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A bstract

Electrical Impedance Tomography (E IT ) is an imaging technique which calculates the elec
tr ica l conductiv ity  d is tribu tion  w ith in  a medium from  electrical measurements made at a 
series o f electrodes on the medium surface. Reconstruction o f conductiv ity  or conductiv ity  
change images requires the solution o f an ill-conditioned nonlinear inverse problem from 
noisy data. E IT  is a hard problem as i t  is a particu la rly  d ifficu lt example o f a ttem pting to 
recover a signal from  noise.

To date most E IT  scanners and algorithms have been designed for 2D applications. This 
s im p lify ing  assumption was orig ina lly  used due to  the p rohib itive  computational complexity 
o f solving the larger 3D problem. Contemporary P C ’s can now calculate 3D solutions, 
however at the s ta rt o f th is thesis the prevailing algorithms in clin ical use remain 2D models 
th a t rely on ad hoc tweaking to  produce useful reconstructions.

The aim  o f th is thesis is to  develop enhancements in  E IT  image reconstruction for 3D 
lung imaging; to  remove some o f the lim ita tions th a t continue to  impede its  routine use in 
the clinic. The aim is attained through the systematic achievement o f the follow ing four 
main objectives: (1) Improve the method o f hyperparameter selection in  order to  elim inate 
case by case tweaking o f parameters, provide repeatability  o f experiments, and reduce the 
number o f reconstructions needed to  find  the best reconstruction for a given data set. (2 ) 
Increase the resolution o f 3D models by increasing the number o f elements in  the F in ite  
E lem ent; Model (FE M ). This requires the development o f an a lgorithm  to solve the large 
inversion using readily available computers. (3) Determine the best way to  collect 3D data 
from  the: chest given some equipment lim ita tions and a specific set constraints concerning 
electrode placement. (4) Determine the v ia b ility  o f non-b lurring regularization for 3D lung 
imaging.

The bu lk of th is thesis describes how the four objectives were successfully addressed 
w ith  the result th a t some o f the m ajor lim ita tions discouraging and preventing the routine 
use of 3D models for lung imaging have been elim inated. Th is thesis concludes w ith  a 
recommendation for how to  collect and reconstruct 3D E IT  images o f the lungs.
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List o f P rincipal Sym bols

The nota tion o f th is thesis is as follows: matrices are boldface upper-case letters, column 
vectors are boldface lowercase letters. The n  x  n  iden tity  m a trix  is I „ .  The ( i , j ) th entry 
o f A  is A ij,  s im ilarly  the i th entry o f a vector x  is ,r,;. Continuum  operators are upper-case 
letters while continuum variables are lowercase letters.

General Variables

•  I  is the electrode number

•  f 2 represents the medium under analysis

•  T represents the boundary o f the medium under analysis

•  N  number o f Nodes in  a FEM

•  E  number o f elements in  a FEM

•  L  number o f electrodes in  a FE M

•  M  number o f measurements in  a frame o f data

•  <j> linear in terpo lation function

•  n  is noise

•  ||• ||p is the p  norm, where p  is usually 2 .

Continuum Variables

•  u  is the potentia l

•  u (x )  is the spatial potentia l

•  F  is the forward operator

•  a  is the conductance or in  a few places the standard deviation

•  I  is the current

•  i i  normal

x ii
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D is c r e te  V a r ia b les

•  I is the m a trix  or vector o f nodal currents

•  Vg is the voltage on electrode I

•  V  is the vector or m a trix  o f nodal voltages

•  cr is the conductance or in  a few places the standard deviation

•  Y  is the adm ittance m a tr ix  o f a FE M  w ith  simple po in t electrodes

•  A  is the adm ittance m a trix  o f a F E M  w ith  the Complete Electrode Model

•  T [] is an extraction operator

•  z is the E IT  signal

•  x  is the parameter recovered through solution o f the inverse problem

•  n is the u n it normal vector

x iii
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Chapter 1 

In troduction

1.1 B ackground

Electrical Impedance Tomography (E IT ) is an imaging technique which estimates the elec
tr ica l impedance d is tribu tion  w ith in  some medium. Since impedance is not d irectly  mea
surable i t  is calculated from  boundary voltage measurements which axe a function of the 
impedance and a current which is applied or injected by the E IT  scanner. Using different 
current in jection patterns and voltage measurement sequences, an approxim ation o f the 
spatial d is tribu tion  o f the impedance or changes in  impedance w ith in  the object axe recon
structed^ I t  is also possible to  in ject voltages and measure the resulting currents, however 
the m a jo rity  o f work to  date uses the former technique.

E IT  has numerous applications th a t can be categorized in to  three m ajor fields:

1. Industria l. These applications include the imaging of flu id  flows in  pipelines, the 
measurement of flu id  d is tribu tion  in  m ix ing  vessels, and non-destructive testing such 
as crack detection [43] [9].

2 . Geophysical. Applications include geophysical prospecting, cross borehole measure
ment and surface measurement [8 8 ] [93].

3. Medical. E IT  is used for m onitoring o f pulm onary and cardiac functions, measure
ment o f brain function, detection o f haemorrhage, measurement o f gastric imaging, 
detection and classification o f tum ours in  breast tissue and functional imaging o f the 
thorax [67] [49] [83] [46] [82] [70] [56] [107]. This thesis is p rim arily  concerned w ith  medical 
imaging applications, however the results are applicable to  the other fields.

E IT  Suffers from  severe lim ita tions th a t may prevent its  adoption for routine medical d i
agnosis. Its  m ajor lim ita tions are low spatial resolution, susceptibility to  noise and electrode 
errors, and in  medical imaging, large va riab ility  o f images between subjects. Thus E IT  is 
not suited for anatomical imaging in  the way th a t Magnetic Resonance Imaging (M R I) or 
Computed Tomography (C T ) are. E IT  does however, show promise as a diagnostic tool 
for medical clinicians. I t  has the advantage o f being relatively inexpensive (on the order 
o f thousands o f dollars) compared to  modalities such as M R I, C T , and Positron Emission 
Tomography (PET). Moreover, E IT  equipment is non-invasive, is safe, and since i t  is small 
and non-cumbersome i t  can be easily moved and left in  place for extended tim e periods. 
Thus i t  may be viable for continuous bedside m onitoring for such pathologies as pulmonary 
oedema, cerebral ventricular haemorrhage, and gastric emptying. Additiona lly , i t  has the 
a b ility  to  produce a high number o f images per second encouraging its  use in  functional
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as opposed to  anatomical imaging. W ith  functional applications images can be considered 
intermediate data for some technique such as the determ ination o f the change in  lung tid a l 
volume.

1.2 C urrent s ta te  and problem s

A  detailed review o f the current state o f E IT  is presented in  chapters 2 and 3. Chapter 3 
concludes w ith  a discussion o f the best practices used in  E IT  lung imaging at the s ta rt of 
th is work.

The field o f impedance imaging of lungs is im m ature as an engineering endeavour. De
spite 20 years o f research and the availab ility  o f inexpensive medical grade E IT  scanners, 
E IT  has yet to  make the transition  from  the lab to  the clinic [48]. The adoption o f E IT  
imaging: for clin ical use w ill require algorithms th a t provide 3D inform ation, improve res
olution, and be robust and reliable enough th a t clinicians w ill rou tine ly and confidently 
employ the equipment for diagnostics.

A lthough there are many papers (the bib liography lists over 80) and even a few books 
(for example [69]) dealing w ith  E IT , there is a lack o f rigorous evaluation and comparison 
o f competing methods and techniques. Moreover, many algorithms (perhaps the m a jo rity ) 
are ad hoc and require tweaking o f parameters th a t prevents repeatability in  experimenta
tion. F inally, 2D algorithms continue to  be used: the bu lk o f research in  E IT  has revolved 
around 2D fin ite  element models. Improvements in  com putational power has perm itted  the 
recent development o f 3D algorithms, however the use o f 2D continues to  be routine in  lung 
imaging, perhaps due to  the ready availab ility o f equipment designed for 2D applications. 
Among other lim ita tions, 2D imaging cannot provide vertica l location inform ation o f off- 
plane contrasts. A lthough one can predict theoretica lly how a known off-plane contrast w ill 
affect the resulting 2D image, one cannot infer the location o f the source o f an artefact in  a 
2D image, caused by an off-plane contrast, from  the 2D image. This is a severe lim ita tion  
to  2D imaging th a t should encourage the development o f 3D algorithms. The practical use 
o f 3D imaging has been pioneered by the Industria l Process M on itoring  (IP M ) community. 
The main difference between IP M  applications and lung applications is tha t IP M  has the 
advantage o f well known and stable electrode position in form ation thus reconstruction mod
els can match the tank geometry to  high precision. Contrarily, lung imaging suffers from  
unknown a p r io r i electrode position which is exacerbated by continuous electrode move
ment throughout data collection. These problems make difference imaging d ifficu lt and 
make absolute imaging practica lly impossible unless one can track the electrode positions.

E IT  remains a promising medical imaging m odality. However^ to  move the m odality 
in to  routine use for lung imaging w ill, as a m inim um , require the development o f rigorous, 
repeatable and rapid 3D image reconstruction techniques. Thus the aim o f th is thesis is to 
develop Enhancements in E IT  Image Reconstruction for 3D Lung Imaging. In  other words, 
to  remove some o f the lim ita tions th a t continue to  prevent the routine use o f 3D models. 
A lthough i t  is expected th a t these enhancements w ill be useful in  other applications the 
specific interest in  th is thesis is 3D lung imaging.

1.3 O b jectives

The aim o f th is thesis w ill be addressed in  terms o f the follow ing four m ajor objectives:

01: Improve the method o f hyperparameter selection in  order to  elim inate case by case
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tweaking o f parameters, provide repeatability  o f experiments, and reduce the number 
o f reconstructions needed to  find  the best reconstruction for a given data set.

E IT  is an ill-conditioned problem in  which regularization is used to  calculate a sta
ble and accurate solution by incorporating some form  o f p rio r knowledge in to  the 
solution. A  hyperparameter is used to  control the trade-off between conformance to 
data and conformance to  the prior. A  d ifficu lty  w ith  experimental and clin ical E IT  
reconstruction algorithms is the tendency o f algorithms to  rely on subjective meth
ods to  select th is hyperparameter. The absence o f objective hyperparameter selection 
methods results in  several issues which hinder experimental and clin ical use o f the 
technique: (1) users o f E IT  for clin ical applications are uncomfortable using ‘fidd le ’ 
adjustments to  m od ify images, (2) comparisons o f E IT  reconstruction algorithms can 
be subjective due to  the necessity o f manual tun ing  of hyperparameter values, (3) ex
perim ental work is not repeatable i f  disparate researchers cannot objectively recreate 
the hyperparameter values used in  the work o f others, (4) meta-algorithms, such as 
detection o f electrode errors [7], require a method to  fix  these values, and (5) Many ex
is ting  methods o f hyperparameter selection, such as the L-curve and expert selection, 
require the calculation o f m u ltip le  reconstructions in  order to  obta in the a lgorithm ’s 
output.

02 : Increase the resolution o f 3D models by increasing the number o f elements in  the 
FEM . This w ill require the development o f an algorithm  to  solve the large inversion 
using readily available computers.

Calculation o f conductiv ity  solutions using one o f the Newton type methods requires 
inverting large linear systems derived from  fin ite  element models in  which the con
d uc tiv ity  is constant over each element. The Hessian m a trix  in  these linear systems 
scales w ith  the square o f the number o f elements in the model and the square of 
the number o f measurements used in  the reconstruction. The large number o f ele
ments required for 3D reconstructions have to  date restricted 3D reconstructions to 
coarse, low resolution (low number o f elements) models. A lthough there is a lim it to 
the achievable spatial resolution th a t is independent o f mesh density, overly coarse 
meshes w ill result in  the geometry o f the mesh biasing the solution. Complex, accu
rate geometries, a p r io r i structures, the increased number o f measurements possible 
w ith  newer machines and the desire for improved resolution in  the th ird  dimension 
leads to  a requirement to  solve large 3D models. Such reconstructions are beyond the 
capability o f contemporary computers such as the A M D  A th lon  64 3000+, 2GB R A M  
computers used in  our lab. Thus the development o f algorithms th a t can efficiently 
calculate fu ll 3D solutions over dense fin ite  element models using many measurements 
is required.

0 3 : Determine the best way to  collect 3D data from  the chest given some equipment 
lim ita tions and a specific set o f constraints concerning electrode placement.

Electrode placement for 2D reconstruction algorithms is typ ica lly  confined to  planar 
arrangements th a t match the 2D reconstruction geometry; yet the E IT  problem is 
inherently 3D as currents cannot be confined to  flow in  the plane. Consequently 2D 
reconstructions are subject to  artefacts generated by o ff plane contrasts. 3D recon
struction algorithms w ith  m ulti-plane electrode arrangements have been used to  more 
accurately reconstruct impedance d istribu tions [90] [99] [115]. Compared to  2D there 
are many more ways to  arrange and sequence electrodes when placing them  in  3D. 
Given the variety o f possible 3D electrode placement configurations, i t  is im portant
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to  know how various alternative configurations compare to  one another in  order to 
determine which one to  use in  a specific application such as lung imaging.

04 : Determine the v ia b ility  o f non-b lurring regularization for 3D lung imaging.

Most common regularization methods impose smoothness constraints on solutions 
thereby p roh ib iting  the reconstruction o f edges in  the recovered conductiv ity  dis
tribu tion . Employment o f non-smooth reconstruction techniques is im portan t for 
medical imaging applications o f E IT  as they involve discontinuous profiles which oc
cur at inter organ boundaries. Total Varia tion (T V ) is a prom ising regularization 
technique th a t perm its the recovery o f such discontinuities. However, T V  regular
ization requires the solution o f the inverse problem formulated as the m in im ization 
o f a non-differentiable function. Applica tion  o f trad itiona l m in im iza tion  techniques 
(Steepest Descent M ethod, Newton M ethod) is com putationally p roh ib itive  [44] [23]. 
Recently Borsic [23] developed the Prim a l-D ual In te rior-Po in t M ethod for solution 
o f the T V  m in im ization fo r static (absolute) E IT  which reduces the complexity of 
the T V  m in im ization to  the po in t o f v ia b ility  for general E IT  applications. However 
the performance o f th is  a lgorithm  w ith  respect to  trad itiona l smooth algorithms is 
unknown.

1.4 C ontribu tion s

1 .4 .1  C o n tr ib u tio n s  b y  O b je c t iv e

01: Improve the method of hyperparameter selection in  order to  e lim inate case by case 
tweaking of parameters, provide repeatability  o f experiments, and reduce the number 
o f reconstructions needed to  find the best reconstruction for a given data set.

In  th is  thesis a calibration-based method o f objective hyperparameter selection, called 
BestRes is developed, evaluated and compared to  five existing strategies for hyperpa
rameter selection. Results o f th is  thesis show th a t (1) heuristic selections o f hyperpa- 
raiheter are inconsistent among experts, (2 ) generalized cross-validation approaches 
produce under-regularized solutions, (3) L-curve approaches are unreliable for E IT , 
(4); BestRes produces good solutions comparable to  expert selections, and add itiona lly 
th a t (5) the method can be used to  re liab ly detect an inverse crime  when used w ith  
the N F calculation. Thus the main contribu tion  o f th is objective is the development 
o f the BestRes hyperparameter selection method which is demonstrated to  be as good 
or better than these existing methods while being stable and repeatable.

Th is work is described in  detail in  the article “ Objective Selection o f Hyperparameter 
for E IT ,” by B M  Graham and A  Adler, published in  the IO P  Journal Physiological 
Measurement (2006). Chapter 4 is a copy o f th is paper.

02 : Increase the resolution o f 3D models by increasing the number o f elements in  the 
FEM .

In  th is thesis a Nodal Jacobian Inverse Solver a lgorithm  th a t reduces the execution 
tim e and memory required to  calculate reconstructions is developed. Th is a lgorithm  
scales w ith  the number o f nodes in  a fin ite  element mesh rather than w ith  the number 
o f elements. The algorithm  is evaluated by comparing its performance to  trad itiona l 
2D: Elemental Jacobian algorithms. Its  performance is then evaluated w ith  a 21504 
element 3D mesh th a t is too large to  be solved w ith  common linear algebra systems
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based on 32 b it pointers (such as is available in  current versions o f M atlab). For 
the example used in  th is paper the size o f the linear system is reduced by a factor 
o f 26. The app licab ility  o f the a lgorithm  for clinical use is shown by reconstructing 
experim entally measured human lung data.

A dd itiona l advantages o f the Nodal Jacobian Inverse Solver are the a b ility  to  store 
the solution in  a smaller number o f parameters, and the a b ility  to  rap id ly  extract and 
render graphical displays o f solutions using a function such as M a tla b ’s b u ilt- in  tr is u r f 
function. The tr is u r f  function takes as inpu t a lis t of vertices and associated values 
at each vertex. No exp lic it knowledge o f the geometry is required, such as an element 
lis t provid ing connectedness between nodes, in  order to display cu t planes o f coplanar 
nodes. Additiona lly, nodal solutions are easily processed using p ixe l based filte ring  
algorithms sim ilar to  those used in  image processing work.

The main contribu tion  o f th is  objective is the development o f the Nodal Jacobian 
Inverse Solver which allows the solution o f dense 3D models th a t were previously not 
solvable using commonly available linear algebra systems based on 32 b it pointers.

Th is work is described in  the artic le “A  Nodal Jacobian Inverse Solver for Reduced 
Complex E IT ,” by B M  Graham and A  Adler, published in  In ternationa l Journal for 
In fo rm ation  &  Systems Sciences, Special Issue on Com putational Aspect o f Soft Field 
Tomography, Volume 2, Number 4 (2006). Chapter 5 is a copy o f th is paper.

03 : Determine the best way to  collect 3D data from  the chest given some equipment 
lim ita tions and a specific set o f constraints concerning electrode placement.

In  th is thesis several “regular” 3D electrode placement (EP) configurations tailored 
to  a 16 electrode adjacent drive E IT  system are proposed and evaluated in terms of 
several figures o f m erit, im m un ity  to  noise and performance in  the presence o f elec
trode placement errors. A n  EP configuration is defined as a combination o f physical 
placement of the electrodes (we restrict ourselves to two planes o f electrodes in  this 
work) and a current in jection pattern.

The main conclusions are the observation th a t none of the evaluated EP configuration 
offers a worthwhile improvement over the others under ideal conditions. O nly when 
noise and electrode placement errors are considered does the choice o f EP configuration 
become im portant. The P lanar electrode placement is recommended for lung imaging.

