuroprotective effects miR-133b [141]

R - BM Middle cerebral artery
occlusion

Promoted neurite outgrowth miR-133b [142]

R - BM Colitis Decreased colitis-associated fibrosis miR-200b [143]

R - BM Ischemic cardiomyopathy
(in vitro)

Reduced oxidative injury miR-21 [58]

Abbreviations: MSC mesenchymal stem cell, EVs extracellular vesicles, H human, M mouse, R rat, BM bone marrow, AD adipose tissue, DP dental pulp, EMB

embryonic, END endometrial, PL placental, UC umbilical cord, COX2 cyclooxygenase 2, PGE2 prostaglandin E2, FGF19 fibroblast growth factor 19, CCNB1 cyclin B1,

CDK8 cyclin-dependent kinase 8, CDC6 cell division cycle 6, VEGF vascular endothelial growth factor, PDGF-D platelet-derived growth factor-D, CCR2 C–C

chemokine receptor type 2, UBR2 ubiquitin protein ligase E3 component n-recognin 2, TGF tumor growth factor
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apoptosis in different cell types [53], the contribution of

this miRNA has been connected with MSC-EV-mediated

therapeutic effects in various disease models. BM-MSCs

have been shown to deliver exogenous miR-21 via EVs

and thus to prevent nucleus pulposus cell apoptosis and

to reduce intervertebral disc degeneration [54]. In

addition, the expression of miR-21 has been shown to

increase in MSC-EVs under hypoxic conditions, and in-

jection of these MSC-EVs could reduce cognition and

memory impairment in mice together with reduced

plaque deposition and reduced activation of microglia

[55].

The function of miR-21 was further described by Fang

et al. and Jackson et al. that EVs from UC-MSCs

enriched with miR-21 play a key role in suppressing

myofibroblast formation and thus in preventing exces-

sive scar formation [56, 57]. Blocking miR-21 in these

EVs abolished the ability of EVs to inhibit myofibroblast

formation, suggesting that this specific miRNA is essen-

tial for the anti-scarring functions of MSCs.

miR-21 has also been described as having a protective

role in cardiac injuries. EVs derived from BM-MSCs har-

bored increased levels of miR-21 after hydrogen perox-

ide-induced oxidation, and vesicular miR-21 could be

transported to cardiac stem cells in order to functionally

inhibit phosphatase and tensin homolog (PTEN)

expression and thus protect against oxidative stress-trig-

gered cell death [58]. Another study showed that select-

ive antagonism of miR-21 by anti-miR treatment

eliminated the anti-apoptotic and angiogenic effects of

MSC-EVs with subsequent upregulation of PTEN, a

miR-21 target, suggesting that miR-21 might be a poten-

tial mediator of MSC-EVs’ therapeutic effects against

cardiovascular diseases [59].

� miR-145

miR-145 is related to the processes of cellular differen-

tiation and the activation of smooth muscle cells and

myofibroblasts [60, 61]. Moreover, miR-145 is often de-

scribed as having tumor suppression effects [62–64]. In

agreement with these finding, upregulation of miR-145

in MSC-EVs has been shown to be effective in skin de-

fect healing and to have anti-tumor effects in prostate

cancer [56, 65]. miR-145 is enriched in UC-MSC-derived

EVs as determined by high-throughput RNA sequencing

[56]. Overexpression of miR-145 in EVs could suppress

the activation of tumor growth factor (TGF)-β/SMAD2

leading to the inhibition of differentiation of fibroblasts

into myofibroblasts, and depletion of this miRNA greatly

abolished the ability of EVs to inhibit the TGF-β/

SMAD2 pathway.

In terms of cancer prevention, AD-MSC-derived EVs

significantly inhibited the proliferation of metastatic

prostate cancer through apoptosis, and this effect was

negated by miR-145 knockdown leading to reduced ex-

pression of Caspase 3/7 and increased expression of

anti-apoptotic proteins [65]. Interestingly, EVs secreted

from UC-MSCs have been shown to inhibit hepatitis C

virus (HCV) infection by suppressing viral infection, and

this was largely attributed to suppression of viral RNA

replication by miR-145 [66].

� miR-221

In contrast to miR-145, the facilitating role of miR-221

in cancer progression has been extensively recognized in

recent years. For example, CD44 expression in hepatocel-

lular carcinoma is controlled by miR-221 through the

PI3K-Akt-mTOR pathway [67]. Additionally, miR-221 can

support non-small-cell lung carcinoma by targeting tissue

inhibitor of metallopeptidases-2 [68]. Similarly, high ex-

pression of miR-221 in EVs from BM-MSCs has been

shown to effectively increase gastric cancer cell migration,

invasion, and adhesion to the extracellular matrix [69].

