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Abstract: Underwater images often suffer from low contrast, low visibility, and color deviation. In
this work, we propose a hybrid underwater enhancement method consisting of addressing an inverse
problem with novel Retinex transmission map estimation and adaptive color correction. Retinex
transmission map estimation does not rely on channel priors and aims to decouple from the unknown
background light, thus avoiding error accumulation problem. To this end, global white balance is
performed before estimating the transmission map using multi-scale Retinex. To further improve
the enhancement performance, we design the adaptive color correction which cleverly chooses
between two color correction procedures and prevents channel stretching imbalance. Quantitative
and qualitative comparisons of our method and state-of-the-art underwater image enhancement
methods demonstrate superiority of the proposed method. It achieves the best performance in terms
of full-reference image quality assessment. In addition, it also achieves superior performance in the
non-reference evaluation.

Keywords: underwater image enhancement; transmission map estimation; color correction

1. Introduction

Underwater images are an important medium of ocean information. The quality of
underwater images is essential for exploring and utilizing the coastal waters and deep sea,
such as underwater surveying, target detection, submarine mineral, and marine energy
exploration, to name a few. They are also crucial for the vision function of Remote Operated
Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). During the past few
years, underwater image enhancement has drawn much attention in underwater vision
communities [1,2]. Due to the complicated optical propagation and lighting conditions
in the underwater environment, enhancing an underwater image is a challenging and ill-
posed problem [3]. Usually, an underwater image is degraded by wavelength-dependent
absorption and scattering including forward scattering and backward scattering. These
adverse effects reduce visibility, decrease contrast, and introduce color deviations, hindering
the practical applications of underwater images in marine exploration.

Due to the similarity between underwater image formation model and atmospheric
haze image formation model, one line of research is to adapt the successful Dark Channel
Prior (DCP) [4] for underwater image enhancement, such as Low-complexity Dark Channel
Prior (LDCP) [5] and Underwater Dark Channel Prior (UDCP) [6]. These works have
achieved good results in normal situations, but still may fail from time to time and produce
unsatisfactory visual results. One reason is that the underwater dark channel prior or
its variants are not always valid when there are white objects or artificial light in the
underwater scene. In addition, in this line of work, transmission map estimation usually
requires knowing the background light. Hence, the error in estimating background light
will accumulate into the estimation of transmission map, leading to poor restoration.
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Another line of research is physical model unrelated, aiming to modify image pixel
values to improve visual quality. One example is the Fusion [7] method which blends
a contrast-enhanced image and a color-corrected image in a multi-scale fusion strategy.
Fusion has achieved remarkable results from the point of color and detail recovery. How-
ever, it is prone to introduce red artifacts after enhancement. Recently deep-learning
based underwater image enhancement methods [3,8] have shown promising results. This
category of methods takes a data-drive approach to train deep neural networks directly,
usually regardless of the underwater imaging models. Despite the success, they often
demand heavy computation and high memory which limits their usage in resource-limited
application scenarios, such as underwater vision for ROVs and AUVs.

In this work, we propose a hybrid underwater enhancement method consisting of
addressing the inverse problem and color correction. Different from DCP variant methods,
our method does not rely on channel priors. Moreover, it aims to decouple the estima-
tion of transmission map from the estimation of background light, avoiding the error
accumulation problem. To this end, we perform global white balance before estimating
the transmission map, and comprehensively use the multi-scale Retinex [9] to obtain a
three-channel transmission map. Gaussian filtering is used to obtain the local backscattered
light as the background light value. After addressing the inverse problem, a final adaptive
color correction strategy is proposed to further improve the enhancement performance
in case of possible unsatisfactory white balance results or unfaithful local backscattered
light estimation.

To demonstrate superiority of the proposed method, we conduct quantitative and
qualitative comparison experiments of our method and state-of-the-art (SOTA) under-
water image enhancement methods on the Underwater Image Enhancement Benchmark
(UIEB) [10] dataset. In quantitative comparison experiments, we perform both all-reference
evaluation and non-reference evaluation.