The main contributions o f th is objective are the proposal o f the EP configurations 
w ith  the ir constraints, the rigorous evaluation o f the ir performance and the recom
mendation of which o f the studied EP configurations to  use to  collect 3D lung data.

Th is work is described in  the artic le  “Electrode Placement Strategies for 3D E IT ,” by 
B M  Graham and A  Adler, accepted for publication in the IO P  Journal Physiological 
Measurement (2007). Chapter 6  is a copy o f th is paper.

04 : Determine the v ia b ility  o f non-smooth regularization for 3D lung imaging.

In  th is thesis the P D -IP M  a lgorithm  for Total Varia tion (T V ) regularization o f E IT  
reconstructions is evaluated and compared to the com putationally less demanding 
quadratic regularization. The main observations are th a t the T V  solutions o f 2D 
models can produce the desired discontinuous solutions bu t require on the order o f 1 0  

iterations to  converge. In  comparison, the quadratic a lgorithm  produces good, albeit 
smooth solutions in  1 to  3 steps. The quadratic a lgorithm  is s ligh tly  more robust
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to  noise however both  algorithm s produce useful 2D reconstructions at realistic noise 
levels.

The a b ility  o f P D -IP M  a lgorithm  to  reconstruct edges in  3D models was not satis
facto rily  determined. The P D -IP M  a lgorithm  reconstructs the conductiv ity  in  the 
elemental basis. The com plexity o f the elemental solution lim its  the resolution o f 
the fin ite  element model. Thus the capability  o f determ ining 3D T V  performance is 
lim ited  to  re lative ly coarse FEM s th a t may lim it the performance o f the algorithm . 
Further work is required to  enable the solution o f higher resolution 3D models in  order 
to  evaluate the performance o f P D -IP M  for 3D lung imaging.

In  summary, T V  regularised reconstructions are considerably more expensive to  cal
culate than quadratic reconstructions, however the T V  P D -IM P  a lgorithm  is able to  
compute 2D non-smooth reconstructions in  the presence o f moderate noise, and is 
therefore o f practical use in  certain applications. I t  is not currently recommended for 
use w ith  3D lung imaging.

The main contribution o f th is  objective was the improvement in  convergence o f the 
P D -IP M  a lgorithm  and the evaluation o f the a lgorithm ’s performance in  2D and 3D 
applications.

Th is work is described in  the artic le “Total Variation Regularization for E IT ,” by 
Borsic, Graham, Lionheart, and Adler. Chapter 7 is a copy o f the a manuscript 
in  preparation for submission to  IE E E  Transactions on Medical Imaging. This is a 
collaborative work. The development o f the P D -IP M  algorithm , i t ’s explanation and 
implem entation are the original work o f Andrea Borsic and can be found in  [23]. The 
analysis o f the a lgorithm ’s performance, including the improvement in  convergence, 
the sim plification o f the (3 decay schedule as well as the design and execution of 
the a lgorithm ’s performance evaluation and subsequent conclusions are the original 
contribu tion  o f th is thesis. D r Ad ler and D r L ionheart are the PhD  supervisors of 
Graham and Borsic respectively.

1 .4 .2  M isce lla n eo u s  C o n tr ib u tio n s

The background research for th is thesis is contained in  chapters 2 and 3. These chapters 
include, in  one place, the complete development o f the fin ite  element solution o f the forward 
problem from  Laplace’s equation through to  the fin ite  element solution. We are unaware of 
the existence o f a s im ilar end-to-end derivation elsewhere in the E IT  literature.

Numerical simulation o f conductiv ity  data perm its the rapid development o f imaging 
a lgorithms than would not be possible i f  researchers were restricted to  only using lab data. 
However, many E IT  papers rely s tr ic tly  on simulated data to make conclusions. Scientific 
and engineering results based on simulations are valuable but must be verified w ith  empirical 
(lab) data. Therefore a collateral objective o f th is thesis is to  verify simulated results w ith  
empirical data collected in  our lab. Thus, where possible, the conclusions presented in  th is 
thesis are verified using the Goe-MF I I  adjacent stim ulation tomography system (Viasys 
Healthcare, Hochberg, Germany).

The impulse function and point spread function are basic tools o f signal processing for 
linear systems. Neither the impulse function nor po int spread function are mentioned in the 
E IT  lite ra tu re  perhaps because E IT  is a non-linear modality. In  th is thesis pseudo-impulse 
phantoms are introduced and used w ith  E IT . In  section 4.3.5 we firs t introduce the B lu r 
Radius measure which is an analog o f the po in t spread function adapted for E IT  using 
fin ite  element meshes. The argument for the use o f pseudo-impulse functions in  a lgorithm

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



development and evaluation is not based on superposition since i t  does not hold for non
linear systems, bu t because they are convenient to  use and work well enough in  practice. 
Validation o f the ir u t i l i ty  in  spite o f the lack o f superposition is demonstrated by subsequent 
verification o f a lgorithm  performance using realistic empirical data generated by complex 
phantoms. Specifically although objectives 1-3 were developed and evaluated using the 
pseudo-impulse phantom  techniques, they were u ltim a te ly  verified by empirical work.

1.5 R ecord  o f  M iscellan eou s O bservations

In  the course of th is research, several other areas were studied th a t are outside the focus 
area o f th is thesis. In  order to  record th is  work and these observations, they are recorded 
in  the appendix.

1.6 Sum m ary

A t the s ta rt o f th is  work the prevailing algorithms in  use for clin ical lung imaging were 
lim ited  to  2D models th a t relied on ad hoc tweaking to  produce reconstructions. The aim 
o f th is thesis was to develop enhancements in  E IT  image reconstruction for 3D lung imaging. 
The aim  was attained through the systematic achievement o f the four main objectives:

1. The development o f the BestRes objective hyperparameter selection method provides 
a ca libration based method o f calculating a hyperparameter once for a specific con
figuration o f mesh and equipment. Using th is  a lgorithm  eliminates the necessity of 
ad hoc tweaking by researchers during reconstruction. D ifferent research groups can 
more easily repeat the work o f other research groups. Moreover, by calculating the 
hyperparamctcr off-line, a good image can be obtained from  a single inversion. Con- 
tra rily , methods such as L-curve and expert selection require m ultip le  inversions to 
be calculated for each useful solution.

2. The development o f the Nodal Jacobian Inverse Solver a lgorithm  enables the solution 
o f large dense 3D fin ite  element models tha t, previous to  th is  work, were not solvable 
using linear algebra systems based on 32 b it pointers. Th is solver allows one to  model 
and solve complex, accurate geometries containing a p r io r i structures w ith  a system 
th a t could not solve the same model using the trad itiona l elemental Jacobian.

3. The evaluation o f 3D EP configurations provides a rigorous basis for recommending 
a specific method to  collect 3D lung data. Moreover i t  provides a sound basis to 
discontinue fu rthe r evaluation o f configurations, such as the proposed opposite con
figurations, th a t perform  poorly.

4. The improvement and evaluation o f the P D -IP M  algorithm  for T V  regularization pro
vides a defensible argument for when and when not to  use T V  regularization. Moreover 
thq promising 2D results provide jus tifica tion  and incentive for fu rthe r research into 
th is a lgorithm  aimed at increasing the size o f 3D models th a t can be solved w ith  the 
algorithm . The development o f a nodal T V  p rio r is a promising avenue for fu rther 
research.

The work described in th is  thesis has removed some o f the m ajor lim ita tions th a t have 
discouraged or prevented the routine use o f 3D models for lung imaging. This thesis con
cludes w ith  a recommendation for how to  collect and reconstruct 3D E IT  images o f the 
lungs under the stated constraints.
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Chapter 2

Forward P rob lem

2.1 D escrip tion  o f  a B asic  E IT  S ystem  and E xperim ent

The follow ing two sections describe a pro totyp ica l E IT  system for 2D medical applications. 
The remainder of chapter 2 along w ith  chapter 3 expand on the components and variations 
of the prototype system.

2 .1 .1  D a ta  C o llec t io n

A  typ ica l E IT  system uses a set o f electrodes attached to  the surface of the medium being 
imaged. One can apply current or voltage to  the electrodes and then measure the resulting 
voltage or current respectively. In  most practical systems an alternating current is applied 
to  some electrodes and the resulting voltages are measured at the other electrodes. Assume 
th a t I  =  16 electrodes have been fixed around the surface of the object such as the medium 
in  figure 2.1. There are many ways to  apply current and measure the resulting voltages

Current
Source

Medium Q
Imaging System

Data
acquisition
Controler

Figure 2.1: Typical Imaging System w ith 16 Electrodes attached to the boundary o f an object 
fo r  current in jection and voltage measurement (from [3]).

which w ill be discussed in  section 2.5.1. W ith  the Adjacent drive pattern  [16], current is 
applied to  an adjacent pair of electrodes and the resultant voltages between the remaining 
13 adjacent pairs of electrodes is measured. The three possible measurements involving 
one or bo th  of the current in jecting electrode are not used. This procedure is repeated 
16 times w ith  current injected between successive pairs of adjacent electrodes u n til a ll 16 
possible pairs o f adjacent electrodes have been used to  apply the known current. This is
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(a) F irst drive pa ir (b) Second drive pair

Figure 2.2: Adjacent drive patterns

shown schematically in  figure 2.2. In  figure 2.2(a) current is injected through electrode 
pair ( 1 , 2 ) and the resulting boundary voltage differences are measured from  electrode pairs 
(3,4), (4, 5),..., (14,15), (15,16). Voltages are not measured between pairs (16,1), (1,2), or
(2,3). In  figure 2.2(b) the current is injected between pair (2,3), and the voltage differences 
measured between pairs (4,5), (5 ,6 ) ,..., (15,16), (16,1). This process is repeated u n til cur
rent has been injected between a ll 16 adjacent pairs of electrodes. This is called a frame 
o f data and w ill produce 16 x  13 =  208 measurements. By convention the data frame is 
arranged as a column vector o f length 208. Frame acquisition periods have decreased over 
the years. For example the equipment used for the empirical work o f th is  thesis, the Goe- 
M F  I I  type tomography system manufactured by Viasys Healthcare, Hochberg, Germany, 
collects 12.5 frames per second (80ms per frame).

There are various situations, which w ill be discussed later, in  which i t  is necessary 
to  num erically calculate the potentia l fie ld w ith in  a medium. A  mathematical model of 
the spatial potentia l field, u (x ), resulting from  injected current patterns over a known 
conductiv ity  can be formulated as u (x ) =  F ( a , I )  where F  is a forward operator tha t 
calculates the spatial potentia l as a function o f the conductivity, a, and the current in jection 
pattern, I .  Here x  is a position vector which for 2D is a function o f (x, y). Th is model is 
known as the forward model in  E IT .

The forward problem is num erically solved using the F in ite  Element M ethod (FEM ) 
which w ill produce an algebraic equation o f the form  V  =  Y(<j )_1I in  which Y  is the FE M  
system m atrix , also known as the adm ittance m atrix , V  is a m a trix  o f voltages. The i th 
column o f V  contains the nodal voltages for current in jection pattern i. I is a m a trix  of 
the net current in to  each node. The i th column o f I contains the nodal currents for current 
in jection pattern  i. A n  operator T [] can be defined to  extract the 208 voltage measurements 
from  the fin ite  element model solution as v  =  T [V ] =  T [Y (e r)_ 1 I] where v  is the vector 
o f voltage measurements corresponding to  a data frame. Numerical solution o f the forward 
problem is the subject o f chapter 2 .2 .

2.1.2 Reconstruction

The process o f estimating the impedance from  the measured data is known as the inverse 
problem  in  E IT . The inverse problem is solved using a reconstruction algorithm  o f which
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there are two p rim ary types in  E IT . Static imaging  attempts to  recover an estimate of the 
absolute conductiv ity o f the medium from  which the boundary data was acquired. Static 
imaging is discussed in  section 3.3. Difference imaging attempts to  recover an estimate 
o f the change in  conductiv ity over some interval based on data frames measured at two 
times, see figure 2.3. Difference images can be calculated in  a single step w ith  a linearized

(a) a  at t i  (b) <7 at t2 (c) Conductivity Change

Figure 2.3: Example o f 2D difference Image reconstruction

algorithm , however th is assumes th a t the impedance change over the interval is small. 
For large impedance changes one needs to  solve the non-linear problem w ith  an iterative 
algorithm . The difference imaging algorithms discussed in  th is thesis are a ll of the one-step 
linearized class.

Define a signal z =  v 2 — V ! , where v x is a vector o f voltage measurements taken at 
tim e t \  and v 2 is a vector o f voltage measurements taken at tim e f 2. The estimation o f a 
difference image is calculated w ith  an equation o f the form

x  =  B z  (2.1)

where x  =  A ct is the change in  conductiv ity  between times t \  and f 2, and B  is a regularized 
linearized reconstruction operator. I t  is also possible to  define a “normalized difference”

length(v)
signal in  which z is defined as z,; =  ^  (v2,i — v i,i)  / i >i,i where i and u2 are the

I
i th elements of the vectors v i  and v 2 respectively. This signal is not used in  the current 
development bu t is fu rthe r discussed in  section 4.5.3.1.

Calculation o f the impedance or impedance changes based on the boundary voltage 
data is an instance o f an ill-conditioned, inverse problem. Such problems are unstable and 
require some method o f im proving the conditioning to  achieve stability. The most common 
m ethod is regularization, which involves trad ing  o ff fide lity  to  the data against adherence 
to  some a p r io r i condition on the solution. Typically, th is  means th a t the inverse problem 
is augmented w ith  a side constraint th a t is either chosen in  an ad hoc manner, or based on 
some sort o f p rio r inform ation about the solution such as amplitude (norm) or smoothness. 
Numerical solution of the inverse problem is the subject of chapter 3. Figure 2.4 shows an 
experimental setup of a Goe Type I I  analyzer connected to one of the several tanks used 
for phantom studies.

2.2 T h e Forward P rob lem

M ost E IT  equipment uses alternating currents (AC) thus the various loads under analysis 
could have reactive components. AC reduces electrode corrosion through electrolytic ef
fects, AC detectors can extract the injected signal from  the electrodes while filte ring  out 
other signals such as the cardiac cycle, and in  medical applications AC is required to  meet 
safety standards. A m p litude  and frequency vary w ith  application from  several Amperes 
and low frequency in  geophysical applications to  medical applications using 1-lOmA and
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Figure 2.4: Typical experimental setup w ith laptop computer and Goe-MF I I  type tomography 
system (Viasys Healthcare, Hochberg, FRG ) connected to a tank w ith  16 electrodes.

lO kH z-lM H z. Often in  industria l applications loads are assumed to  be m ain ly resistive 
or m ain ly capacitive. In  these cases only the in-phase or the out-of-phase voltage compo
nent is measured therefore only the real or imaginary part o f the impedance is estimated. 
Such applications are referred to  as Electrical Resistance Tomography (ERT) and E lectrical 
Capacitance Tomography (EC T). The work of th is thesis is based on a fam ily  o f medical 
equipment th a t works w ith  up to  50kHz current. A t th is  low frequency, to  a good approx
im ation, only the conductance or equivalently the resistiv ity is estimated. Thus the work 
discussed in  th is  thesis is restricted to  the recovery o f conductance only. One could there
fore ta lk  in  terms o f E lectrical Conductance Tomography or the more accepted Electrical 
Resistance Tomography. However, in  keeping w ith  common usage, the term  E IT  w ill be 
maintained. The thesis o f Polydorides [98] addresses the estimation o f both  the real and 
complex components o f the impedance.

In  inverse problems a forw ard model is used to  predict observations. In  the specific case 
o f E IT , a model th a t predicts the spatial electric field resulting from  applying a current to  
a known conductiv ity d is tribu tion  is required. The capability to  calculate the electric fields 
w ith in  an object also provides an efficient method to  assemble the Jacobian m a trix  which 
is necessary to  solve the inverse problem.

2 .2 .1  P h y s ic s  o f  th e  p ro b lem  - from  M a x w e ll to  L ap lace

A n a rb itra ry  medium, f l ,  undergoing electrical stim ulation has electrical properties th a t 
vary as a function of position and time. These properties are represented by the electrical
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impedance, a (x , t )  +  ju>(x, t) , and relative p e rm itt iv ity  e(x, t)  where x  =  (aq, aq) for 2D or 
x  =  ( x j , X‘2 , X3 ) for 3D is the position vector. This work does not consider the temporal 
aspect o f these functions nor, as discussed above, are the reactive components significant. 
I t  is also common practice to  neglect the effect o f magnetic fields in  medical applications 
because the current and frequencies are low. A t high frequencies magnetic effects cannot be 
ignored [1 1 0 ], however, under low frequency conditions the electrical properties are entirely 
described by the conductivity, a (x ). Add itiona lly , only the case in  which the object being 
imaged has a linear and isotropic conductiv ity  is considered.

A  mathematical model o f the problem is derived from  M axw ell’s equations [3]. O u t
side the medium, ft, there is no current flow because the conductiv ity  is zero. Energy is 
applied to  the medium in  the form  o f current injection on the boundary, T, which sets up 
a d is tribu tion  o f voltage, u (x ), and a pa ttern  o f current flow, J (x ),  in  the medium. The 
electric potentia l, u(x ), can be expressed by an e llip tic  pa rtia l d ifferentia l equation known 
as Laplace’s equation or ju s t the Laplacian:

V  • (a V u ) =  0 in  f t  (2.2)

Laplace’s equation can be derived sta rting  from  the po in t form o f O hm ’s Law:

J  =  a E  (2.3)

where the electric field vector, E , is obtained from  the scalar potentia l function u(x) by 
taking the negative o f the gradient o f u:

E  =  - V u  (2.4)

A pp ly ing  the field equivalent o f K ircho ff’s current law, which states th a t the net current 
leaving a junction  o f several conductors is zero, yields:

V  J  =  0 (2.5)

Substitu ting 2.4 in to  2.3 and taking the divergence o f both  sides in  accordance w ith  2.5 
gives Laplaces’s equation 2.2 for the electric potentia l inside some medium. Cheney and 
Isaacson [37] provide the follow ing in tu itive  description o f th is equation:

“To understand where the equation comes from, i t  helps to  read i t  from  the inside 
out. The inside nabla takes the gradient o f the potentia l, u (x ), computing the 
direction in  which electrons w ill tend to  flow, as well as the rate o f change of 
voltage in  th a t direction. In  electric circuits, the conductance o f a w ire times the 
change in  voltage gives the current passing through the wire. The tissue inside 
the human body act like an electrical resistor, so the same princip le  applies:
<x(x) times the gradient o f u (x )  represents the current at po in t x. F ina lly  the 
outer nabla computes the divergence o f the current, a measure o f its  tendency 
to  flow in to  or out o f one spot. As long as no charge is bu ild ing  up inside 
the body (a reasonable assumption), the divergence equals zero. The inverse 
electrical impedance problem is non-linear because the unknown conductiv ity 
and potentia l are m u ltip lied  together.”