Another study using miR-221 showed that upregulated

miR-221 in MSC-EVs protected against HCV in a similar

manner as miR-145 mentioned above [66].

How to make MSC-based therapies more potent?

Biophysical cues

MSCs have been shown to be stimulated by a variety of

different biophysical and biochemical stimuli (Fig. 3).

Biophysical inducers include electric pulsing [70, 71],

low-power laser irradiation [72], non-coherent red light

[73], electromagnetic field exposure [74], mechanical

cues (e.g., fluidics, tension, and pressure) and substrate

topography and stiffness [75], 2D and 3D scaffolds/scaf-

fold-free culture [76, 77], and magnetic forces [78].

Upon these different treatments, MSCs might dramatic-

ally change their phenotype and begin to differentiate

into specific types of cells, which is useful for a range of

applications such as tissue regeneration, especially in in-

juries to organs with mesenchymal origins [79, 80].

Nevertheless, some of these changes in the biophysical

parameters of MSC culture can also influence their se-

cretion profiles without promoting complete differenti-

ation. Many of these treatments can, for example,

increase the proliferation of MSCs, but little is known

about their effects on EV secretion or their immunomo-

dulation abilities, leaving a wide range of conditions to

be explored in attempts to increase MSC-EV yields and

to control their contents.

In a study of EVs derived from MSCs subjected to 3D

culture in type I collagen scaffolds versus common 2D

cultures, the authors isolated EVs from their superna-

tants using a commercial kit and found greater amounts
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of protein and better outcomes in promoting functional

recovery and immunomodulation in a model of trau-

matic brain injury in the samples isolated from 3D cul-

tured cells [79].

Another MSC culture parameter that can influence

the yield of EVs is cell seeding density, with lower dens-

ity being related to higher yields. It is, however, still un-

clear if these effects are related to cell-to-cell contact

because multiple culture medium collections instead of

one single collection over the same period of time also

increases the number of EVs that can be collected. It is

possible that EVs or metabolites present in the cell cul-

ture biochemically decrease the production and or secre-

tion of EVs by MSCs [80].

Biochemical cues

It is thought that MSCs responding to bacteria-derived mol-

ecules like lipopolysaccharides and the cytokines released in

response to such molecules can increase their therapeutic

effect against inflammatory environments [81–83]. More re-

cently, EVs produced from MSCs under inflammatory con-

ditions have gained increasing importance. A study done by

Ti et al. has shown that lipopolysaccharide stimulation in-

creases the secretion of EVs from UC-MSCs and enhances

M2 macrophage polarization and diabetic cutaneous wound

healing [84]. Increasing evidence indicates that inflammatory

cytokines might enhance the therapeutic efficacy of MSC-

EVs [35, 85, 86]. EVs from IL-1β-pretreated UC-MSCs were

shown to have greater immunomodulatory effects than EVs

from non-treated MSCs, suggesting that more functional

molecules such as miR-146a were embedded in the EVs

from IL-1β-pretreated MSCs [85]. In line with this, MSC-

EVs cultured in the presence of tumor necrosis factor alpha,

interferon gamma, or TGF-β led to significantly decreased

cytokine expression in splenocytes and to strongly increased

regulatory T cell differentiation that in turn exerted an anti-

inflammatory effect [35, 86].

MSC-CM includes various growth factors such as vas-

cular endothelial growth factor and PDGF, and it mimics

the beneficial effects associated with intact cells [87, 88].

The increased therapeutic effect induced by pre-stimula-

tion with PDGF has been confirmed by Lopatina et al.

on the basis of their work that use the angiogenic poten-

tial of AD-MSC-EVs for regenerative medicine [89].

Also, hormone stimulation with erythropoietin increased

the production of EVs and enhanced the protective ef-

fects of EVs following renal injury compared to un-

treated EVs [90]. In addition, hypoxic and ischemic

conditions have been shown to alter the characteristics

of MSCs with respect to EV function. It is reported that

hypoxia preconditioning causes BM-MSCs to increase

the production of EVs and that these EVs have superior

activity in cardiac protection by stimulating neovascular-

ization [91]. Also, EVs released by MSCs during nitric

Fig. 3 The influence of various conditions on the production and function of EVs. The effects of culture conditions and external stimuli on MSC-

EV secretion profiles and functional changes. MSC, mesenchymal stem cell; EVs, extracellular vesicles; LPS, lipopolysaccharide
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oxide stimulation have been shown to augment the an-

giogenic effects of endothelial cells and to restore limb

function in hindlimb ischemia [92]. Moreover, incorpor-

ation of paclitaxel into BM-MSC-EVs was shown to in-

hibit tumor growth in vitro [93]. In addition, the serum

contents of culture media were found to alter the MSC

characteristics and the RNA contents of released EVs,

suggesting that MSC-EVs can be modulated to contain

different active components for future therapeutic appli-

cations [94].