The contributions of this paper are summarized as follows:

• A transmission map estimation method based on white balance and multi-scale
Retinex is proposed, which does not need unknown backscattered light and avoids an
error accumulation problem and block effect. The calculation is relatively simple, and
no optimization by guided filtering [11] is required;

• In order to deal with possible unsatisfactory preliminary recovery results in some
cases, an adaptive color correction method is proposed, which cleverly choose between
two color correction procedures and prevent channel stretching imbalance;

• We conduct comprehensive quantitative and qualitative experiments on our method
and compare them with SOTA underwater image enhancement methods. Experimen-
tal results demonstrate the superiority of the proposed method which achieves the
best performance in terms of full-reference image quality assessment. In addition, it
also achieves superior performance in the non-reference evaluation.

2. Related Works

McGlamery’s study [12] showed that, in the underwater medium, the total radiation
reaching the observer consists of three components: Direct Component ED, Forward-
scattering Component EFS, and Backscattering Component EBS. The direct component
ED is the portion of the light reflected from the target scene that undergoes attenuation
and reaches the observer. At each pixel x of the image, the direct component can be
expressed as:

ED(x) = Jc(x)e−pλd(x) = Jc(x)tc(x), (1)

where Jc(x) is the radiation of the object at the x, c ∈ {r, g, b} refers to the color channel in
the RGB color space, d(x) is the distance from the object to the observer, and pλ is the atten-
uation coefficient. pλ represents the absorption and scattering of light when it propagates
in the underwater medium, and different wavebands of light have different attenuation
coefficients. tc(x) = e−pλd(x) is called the transmission map of underwater medium.
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The backscattering component, also known as veiling light, is the prime reason for
losing contrast and color cast in underwater images. The backscattering component can be
expressed as:

EBS(x) = Bc(x)(1− e−pλd(x)), (2)

where Bc(x) is called backscattered light or background light.
Because the forward-scattering component has little effect on image distortion, it

can be ignored. Therefore, in most underwater image restoration methods [13–15], the
simplified underwater imaging model used is as follows:

Ic(x) = Jc(x)tc(x) + (1− tc(x))Bc(x), (3)

where c ∈ {r, g, b}, and Ic(x) is the corresponding color channel of the observed image
I(x). Image restoration aims to recover the radiation J(x) of the scene from the observed
image I(x). If B(x) and t(x) have been estimated and substituted into Equation (3), the
recovery formula of underwater image can be obtained as follows:

Jc(x) =
Ic(x)− Bc(x)

tc(x)
+ Bc(x). (4)

The recovery of underwater image in Equation (4) is an ill-posed problem. Thus,
some sort of priors could be utilized to estimate the unknown transmission map and
backscattered light. Many methods based on the dark channel prior or its variants have
emerged in recent years. Yang et al. [5] proposed an efficient and low complexity under-
water image enhancement method based on Dark Channel Prior which employed the
median filter instead of the soft matting procedure to estimate the transmission map of
image. However, since the original DCP was designed for atmospheric image dehazing,
the transmission map obtained by DCP was not accurate when there were white objects
or artificial light in the underwater scene. The UDCP [6] used the green and blue channel
to estimate the transmission map and obtained a more accurate underwater transmission
map compared with original DCP. However, such biased estimations of the transmission
map lead to the darkening of the overall image in the final restored image. Peng et al. [16]
proposed a Generalized Dark Channel Prior (GDCP) for image restoration, which first
estimated ambient light using the depth-dependent color change and then estimated the
scene transmission. Song et al. [17] proposed a transmission map optimization method
based on statistical model-based background light estimation and the underwater light
attenuation prior, which could better recover the details of underwater images. However,
this method could not obtain accurate background light value for some close-range images,
resulting in an unsatisfactory visual effect. Wang et al. [18] proposed a novel underwater
image restoration method based on an adaptive attenuation-curve prior that relied on the
statistical distribution of pixel values.

Since the scene depth map is very important for the estimation of the transmission map
and background light intensity, Song et al. [19] proposed a rapid and effective scene depth
estimation model based on underwater light attenuation prior (ULAP). In this method, the
coarse estimated transmission map was calculated over local patches of the underwater
image, resulting in blocking artifacts in the transmission tc(x). In order to solve such a
problem, guided filter [11] was used to refine the coarse t(x), which was computationally
expensive. Peng et al. [20] proposed a depth estimation method based on image blurriness
and light absorption, which can be used in the image formation model to restore and
enhance underwater images.