The boundary conditions on F, the boundary o f f t ,  are formed by fix ing  the normal 
current, at every po in t o f T. Representing the normal vector by n, we have

t  du  /
=  ~ a dK  ° n ^2'6^

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The presence o f the electrodes is taken in to  account v ia  appropriate boundary conditions 
which w ill appear as modifications to  the equation for normal current, 2.6, on T. Elec
trode models are discussed in  section 2.3.3. Equations 2.2 and 2.6 comprise the forw ard  
problem  in  E IT  and are used to  find  the voltage d is tribu tion  w ith in  the medium. A na ly tic  
methods using series approximations [76] [33] have been used to  solve the forward problem 
for sim plified models such as a single contrast in  a circular medium. However, solving the 
forward problem for models w ith  a rb itra ry  geometries requires numerical techniques such 
as the fin ite  element method. W ith  such methods continuum  problems o f 2.2 and 2.6 are 
converted in to  discrete algebraic problems th a t can be solved w ith  a computer.

2.3 F in ite  E lem ent M eth o d

The F in ite  Element M ethod (FE M ) is a numerical analysis technique for obtaining approx
imate solutions to  a wide variety o f engineering problems. I t  was orig ina lly  developed as 
a too l for a ircra ft design bu t has since been extended to  many other fields including the 
modeling o f electromagnetic and electrostatic fields [106]. Due to  its  a b ility  to  model arb i
tra ry  geometries and various boundary conditions the F in ite  Element M ethod is the most 
common' method curren tly  used for the numerical solution o f E IT  problems [92] [100]. The 
follow ing paragraphs borrow heavily from  [75].

In  a continuum  problem o f any dimension the fie ld variable, such as the electric potentia l 
in  E IT , is defined over an in fin ite  number o f values because i t  is a function o f the in fin ite  
number o f points in  the body. The fin ite  element method firs t discretizes the medium under 
analysis in to  a fin ite  number o f elements collectively called a fin ite  element mesh. W ith in  
each element the field variable is approximated by simple functions th a t are defined only 
w ith in  the ind iv idua l element. The approxim ating functions (sometimes called interpolation 
or shape functions) are defined in  terms o f the values of the field variables at specified 
points on the element called nodes. Most E IT  work uses linear shape functions in  which all 
nodes lie on the element boundaries where adjacent elements are connected. Higher order 
shape functions w ill have in te rio r nodes. In  summary, the fin ite  element method reduces 
a continuum  problem o f in fin ite  dimension to  a discrete problem o f fin ite  dimension in  
which the nodal values o f the field variable and the interpolation functions for the elements 
completely define the behaviour o f the fie ld variable w ith in  the elements and the ind iv idua l 
elements collectively define the behaviour o f the fie ld over the entire medium.

There are three different methods typ ica lly  used to  formulate F in ite  Element problems:

1. D irect approach. The D irect approach is so called because o f its  origins in  the direct 
stiffness method o f s tructu ra l analysis. The method is lim ited, however i t  is the most 
in tu itive  way to  understand the fin ite  element method.

2. Varia tional approach. Element properties obtained by the direct approach can also 
be determined by the Varia tional approach which relies on the calculus o f variations 
and involves extrem izing a functional such as the potentia l energy. The variational 
approach is necessary to  extend the fin ite  element method to  a class o f problems tha t 
cannot be handled by d irect methods. For example problems involving elements w ith  
non-constant conductivity, for problems using higher order in terpo lation functions and 
for element shapes other than triangles and tetrahedrons.

3. M ethod o f Weighted Residuals (M W R ). The most versatile approach to  deriving el
ement properties is the M ethod o f Weighted Residuals. The weighted residuals ap
proach begins w ith  the governing equations o f the problem and proceeds w ithou t
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re lying on a variational statement. This approach can be used to  extend the fin ite  
element method to problems where no functional is available. The m ethod o f weighted 
residuals is w idely used to  derive element properties fo r non-structura l applications 
such as heat transfer and flu id  mechanics.

Regardless o f the particu la r fin ite  element method selected, the solution o f a contin
uum  problem by the fin ite  element method proceeds w ith  follow ing general sequence o f 
operations:

1. Discretize the continuum. The FE method consists o f discretizing the spatial do
main, denoted D, in to  a number o f non-uniform , non-overlapping, elements connected 
v ia  nodes. Triangles and rectangles are used in  2D problems while tetrahedral and 
hexahedral elements axe used for 3D. A dd itiona lly  meshes using a m ixture  o f differ
ent types of elements are possible. In  th is thesis only simplices (triangles for 2D and 
tetrahedrons for 3D) are used. Figure 2.5(a) shows a 2D mesh constructed o f triangles 
while figure 2.5(b) is a 3D mesh constructed o f tetrahedrons.

(a) 2D Mesh with 256 Elements (b) 3D Mesh with 21504 Ele
ments

Figure 2.5: Example 2D and 3D discretizations

2 . Select in terpo lation functions. The field variable is approximated w ith in  each element 
by an in terpo lating function th a t is defined by the values o f the field variable at 
the nodes o f the element. In terpola tion functions can be any piecewise polynom ial 
function defined at a number o f nodes. Linear in terpo lation functions are used for 
most o f the work in  th is thesis. O ther in terpo lation functions have been used w ith  
E IT , for example Marko et al use quadratic interpolation functions in  [116].

3. F ind  the element properties. This means calculating the local m a tr ix  for each element. 
The symbol Y  w ith  appropriate subscripts is used to  denote the components o f local 
matrices throughout th is  thesis.

4. Assemble the element properties to obtain a system equations. Th is means combining 
the local matrices in to  a single master or global m atrix . The symbol Y  or A  w ithou t 
subscripts are used throughout to denote the global m atrix.

5. Impose the Boundary Conditions (BC). Boundary conditions can be fixed (also known 
as Type I, D irich le t, or essential boundary conditions), derivative (also known as Type
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I I ,  Neumann, or natura l boundary conditions), or a combination o f both  (mixed, also 
known as Type I I I  boundary conditions). W ith  D irich le t boundary conditions the 
value o f the field variable is prescribed for selected boundary nodes. For Neumann 
conditions the derivative o f the fie ld variable is prescribed at selected boundary nodes.

6 . Solve the system o f equations. The algebraic system is o f the form  Y V  =  I. The 
system is solved by Linear A lgebra software such as M atlab.

7. Make add itional computations i f  desired. Th is would be required for ite ra tive  algo
rithm s, a lgorithms tha t use adaptive currents and adaptive mesh refinement.

In  the next two sections the D irect approach and the M W R  are described by expanding the 
above items. Hua et al provide a derivation o f the Varia tional method for E IT  in  [74].

2 .3 .1  D ir e c t  A p p ro a ch

The follow ing section is derived from  m ateria l in  [106] [74] [92] [69] and [70]. The D irect A p 
proach can only be used for relatively simple problems and simple element shapes. For E IT  
th is  means the d irect method can only be used for fin ite  elements o f constant conductiv ity  
w ith  linear shape functions. In  th is  case the fin ite  element model fo r E IT  is equivalent to  a 
linear electrical network (lumped resistor network) th a t connects the nodes [92]. In  the 2D

Y31
Y23

21

Y12
(a) Triangular Element (b) Equivalent Circuit

Figure 2.6: D erivation from  Resistor Network

case a triangle such as figure 2 .6 (a) is equivalent to  the electrical network o f figure 2 .6 (b). 
In  th is  conversion each edge o f the triangle is replaced by a resistor whose conductance is 
acotd j where resistor j  is the resistor opposite the j th angle [69]. The three dimensional 
case is s im ilar w ith  0j being the angle between the two faces meeting at the j th edge. In  
terms o f nodal coordinates, the conductance Y ij, between node i  and node j  is determined 
by the triangle-to-network conversion as

Yij =  ^  (2-7)

w ith  bx = y 2 -  2/3 , h  =  2/3 -  2/ 1 , h  =  2/1 -  2/2 and a  =  x 3 -  x 2, c2 =  x x -  x 3, c3 =  x 2 -  x x 
where ( x i,y i) ( i  =  1,2,3) denotes a coordinate o f each node, A e indicates the area o f an 
element and cre is the element conductiv ity (sheet conductiv ity) which is assumed to  be 
constantiover the element. Superscript e refers to  element e. K ircho ff’s current law for the 
c ircu it is w ritten  as

' Y u Y12 Vis ' ’  Ul ' ’ Cl ■
Y2i  Y22 Y23 U2 = C2
y 31 y 32 y 33 . U3 . . C3 .
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w ith  Y u  =  —Y12 — Y13, Y22 =  - Y 2x -  ^23)^33 =  —*31 — * 3 2 , Y ij =  Y ji, for i , j  =  1 ,2,3  
where m (i =  1 ,2,3) are the nodal potentials and c,-(i =  1,2,3) is the prescribed current 
which flows in  the i th node.

2 .3 .1 .1  A sse m b le  th e  e le m e n t p ro p e r t ie s  to  o b ta in  th e  sys te m  e q u a tio n s

The two element mesh o f figure 2.7 is used to  illus tra te  the assembling o f the global adm it
tance m atrix . The master m a tr ix  Y  is assembled w ith  the conductances between adjacent 
elements adding in  parallel as in  figure 2.7. These two elements share nodes 2 and 4, how
ever Y2\  w ill be different fo r each triangle  since the conductivity, ae, and the geometry is 
different for each element. For the mesh o f figure 2.7 the local matrices are:

'  *11 y 12 *14
= *21 *22 Y2 4

.  *^41 y 4 2 Y 44

'  *22 *23 y 24
= y 3 2 *33 y 34

y 42 *43 y 44

Figure 2.7: Connection o f Two Elements [92]

i , j  G [1, 2,4] are the global node indices for element 1

i , j  G [2,3,4] are the global node indices for element 2

These are combined as follows:

Y  =

Yn  Y12 Y i3

y 2i  y 2 2  +  r 2 2  y 2 3

Y u  Y32 *33

*M
*42 +  *42

*34
*41 *42 +  *42 *43 *44 +  Y44

i , j  e [1 : 4]

2 .3 .1 .2  Im p o s e  B o u n d a ry  C o n d it io n s

There are four common boundary conditions known as electrode models in  E IT . They are 
the Continuum , Gap, Shunt and Complete Electrode Models [112]. We describe the Gap 
electrode model which is simplest model to  implement numerically. In  the Gap electrode 
model electrodes are connected d irectly  to  selected nodes on the boundary o f the FEM . W ith  
the adjacent drive protocol current is applied at the two boundary nodes th a t represent a 
pair o f electrodes while the currents at the remaining nodes are set to  0  in  accordance w ith
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K irch o ff’s current law. The resulting potentia l field is calculated by solving the follow ing 
algebraic system o f equations:

Y V  =  I (2.8)

where Y  is the global adm ittance m a trix  which is a function o f the F E M  and the conduc
tiv ity , V  is a vector o f nodal voltages

V  =  [u i,u 2 , . . . ,u N]r

and I is the current vector which for the adjacent drive is a perm utation of 

1 =  [0 , 0 , . . . , - l , l , . . . 0 ]T

(2.9)

(2.10)

u n  ■■■ Uim '  1 0 • 0
- 1 Cn ClM

Uij : _ 0 Y2 2  • • Y2N Cij :

: ; t i i j • Cij
_ U\M  444 ■ ' 4 WjVM _ 0 Y n 2 ■ ■ Yn n _ ClM ■ 4 4 4 4 4 h/VM

The non-zeros represent the current driven between a pair o f electrodes while the zeros 
represent the current at each node which is zero by K ircho ff’s current law. The two non
zero elements o f equation 2.10 are not necessarily adjacent elements o f the vector I .  By 
convention ± 1  are used as the current values, however when matching lab equipment one 
uses the current values injected by the equipment, for example 5mA for the equipment in  
our lab. Equation 2.8 is solved for the nodal voltages as V  =  Y _1I. Thus using the D irect 
approach w ith  the Gap model the forward problem can be viewed as using K irch o ff’s current 
law to  solve a large network assembled as a set o f simultaneous linear equations.

W ith  the adjacent current pattern  equation 2.8 is solved once for each pa ir o f electrodes 
being driven thus I can be assembled as a m a tr ix  where each column is a perm utation of 
the vector equation 2.10 and V  then becomes a m a tr ix  in  which each column contains the 
nodal voltage for a single current injection. The entire algebraic system has the form:

(2.11)

Thus Uij\ is the voltage at the i th node due to  the j th current in jection pattern  while Cy is the 
current at the i th node during the j th current injection pattern. As w ith  equation 2.10 each 
column o f i  has only two non-zero entries and is a perm utation o f I =  [0,0,..., —1,1, ...0]T . 
Since electrodes in  the Gap model map to  a single node each the voltages measured between 
a pa ir o f electrodes is determined by the difference between two nodal values where the 
specific nodes are those corresponding to  the electrodes. The voltages measured between 
adjacent electrodes are collected into a column vector through the use o f an extraction 
operator, T [] . For example i f  vg is defined to  be the voltage measured between electrodes 4 
and 5 during injection pattern  2, then the operator T  w ill give T [V ]g  =  V 4 2  — V 5 2 .

Solving equation 2.8 for V  requires the inversion o f Y .  A lthough Y  is square and sparse 
i t  is also singular. To make the system non-singular a reference node is selected. This is the 
same as choosing an a rb itra ry  ground. For convenience node 1 is a rb itra rily  selected. To 
implement th is in  the linear equation a ll entries in  row 1  and column 1  o f the admittance 
m a trix  are set to  0 and the diagonal elements is set to  1. To ensure th a t the potentia l w ill 
remain zero at th a t node during  each injection pattern  the corresponding element o f each 
current vector in  I is set to  zero.

Solution o f equation 2 . 1 1  provides the potentia l values at the nodes. In terpola tion 
functions are used to  calculate the potentia l w ith in  each element. The follow ing discussion 
derives the linear in terpo lation function over a triangu lar element. The derivation for a 
tetrahedron is sim ilar and is included in  the subsequent section.
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2.3 .1 .3  D erivation  o f Linear In terpolation  Functions, 4>i

Before proceeding to  the M ethod o f Weighted Residuals the one must derive the linear 
in terpo la tion  functions o f the fie ld variable. The follow ing derivation is based on [106]. The 
potentia l w ith in  a typ ica l triangu lar element can be approximated by the linear function:

U (x, y) =  a +  bx +  cy =  [ 1  x  y ] (2.12)

Thus the true  continuous potentia l d is tribu tion  over the x-y plane is modelled by a piecewise 
planar function U. The equation must hold at each node i  where U =  Ui when (x, y) =  
(;x%,y%) thus the coefficients a ,b ,c  in  equation 2 . 1 2  are found from  the three independent 
simultaneous equations, which are obtained by requiring the potentia l to  assume the values 
U \, U2, U3 at the three nodes. Substitu ting  each o f these three potentials and the ir geometric 
nodal positions in to  equation 2 . 1 2  yields three equations which can be collected to  form  the 
m a tr ix  equation

(2.13)
■ U i ' " 1  XI 2/1 a

u 2 = 1  x 2 y2 b
u 3 . 1  x 3 y3 c

The coefficients a, b, c are determined by

a '  1 X\ y i '
-1

'  Ui ■
b = 1 X2 2/2 U2

c 1 x 3 2/3 . U3

(2.14)

Denote the inverse o f the coefficient m a tr ix  by C  which is

' 1 Xl 2/1 "
-1

’ X2y3 ~ x 3y2 V \x3 — x iy 3 x m - 2 / 1 * 2  "
c  = 1 X2 2/2 = 2/2 - 2 / 3 2/3 - 2 / 1 2/1 - 2/2

1 x 3 2/3 . X3 -  x 2 Xl ~ x 3 X2 - X l  ■ _
/d e t(  C )

In  2D the determ inant is equal to  twice the triang le ’s area. The determ inant o f C  is 

det(C ) =  2 A  =  x 2y3 -  x 3y2 -  x iy 3 +  x 3y\ +  x \y 2 -  x 2y i 

Substitu tion in to  2.12 yields the potentia l function over the element:

a ’  Cn Cl2 Cl3 '  U i '
U {x ,y )  =  [ 1 x  y ] b =  [ 1 x  y ] C2 1 C22 C33 U2

c . C31 C32 c23 U3

where cy are the elements o f C . This can be more easily w ritten  as a summation:

3

U (x ,y )  — Ui<j)i(x,y) (2.15)
i= l

where the in terpo lation functions, c/)i(x,y) i  G (1 ,2 ,3 ) are given by: 

(j>i — C\i T c2{X T c3iy
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which are explic itly :

<t> 1 = 
02 =  

03 =

^ { ( * 2 2 /3  
2A {(*3W
2A i ( x m -

X3V2) +  (2/2 
x m )  +  (2/3

■x2y i)  +  (y i

■ V3)x +  (x 3  -  x 2 )y )
■ y i ) x  +  (x i -  x 3 )y }  
■y2)x  +  (x 2  - X i ) y }

(2.16)

These newly defined functions are in terpo la to ry on the three vertices o f the triangle and 
are identical to  equation 2.7 shown in  the direct method o f section 2.3.1. Each function, </>, 
is zero at a ll vertices except one where i t ’s value is one:

0 i ( X j , V j )
i  =  j

Equation 2.15 completely defines the potentia l w ith in  the triangu la r element as a function 
o f the values o f the potentia l at the element’s three nodes. In  an analogous manner the 
linear in terpo lation functions for a 3D model are derived in the next section.

2 .3 .1 .4  D e r iv a t io n  o f  L in e a r  In te rp o la t io n  F u n c tio n s  in  3D

The potentia l w ith in  a typ ica l te trahedral element can be approximated by the linear func
tion:

U (x ,y , z) =  a +  bx +  cy +  dz =  [ 1 x  y z ] (2.17)

Thus the true  continuous potentia l d is tribu tion  over three space is modelled by a piecewise 
hyper-planar function U .