EVs derived from differentiated cells are able to mod-

ify the characteristics of MSCs. EVs from neuronal cells

can mediate MSC neuronal induction via miR-125b

transfer [95], and endothelial cell-derived EVs influence

MSC proliferation and migration, providing evidence for

EVs as a communication channel between endothelial

cells and MSCs [96]. In addition, mast cell-derived EVs

modulated MSC function to induce anti-inflammatory

effects during ovalbumin-induced allergy model via

vesicle-associated TGF-β [97]. Moreover, EVs derived

from tumor cells can also modulate the MSC phenotype.

For example, EVs from cancer stem cells induce in-

creased chemoattraction in MSCs resulting in tumor

progression, and EVs from lung cancer cells stimulate

the production and secretion of IL-6, IL-8, and mono-

cyte chemoattractant protein-1 in MSCs, thus imbuing

MSCs with more tumor-supportive characteristics [98].

However, there are no well-defined studies on how other

types of EVs might affect MSC function in terms of

MSC-EVs despite the high probability that these EVs

from differentiated cells will be able to modulate further

EV production by MSCs. Therefore, research into the

role of other cell-derived EVs on the potency of MSCs

in terms of EV secretion will be needed in order to ob-

tain optimal therapeutic outcomes.

Cellular reprogramming of MSCs

Despite the strong therapeutic effects of MSC-EVs, there

is a need to further understand how genetic modification

of MSCs can increase the therapeutic potency of se-

creted EVs. Researchers are currently trying to develop

more therapeutically optimized MSCs through overex-

pression of proteins and miRNAs. Here, we will focus on

how genetically modified MSC-EVs show altered cargo

and improved functional effects.

a. Overexpressed proteins in MSCs Most proteins tar-

geted for overexpression in MSCs have been transcrip-

tion factors and signaling molecules. MSCs generally

have limited expansion capability, thus Lai et al. have

created immortalized MSCs by inducing overexpression

of c-Myc. The production of EVs from these immortal-

ized cells is scalable under stringent GMP conditions,

and this enables these EVs to be used in the clinic [99].

Another study showed that overexpression of the

GATA-4 transcription factor in BM-MSCs increased the

ability of their secreted EVs to improve cardiac function

[100]. Such EVs could transfer more miR-19a than EVs

from control MSCs, thus resulting in restored cardiac

contractile function and reduced infarct size in a mouse

model. In addition, the hypoxia-inducible factor 1-α

(HIF-1α) transcription factor is usually stabilized during

ischemia and upregulates a variety of cardioprotective

genes, and this led researchers to mutate the HIF-1α

gene (oxygen-resistant form) in dental pulp-derived

MSCs for application in treating ischemia-related disease

[101]. EVs from HIF-1α overexpressing MSCs had in-

creased EV marker proteins such as tetraspanins and in-

creased angiogenic activity compared to control EVs,

and this led to increased repair of cardiac tissue in a

mouse model [31]. A similar study showed that EVs de-

rived from BM-MSCs overexpressing HIF-1α were able

to promote bone regeneration and to reduce steroid-in-

duced avascular necrosis of the femoral head [102]. Sig-

naling molecules such as Akt have been exploited in

MSCs to increase their effectiveness. EVs from UC-

MSCs that overexpress Akt harbor higher levels of Akt

than control EVs, and this leads to accelerating prolifera-

tion, migration, and vessel formation in endothelial cells

thus resulting in greater efficiency of cardiac repair. This

effect is mediated by enhanced PDGF-D production in

endothelial cells that promotes angiogenesis in the ische-

mic heart [32]. Some indications of these cardioprotec-

tive effects of Akt-overexpressing MSC-EVs were seen in

the CM, and the effects were attributed to secreted friz-

zled-related protein 2 [103].

MSCs reside in close proximity to tumor cells and are

reported to be involved in tumor progression [104]. It

has been generally considered that the tumor micro-

environment can alter the contents of MSC-EVs and

lead them towards a more pro-tumorigenic phenotype.