Physical model unrelated methods, such as the well-known Fusion [7], directly modify
image pixel values to improve visual quality. Ghani et al. [21] presented a method dubbed
as dual-image Rayleigh-stretched contrast-limited adaptive histogram specification, which
integrated global and local contrast correction. Huang et al. [22] proposed a Relative Global
Histogram Stretching (RGHS) method, which obtained dynamic parameters based on the
original image. It stretched and adjusted each channel, meanwhile used bilateral filtering
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to eliminate noise, enhanced detail information, and finally corrected colors. RGHS has
achieved an excellent visual effect on many underwater blurred images, but it does not
solve the color deviation problem.

Underwater image datasets are crucial to the development and evaluation of underwa-
ter image enhancement methods. Li et al. [10] presented the UIEB dataset, which contains
890 underwater images with corresponding reference images for training, and another
90 pairs of images for testing. Based on UIEB, they proposed a deep learning based under-
water image enhancement network, named Water-Net, to demonstrate the potential of the
UIEB dataset. Despite the effectiveness of Water-Net, it is a convolutional neural network
and sometimes not suitable for power-limited or memory-limited devices. Recently, neural
networks are also used to synthesize diverse underwater scenes and to build the neural
rendering underwater dataset [2].

3. Proposed Underwater Image Enhancement Method

The proposed method follows the recovery formula in Equation (4), which requires the
transmission map and the backscattered light to be estimated before performing recovery
calculation. In addition, adaptive color correction is carried out subsequently to deal
with possible low contrast and color shifts remaining in the output of the preliminary
recovery calculation of Equation (4). Thus, the proposed underwater image enhancement
method consists of four steps: retinex transmission map estimation, local backscattered
light estimation, preliminary recovery and adaptive color correction.

3.1. Retinex Transmission Map Estimation

In most underwater image restoration methods [4,15], the backscattered light B(x)
is needed to estimate the medium transmission map t(x). Then, the error in estimating
B(x) will accumulate into the estimation of t(x). If using minimization filter to estimate
t(x), due to block effect, the estimated medium transmission map t(x) has to be refined by
the Guided filter to reduce the negative influence of block effect, which in turn causes a
certain amount of calculation burden. Our proposed transmission map estimation method
is designed to avoid the above problems.

We begin by deriving tc(x) from Equation (3):

tc(x) =
Bc(x)− Ic(x)
Bc(x)− Jc(x)

. (5)

In order to utilize the above relationship to estimate the medium transmission map
without knowing B(x) in advance, we perform global white balance on the input image
I(x) firstly, resulting in the white balanced version Ĩ(x). Now, no chromatic component
dominates the underwater image. Such operation can be considered as fixing background
light to achromatic Ba(x) = (1, 1, 1). In addition, we assume that the imaging model in
Equation (3) is now valid for Ĩ(x) under the achromatic background light, however, with a
color-shifting scene radiance from the original underwater target scene, denoted by Ja(x).
Note that t(x) still remains the same since it is scene radiance independent.

Thus, transmission map tc(x) can be derived as in Equation (5) by using the white
balanced Ĩ(x), the achromatic Ba(x), and the new scene radiance Ja(x):

tc(x) =
1− Ĩc(x)
1− Jc

a(x)
. (6)

In Equation (6), Jc
a(x) is unknown, embodying the fictitious change of the target scene

due to white balance operation. Fortunately, since tc(x) has a piecewise smoothing property,
multi-scale Retinex can be used to estimate Jc

a(x) [23]:

Jc
a(x) = 1− Retinex(1− Ĩc(x)), (7)



Appl. Sci. 2023, 13, 1973 5 of 12

where Retinex(·) represents a multi-scale Retinex operator presented in [9], which computes
a triplet of lightness values for each pixel.