The equation must hold at each node i  where U  =  U{ when (x ,y ,z ) =  (x,, yu zt ) thus 
the coefficients a ,b ,c ,d  in  equation 2.17 are found from  the four independent simultaneous 
equations, which are obtained by requiring the potentia l to  assume the values U i,U 2 ,U s,U 4 

at the four nodes. Substitu ting each o f these four potentials and the ir geometric nodal 
positions in to  equation 2.17 yields four equations which can be collected to  form  the m atrix  
equation

(2.18)

'  Ux ' '  1 X l y i  Z i ' a
u 2 1 X2 2/2 Z2 b
U3 1 X3 2/3 z3 c
U i 1 X 4 2/4 *4 _ c

The coefficients a, b, c, d are determined by

a '  1 X l 2/1 Zl  '
- 1 r U i

b 1 X 2 2/2 Z2 u2
c 1 X 3 2/3 Z3 U3

.  d  . _ 1 X \ 2/4 Z i  _ U i

Denote the inverse o f the coefficient m a tr ix  by C  which is

- l

C =

1 X l 2/1 Zl

1 X2 2/2 Z2

1 X 3 2/3 Z3
1 X i 2/4 ZA

=  [ C l C2 C3 C4 ] /det(C)
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with C i being the following column vectors

C i =

C2 =

C3

C4

~ ( x 2y 3z 4 -  x 2z 3y 4 -  x 3y 2z4 +  x 3z 2y 4 +  x 4y 2z3 -  x 4z 2y 3 ) 

( y 3z 4 -  z 3y 4 -  y 2z 4 +  z 2y 4 +  y 2z 3 -  z2y 3 )

~ ( x 3z4 -  z 3x 4 -  x 2z4 +  z 2x 4 +  x 2z3 -  z 2x 3 )

[ x 3y 4 -  y 3x 4 -  X 2y 4 +  y 2x 4 +  x 2y 3 -  y 2x 3 )

( x xy 3z 4 -  x i z 3y 4 -  x 3y xz4 +  x 3z xy 4 +  x 4y xz 3 -  x 4z xy 3)  

~ ( y 3z4 -  z 3y 4 -  y xz 4 +  z xy 4 +  y xz3 -  z xy 3 )

( x 3z 4 -  z 3x 4 -  x xz 4 +  z xx 4 +  x xz 3 -  z xx 3 )

~ ( x 3y 4 -  y 3x 4 -  x xy 4 +  y xx 4 +  x xy 3 -  y xx 3 )

~ ( x xy 2z4 -  x xz 2y 4 -  x 2y xz4 +  x 2z xy 4 +  x 4y xz2 -  x 4z xy 2) 

( y 2Z4 -  z 2y 4 -  y xz 4 +  z xy 4 +  y xz2 -  z xy 2 )

— ( x 2Z4 -  Z2X4 -  X XZ4 +  Z 1X4 +  x xz 2 -  z xx 2 )

{ x 2y 4 -  y 2x 4 -  x xy 4 +  y xx 4 +  x xy 2 -  y xx 2 )

( x xy 2z 3 -  x xz 2y 3 -  x 2y xz 3 +  x 2z xy 3 +  x 3y xz 2 -  x 3z xy 2 ) ' 

-(2 /2 -2 3  -  z 2y 3 -  y xz 3 +  z xy 3 +  y xz2 -  z xy 2 )

( x 2z 3 -  z 2x 3 -  x xz 3 +  21X3 +  x xz 2 -  z xx 2 )

- { x 2y 3 -  y 2x 3 -  x xy 3 +  y xx 3 +  x xy 2 -  y xx 2 )

In  3D the determ inant is equal to  six times the tetrahedron’s volume. The determ inant of 
C is

det( C ) =  QA =

x 2y3z4 -  x 2z3y4 -  x 3 y2z4 +  x 3z2y4 +  x 4y2z3 -  x 4z2y3 -  x xy3z4

 b x xz3 y4 +  x 3 yxz4 -  x 3zxy4 -  x 4 yxz3 +  x 4zxy3 +  x xy2z4 -  x xz2y4

 x 2yXz4 +  x 2 zxy4 +  x 4yxz2 -  x 4 zxy2 -  x xy2z3 +  x xz2y3 +  x 2yxz3

 x 2z i j / 3  -  x 3yxz2 +  x 3zxy2

Substitu tion o f th is  in to  2.17 yields the potentia l function over the element

U (x ,y ,z ) 1 x  y =  [ l  x  y z ]

C11 C12 CJ3 C14 '  U x -

C21 C22 C23 C24 u 2
C31 C32 C33 C34 U 3
C41 C42 C43 C44 U 4

where c -̂ are the elements o f C . This can be more easily w ritten  as a summation:

U (x ,y ,z )  =  'Y^l Ui <j)i{x,y,z) (2.19)

where the in terpo lation functions, <f > i ( x , y , z )  i  S (1 ,2 ,3 ,4 ) are given by: 

4>i =  c l i  +  c2 i X  +  C3Xy  +  C4XZ  

which are explic itly :

JL 1<t>\— —r (  
6 A

- (x 2y3z4 -  x 2z3y4 -  x 3y2z4 +  x 3z2y4 +  x 4y2z3 -  x 4z2y3) 

■ ■ +  (2/3-24 -  232/4 -  2/224 +  222/4 +  2/223 -  Z2y3)x
 (X 3 Z4 -  Z3 X 4 -  X 2 Z4 +  2 2 X 4 +  X 2 Z3 -  2 2 X 3 )?/

• • +  ( x 3y 4 -  y 3x 4 -  X 22/4 +  V2X4 +  X 2 y 3 -  y 2x 3 ) z
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w ith  the remaining in terpo lation functions, <f>2 , 0 3 , fa , following through cyclic interchange 
o f subscripts.

These newly defined functions are in te rpo la to ry  on the four vertices o f the tetrahedron. 
Each function, fa is zero at a ll vertices except one where i t ’s value is one:

= 0  i ^ j  
=  1 i  =  j

Equation 2.19 completely defines the potentia l w ith in  the tetrahedral element as a function 
o f the values o f the potentia l at the element’s four nodes.

2.3.2 M ethod of Weighted Residuals (M W R )

There ate several different methods used in  weighted residuals including Collocation, Least 
Squares, and Galerkin w ith  the la tte r method being the most common. Much o f the m ateria l 
in  the follow ing section was interpreted from  [69] and [106]. The development o f the M W R  
starts w ith  a discretization in  which the field variable is represented as a linear combination 
o f piecewise polynom ia l in terpo lation functions o f lim ited  support:

v '  , , / f  1 on vertex iu (X) =  ^ Uifa(:r )  where fa =  j  (2.20)
»=i '•

where fa  are the in terpo lation functions and N  is the number o f nodes in  the FEM . Equation 
2.20 is general, however, in  the case o f linear in terpo lation functions in  2D, <j> w ill tu rn  out 
to  be identical to  equation 2.16. Since u represents only a fin ite  approxim ation o f the 
potentia l, the Laplacian is not, in  general, equal to  zero due to  the error introduced by 
using the approxim ating functions. The method o f weighted residuals proceeds by deriving 
the weak form  o f the governing equation through the m ultip lica tion  o f Laplace’s equation
2.2 by some a rb itra ry  test function v  and integration over the domain, f2:

/ «[V • (<rVu)]dfl =  0 (2.21)

Here v is an a rb itra ry  test function th a t weighs the residual such th a t i t  is zero in  some 
weighted or average sense. The Galerkin method o f weighted residuals differs from  other 
M W R  methods in  the choice o f weighing function. W ith  the Galerkin method the test 
function in has the same form  as the tr ia l function u  in  tha t i t  uses the same interpolation 
functions fa. In  other words

N

v (x )  =  '^2 ’wi fa (x )  (2.22)
i—1

where Wi are the coefficients th a t weigh the in terpo lation functions fa. The problem is to 
find  the it* th a t solve equation 2.21.

The “vector derivative iden tity ” (the product rule for vectors) is:

V •: ( fA )  =  / (V  • A )  +  V /  • A  (2.23)

In  terms o f the variables in  2.21 the “vector derivative iden tity ” is

[V i- (ucrVu)] =  a V u  ■ V v  +  v V  ■ (crVu) (2.24)
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Substitu tion  of 2.24 in to  2.21 yields

J  [V  • (vcr'Vu) — erVu • =  0  (2.25)

n

Rearranging gives

J v - ( v a V u ) d Q  = J  aVu ■ VvdQ (2.26)

Gauss’ Theorem is the older name for the Divergence theorem which is a m ath
ematical statement o f the physical fact tha t, in  the absence o f the creation or 
destrpction o f m atter, the density w ith in  a region o f space can change only by 
having i t  flow in to  or away from  the region through its  boundary. Gauss’ Theo
rem isl valid in  any dimension, however in  2D i t  is /  V  • FdV  =  /  FdS  where V  is

V  dV
volume and S is surface area.

Invoking Gauss’ Theorem on 2.26 perm its the in troduction  o f boundary conditions:

J  vaVu ■ ndF =  J  crVu-VvdQ  (2.27)

an n

Note th a t V 0  • n so 2.27 could also be w ritten

j  aVu -VvdQ — J  ver^dT  (2.28)

The boundary integral on ly needs to  be carried out for elements underneath electrodes. The 
le ft side o f 2.28 is for the entire mesh. When examined for a single triangu lar 2D element, 
k, the le ft side is

/■iTfcVfi • Vvdfl  (2.29)

Ek

Substitu ting  the definitions o f the in terpo lating  versions o f v and u yields

/ 3 3

i?k V  Ui(f>i ■ V  ̂  W jit j  dQ, (2.30)

E k *=1 i=1

I f  the conductivity, crk, is constant over a single element then the nodal voltages uu the 
coefficients for the weighing functions, and the summations can be moved outside o f the 
integral:

3 3 .

V (j>i ■ V 4>j dd (2.31)

i=1 ^  i

I t  is common to  break out the integral part o f the equation as

*7
Ek

J  V (j>i ■ V (j)j dQ, (2.32)
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Allow ing equation 2.31 to  be rew ritten  as

3 3

ak ^ 2 iUi (2.33)
:i= 1 j=  1

Thus each triangu lar element o f the mesh produces a 3 by 3 m atrix . In  3D th is  w ill be a 4 
by 4 m atrix .

The righ t side o f equation 2.28 represents the boundary conditions. In  terms o f the 
in terpo lating functions the boundary conditions are:

/ du  3 3 .
v e r-^ d T  =  a k ^ W i ^ U i  /  & V 4>j ■ ndT  (2.34)

an i=1 i =1 an

The a b ility  to  form ulate solutions for ind iv idua l elements before p u ttin g  them together 
to  represent the entire problem is an im portan t advantage o f the fin ite  element method. 
For a single element of the FE M  2.27 becomes

3 3 3 3 -

r?k E  Ui E  Wi Sik = <?k E  Wi E  u ‘ /  ■ f ld r  (2-35)
 1 ,• 1 -• 1 -■ t Ji—1 j —1 i=1 j= l dfl

Both  sides can be divided through by the summation o f the weighing function coefficients 
to  yield:

3 3 3 3 .

5 > £ s &  =  « £ £ “ < /  (j)iV<pj ■ ndT  (2.36)
;i = 1 j  = 1 i= 1 j  = l

In  terms o f the entire domain, the le ft side o f 2.28 w ill be

.  K  3 3

I  a V u  ■ V(f>dV — E ^ E E ^ 5# =  (2.37)
j' : e = l  i = i j = i

2.3.2.1 C alculating Local M atrices

The potentia l gradient w ith in  the element may be found from  the linear interpolation equa
tions 2.15 or 2.19 as

3

V U  =  (2.38)
i= l

Taking the divergence o f 2.38 yields:

3 3

V •/V U  =  ^  Ui I V fa  - dr Uj/ 'i=i j =l J

For convenience define m a tr ix  elements (local stiffness m atrix)

S} =  /  • v ^ - dT (2-39)
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where the superscript identifies the element. Equation 2.39 is recognizable as equation 2.32 
and may be w ritten  in  m a tr ix  quadratic form  as

V - V U  =  S ^ U

The gradient o f the linear in terpo lation  functions, equation 2.16, becomes the vector: 

V &  =  7^ -  (3 /2  -  2/3 , x 3 -  x 2) (2.40)

which, in  terms o f the local m a trix  for an element is the same as the matrices derived from  
the direct method. T ha t is S ij =  Yij w ith  Y  as in  equation 2.7.

2 .3 .3  Im p o se  B o u n d a r y  C o n d it io n s

I f  the Gap model is used then the algebraic system of equations is identical to  those o f the 
d irect method, as i t  must be. In  terms o f the derivation o f M W R  the Gap model boundary 
conditions are ana lytica lly contained in  the rig h t side o f 2.28: 

du
u a —  d r  (2.41)

r
Away from  the electrodes where no current flows d u /d n  =  0. Th is m ixed boundary value 
problem; is well-posed, and the resulting currents are I  =  f  crdu/dn. W ith  the Gap model

E,
current is injected between two nodes o f the FEM . The boundary conditions are then: 

du
u a — dT =  uaI a +  ubI b (2.42)

/

/
r

where 7a and I b are injected current and ua and ub are the voltages at the current injection 
electrodes.

There are 3 other electrode models in  the literature, Continuum, Shunt and Complete.

2.3.3.1 C ontinuum  M odel

The continuum model assumes th a t there are no electrodes and injected current j  is a 
continuous function on the boundary o f the medium. The current is a continuous function 
o f the angle, 0 , in  the plane, th a t is

j  (0) =  C  cos (k0)

where C  is constant. W ith  experimental data i t  has been shown th a t th is model under
estimates the conductivities as much as 25% due to  the fact th a t presence o f electrodes is
ignored [112].

2.3.3.2 Shunt E lectrode M odel

The Shunt Electrode M odel [69] is a refinement o f the Gap Electrode model in  which the 
effect o f perfectly conducting fin ite  length electrodes is added. A  complete mathematical 
statement o f the shunt model is equation 2.2 along w ith  the following boundary conditions: 

du
a — dT =  I t  o n 7 = l , . . . , L  (2.43)

on
du
-  =  0 o n r  (2.44)

u =  U( onT  (2-45)
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where T =  UpEp and T ' =  9 0  — T on I \  Equation 2.43 states th a t the net flu x  of the current 
density through the electrode contact surface is equal to  the injected current. Equation 
2.44 means th a t away from  the electrodes no current flows. Equation 2.45 means th a t the 
voltage on each electrode, Up, is constant on electrodes. This is a m ixed boundary problem 
th a t is Well posed bu t seldom used.

2 .3 .3 .3  C o m p le te  E le c tro d e  M o d e l

In  medical applications w ith  electrodes applied to  skin, and in  phantom tanks w ith  ionic 
solutions in  contact w ith  metal electrodes a contact impedance layer exists between the 
solution or skin and the electrode. This modifies the shunting effect so th a t the voltage 
under the electrode is no longer constant; the voltage is constant on the electrode because 
i t  is m etallic (higher conductiv ity  than the medium) however there is now a voltage drop 
across the contact impedance layer. The contact impedance zp could vary over the electrode 
bu t i t  is usually assumed to  be constant. This electrode-skin contact impedance is high for 
the frequencies used in E IT , thus, the voltage drop across the contact impedance is large [72], 
Ignoring th is  voltage drop introduces a large modeling error, which results in  errors in  the 
reconstructed conductivity. The complete electrode model includes the effect o f the contact 
impedance and is accordingly the most accurate description o f the physical situation [112], 
This model is able to  predict tank measurements w ith in  the accuracy o f a data acquisition 
system [34]. Note th a t in  the follow ing i t  is assumed tha t the contact impedances zp are 
known and are not part o f the inverse problem.

The 'Complete Electrode M odel is defined by the Laplacian, Equation 2.2 and the fol
lowing Boundary Conditions [69] [112]. 

du
u +  zpa—  =  Up o n E p , £ = l , 2 , . . . , L  (2.46)

an
du

<T-— dT =  Ip £ =  1 ,2 , . . .  ,L  (2.47)/ - «
Et

r\
c r ^  =  0 on d T \ | j£ = i Bp (2-48)

In  these equations Ip is the current sent to  the £th electrode, Ep denotes the part o f T th a t 
corresponds to  the £th electrode and Up is the constant potentia l on electrode £. Equation
2.46 accounts for the electrode contact impedance which is characterized by zp. Equation
2.46 means th a t the measured voltages on the boundary consist o f the voltage on the 
boundary plus the voltage dropped across the electrode impedance. The outward u n it 
normal term, |g ,  means th a t the contact impedance is only a factor for current passing 
across the electrode-skin boundary. Equation 2.47 says tha t the integral o f the current 
density over the electrode is equal to  the to ta l current th a t flows to  th a t electrode. F inally, 
equation 2.48 means th a t there is no current entering or leaving the object where there is 
no electrode (i.e. on the inter-electrode gap). The complete electrode model consists of 
equations 2.2 and 2.46-2.48 together w ith  the conditions for conservation o f charge:

jh It = o
t= i

and an a rb itra ry  choice o f a ground:

E ^  =  °
i=x
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2 .3 .3 .4  N u m e r ic a l Im p le m e n ta t io n  o f  C E M

The follow ing section is based on m ateria l from  [69],[93], and [114]. The C EM  model of 
equations 2.46-2.48 can be formed num erically as

and represents equation 2.2. The integral is carried out over the area or volume o f each 
element. Num erically th is  is the same as the m a trix  Y  derived using the direct method in 
section 2.3.1. A C2  adds the effect o f contact impedance to  nodes situated underneath the 
electrodes:

which connects the contact layer to  the electrode. So m atrix  A  is firs t assembled as though 
we were solving the natura l boundary conditions (such as the gap-shunt electrode model) 
and augmented by the C EM  blocks A e and A,;.

One additional constraint is required as potentials are only defined up to  an added 
constant! This is manifested in  the problem in th a t the m atrix  A  is singular. One choice 
described in  [112] is to change the basis used for the vectors V  and I  to  a basis for the 
subspace S orthogonal to  constants, while another choice is to  “ground” an a rb itra ry  vertex 
i  by setting <j>i =  0, The resulting solution V  can then have any constant added to  produce 
a different grounded point.