For instance, Roccaro et al. showed that BM-MSC-EVs

from multiple myeloma patients have different contents

of tumor suppressor miRNAs than EVs from normal

healthy subjects, and these patient-derived EVs pro-

moted multiple myeloma tumor growth, whereas EVs

from healthy individuals inhibited the growth of tumor

cells [105]. Thus, genetic modification of MSCs has also

been investigated in terms of how they affect tumor

growth. Tumor necrosis factor-related apoptosis-indu-

cing ligand (TRAIL) has been shown to be a promising

agent for cancer therapy [106], and based on this, Tuan

et al. transfected this gene into MSCs and then mea-

sured the cancer cell-killing efficacy of EVs derived from

these cells. Such EVs were decorated with highly

expressed TRAIL and induced apoptosis in various cancer

cell lines but not in primary bronchial cells [106, 107]. In

addition to gene overexpression, the effect of tumor-
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related gene knockdown has also been characterized in

BM-MSCs. EVs from p53-deficient BM-MSCs were

enriched in a UBR2 protein that promotes gastric cancer

progression. Such regulation of the p53 oncogene that in-

directly targets UBR2 to target cells enhanced tumor

growth and metastasis by regulating the Wnt/β-catenin

pathway [39].

b. Overexpression of miRNA in MSCs The use of miR-

NAs that target transcriptional and posttranscriptional

regulation might offer a novel option for treating many

diseases. However, the advancement of miRNA therapy

has been hindered by obstacles in delivering miRNA to

the target organs. EVs have emerged as an effective vehicle

for delivering miRNA, thus many researchers have been

engineering MSCs to load miRNA into EVs and have seen

potent therapeutic effects (Table 2).

A mouse renal injury and liver fibrosis model was used

to study the anti-fibrotic effect of EV-mediated miR-

let7c and miR-122. In this mouse model, EVs released

from MSCs, which had been engineered to overexpress

miR-let7c, included abundant miR-let7c and were able

to attenuate kidney injury and to significantly downregu-

late the expression of TGF-β1 and downstream fibrotic

genes in the kidney, thus providing a prime example of

the use of engineered MSCs for therapeutic delivery of

miRNA via EVs [108]. Given that miR-122 plays a crucial

role in liver fibrosis by negatively regulating the prolifera-

tion of hepatic cells, miR-122 was modified in AD-MSCs

to produce EVs with increased levels of miR-122. These

EVs mediated the communication between MSCs and

hepatic stellate cells through miR-122-induced downregu-

lation of target genes such as insulin-like growth factor re-

ceptor-1, cyclin G-1, and prolyl-4-hydroxylase α-1 [109].

In addition to the anti-fibrotic effect of EV-associated

miR-122, the same miR-122-containing EVs made hepa-

tocellular carcinoma cancer cells more sensitive to the

chemotherapeutic effects of sorafenib [110]. In line with

this, other miRNA modifications have been shown to

endow MSC-EVs with anti-tumor effects. In order to

mitigate the difficulties in targeting miRNAs to glioblast-

oma multiforme, Wharton’s jelly-MSCs were overex-

pressed with miR-124, and the derived EVs enhanced

chemosensitivity to temozolomide and decreased the mi-

gration of glioblastoma cells [111]. In another study, rat

brain MSC-EVs overexpressing miR-146b were used to

reduce the tumor burden of glioma xenografts, and

intra-tumor administration of these EVs reduced glioma

growth in the rat brain [112].

The neuroprotective activities of miR-17-92 and miR-133

have been augmented in EVs from miRNA-expressing

MSCs. EVs harvested from MSCs transfected with miR-17-

92 showed significantly increased axonal growth of cortical

neurons characterized by higher axonal elongation speed

compared to control EVs [113]. In an intracerebral

hemorrhage rat model, miR-133-containing MSC-EVs were

able to generate a pro-survival signaling response that

helped to stop the degeneration of neurons, and this was

mediated by suppression of RhoA and activation of the

Erk172/cAMP response element-binding protein [114].

Table 2 Overview of gene-transfected MSC studies conducted in in vitro and in vivo models

MSC origin Model In vivo/in vitro potency Transgene Ref.