Therefore, the transmission map can be obtained as follows:

tc(x) =
1− Ĩc(x)

Retinex(1− Ĩc(x))
. (8)

Compared with other transmission map estimation methods, the method we pro-
posed avoids using the estimated Bc(x) to estimate the medium transmission map, and
there is no negative influence of block effect, so the calculation is relatively simple. The
obtained transmission map is shown in Figure 1. As mentioned earlier, we utilize white
balance to change the scene chromaticity of the input image before estimating the medium
transmission map. The white balance step we used is the gray world white balance algo-
rithm [24]. The algorithm firstly computes the average value of Ir(x), Ig(x), Ib(x), which is
represented by Īr, Īg, Īb, and the gray average value of the entire image can be obtained as
Ī = ( Īr + Īg + Īb)/3. Finally, use the following formula for white balance:

Ĩr(x) = kr · Ir(x)
Ĩg(x) = kg · Ig(x)
Ĩb(x) = kb · Ib(x)

, (9)

where, kr, kg, kb are the gains of the three channels, kr = Ī/ Īr, kg = Ī/ Īg, kb = Ī/ Īb.

(a) (b) (c) (d)

Figure 1. (a) An underwater image; (b) transmission map estimated by UDCP; (c) transmission map
estimated by LDCP; (d) transmission map estimated by the proposed algorithm.

3.2. Local Backscattered Light Estimation

The underwater medium is rich in suspended particles. When light is incident on the
particles, the light will be scattered. Therefore, these particles can be regarded as a weak
light source. The scattered light of these particles reaches the observer and constitutes a
backscattered component. Most underwater restoration methods assume that the medium
and illumination are uniform to estimate the global backscattered light. However, common
underwater scenes often have non-uniform illumination and medium. To estimate a global
backscattered light is not suitable because the backscattered light is non-uniform [14].
Moreover, when the scene’s depth is so deep that artificial lighting is needed, the estimation
error of global backscattered light will become more prominent. Therefore, estimating a
local backscattered light can better adapt to the underwater environment.

We utilize the method of [25] to estimate the local backscattered light. Given an
underwater image Ic(x), it is assumed that the distance between the local block around the
image pixel x and the camera is uniform. The backscattered light is obtained by Gaussian
low-pass filtering of the underwater observed image:

Bc(x) = GΩ(x)⊗ Ic(x), (10)
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where GΩ(x) is the Gaussian function, ⊗ is the convolution operation, and Ω(x) is a
partial window around the pixel x. Utilizing local backscattered light has better detail
recovery finally.

3.3. Preliminary Recovery

After using the above techniques to estimate the medium transmission map t(x)
and the local backscattering light B(x), they are substituted into Equation (4) to perform
preliminary recovery of scene radiance J(x).

However, the recovered J(x) at this stage may still suffer from low contrast and color
shifts, due to unsatisfactory white balance results or unfaithful local backscattered light
estimation in some cases. One of such cases is given in Figure 2.

(a) (b) (c)

Figure 2. Example of unsuccessful preliminary recovery result and the final adaptive color correction
result. (a) the original image; (b) preliminary recovery result; (c) adaptive color correction result
produced by the proposed method.

3.4. Adaptive Color Correction

In order to deal with possible low contrast and color shifts in some cases, we propose an
adaptive color correction step to alleviate these problems and improve the enhancement result.

The basic formula of color correction is by

Jc
CS = kc(Jc − Jc

low) =
Jc − Jc

low
Jc
up − Jc

low
, (11)

where Jc
up and Jc

low are the upper and lower stretching parameters of c channel, and
kc = 1/(Jc

up − Jc
low) is the stretch coefficient. There are two popular choices for stretching

parameters Jc
up and Jc

low. The first one is to directly use the maximum and minimum channel
intensity max(Jc(x)) and min(Jc(x)), while the other one considers second-order statistics
of the channel intensity [26]:

Jc
up = J̄c + µ · std(Jc) (12)

Jc
low = J̄c − µ · std(Jc) (13)

where J̄c is the mean value of the c channel, std(Jc) is the standard deviation of the c
channel, and µ is an adjustment hyper-parameter, usually set among 2∼3.

We have investigated both these two choices. Empirically, we found that neither of
them can produce good results for all situations. They both produce unwanted artifacts
in the corrected results. However, they have the potential to compensate for each other.
Specifically speaking, artifacts are prone to occur if one channel is over-enhanced compared
to the other two channels, regardless of which choice of stretching parameters is selected.
From the angle of Equation (11), when the stretch coefficient kc of one channel is too large
compared with those of the other two channels, artifacts are prone to occur.

Therefore, we proposed an adaptive color correction strategy which uses variance of
the three-channel stretching coefficients {kc} to indicate the degree of channel stretching
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imbalance. By comparing the variances of {kc} of the aforementioned two choices, the
strategy selects the one with less variance, as detailed in Algorithm 1.