A V  c =  I c (2.49)

where A  is the global conductance (also called stiffness) m atrix , I c contains the injected 
currents and V c is the vector o f voltages at the F E M  nodes and the electrodes as follows:

Aci + AC2 Ae
(2.50)

A-e A d

V
V c =  v  v £ N , U  £ L  are the voltages on the, L , electrodes, and

i c =  J oeJV, i £ L

In  equation 2.50 A ci is

(2.51)

n

L

(2.52)

In  2.50 component A e is

” ei

and adds the effect o f the contact impedance to  the nodes situated under the electrodes. 
F ina lly, component A :[ is

otherwise
| ei | is the length o f the electrode
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2.4  A lgorith m s to  solve th e  Forward M odel

The systems o f equations 2.8 and 2.49 have the follow ing special features [69] [116]: The 
adm ittance m a trix  for the Gap electrode model, Y ,  has dimension N  x  N . For the C EM  
the m a tr ix  A  has dimension (N  +  L ) x  (N  +  L ). The matrices A  and Y  are sparse, the 
number o f non-zeros in  each row o f the main block depends on the number o f neighbouring 
vertices connected to any given vertex by an edge, they are symmetric and positive definite. 
Positive definiteness allows a m a trix  to  be decomposed into two triangu lar factors using 
Cholesky factorization. W ith  Cholesky factorization the m a trix  is expressed as the product 
o f lower land upper triangu lar factors which are transposes o f one another. The solution o f 
the equations 2.8 and 2.49 is calculated by Cholesky factorization w ith  back substitutions:

A V  =  U TU V  =  C (2.53)

by using a dum my variable:

U Tq  =  C (2.54)

solving w ith  respect to  q  then substitu ting  q  to  calculate V  by

U V  =  q  (2.55)

The factorization process is essentially Gaussian elim ination and has a com putational cost 
0 ( n 3) [69]. For large 3D systems d irect methods can be expensive and ite ra tive  methods 
such as the Conjugate Gradient (CG) method may be required where each ite ra tion has 
com putational cost 0 ( n 2k ) and requires fewer than n  iterations to  converge. The CG 
m ethod searches for a m in im um  o f the functional by taking conjugate search directions for 
every ite ra tion step and requires the com putation o f the gradient only, instead o f the fu ll 
second derivative. D ifferent choices for find ing  the m inim um  along a search direction, such 
as the inexact line search algorithm , exist [69].

2.5 V ariations on th e  Forward M odel

2 .5 .1  C u rren t P a tte r n s

A  variety o f protocols for in jecting current and collecting measurements have been proposed 
over the years. W ith  some m inor exceptions protocols can be categorized as either pair drive 
or m ultip le  drive [23]. Pair drive scanners have a single current source whose term inals are 
sequentially connected to  the d riv ing  electrode pairs w ith  voltages measured between the 
remaining pairs o f electrodes. The current source is then switched to another pair o f elec
trodes and the voltage measurement process repeated u n til a complete set o f measurements 
has beeri collected. M u ltip le  drive systems are more complex and expensive bu t have the 
a b ility  to  drive current in  more than two electrodes at a time, while the obvious advantage 
o f a pair drive system is th a t only one current source is needed.

N u m b e r  o f  a va ila b le  m easu rem e n ts . There are N (N  — 1) ways to  connect a pair of 
leads to  a set o f N  electrodes, including reversal o f electrodes. When using alternating 
currents, as in  E IT , th is is reduced to N (N  — l) /2 .  I t  is common in  pair drive systems to 
avoid using measurements th a t involve one o f the d riv ing  electrodes. This is often referred 
to  as the four electrode or tetrapolar measurement scheme. Once a pair o f d riv ing  electrodes
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is selected, measurements are taken using only the remaining N  — 2 electrodes. Th is allows 
N  — 3 possible voltage measurements to  be made using a single reference. The to ta l number 
o f measurements possible is therefore N ( N — 1 )(N  — 3)/2 . For n =  16 th is is 1560 ind iv idua l 
measurements. Any combination o f electrode pair voltages can be reconstructed from  th is 
basic sef. Th is number o f measurements is valid fo r any electrode spatial arrangement such 
as 2D tomographic, 3D, and planar. O f these possible pairs only a subset are typ ica lly  used. 
The typ ica l subsets used have been dictated in  the past more by tim ing  and system design 
configurations more than anything else.

The next sections discuss the most well known current in jection patterns fo r 2D configu
rations. In  2D configurations the electrodes define a boundary encompassing the domain of 
interest.; Here there are as many electrodes as there are electrode pairs, w ith  each pair de
fined as being the neighbours along the boundary path. The electrodes in  th is  configuration 
also define a plane o f intersection w ith  the object being imaged.

2.5.1.1 A djacent P a ttern

The adjacent drive method [16], also known as the neighbouring method, is the most com
mon pa ir drive protocol. As can be seen in  figure 2.2, current is applied through two 
adjacent electrodes and the voltages measured from  successive pairs o f adjacent electrodes. 
Current is then applied through the next pa ir o f electrodes and the voltage measurements 
repeated. The procedure is repeated u n til each possible pair o f adjacent electrodes has been 
used to  in ject current.

The adjacent measurement strategy provides N 2 measurements, where N  is the number 
o f electrodes. However to  avoid the problem o f unknown contact impedance, the voltage is 
not measured at a current in jecting electrode thus the number o f measurements is reduced to 
N (N  — 3). The four-electrode reciprocity theorem [38] [55] states tha t for any measurement 
set the rhutual impedance is preserved under an interchange o f in jection and measurement 
pairs. Therefore only N (N  — l ) / 2  o f the measurements are independent. However, i t  is 
common to  use a ll N ( N  — 3) measurements in  most reconstruction algorithms. Thus a 16 
electrode system w ill produce 208 measurements o f which 104 are independent bu t a ll 208 
are used in  the reconstruction algorithm.

The adjacent strategy requires m in im al hardware to  implement. W ith  the adjacent 
s tra tegy; current is driven m ain ly in  the outer region o f the imaged object. The current 
density is highest between the in jecting electrodes, and decreases rap id ly  as a function of 
distance. The m ethod is therefore very sensitive to  conductiv ity  contrasts near the boundary 
and insensitive to  central contrasts. I t  is also sensitive to  perturbations in  the boundary 
shape o f the object, in  the positioning o f the electrodes and is quite sensitive to  measurement 
error and noise [43].

A  feature o f adjacent drive protocol is th a t on a two dimensional domain the adjacent 
voltage measurements are all positive. This can be seen in  figure 2.8(a) which shows tha t 
the potentia l is m onotonically decreasing from  source to  sink. The resulting measurements 
w ill have a ‘U ’ shaped graph fo r each drive as shown in  figure 2.8(b).

2.5 .1 .2  O pposite P attern

The opposite or polar drive pattern  [14], which is commonly used in  bra in  E IT  [20], applies 
current through electrodes th a t are 180° apart while voltage differences are measured on 
the remaining electrodes. There are various ways to  collect the voltage measurements. The 
most common appears to  be to  use the electrode adjacent to  the current-in jecting electrode

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5F0.035

3 0.03

|0 .0 2 5

I  0.02

§0.015

4 6 8 10
Measurement Number

(a) 3D spatial plot of the potential 
field of a homogenous disk with 
current injected between two adja
cent electrodes.

(b) The 13 measurements fo r a 
single drive pair are all positive 
quantities.

Figure 2.8: Nodal and Measured voltages fo r  a homogenous disk o f conductive m ateria l w ith  
adjacent drive.

as a voltage reference and measure the voltages between the reference and the remaining 
non-current electrodes, except from  the current in jecting electrodes. W ith  a 16 electrode 
machine th is  w ill provide 13 voltage measurements per injection. The next set o f 13 voltage 
measurements are obtained by sh ifting  the current in jecting pair. This is done 8 times, since 
in jecting current between electrodes (1,9) w ill produce identical data as in jecting current 
between electrodes (9,1) under the assumption o f isotropic medium. Thus w ith  16 electrodes 
the opposite method yields 8 x  13 =  104 measurements o f which ha lf are independent. Thus 
the opposite strategy suffers from  the disadvantage th a t for the same number o f electrodes, 
the number of available current injections th a t can be applied is less than  for the adjacent 
strategy.

The Opposite drive method offers a better d is tribu tion  of the sensitivity, as the current 
travels w ith  greater un ifo rm ity  through the imaged body. Therefore compared to  the adja
cent strategy, the opposite strategy is less sensitive to  conductiv ity changes at the boundary. 
The ideal angular position o f the d riv ing  electrodes has been studied in  [103] for a circular 
object w ith  a circular inclusion o f known position and radius. The larger and deeper the 
expected anomaly is, the larger the angular separation o f the electrodes should be. Thus 
the opposite strategy optimizes the sensitiv ity for a contrast in  the centre o f the imaged 
object.

2.5 .1 .3  Cross P attern

The cross or diagonal drive pattern  [73] is rarely used. In  the cross method, adjacent 
electrodes are selected as current and voltage references. Current is firs t injected between 
electrodes 16 and 2, while 13 voltage measurements are taken using electrode 1 as the 
reference against the other 13 electrodes. Next current is applied to  electrodes 16 and 
4 while 13 voltage measurements are taken using electrode 1 as the reference. This is 
repeated for currents injected between electrodes (16 ,8), (16, 10), (16,12), (16, 14). Since 
each o f these injections produces 13 measurements the sequence produces 7 x  134 =  91 
measurements for a 16 electrode scanner. The entire sequence is repeated once more, w ith  
the reference electrodes changed to  electrodes 3 and 2. Thus current is applied between 
electrode 3 and (5 ,7 ,9 ,11 ,..., 1) w ith  voltage measured at the other 13 electrodes w ith  
electrode 2 as a reference. This produces a fu rthe r 91 measurements for a to ta l o f 182
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measurements o f which only 104 are independent. The cross method does not have as good 
a sensitiv ity in  the periphery as does the adjacent method, bu t has better sensitiv ity over 
the entire region.

2.5 .1 .4  O ptim al P attern s

There have been several a ttem pts to  explore optim al patterns in  E IT . The problem of 
optimizing the drive patterns in E IT  was first considered by Seagar [69] who calculated 
the optim al placing of a pair o f po in t drive electrodes on a disk to  maxim ize the voltage 
differences between the measurement of a homogeneous background and an offset circular 
anomaly.

Gisser et al [57] studied the problem o f optim izing measurements in  terms o f d istin- 
guishability. Isaacson [76] defined d istingu ishab ility  S as the a b ility  o f a pattern  o f currents 
to  d istinguish between two conductivities. Tw o conductivities o \  and <J\ are distinguishable 
in  the mean-square sense by measurements o f precision e i f  there is a current j  for which

« =  (2.56)

where R(cr) denotes a nonlinear functional associated w ith  the resultant boundary voltage.
In  [42] Demidenko et al argue th a t although the d istingu ishability  criterion o f Isaacson 

[76] seems in tu itive ly  appealing i t  is not d irec tly  associated w ith  the qua lity  o f the image 
reconstruction. Instead o f the d is tingu ishability  criterion they propose a statistical criterion 
for optim al patterns in  planar circular electrical impedance tomography th a t lead to  the 
best estimation o f electromagnetic properties. A  current (voltage) pattern  is considered 
optim al i f  i t  yields the m in im um  to ta l variance o f the resistance (conductance) m atrix.

O ptim al P atterns: T rigonom etric P a ttern  An example o f an optim al pattern  is the 
trigonom etric current pattern  [76] which is optim al for a centered circu lar contrasts located 
in  a larger circular object. In  th is  pattern  current is injected on all electrodes and voltages 
are measured on all electrodes.

Tu f  cos(fcib) I =  1,2..., 16, k =  1,..., 8 1 . . ,
' =  {  s in ((k  -  16)V0 * =  1,2, 16, k =  9,..., 16 J where^ =  2n / 16

The obvious disadvantage o f th is method is th a t current drivers are needed for each electrode 
and the unknown contact impedance will have an effect on the reconstruction.

The trigonom etric pattern  is optim al in  the sense o f satisfying Isaacsons [76] d is tin 
guishability criterion. However, Demidenko et al [42] show th a t the trigonom etric patterns 
are also a special case o f the ir optim al s ta tistica l patterns.

O ptim al P atterns: P roblem s Researchers have pointed out some issues w ith  optim al 
patterns. In  [23] Borsic notes th a t the use o f m ultip le  drive optim al patterns does not 
necessarily guarantee a better accuracy over pa ir drive systems. W ith  the pair drive system 
the stim u li are generated by a single driver and are repeatable through the whole set of 
patterns. A gain error in such a device w ill affect all the measurements equally and manifest 
itself as an insignificant scaling factor in the reconstruction. The use o f m ultip le  current 
sources requires a precise matching o f the devices, otherwise unmatched gains w ill d is tort 
the applied patterns, and cause artefacts in  the reconstruction [59] [60].

Eyiiboglu and Pilkington [47] argue that the definition of optimality in  2.56 is not based 
on practical considerations. For example in  a medical application safety regulations restrict
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the to ta l amount o f applied current. In  th is  environment the d istingu ishability  should be 
maximized w ith  respect to  th is  constraint. Th is is furthered by Lionheart in  [69] where he 
points out th a t the m axim um  Ohmic power dissipated in  the body must be lim ited.

2.5.1.5 O ther P attern s

In  [99] Polydorides and McCann described a novel “scrolling” current in jection pattern 
using a single current source instrum ent. The current source is simultaneously connected 
to  several neighbouring electrodes while voltages are measured between single electrodes. 
The current in jection electrodes are then “scrolled” around the object by connecting new 
electrodes at one side and leaving some free at the other. Voltage measurements are repeated 
for each new configuration.

2.5 .1 .6  C om pound E lectrodes

In  [72] Hua et al introduced compound electrodes comprised o f a larger outer electrode w ith  
a small, electrode in  the centre. Current is injected in  the larger outer electrode, and voltage 
us measured from  a small inner electrode. They show tha t using compound electrodes can 
make reconstructions less dependent on the contact impedance value thus m in im izing its 
effects.
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Chapter 3 

R econ stru ction

The process of calculating an image from  the E IT  signal is called reconstruction. Recon
struction  algorithms can be classified in to  several categories each o f which is intended to 
image a: different aspect o f impedance:

1. Time Difference imaging systems are used to  generate images o f the change in  impedance 
over time. This method is discussed in  the next section.

2. Absolute or static systems are used to  obtain images o f the absolute impedance dis
tr ibu tion . This m ethod is discussed in  a subsequent section.

3. M u ltip le  frequency imaging systems are used to  construct images o f frequency-dependent 
impedance changes. G riffiths  and Zhang [61] describe imaging the difference in  
impedance between two frequencies. Brown et al [28] discuss in jecting current at 
many frequencies and deriving parameters, such as Cole-Cole parameters, from mea
surements taken from  9.6 kHz to  1.2 MHz.

4. Dynamic imaging systems are used to  reconstruct fast conductiv ity  changes. In  these 
systems the conductiv ity  is assumed to  change rap id ly  compared to  the acquisition 
interval between signals [112] bu t slow w ith  respect to  the acquisition period o f a 
frame o f data. In  another example Seppanen applied dynam ic methods to  imaging 
fast flowing liquids transporting  resistive objects [104] [105] while Vauhkonen used the 
m ethod to  image cardiac function. Dynamic imaging is sometimes known by other 
names, for example the Goettingen group calls i t  functional imaging [49].

3.1 D ifference Im aging

The aim  o f difference imaging is to  reconstruct the change in  impedance or conductiv ity 
th a t occurs over some tim e interval. A  data set v i  is acquired at a tim e t \  and a second 
data set V2  is acquired at a later tim e t-2 - The algorithm  then calculates the change in 
conductiv ity  from  tim e t \  to  tim e <2 - The method is commonly used for imaging temporal 
phenomena in  medical applications, such as impedance changes during  respiration [5] [4]. 
Difference imaging is w ide ly understood to  improve reconstructed image s tab ility  in  the 
presence o f problems such as unknown contact impedance, inaccurate electrode positions, 
poorly  known boundary shape, non linearity, and the use o f 2D approximations for 3D 
electrical fields [18] [87].

The calculation o f the change in  conductiv ity is performed using a linear approximation 
operator1. In  the case where the fu ll non-linear solution is desired the non-linear problem
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is solved ite ra tive ly  w ith  the linearized operator being updated and re-applied at each 
ite ra tion. However most difference image applications assume th a t the conductiv ity change 
over the tim e interval is small so th a t a single step w ith  the linearized operator is sufficient to  
produce a solution th a t is “good enough.” The linear operator is developed as a Jacobian 
or sensitiv ity m atrix . On a model w ith  E  elements and M  boundary measurements the 
Jacobian is a M  x E  m a trix . The Jacobian m a trix  is calculated column by column w ith  
the i th column describing the effect o f the change in  conductiv ity  o f the i th element on the 
signal, 3  measured between electrode pairs.

3.2 Jacobian  D erivation

In  section 2.1.2 both  sta tic and difference image reconstructions were modelled as x  =  B z. 
For difference imaging x  =  Arr — a 2 — c r\ is the change in  a fin ite  element conductiv ity  
d is tribu tion  due to  a change in  difference signal, z =  V2  — v j ,  over a tim e interval ( t \ ,  0 )- 
By convention the signal at t \  is considered to be the reference frame and the signal at G 
is the data frame. Since a \  is unknown, x  is interpreted as the change in  conductiv ity  w ith  
respect to  the unknown in it ia l conductiv ity x  =  A a .

The Jacobian for a linearized forward problem is developed as follows using the notation 
o f difference imaging: Construct a m a tr ix  H  such tha t

z =  H x  +  n  (3.1)

where H  is the Jacobian or sensitiv ity m a trix  and n  is the measurement system noise, 
assumed to  be uncorrelated additive w hite  Gaussian (AW G N). Each element i,  j ,  o f H  is 

calculated as H ,? =  and relates a small change in  the i th difference measurement
CTO

to  a small change in  the conductiv ity  o f j th element [4], H  is a function o f the FEM , the 
current in jection pattern, and the background conductivity. A  homogenous background 
conductiv ity  w ith  cro — 1  for each o f the elements is used.

In  order to  calculate the linear approximation m atrix , H , the signal

z 3 = v 2  -  V i (3.2)

is expressed in  terms o f the forward model as z =  T [V ( r r 2 )] — T [V (< ti) ]. T [] is an extraction 
operator th a t produces the measurements between electrodes from  the nodal voltage m a trix  
V. Under the assumption th a t the conductiv ity changes by only a small amount between
the two times we can use e j\ =  tr and < 7 2  =  < t+ A < t which gives z =  T  [V(<r) — V(cr +  Arr)].
Further algebraic m anipulation gives

z =  T V (<7 +  A<r) -  V (o~)A jj

Arr

In the limit as A<r —> 0:

: V(er +  Arr) -  V(<r) dV(rr)
hm —  t --------—  =  ,

Aer—.0 A c t OCT

Neglecting noise, th is allows us to  w rite  the linearized form, equation 3.1, as

z =  T
dV(tr)

dcr
Arr
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where the Jacobian is

H  =  T
av(«r)~

dcr

In  terms o f the F in ite  Element Model

Derivative o f an inverse m atrix : Assume th a t A  an invertib le m atrix  dependent on 
a parameter t  and differentiable w ith  respect to  t. Then ( A -1 ) == — A ~ ' ^ A _1

Invoking the chain rule provides the fina l fo rm  o f the Jacobian in terms o f the F E M  which 
can be used as the basis for an a lgorithm  to  calculate the Jacobian m atrix.