H - BM Glioblastoma Increased survival in glioma stem cell-injected mice miR-124a [144]

H - BM Breast cancer Decreased tumor activity and size miR-379 [145]

H - BM Renal fibrosis Decreased matrix deposition miR-let-7c [108]

H - SYN Diabetes skin defect Increased proliferation of fibroblasts and epithelial cells miR-126 [117]

H - SYN Osteoarthritis Increased cartilage tissue regeneration miR-140-5p [116]

H - UC Glioblastoma (in vitro) Decreased proliferation and migration and increased chemosensitivity miR-124 [111]

H - UC Burn-induced inflammation Decreased inflammation miR-181c [146]

H/M - AD Liver fibrosis Inhibited fibrosis miR-122 [109]

H/M - AD Hepatocarcinoma Inhibited tumor growth miR-122 [110]

Marrow stromal cells Glioma Inhibited tumor growth miR-146b [112]

M - AD Liver fibrosis Increased autophagy miR-181-5p [147]

M - BM Autoimmune hepatitis Recovery from liver injury miR-223 [115]

R - BM Myocardial infarction Improved cardiac function and reduced infarction size miR-19a [100]

R - BM Cortical neuron activation (in vitro) Increased axonal growth miR-17-92 [113]

R - BM Intracerebral hemorrhage Neuroprotective effects miR-133b [114]

R - BM Acute myocardial infarction Increased cardiac function miR-133 [148]

R - BM Cardiomyocyte activation (in vitro) Increased survival after hypoxia in cardiomyocytes miR-221 [149]

Abbreviations: MSC mesenchymal stem cell, H human, M mouse, R rat, BM bone marrow, AD adipose tissue, UC umbilical cord, SYN synovial
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Studies have also examined the regenerative effects of

miRNAs delivered by MSC-EVs in different disease models.

EVs from miR-223-overexpressing BM-MSCs were used in

a mouse model of autoimmune hepatitis, and the EVs could

prevent liver injury through miR-223-induced downregula-

tion of target cytokine expression and downregulation of

NLR pyrin domain containing 3 and caspase-1 activity

[115]. Moreover, a study on EVs derived from miR-140-5p-

overexpressing human synovial MSCs showed enhanced

cartilage tissue regeneration and reduced osteoarthritis of

the knee in a rat model [116], and EVs derived from miR-

126-overexpressing human synovial MSCs healed full-thick-

ness skin defects in a diabetic rat model [117].

Conclusions and perspectives

The relationships between EV components and EVs’ bio-

logical effects have also been investigated, and the most

commonly identified molecules are proteins and miRNAs.

Various strategies for exogenously loading isolated EVs

with specific proteins and nucleic acids have been investi-

gated [118], for example, electroporation, freeze-thaw cy-

cles, saponin-mediated loading, and hypotonic dialysis

[119]. Moreover, many groups have started to pack EVs

with desired cargos using transgenic MSCs that are genet-

ically modified to overexpresses certain proteins and miR-

NAs. However, this requires optimized conditions in order

for genetically modified EVs to acquire more effective func-

tional properties. In addition, comprehensive studies are

needed regarding the quality control of EV compositions as

well as the safety and efficacy of these EVs before they can

be used in clinical applications.

Before addressing the benefits of MSC-EVs over MSCs,

it is essential to consider the need for careful investigation

of the following issue. The effects of various external fac-

tors on the properties of MSCs have been described in nu-

merous clinical trials [120]. Subtle differences in donor

variance, senescence, cell culture methods, and immuno-

genicity were shown to make the functional alteration in

MSC therapy. For instance, MSCs undergoing cellular

senescence promoted metabolic dysfunction [121] and

lost their mesenchymal plasticity and anti-inflammatory

effect [120], which might be leading to failures of MSC

therapy. To our knowledge, there have been no studies

assessing the relationship between EV therapeutic activ-

ities and MSC senescence. However, it needs further in-

vestigation on senescent cell contents when EVs are

functionally evaluated, and in-depth understanding of the

related mechanism will contribute to successful develop-

ment of MSC-EVs for clinical use.

In conclusion, MSCs have potential therapeutic func-

tions through various vesicular components together

with the cells themselves and their secreted soluble fac-

tors, and MSCs are amenable to modifications that im-

prove the quantity and effectiveness of the EVs they

produce. Thus MSC-derived EVs can be harnessed as

powerful therapeutic agents to deliver anti-inflammatory

and regenerative compounds in many different diseases.

Future work will focus on developing bioengineered

MSCs that produce significantly increased yields of EVs

that can safely transfer a wide variety of potent and ef-

fective therapeutic molecules.

Additional file

Additional file 1: Table S1 Overview of MSC-EVs studies. There are total
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