Algorithm 1 Adaptive color correction
Input: Preliminary recovery result Jc(x)
Output: Adaptive color correction result Jc

CC(x)

1: calculate kc
1 = 1

max(Jc(x))−min(Jc(x)) and kc
2 = 1

2µ·std(Jc)
, c ∈ {r, g, b}

2: if std(kc
1) < std(kc

2) then
3: Jc

up = max(Jc(x))
4: Jc

low = min(Jc(x))
5: else
6: Jc

up = J̄c + µ · std(Jc)

7: Jc
low = J̄c − µ · std(Jc)

8: Jc
CC =

Jc−Jc
low

Jc
up−Jc

low
9: return Jc

CC

4. Results

To demonstrate the advantages achieved by the proposed underwater image enhance-
ment method with Retinex transmission map and adaptive color correction, we compare it
against several state-of-the-art underwater image enhancement methods. The experiments
are conducted on the UIEB dataset [10], which is the first widely used real-world underwa-
ter image dataset with reference images. UIEB includes 890 raw underwater images with
the corresponding high-quality reference images, within which 800 pairs are for training
in data-driven learning and 90 pairs are for testing. Since the proposed method is not
learning-based, we conducted experiments only on the testing set.

4.1. Quantitative Results

To quantitatively evaluate the performance of different methods, we performed not
only non-reference evaluation, but also full-reference evaluation since there are ground-
truth images in the UIEB testing dataset.

Here, we briefly introduce the image quality assessment metrics used in quantitative
evaluations. For full-reference evaluation, we used two popular metrics, Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [27]. A higher PSNR
score means that the enhancement result is closer to the reference image in terms of image
pixel values, while a higher SSIM score indicates that the result is more similar to the
reference image in terms of image structure and texture. By using the reference images,
PSNR and SSIM metrics provide direct evaluation of the enhancement performance to some
extent, although the real ground truth images might be different from the reference images.

Underwater image quality was also evaluated by two commonly used metrics for non-
reference images: Underwater Color Image Quality Evaluation (UCIQE) [28] and Metric
and Underwater Image Quality Measurement (UIQM) [29] Metric. UCIQE quantifies the
non-uniform color casts, blurring, and low contrast, and combines these three components
in a linear manner. A higher UCIQE score means that the result has better balance among
the chroma, saturation, and contrast. UIQM is comprised of three underwater image
attributed measures: image colorfulness, sharpness, and contrast. A higher UIQM score
indicates that the result is more consistent with human visual perception.

We compared the proposed method with six typical and SOTA underwater image
enhancement methods: Fusion [7], RGHS [22], UDCP [6], GDCP [16], ULAP [19], and
Peng et al. [20]. Among these six compared methods, Fusion and RGHS are independent
of physical models, UDCP and GDCP rely on DCP-variant priors, ULAP and Peng et al.
belong to the physical model based category of methods using other priors. Together,
they form a representative group of traditional underwater enhancement methods. The
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quantitative results of both full-reference evaluation and non-reference evaluation are listed
in Table 1.

Table 1. Quantitative full-reference evaluation and non-reference evaluation of the proposed method
and six other SOTA underwater image enhancement methods. The best results in terms of each
metric are shown in bold.

Method PSNR ↑ SSIM [27] ↑ UCIQE [28] ↑ UIQM [29] ↑
Fusion [7] 19.16 0.73 0.63 2.73

RGHS [22] 18.86 0.76 0.63 2.62

UDCP [6] 12.88 0.56 0.58 2.26

GDCP [16] 13.42 0.75 0.57 2.76

ULAP [19] 14.37 0.69 0.63 2.44

Peng et al. [20] 15.66 0.66 0.55 2.14

The proposed method 19.31 0.79 0.63 2.83

In Table 1, the proposed underwater image enhancement with Retinex transmission
map and adaptive color correction obtains the highest scores of PSNR, SSIM, and UIQM.
In terms of UCIQE, it obtains the highest score along with Fusion, RGHS, and ULAP
methods. Thus, our method achieves the best performance in terms of full-reference
image quality assessment. In addition, it also achieves superior performance in the
non-reference evaluation.