H  =  T =  T - V ^ y ^ y - V ) /

The only derivative tha t must be calculated is the derivative o f the stiffness m atrix :

W ith  linear basis functions the derivative is a constant for m a trix  elements o f the given 
element i and zero elsewhere. The resulting answer for each operation is another vector 
representing the change in  the M  voltages due to  a small change in  crl

A ( Y - V ) ) j e £

The solution is organized in  columns of length M  w ith  each column being ( Y -1 (<r)). 
Thus H  Is M  x  E.

The calculation o f the Jacobian a lgorithm  has h istorica lly been done follow ing the stan
dard method [114] [116]. However a more efficient method to calculate the Jacobian involves 
the concept o f measurement fields [26]. The measurement fields are defined as the fields 
th a t would have been developed i f  currents were injected from  the measurement electrodes. 
I f  we denote V4> as the gradient o f the current fields obtained by normal forward solution 
and VtH as the gradient o f the measurement fields then the i th column o f the Jacobian 
corresponding to  the i th element is given by the dot product o f the two fields integrated 
over each mesh element as:

d U f
den

In  [98] Polydorides describes an implem entation o f th is  product tha t is currently the most 
com putationally efficient way to  calculate the Jacobian.

3 .2 .1  N ai’v e  L ea st S q u ares S o lu tio n s

The naive approach to  solving the linearized problem, equation 3.1, for x  is to  find  the least 
squares solution which minimizes ||H x  —z||. Th is is found through the generalized least 
squares solution

x  =  (H t H ) _1H t z (3.4)
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U nfortunate ly the equation cannot be solved th is way because H TH  is rank deficient and ill-  
conditioned. A n  ill-conditioned problem is one w ith  the property th a t a small perturbation  
o f the inpu t data leads to  a large change in  the ou tpu t, and even i f  the solution exists and 
i t  is unique i t  can be completely corrupted by a small error in  the data or by noise.

3 .2 .2  111 P o se d  P r o b le m s

In  1902 Jacques Hadamard classified all m athem atical problems as either “well-posed” or 
“ ill-posed” [63]. The solution to  a well-posed problem is unique and has a solution tha t 
depends continuously on the data. In  other words, for a problem to  be well posed a solution 
must exist, the solution must be unique, and small changes in  the data must not result in 
a large change in  the solution. A  problem is ill-posed i f  at least one o f the three conditions 
(existence, uniqueness, s tab ility ) is not satisfied.

From a practical po in t o f view vio la tion  o f the firs t condition, existence o f a solution, 
is not a concern. Existence can be usually be enforced by relaxing the notion o f a solution 
to  th a t o f an approximate solution through regularization. V io la tion  o f solution uniqueness 
is more Serious in  th a t the existence o f m ultip le  solutions requires some other crite ria  from  
which to  select one o f the solutions. For example one could obta in a unique solution by 
preferring the solution o f smallest norm  or by adding some other add itional inform ation to  
the problem. Lack o f s ta b ility  is the most onerous problem. A  problem whose solution does 
not depend continuously on the data w ill lead to  an unstable numerical solution. In  terms 
o f E IT  th is means th a t the inverse solution w ill be dominated by noise unless additional 
conditions are imposed.

S tric tly  speaking ill-posed problems can only exist in  the continuous domain in  that, 
under the assumption o f in fin ite  precision arithm etic, the discrete problem z =  H x  is never 
ill-posed [Hansen 94]. However w ith  fin ite  precision a rithm etic the discretization o f an ill-  
posed piioblem leads to  a numerical problem th a t is ill-conditioned. The ill-cond ition ing of 
a problem is defined by condition number o f its  m atrix . To define the condition number 
requires an understanding o f the Singular Value Decomposition (SVD) o f a m atrix . Detailed 
theory and examples o f linear ill-posed problems can be found in  [117], [10] and [63].

3 .2 .3  S V D

The singular value decomposition is a way o f factoring a m atrix  th a t does not require the 
m a trix  to  be either symmetric or have fu ll rank. The SVD has many properties some 
o f which are useful in  discussing inverse problem characteristics and solutions [65]. Let 
A  € be a rectangular m a trix  w ith  m > n .  Then the SVD o f A  is a decomposition of
the form

n

A  -  U S V T =  Ui<r<vf (3.5)
*  =  1

where U  =  (u j , ... ,un) and V  =  (v i , . . . ,v n) are matrices w ith  orthonorm al columns, 
U r U  =  V TV  =  I ra , and where E =  diag (a i, ...,a n) has non-negative diagonal elements, 
which by convention, are arranged in  non-increasing order such tha t

C\ ;> ... >  an >  0

The numbers <Jl are the singular values o f A  while u and v  are, respectively, the left 
and righ t singular vectors o f A. The condition number of A  is equal to  the ra tio  cr\/crn .
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The condition number o f a m a trix  is relative, as i t  is related to  the precision level o f the 
computations and is a function of the size o f the problem [37]. A  problem w ith  a low 
condition number is said to  be well-conditioned, while a problem w ith  a high condition 
number is said to  be ill-conditioned.

In  [65] Hansen discusses two observations concerning the singular values o f discrete ill-  
conditioned matrices derived from  practical applications. By p lo tting  the singular values of 
an ill-posed m atrix , as in  figure 3.1, one w ill observe that:

1. The singular values a* decay gradually to  zero w ith  no particu lar gap in  the spectrum. 
An; increase of the dimensions o f A  w ill increase the number of small singular values.

2. The le ft and righ t singular vectors u* and v* tend to  have more sign changes in  the ir 
elements as the index % increases, i.e., as <7* decreases.

100 200 300
Index

400 500 600

Figure 3.1: Singular Values o / H TH  fo r  an E IT  example.

The follow ing m ateria l is taken from  [65] which is one of the better descriptions of SVD. 
To see how the SVD gives insight in to  the ill-cond ition ing of A , consider the follow ing 
relations which follow d irectly  from  equation 3.5:

A v j
IIA vJ

O-jUj
Oi

A  small singular value cq, compared to  || A v * ||2 =  a.t, means tha t there exists a certain linear 
combination o f the columns o f A , characterized by the elements of the righ t singular vector 
Vj, such th a t jjAv.;||2 is small. In  other words, one or more small <7* implies th a t A  is nearly 
rank deficient, and the vectors v,; associated w ith  the small eq are numerical null-vectors of 
A . From th is  and the characteristic features of A  we conclude th a t the m a trix  in  a discrete 
ill-posed problem is always h igh ly ill-conditioned, and its  numerical null-space is spanned 
by vectors w ith  many sign changes. The SVD also gives im portan t insight in to  another 
aspect o f discrete ill-posed problems, namely the smoothing effect typ ica lly  associated w ith  
the measurement process. As c* decreases, the singular vectors u j and v* contain higher 
and higher frequency components. Consider now the mapping A x  o f an a rb itra ry  vector x. 
Using the SVD, we get x  =  X a = i (v I x )'vi  an(l

A x  =  ^ 7 j  ( v f x )  Ui (3.6)
i= l
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This shows tha t due to  the m ultip lica tion  w ith  the a, the high-frequency components o f x  
are more damped in  A x  than then low-frequency components. The inverse problem, tha t 
o f computing x  from  A x  =  b  has the form

which clearly shows th a t the high-frequency oscillations in  b  w ill be am plified by the small 
singular; values.

In  terms o f E IT  reconstruction the noise in  the data w ill be amplified by the inversion 
o f the small singular values. Consequently the solution to  equation 3.4 w ill be dominated 
by the noise in  the signal. To overcome the ill-cond ition ing o f H r H  requires the use of 
regularization techniques. These techniques generally involve either trunca ting  or filte ring  
the singular values corresponding to  the singular vectors w ith  high frequency components.

3 .2 .4  R e g u la r iz a t io n

A  regularization method, o f which there are a wide variety, is often fo rm ally  defined as 
an inversion method depending on a single real parameter A >  0, which yields a fam ily  of 
approximate solutions [81]. Discrete regularization techniques include truncated singular 
value decomposition, m axim um  entropy, and a number o f generalized least squares schemes 
including Twomey and T ikhonov regularization methods[37]. A ll o f these methods attem pt 
to  reduce the effects o f solving an ill-conditioned system by restoring continu ity o f the 
solution on the data [37].

The most w idely referenced regularization method is the T ikhonov or T ikhonov-Phillips 
method. W ith  T ikhonov regularization additional in form ation about the solution, com
m only referred to  as p rio r inform ation, is incorporated into the solution as an additional 
te rm  in the least squares m in im ization. T ha t is rather than m inim ize ||H x  — z|| one m in i
mizes an expression o f the form:

Here R  is a regularization m a trix  th a t is often diagonal or banded diagonal and the expres-

m in im ization tha t is guaranteed to  have a unique solution for A >  0. The most often used 
regularization matrices in  E IT  are the identity  m a trix  and the matrices corresponding to 
the firs t and second difference operators [114]. The corresponding implied p rio r assump-

respectively. Classic T ikhonov regularization refers to  the case where R  =  I ,  however the

Here B  is the symbol used fo r the regularized linearized reconstruction operator of equation

solution [68]. The regularized inverse has two im portant properties:

1. For large enough A the regularized solution, x  (A), is stable in  the face o f perturbations 
or noise in  the data (unlike the generalized solution) and,

x  — arg mm
X
in  j | | H x - z | | 2 + A 2 | |R x ||2 | (3.7)

sion A2 ||R x ||2 represents some p rio r inform ation about the conductivity. This is a quadratic

tions when these matrices are used are th a t x  is either small, slowly changing or smooth,

term  T ikhonov is often applied to  any solution o f equation 3.7 regardless o f the choice of 
R . The solution to  equation 3.7 is calculated from  the regularized inverse

x  =  (H t H  +  A2R t R ) - 1 H t z =  B z (3.8)

2.1. Equation 3.8 is a linear equation which must be solved ite ra tive ly  for the non-linear
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2. As A goes to  zero, the un-regularized generalized solution, which is dominated by 
noise, is recovered: x  (A) —> x  asA —► 0.

The parameter A is called the “regularization parameter” or “hyperparameter” and controls 
the trade-off between solution s ta b ility  and nearness o f the regularized solution [4], x (A ) ,  
to  the un-regularized solution, x . Th is can be understood as the approxim ation error in  the 
absence Of measurement noise and the discretization noise due to  fin ite  precision arithm etic. 
Chapter 4 o f th is  work explores hyperparameter selection methods in  detail.

Equation 3.8 is the most general form  o f the reconstruction model for E IT . M ost E IT  
reconstruction algorithms can be b u ilt from  th is  framework. The M A P  Regularized Inverse 
M odel o f the next section is one such example.

In  terms o f the SVD the effect o f T ikhonov regularization w ith  R  =  I  is th a t the singular 
values are filtered as follows [63]:

*  =  A - b  (3.9)
i= 1 0i

w ith  f i l te r  factors 

Jl a? +  A2

This filte r function decays sm oothly from  f \  «  1 for er, »  A to f [  «  0 for at A. In  other 
words the rig h t singular vectors w ith  singular values smaller than A are effectively filtered 
out. The T ikhonov filte r function is s truc tu ra lly  identical to the W iener filte r, which is the 
optim al filte r to  separate noise o f spectral density A2 from  a signal o f spectral density o f 
[81]-

3.3 S ta tic  Im aging

Static reconstruction in  E IT  has been proposed by various groups [128] [35] [123]. The basic 
technique is to  use a modified Gauss-Newton algorithm  w ith  T ikhonov style regularization. 
W ith  such techniques an error function /  is defined such tha t

/  (cr) =  1 ( ||T [V ( fr ) ] -  v „ red||2 +  A2 ||R(«r -  cr0)||2)  (3.10)

where v measUred is a vector o f voltage measurements from  the physical medium, <Tq is the 
in itia l estimate o f the background conductivity, and V(<r) is the forward operator which 
simulates the voltage measurements from  a medium w ith  conductiv ity d is tribu tion  a . The 
desired reconstructed conductiv ity d is tribu tion  is the vector rr th a t minimizes / .

The non-linear solution o f equation 3.10 is solved ite ra tively using a linearized step at 
each iteration. Figure 3.2 is a functional diagram o f one such process [3]. In  the figure a 
set o f currents is injected in to  the medium and the resulting voltages , v measureci, recorded. 
This data is compared to  voltages, ^smmUued =  T \V (a )} ,  generated by sim ulating the same 
process (current injection and voltage measurement) on a F in ite  Element Model (FE M ) of 
the medium. In itia lly , the medium is assumed to be homogeneous. I f  the simulated data 
approximates the measured data by some measure then the conductiv ity o f the model is 
assumed to  approximate the conductiv ity  o f the medium and the problem is solved. I f  the 
simulated data does not approximate the medium then another ite ra tion  is executed. To 
summarize the steps o f the iterative Gauss-Newton method for static reconstruction are:
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Figure 3.2: Typical Static Imaging System (from [3]).

1. O bta in  an in it ia l approximation for the conductiv ity d is tribu tion. The in it ia l con
ductiv ity , (To, d is tribu tion  o f the model reflects an a p r io r i assumption about the 
conductiv ity d is tribu tion  o f the medium. However, i t  is often a crude estimate of the 
equivalent homogenous conductiv ity  of the medium based on the data [69].

2. Solve the forward problem to  determine the simulated measurements, v Simuiated-

3. Calculate the change in  conductivity,

A  a  =  (H t H  +  A2R t R ) - 1 H t z (3.11)

where

z =  Vmeasured, v  simulated (3.12)

4. Update the absolute conductivity, 

o 'k + i  =  a 'k  +  A c t (3.13)

where <7o is a vector o f length E  and is the in itia l, a p rio ri, conductivity.

In  terms o f the Jacobian used for static imaging, each element o f the Jacobian is

H. dZi
dxj and relates a small change in  the i t t l  error measurement, z-i where z  is as

defined in  3.12, to  a small change in  the conductiv ity  o f j th element. H  is a function 
o f current in jection pattern  and the kth conductiv ity estimate. Thus calculation of 
thei Jacobian is identical for both  difference and static imaging however w ith  static 
imaging the signal is the error signal, 3.12, and the conductiv ity change is used in  the 
iterative bu ild  up o f the absolute conductiv ity v ia  3.13.

5. Update the admittance m a tr ix  w ith  the current estimation o f the conductivity. In  
other words form  Y  (cr^+i).
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6. Evaluate a stopping rule. For example stopping after a single ite ra tion  [35], stopping 
after some fixed number o f iterations, or stopping after the difference between the two 
sets o f measurements drops below some threshold [114], i.e. e <  \\'vmeasurelj  — 'vSimulated\\- 
I f  the current solution satisfies the stopping rule then exit, otherwise continue to  step

7--

7. Update the Jacobian based on the current estimate o f the conductivity. Some re
searchers update the Jacobian at each ite ra tion, others do not.

8. go to  step 2. Note th a t vs,muiaterj  calculated at step 2 is a function o f the ite ra tion  
number, k.

Equation 3.11 is s im ilar to  the difference image equation 3.7 w ith  x  =  Acr and z defined 
as the difference between the measured voltages and the set o f simulated voltages, z =  
v m e a s u re d  ~  v s im u la te d ■ A lthough the in terpre ta tion  o f x  and z are different the Jacobian is 
the same as those used fo r difference imaging. O ften the regularization matrices are also 
the same as those used in  difference imaging.

3 .3 .1  M A P  R eg u la r ized  In v erse

The most clearly formulated reconstruction model for 2D difference imaging at the sta rt of 
th is work was the M axim um  a Poste rio ri (M A P ) algorithm  o f Ad ler and Guardo [4]. The 
M A P  approach to  image reconstruction defines the solution as the most like ly  estimate of 
x  given the  measured signal z and certain statistical inform ation about the medium. This 
approach allows an elegant in terpre ta tion  o f the image reconstruction a lgorithm  in  terms of 
sta tistica l properties o f the experimental situation. I t  is explained in  the follow ing section.

In  order to  sim plify the reconstruction a lgorithm  the image sta tistica l properties are 
modeled by a Gaussian d is tribu tion  o f mean x ^  and covariance R x

x cc =  E [x\ .
R x =  E  [ x  -  X o o ]  =  E  [ x T x ]  -  X^Xoo ■ '

W ith  these parameters the d is tribu tion  function o f the image, / ( x ) ,  is modeled as

f ( x ) =  ______ *______ e-(l/2)(x-Xoo)TRx 1(x-Xoo) ( 3

V  ( 2 ^ ^

The a posteriori d is tribu tion  function o f z given a conductiv ity d is tribu tion  x  is derived 
from  the defin ition o f the inverse problem, equation 3.1:

/ ( « | * )  =  * - U / W - m W - H * )  (316)
V / v|-*^n|

The difference (z — H x )  is due entirely to  the noise n, which is assumed to  be Gaussian, 
white, zero mean w ith  covariance R n. Thus

Rri =  E  [nTn] =

0 ••• 0
£Xo 0

0 0

(3.17)

where a  in  th is and a ll subsequent equations in  th is section, represents the square root of 
the variance and not the conductivity.
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The M A P  estimate, x , maximizes the a posteriori p robab ility  d is tribu tion  / ( x |z ) .  This 
can be understood as find ing  the most like ly  image, x , to have produced the measured 
signal, z,

/<xM =
-(l/2 )[(Z-H X)'r a „ 1(! -H x) + ( » - i00)TRI 1(I - IlK)] (3.18)

(2w)(-M+N',/2^ \R x\\Rn\f(z)

/ ( x | z )  is maximized when the exponent is m inim ized

x  =  argm in  [(z — H x)t RI'1(z — H x) +  (x  — x o0)T R ~ l (x  — Xoo)l (3.19)
X

yie ld ing the estimate

x  =  (H r i ^ 1H  +  R ~ 1y 1 (H Ti?“ 1z +  R - 'x ^ )  (3.20)

3 .3 .1 .1  P a ra m e te rs  o f  th e  M A P  e s tim a te

The noise covariance, R n, measures the noise power in  each component o f the signal. Mea
surement noise on each channel o f the scanner can be determined from  the hardware. Adler 
and Guardo take the case where each channel has equal noise variance an. Using the defini
tion  o f the signal, z =  V2  =  v i  (equation 3.2), Rn is calculated as \Rn)n =  (oVi/uf ) 2 where 
V} are the measurements from  the medium on which the noise measurements were taken. 
We define a m a trix  W  such th a t W  =  R~ [

The properties o f the image R x and x x  are less concrete than the noise properties and 
can only be estimated from  a knowledge o f the experimental configuration. The expected 
change in  the image E\x] is represented by Xqc- C onductiv ity changes are equally likely to 
be conductive or non-conductive, consequently the expected image is one of no conductivity 
change, and is best modelled by x lOC =  0.