4.2. Qualitative Results

We also conducted qualitative evaluation of the proposed method and other SOTA
methods on the UIEB test dataset. Some sample images and their corresponding enhanced
results are shown in Figure 3.

It can be seen that the proposed method produces visually pleasing images from these
samples. In case of greenish and bluish underwater images, the proposed method can
remove these unpleasant color deviations. Such capability is important since greenish
or bluish color deviations are common for underwater images taken especially in open
water due to the fact that the red light attenuates first, followed by the green light and then
the blue light. In case of underwater images with low contrast, the proposed method can
substantially remove the backscatter light, leading to clear results.

Compared with other underwater image enhancement methods, the proposed method
produces results with higher visibility and less artifacts, proving the effectiveness of Retinex
transmission map estimation and adaptive color correction.
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Original RGHS ULAP UDCP FUSION The proposed method

Figure 3. Visual comparison of the enhanced outputs produced by other SOTA underwater image
enhancement methods and the proposed method. Original images are from the UIEB test dataset.

4.3. Improvements over Multi-Scale Retinex

The proposed method uses multi-scale Retinex (MSR) in the estimation of transmission
map. Since multi-scale Retinex is itself an image enhancement method, we conducted
comparison experiments to demonstrate that the proposed method offers improvements
over MSR.

We compared three methods: (1) plain MSR [9] used in Retinex Transmission Map
Estimation; (2) MSR with color correction [30]; and (3) the proposed method. Note that plain
MSR used in Retinex Transmission Map Estimation does not include the color restoration
step as presented in [9], while MSR with color correction carries out the color restoration
step as well as a final color balance step. In this comparison, the UIEB [10] test dataset
was used again for evaluation. Quantitative results of PSNR, SSIM, UCIQE and UIQM
metrics are listed in Table 2. It can be seen that the proposed method surpassed the other
two methods in terms of the PSNR and UCIQE metrics.

Table 2. Quantitative comparison of two MSR-based methods and the proposed method. The best
results in terms of each metric are shown in bold. The UIEB test dataset was used for evaluation.

Method PSNR ↑ SSIM [27] ↑ UCIQE [28] ↑ UIQM [29] ↑
Plain MSR [9] 14.96 0.72 0.45 2.81

MSR with color correction [30] 17.40 0.80 0.60 2.87

The proposed method 19.31 0.79 0.63 2.83

To compare these three methods qualitatively, the enhanced outputs on some test
samples are given in Figure 4, along with the original images and the corresponding
ground truth images. It can be seen that plain MSR tends to produce results with low-
contrast appearances. MSR with color correction performs better than plain MSR. However,
empirically, we observed that, for several test samples, MSR with color correction would
introduce reddish artifacts into the enhanced results. Two such cases are shown in the
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last two rows of Figure 4. Unlike the other two methods, the proposed method performs
MSR on the white balanced image rather than directly on the original image, and only uses
it to estimate the transmission map. In addition, it is based on the underwater imaging
model and utilizes an adaptive color correction and thus is more robust when dealing with
complex degradations in underwater scenes.

Figure 4. Visual comparison of the enhanced outputs produced by two MSR-based methods and
the proposed method. Original images and their corresponding ground truth images are from UIEB
test dataset.

5. Conclusions

In this work, we proposed a robust underwater image enhancement method based on
the novel Retinex transmission map estimation and adaptive color correction. By taking
advantage of white balance and Retinex operations, Retinex transmission map estimation
is exempted from the unknown backscattered light. Adaptive color correction chooses
suitable stretching parameters in order to avoid channel stretching imbalance. Quantitative
evaluation demonstrates that our method outperforms other SOTA methods in terms of full-
reference metrics. In addition, it also achieves superior performance in the non-reference
evaluation. In visual comparison, the proposed method produces results with higher
visibility and less artifacts.

Despite the superiority of our method, it may fail in some rare cases. Since we only
use a simple gray world white balance algorithm, the proposed method may produce poor
enhancement if white balance fails due to some reasons. In future work, we will investigate
more robust white balance algorithms to improve the enhancement stability.
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UCIQE Underwater Color Image Quality Evaluation
UDCP Underwater Dark Channel Prior
UIEB Underwater Image Enhancement Benchmark
UIQM Underwater Image Quality Measurement
ULAP Underwater Light Attenuation Prior
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