The covariance o f the image R x includes in form ation on the am plitude o f the image 
and also on the spatial frequency d is tribu tion . The diagonal elements o f {Rx]u represent 
the variance o f the amplitude o f each image element, whereas off diagonal elements are a 
function o f the correlation coefficient r  between a pixel in  element i  and a pixel in element 
j  as follows

\R x\ij =  r \J [R x \ii [R x\ij (3.21)

Since E IT  has low spatial resolution due to  the small number o f measurements, i t  is unable 
to  detect high spatial frequency contrasts in  the image, ind icating th a t the spatial frequency 
o f the reconstructed d is tribu tion  o f conductiv ity  change has lit t le  high frequency content. 
Therefore elements close to  each other w ill have correlated reconstruction values. Ad ler and 
Guardo set diagonal elements o f R x to  ax . O ff diagonal elements account for the resolution 
o f the medium: using 16 electrodes there is not enough inform ation to  see resolution on 
the order o f 5% o f the medium diameter. They assume tha t pixels closer than th is distance 
are h ighly correlated and pixels fu rthe r apart are not correlated w ith  a gradual d im inishing 
between the two extremes. Thus R x is interpreted as a low pass filte r. Since the form ulation 
R x is numerically unstable a regularization m atrix , Q, was constructed d irectly  using a high 
pass filte r to  represent R x l . Derivation o f th is  filte r is described in  section 5.2.3 w ith  the 
result th a t Q — axF TF .
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F ina lly  Ad ler and Guardo define the regularization hyperparameter in  terms o f the2
statistical standard deviations as A =  from  which they arrive at the M A P  regularized 
inverse

X =  (H t W H  +  A Q )_1H t W z =  B (A )z  (3.22)

where B(A) is the image reconstruction m a trix  firs t discussed in  equation 2.1. Since noise is 
uncorrelated in  the system, W  is a diagonal m a tr ix  w ith  W„; = 1/erf where erf is the noise 
variance for measurement i. W  can also be modified to  account for variable gain settings 
on each tomograph channel. However, for th is work we assume th a t a ll measurements have 
equal noise variance w ith  the result th a t W  becomes a m ultip le  o f the iden tity  m atrix.

3 .3 .1 .2  E lectrode Errors

One im portan t d ifficu lty  w ith  experimental and clin ica l E IT  measurements is the care re
quired to  ensure proper electrode measurements. Electrodes can become detached, the 
contact impedance can change because o f sweat or peripheral oedema, and changes in  sub
ject posture can move electrodes and corrupt readings [89] [5]. In  [7], Asfaw and Adler 
describe a method to  detect bad data caused by a single poorly  attached electrode. The 
method appears to  be useful for m ultip le  electrode errors however the study is restricted to  
the former case.

In  [6] Ad ler describes a method to  exp lic itly  account for known electrode errors in  terms 
o f the parameters o f the M A P  regularized inverse algorithm  o f 3.3.1. Electrode errors 
im p ly  high noise, which is reflected in  the measurement noise variance values contained in 
the diagonal elements o f R n of equation 3.20. Thus, i f  measurement i  is subject to  increased 
noise (by a factor erf), W„; is reduced by the same factor. I f  an electrode becomes completely 
disconnected, or noise levels are very high, the noise variance, an, can be assumed to  be 
in fin ite , and the corresponding elements of W  set to  l/o o  =  0.

Electrode errors w ill reduce the number o f available measurements. The adjacent pattern 
provides^ N (N  — 3) measurements, however w ith  a single electrode error th is  is reduced to 
(N  — 4) (N  — 3) measurements. For an eight electrode system th is error reduces the number 
o f measurements by 50%, while for a 16 electrode system, the available measurements are 
reduced by 25%. O ther stim ulation patterns w ill have different electrode error patterns [6]. 
N a tu ra lly  the qua lity  o f the reconstructions w ill be reduced by the loss o f data. Details o f 
the degradation are discussed in  [6].

3.4 V ariations o f  th e  B asic  M odel

W hile  there are many variations to  regularized solutions, the framework o f the generalized 
T ikhonov inverse lends itse lf to  two fundamental variations, th a t o f the regularization m atrix  
and th a t o f the norm  o f the side constraint.

Due to  its  d iffe ren tiab ility  the £ 2 norm  has been the mainstay o f regularized solutions 
in  E IT . However such quadratic optim izations are inherently smooth [69]. Recent work has 
investigated the use o f £l norms [25] [44] [79] in  order to  recover non-smooth conductivities. 
Chapter 7 discuss one such method, Total Variation, in  greater detail.

W ith  respect to  the p rior, in  E IT , the choice o f the regularization m a tr ix  R  has trad i
tiona lly  been either the identity  m a trix  [127], a diagonal m atrix  [35] or an approximation 
o f d ifferential operators [4] [71] [72] [93].
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Cheney et al introduced a diagonal m atrix , R  =  dm g(H 7 H ). as the p rio r used in 
the ir NOSER a lgorithm  [35]. Th is m a trix  is diagonal, and w ith  SVD decomposition, the 
regularized solution can be expressed as

- : V '  X d
, ai 1 = 1

w ith

/  = ai
o f +  A r?

/  are the “ filte r factors” , r , are the diagonal elements o f R , and cr, are the singular values 
o f R . For small singular values /  —> 1 and for large singular values /  —> 0.

3 .4 .1  T h o u g h ts  o n  R e g u la r iz a t io n

The use o f T ikhonov style regularization techniques is equivalent to  in troducing a p r io r i 
in form ation to  the reconstruction process. The fundamental p rio r inform ation o f the con
d uc tiv ity  solution is th a t i t  is a positive function, Such methods provide s tab ility  bu t force 
solutions to  be smooth in some sense thus e lim inating the possibility o f non-smooth so
lutions. This is reasonable given th a t the undesired, noise dominated, solutions contain 
components w ith  high spatial frequencies.

One way in  which the generalized T ikhonov regularization method can be understood 
to  work, is th a t i t  draws the solution towards the nu ll space IV (R ) o f the regularization 
m a tr ix  R  [114]. I f  we use, for example, the firs t difference m atrix , the solution is drawn 
toward a constant d is tribu tion  because a constant solution forms the basis for the null 
space o f the firs t difference m atrix . Moreover i f  we have some inform ation on the true 
res is tiv ity  d is tribu tion , the regularization m a trix  can be constructed in  such a way tha t 
the solution is drawn towards the known d is tribu tion  by the regularization. This can be 
implemented by penalizing the difference between the reconstructed conductivity, a . and 
the a p r io r i assumption about the conductiv ity  instead of the ju s t penalizing the solution. 
Symbolically, rather than m inim ize equation 3.7 we minimize

x  == a rgm in  | | |H x  — z||2 +  A2 ||R (x  — x*) | |2|  (3.23)

where x *  is the a p r io r i assumed d is tribu tion . This idea was evaluated by Vauhkonen 
et al in  [113] and [114]. In  [113] the conductiv ity  d is tribu tion  was approximated as a 
linear combination o f some pre-selected basis functions tha t were constructed from  p rior 
inform ation on the structures and conductivities. The method, called the Basis Constraint 
M ethod (BC M ), produced good results when the priors were correct bu t provided misleading 
results when the p rio r was incorrect. Here misleading means th a t the solutions contained 
structura l artefacts due to  the p rio r th a t were not part o f the true conductivity. In  [114] 
Vauhkonen et al used the same k ind  o f idea bu t rather than forcing the solution to be 
in  the subspace spanned by pre-selected basis functions they only “draw” the solution 
towards the subspace. This method, called the Subspace Regularization Method, provided 
an improvement over the BC M  in th a t they could p a rtia lly  avoid misleading results even i f  
the p rio r in form ation was not correct.
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3.5 3D  C onsiderations

In  E IT  i t  is often assumed th a t the injected currents stay in the two-dimensional electrode 
plane [115]. This assumption has been used since the early days o f E IT , however, i t  is 
obviously incorrect since electric currents w ill spread out in  three dimensions.

Reports o f E IT  in  the clin ical lite ra ture  rarely use 3D E IT  possibly due to  the d ifficu lty  of 
applying large numbers o f electrodes and the high data collection rate needed for m onitoring 
physiological function. 3D reconstruction algorithms concerning medical applications can 
be found in  Gobel et al [59], M etherall et al [90], Polydorides [98], Polydorides and McCann 
[99], Blue et al [22] and M olina ri et al [91]. In  three dimensions the possibilities for electrode 
configurations and in jection and measurement protocols are much larger than in  2D. W ith  
cylindrica l tanks a typ ica l configuration is to  use equally spaced electrodes arranged on 
several parallel planes.

The main problem w ith  3D is computational: w ith  three dimensional E IT  the complexity 
o f body shapes and components requires a fin ite  element model w ith  a large number of 
elements. Since the storage and computing tim e increase as a function o f the number of 
elements either the mesh discretization must be le ft too coarse to  obta in images unaffected 
by the element size or the mesh w ill so large th a t i t  causes the computer to  run  out o f memory 
during solution [91]. One either has to  parallelize the problem onto several processors [21], 
or investigate more efficient algorithms such as dual meshing [95]. The iterative Newton- 
Raphson method is suitable for small-scale E IT  problems. However i t  can be unsuitable for 
large 3D problems where the number o f elements can easily exceed 5000. This corresponds 
to  a m a tr ix  size o f 25 x  106 or a memory requirement o f 200 M B  to  store the m a tr ix  alone.

3.6 G O E M F  T yp e II S ystem

A  detailed analysis on E IT  hardware design and analysis can be found in  [58] [40] [129]. The 
firs t successful tomographic style impedance imaging was performed by Barber and Brown 
in  the early 80’s [15] using the Sheffield M ark  1 system [27] w ith  the filtered backprojection 
reconstruction a lgorithm . This is a 16 electrode adjacent drive system th a t measures 12.5 
frames per second. The architecture o f medical scanning equipment has not changed much. 
For example Viasys Healthcare, Hochberg, Germany manufactures the Goe-MF I I  type 
tomography system, which like the Sheffield M k 1 has a single am plification u n it and a 
single detection u n it th a t are multiplexed to  16 electrodes. Both  are intended for use w ith  
the adjacent constant current drive. The E IT  group at Goettingen has improved the basic 
system by optim izing some analog components and d ig itiz ing the signal at an earlier stage 
o f the processing. Th is has provided a large improvement in  signal to  noise ra tio  o f the 
E IT  signal. In  [62] they reported th a t the Goe-MF type I I  provides an order o f magnitude 
improvement in  SNR over the Sheffield M k  1. L ike the Sheffield M k  1 th is machine is 
intended to  be used to  collect 2D data from  a planar set o f 16 electrodes equispaced around 
the thorax. The default reconstruction a lgorithm  is a functional image based on ind iv idua l 
frames reconstructed using filtered backprojection [62], However the raw measurement data 
can be exported for use w ith  algorithms not included w ith  the Goe-MF I I .  Th is machine 
was used to  obtain empirical data used to  verify some o f the work in  th is  thesis.
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3 .7  Sum m ary

3 .7 .1  R e c o n str u c t io n  S u m m a ry

Here we summarize the state o f the a rt in  E IT  difference imaging for clin ical applications 
such as pulm onary imaging. The framework is the non-linear optim ization problem, equa
tion  3.7, which is reproduced below:

x  =  arg mm •
X
lin  j||Hx — z||2 +  A2 ||Rx||2 j (3.24)

Th is is solved using the M A P  regularized framework o f equation 3.22 again repeated below:

x =  (H t W H  +  A2R t R ) - 1H t W z =  B(A)z (3.25)

where z, — V2  — v *. The framework has several exp lic it parameters th a t must be selected 
by the user:

1 . The regularization hyperparameter, A, is the subject o f chapter 4.

2. The norm o f the p rior, 11 Rx j |2, has h istorica lly been the norm. The £l norm has 
been used for “b locky” reconstructions. A n  algorithm  for solving the £} norm  is 
evaluated in  chapter 7.

3. The p rio r m atrix , R , has many possibilities as discussed in  th is chapter.

4. The data weighting m a trix  W  has the a b ility  to  consider noise and erroneous electrode 
data. However w ith  equal noise variance on each measurement channel and w ith  good 
electrodes (no accounting for erroneous electrodes), W  becomes a scaled version o f 
the iden tity  m atrix .

In  addition to  these explic it parameters there are several implied parameters tha t conform 
to  some assumptions:

1. The in itia l conductivity, <ro> is typ ica lly  assumed to  be homogenous.

2. The conductiv ity used to  calculate the Jacobian, a*, is typ ica lly  assumed to be ho
mogenous.

3. FE M  modeling issues including degree o f the shape functions (linear, quadratic), 
isotropy o f element conductivity, and mesh parameters such as number and degree 
(triangle, quadrilateral) o f elements, geometry, shape o f the reconstructed mesh d i
mension (2 or 3).

4. Electrode types, locations and size.

5. Current in jection and measurement patterns.

None o f these parameters appear exp lic itly  in  equations 3.24 or 3.25 bu t are im portant 
parts o f the problem. There is much work describing variations o f the framework in  terms 
o f explic it and implied parameters, however, there is lit t le  quantita tive in form ation on how 
they compare and how im portan t any one o f them  is.
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Chapter 4

O bjective Selection  o f  
H yperparam eter

This chapter is the text, w ith  m inor revisions, o f a paper titled  “Objective Selection o f H y
perparameter” by Bradley G R A H A M  and A ndy A D LE R  published in  Physiological Mea
surement 27 (2006) S65-79.

This paper addresses the issue o f hyperparameter selection in  E IT  (section 1.3 objective 
01  and section 1.4.1 Contributions by Objective O l) :  improve the method o f hyperparame
te r selection in  order to  elim inate case by case tweaking o f parameters, provide repeatability 
o f experiments, and reduce number o f reconstructions needed to  find the best reconstruc
tion  for a given data set. The main con tribu tion  o f th is  paper is the development o f the 
BestRes hyperparameter selection method which is demonstrated to  be as good or better 
than existing methods while being stable and repeatable.

A b stract

A n a lgorithm  for objectively calculating the hyperpaxameter for linearized one-step electrical 
impedance tomography (E IT ) image reconstruction algorithms is proposed and compared 
to  existing strategies. E IT  is an ill-conditioned problem in which regularization is used to 
calculate a stable and accurate solution by incorporating some form  o f p rio r knowledge into 
the solution. A  hyperparameter is used to  control the trade-off between conformance to  data 
and conformance to  the prior. A  remaining challenge is to develop and validate methods 
o f objectively selecting the hyperparameter. In  th is paper, we evaluate and compare five 
different; strategies for hyperparameter selection. We propose a calibration-based method 
o f objective hyperparameter selection, called BestRes, tha t leads to  repeatable and stable 
image reconstructions th a t are indistinguishable from  heuristic selections. Results indicate: 
( 1 ) heuristic selections o f hyperparameter are inconsistent among experts, (2 ) generalized 
cross-validation approaches produce under-regularized solutions, (3) L-curve approaches are 
unreliable for E IT  and (4) BestRes produces good solutions comparable to  expert selections. 
Add itiona lly , we show th a t i t  is possible to  re liab ly detect an inverse crime  based on anal
ysis o f these parameters.

K eywords: regularization, E IT , hyperparameter, L-Curve, GCV
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4.1 In trod u ction

Electrical impedance tomography (E IT ) attem pts to  calculate a stable and accurate image 
o f the conductiv ity  or conductiv ity change w ith in  a medium from  electrical measurements 
made on the medium boundary. The image reconstruction problem is essentially under
determined and characterized by a system m a trix  w ith  large condition number. Image 
reconstructions obtained through naive methods such as least squares are unstable and 
dominated by noise. The problem has been overcome through the use o f various regulariza
tion  methods which produce useful solutions by imposing additional conditions (priors), such 
as image smoothness, on the problem [113]. The trade-off between solution conformance to 
the measured data and conformance to  the p rio r is controlled by a scalar hyperparameter, 
often labelled A.

A  d ifficu lty  w ith  experimental and clin ical E IT  reconstruction algorithms is the tendency 
o f algorithms to  re ly on subjective methods to  select a hyperparameter. The absence o f ob
jective hyperpaxameter selection methods results in  several issues which hinder experimental 
and clin ical use o f the technique: (1) users o f E IT  for clinical applications are uncomfortable 
using ‘fidd le ’ adjustments to  m od ify  images, (2) comparisons o f E IT  reconstruction algo
rithm s can be subjective due to  the necessity o f manual tun ing  o f hyperparameter values, 
(3) experimental work is not repeatable i f  disparate researchers cannot objectively recreate 
the hyperparameter values used in  the work o f others and (4) meta-algorithms, such as 
detection o f electrode errors [7], require a method to  fix  these values.

In  order to address th is issue, we investigate some existing hyperparameter selection 
methods and propose a new calibration based method called BestRes (Best Resolution). 
B y  ‘ca lib ra tion ’ we mean th a t a procedure is defined to  select a value for a given E IT  
system and measurement configuration rather than for each image or data set. We de
fine a configuration as the combination o f current in jection pattern, fin ite  element mesh 
(FE M ), assumed p rio r conductiv ity  (0 0 ) and regularization prior. Consequently, the ob
jective hyperparameter methods discussed in  th is paper are functions o f th is  configuration. 
Hyperparameter selection methods are then compared for several one-step linearized E IT  
reconstruction algorithms.

4.2 M eth od s

This paper addresses the problem of objective hyperparameter as follows: in  the methods 
section we describe the fam ily  o f E IT  reconstruction algorithms used throughout th is paper. 
In  hyperparameter selection methods we describe five hyperparameter selection strategies, 
including a new calibration-based method called BestRes. In  the results, we describe the 
effectiveness of each strategy and compare the performance o f the objective methods w ith  
heuristic selection. In  the discussion we consider some additional observations o f th is  work. 
We conclude w ith  a recommendation o f the BestRes hyperparameter selection method.

We consider E IT  difference imaging, which is w ide ly understood to  improve recon
structed image s tab ility  in  the presence o f problems such as unknown contact impedance, 
inaccurate electrode positions, nonlinearity, and the use o f 2D approximations for 3D elec
tr ica l fields [18] [87]. In itia lly , we address the class o f normalized one-step linearized re
construction algorithms th a t calculate the proportiona l change in  a fin ite  element conduc
t iv ity  d is tribu tion , x  =  ( 0 2  — <xi)/<xi, due to  a proportiona l change in  difference signal, 
z =  (V2 — v i ) / v i ,  over a tim e interval ( i i , £2 )- By convention we consider the signal at t \  
to  be the reference frame and the signal at t -2 to  be the data frame. Since we do not know 
<Ti, x  is interpreted as the proportiona l change in  conductiv ity w ith  respect to  the unknown
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in it ia l conductiv ity  x =  A tr/< ro - For small changes around a background conductiv ity  the 
relationship between x and z may be linearized as

z =  H x  +  n  (4.1)

where H  is the Jacobian or sensitiv ity m a tr ix  and n  is the measurement system noise, 
assumed to  be uncorrelated additive w hite  Gaussian (AW G N). Each element i , j ,  o f H  

is calculated as H ij — ^  and relates a small change in the i th p roportiona l difference
3 <70

measurement to  a small change in  the proportiona l conductiv ity of j th element. H  is a func
tion  o f the fin ite  element mesh (FE M ), the current in jection pattern, and the background 
conductivity, <tq . We use the adjacent current in jection pattern  and a homogeneous back
ground conductiv ity  w ith  <Xo =  1 for each o f the elements. Norm alizing the signal requires 
th a t we also normalize the sensitiv ity m a trix  by d iv id ing  its columns by v ref  which is a 
vector o f reference voltages obtained by solving the forward problem [4] over a homogeneous 
domain.

4 .2 .1  R e g u la r iza tio n

In  order to  overcome the i l l  conditioning o f H  we solve 4.1 using the follow ing regularized 
inverse

x =  (H t W H  +  AR)_1H t W z =  Bz (4.2)

where x  is an estimate o f the true  p roportiona l change in  conductiv ity d is tribu tion , R  is 
a regularization m atrix , A is a scalar hyperparameter th a t controls the amount o f regular
ization, and W  models the system noise. Since noise is uncorrelated in  the system W  is
a diagonal m atrix , W^j = 1 /< rf where o f  is the noise variance for measurement i. W  can
also be modified to  account for variable gain settings on each tomograph channel. How
ever, for th is work we assume th a t a ll measurements have equal noise variance, thus W  
becomes; a m ultip le  o f the iden tity  m atrix . W ith  R  =  I (labelled R n k )  equation 4.2 is the 
0 th or(jer Tikhonov algorithm . W ith  R  =  diag{H) (labelled R (iimg(n ) equation 4.2 is the 
regularization m a trix  used in  the NOSER a lgorithm  o f [35]. [4] modelled R  as a spatia lly 
invariant Gaussian high pass filte r (labelled R h p f )  w ith  a cu t-o ff frequency selected so the 
spatial period is a given fraction o f the medium diameter. R h p f  reconstructions appear 
reasonable for cu t-o ff frequencies corresponding to  5%, 10% and 20% diameter. A  16 elec
trode E IT  system, using adjacent measurements not at current in jection sites, yields 208 
measurements o f which 104 are independent. 104 measurements justifies the recovery of 
104 conductiv ity parameters which perm its, for example, the reconstruction o f a 10 x  10 
grid  corresponding to  a resolution o f roughly 10%. Thus we consider A h p f  for 10% because 
i t  appears better jus tified  in  terms of available independent measurements. A ll three of 
these priors are smoothing filters, however the Gaussian H PF has the advantage o f being 
mesh size independent in  th a t i t  is a function o f the mesh inter-element correlations. Both 
T ikhonov and NOSER are ad hoc priors th a t do not consider correlations between solution 
mesh elements.

W hile  several other one-step regularized inverse algorithms exist for E IT  [18] [8 6 ] [36], 
in  th is paper we consider equation 4.2 w ith  the Tikhonov, NOSER and Gaussian HPF 
regularization matrices as a representative sample w ith  which to compare hyperparameter 
selection^ strategies. The hyperparameter selection functions discussed in  th is paper were 
developed p rim arily  w ith  EIDORS [8 ] and w ill be contributed to  th a t E IT  framework. In  
th is  paper, we do not address issues o f execution speed or a lgorithm  efficiency as we are 
p rim arily  interested in  effectiveness o f hyperparameter selection.
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4 .2 .2  F ig u re  o f  m e r i t

A  quantita tive  figure o f m erit is required in  order to  compare the qua lity  o f the reconstructed 
images. ; In  [120] Wheeler et al reviewed several figures of m erit for E IT  th a t have been 
proposed in  the lite ra ture . The p rim ary figure of m erit used in  th is work is resolution 
which we calculate in  terms o f b lu r radius (BR). We define B R  as B R  — r zj r o =  A z/A q 
where ro and A q are the radius and area respectively o f the entire 2D medium and r z and 
A z are the radius and area o f the reconstructed contrast containing ha lf the magnitude o f 
the reconstructed image [4], B R  calculates the area fraction o f the elements th a t contain 
the largest am plitude contributions to  50% o f the to ta l image amplitude. I t  is a measure 
o f the concentration o f image amplitude. We call the set of elements th a t contribute to  the 
b lu r radius the ha lf am plitude (H A ) set. Figure 4.1(a) shows the evolution o f the H A  set 
in  response to  increasing A for an impulse contrast. Figure 4.1(b) shows the corresponding 
impedance change images, here represented w ith  3D visualization. W ith  insufficient A the 
image is dominated by noise and the H A  set is composed o f spatia lly  d is jo in t elements. As A 
is increased, noise is filtered through the smoothing action o f the prior, image energy starts 
to  concentrate and the H A  set starts to  cluster. The po in t at which the H A  set is comprised 
o f adjacent elements is termed the ‘onset o f s ta b ility ’ (OS). Excessive regularization blurs the 
image and expands the now contiguous H A  set. A  resolution curve (p lo t o f b lu r radius versus 
A) such as figure 4.5(b) shows a rapid improvement in  resolution (indicated by decreasing 
b lu r radius) reaching a m axim um  resolution indicated by the m in im um  b lu r radius value. 
Th is is followed by a slow degradation in  resolution (indicated by an increasing b lu r radius) 
as filte ring  starts to  b lu r the image. For an impulse contrast the m inim um  po in t o f the 
resolution curve indicates the best resolution. Th is value can be considered optim al w ith  
respect to  both  resolution and stab ility  (slope o f curve is low ind icating small change in  
signal for a small change in  A) for the given data set.

B lu r  R a d iu s  as th e  P o in t  S p read  F u n c tio n  The point spread function (PSF ) 1 de
scribes the response o f an imaging system to  a po in t source or po in t object. A  point source 
has negligible extent, d istinguishing i t  from  other source geometries. When a signal is gen
erated by an impulse or pseudo-impulse (i.e. from  a phantom consisting o f a single element 
o f the generating mesh), the H A  set o f the resulting image is the E IT  analog o f the point 
spread function o f the system.

4.3  H yperp aram eter S election  M eth od s

The goal o f hyperparameter selection is to  produce a “good” reconstruction. In tu itive ly  
hyperparameter selection should produce solutions th a t preserve as much of the measured 
data as possible by applying the least amount o f a p r io r i inform ation required to obtain a 
useful reconstruction.

4 .3 .1  H e u r is t ic  S e le c t io n

The most common method o f hyperparameter selection is Heuristic Selection in  which re
searchers examine sets o f reconstructions generated over a range o f hyperparameter values 
and select the image they like best. This method is h ighly subjective and not repeat- 
able. To our knowledge no research has specifically evaluated the performance o f objective 
hyperparameter selection for one step solutions.

1AnotKer commonly used term for the PSF is a system’s impulse response.
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(a) 2D images of the evolution of half amplitude set (dark triangles) with in
creasing A

Vertical Axis indicates relative change in conductivity

(b) 3D images of the evolution of proportional conductivity change image with 
increasing A.

Figure 4.1: Images reconstructed on a 576 element mesh using tank data o f an impulse 
phantom and the R h p f  p rio r. The th ird  image w ith  A =  0.0616 represents the best image 
in  terms o f resolution.

In  th is  work, heuristic selection was performed by five graduate students2  who were asked 
to  partic ipate in  an experiment evaluating human performance in  choosing regularization 
parameters. A  web site was set up in  which five independent data sets were used to  generate 
sequences o f reconstructions. Each sequence showed reconstructions as a function of 77 
different values o f the hyperparameter. Each web page, such as the example o f figure 4.2(a), 
showed the same conductiv ity  change solution using eight visual styles (sub-images). Each 
pair o f images is shown as a 2D false colour representation of the conductiv ity change image 
and an associated 3D version where the 2  dimension represents conductiv ity  change. The 
le ft ha lf o f the page shows the reconstruction as a decrease in  conductiv ity while the righ t 
side shows the inverse of the image (we reverse the reference and data frames) so th a t the 
reconstruction appears to  be a conductiv ity increase. The top row uses relative colour and 
z-axis scaling, thus each subimage in  the 77 page sequence uses the fu ll range o f colours. 
For the 3D representation the conductiv ity  is scaled to  f i l l  the entire z-axis. The bottom  
row uses an absolute colour and z-axis scaling thus each subimage of the 77 page sequence 
uses the same colour and vertica l axis extent. Consequently h igh ly smoothed images (large 
hyperparameter values), such as figure 4.2(b) have lit t le  color variation and reduced vertical 
extent compared to  images reconstructed w ith  lower hyperparameter values such as figure 
4.2(a). Students were instructed to  choose the best image based on the follow ing defin ition: 
the image which shows the best resolution for the contrasting region(s) w itho u t excessive

2We use the term expert to denote a person who has been instructed to select an image based on some 
criteria.
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Figure 4.2: Two we6  pages from, the heuristic selection experiment. Images generated from  
tank data using R h p f  p r io r  w ith different hyperparameter values.

contam ination by noise.
The same set o f students was asked to  repeat the experiment four months later. Students 

were instructed not to  look at the ir earlier results as the aim of the second experiment was 
to  evaluate repeatability.

4.3.2 L-Curve

Perhaps the most well known method o f hyperparameter selection after heuristic selection 
is the L-Curve method [64]. This method plots the semi-norm o f the regularized solution, 
log 1 0  |R x |, versus the norm  o f the corresponding residual vector, log 1 0  |H x  — z|, paramet
rica lly  over A. The resulting p lo t, such as figure 4.3(a), w ill often have an “L ” shape where 
the optim al value for A is located at the point o f maximum curvature. Hansen describes a 
method for calculating th is  “corner” o f the L-curve in  [63]. We call th is  value Al c - There 
are cases where the L-Curve may fa il, fo r example figure 4.3(b) is an L-Curve th a t does not 
have a “corner” .

le v

, - 4

1-2
1—0.4 ,-0.3 ,- 2.7,-0.7

(a) Tank data reconstructed using the (b) Simulated data reconstructed using
R n k  prior the Rdiag prior. The L-curve fails to in 

dicate a comer value fo r (h).

Figure 4.3: Example L-curves reconstructed from  tank phantom data using a 2D 576 element 
mesh.
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4.3.3 Generalized Cross-Validation
Generalized cross-validation (G CV) is based on the principle th a t i f  any a rb itra ry  element of 
the data (right hand-side, z, is le ft out, then the corresponding regularized solution should 
predict the missing element [63]. Its  advantage is th a t no p rior knowledge about the error 
norm  is required. This leads to  choosing a regularization parameter which minimizes the 
G C V function

G C V  (A)
IlH x  ■

trace  ( I  -  H B )
(4.3)

where B , z and x  are as in  equations 4.1 and 4.2. Hansen [63] discusses the use o f G CV 
w ith  the T ikhonov prior; however, in  th is  work we evaluate the G C V method w ith  a ll three 
priors.

10°

10°
l°glo(A)

Figure 4.4: N F  versus A (logarithm ic axes) fo r  algorithms Rdiag{H) (black), R h p f  (blue), 
R x ik  (red). Solid lines: simulated data reconstructed on 256 element 2D mesh. Dashed 
lines: tank data reconstructed on 576 element 2D mesh. Throughout the range o f useful 
solutions, N F  and A are linearly related.

4 .3 .4  F ix e d  N o ise  F ig u re  (N F )

The Fixed N F M ethod is based on a Noise Figure calculation introduced by Ad ler and 
Guardo in  [4] where N F  is defined as the ra tio  o f signal-to-noise-ratio in  the measurements 
to  signal-to-noise-ratio in  the image:

F  =  S N R jn =  / m ean[zc} \  /  / m ean [B ze] \

S N R out y  y /va rjn j /  /  \  v /var[Bn] J

The signal used in  th is  defin ition is zc =  H x c , where x c is a small contrast in  the centre of 
the medihm. The user selects a N F value and the corresponding A is found using a bisection 
search technique. The Fixed NF M ethod substitutes the manual selection of A w ith  the 
manual selection of a NF, which the a lgorithm  then maps to  a hyperparameter value; the 
value for N F  =  1 is labelled A jv f= i-  As shown in  figure 4.4, for a given configuration 
lo g (N F )  is nearly linearly inversely proportiona lly  to  log(A) throughout the extent where 
A yields good solutions.
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Figure 4.5: Comparison o f hyperparameter values selected from  the various methods mapped 
to L-curve and resolution curve. Un-annotated points on the curves indicate the firs t set o f 
heuristic selections. Un-annotated crosses indicate the second set o f heuristic selections.

4.3.5 BestRes Method

The resolution curve, o f which figure 4.5(b) is an example, was introduced in  section 4.2.2. 
Th is curve suggests the follow ing hyperpaxameter selection strategy, which we refer to  as 
the “BestRes”  method, as follows:

1. Image an impulse contrast

(a) The preferred method is to  use imaging equipment to  collect a frame of reference 
data from  a homogenous medium. Then collect a data frame by imaging an 
impulse contrast using a physical phantom located halfway between the centre 
and boundary o f medium ( r / 2 ).

(b) I f  equipment is not available the method can use simulated data. Again simu
late a reference frame using a homogenous medium. Simulate a data frame by 
changing the conductiv ity of a single mesh element located at r / 2

2. Reconstruct a series o f images as a function o f the hyperparameter and p lo t the 
associated Resolution curve as in  figure 4.5(b).

3. Determine A BestRes as the po in t for maxim um  resolution - m in im um  BR. This value 
of A is then used for a ll subsequent reconstructions using simulated or real data.

I f  using simulated data then representative noise should be included. We suggest producing 
several resolution curves (we used 50) each w ith  a different instance o f the representative 
noise level. Each curve w ill produce a value of A BestRes- The mean o f th is  set o f XsestRes is 
the ou tpu t o f the BestRes method.

4 .4  R esu lts

4.4.1 Data Sources

Three sources of test data were used to  compare the hyperparameter selection methods:
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1. simulated data, generated using a 2D fin ite  element mesh w ith  1968 elements using the 
point electrode model. D ata  for the reference frame was generated using a homogenous 
background conductiv ity w ith  <r0  =  1 . The data frame was generated by reducing the 
conductiv ity  o f a single F E M  element (0.05% of medium area) located halfway along 
the| radius of the tank ( r /2 )  by 15%.

2. simulated data obtained by adding Gaussian noise to  set # 1 . Noise variance was
0.05% o f maxim um  signal value, and

3. tank data using a Goe-MF I I  type tomography system (Viasys Healthcare, Hochberg, 
FRG). The reference frame o f the tank data was generated using a homogenous saline 
solution in  a 30cm diameter tank. The data frame was generated using a 2cm diameter 
non-conductive impulse phantom located at r / 2  in  the plane of the electrodes.

Both  simulated and tank data used 16 electrodes equispaced in  a plane driven w ith  the 
adjacent current drive protocol, excluding data on driven electrodes.

The three data sets were used to  reconstruct images using 18 configurations ( 6  meshes, 
3 regularization matrices). The 6  meshes have 64, 256, 492, 576, 1024, and 1968 elements. 
Reconstructions o f simulated data using the 1968 element mesh constituted an inverse crime 
[122], which we discuss later. The hyperparameter selection methods axe compared using 
the L-Curve and Resolution Curves o f figures 4.5. Hyperpaxamater values selected from  
each o f the methods are shown on both  curves. Associated reconstructions are shown in  
figure 4.6.

4 .4 .2  H eu r is t ic  R e su lts

The points on figures 4.5 indicate the firs t set o f hyperpaxameters selected (ind irectly) 
by heuristic selection. The associated reconstructions are found in  figure 4.6. Heuristic 
selections varied and were not confined to  the m in im um  region of the Resolution Curve or 
knee o f the L-Curve: no clear preference was shown among images reconstructed using A 
from  the m in im um  region o f the Resolution Curve. The crosses on figures 4.5 indicate the 
hyperparameter values selected by the same experts when the experiment was repeated 4 
months later. Results indicate th a t Heuristic selections o f hyperpaxameter are inconsistent 
among experts and unrepeatable. Heuristic selections are subject to  many biases including 
the colour scheme used in  images, whether impedance changes axe shown from  a 2D or 3D 
perspective, the a p r io r i expectation of the expert concerning noise levels, desired image 
properties, and other unknown ind iv idua l idiosyncrasies. The heuristic results suggests th a t 
there is no single preferred value of A, rather there is a preferred region o f A over which 
reconstructions are not subjectively distinguishable.

4 .4 .3  L -C u rve R e su lts

Although most L-Curves from  th is  data were able to  indicate an optim al trade-off region, not 
a ll curves had a pronounced enough corner to  allow unambiguous selection o f A. In  the six 
T ikhonov configurations the L-Curve always indicated a clear po in t o f maxim um  curvature. 
However there were some configurations, such as figure 4.3(b), where the L-Curve d id  not 
exh ib it a corner from  which a hyperparameter could be calculated. In  general the L-Curve 
indicated a lower value for A than the Fixed N F  and BestRes methods. As a result L-Curve 
derived images were comparatively noisier. In  several instances X ic  occurred much earlier 
than the onset o f stability. We make the observation th a t L-Curves fo r the NOSER and 
Gaussian H PF priors are shallower than classic L-Curves discussed in  the inverse problems
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(a) Lowest Heuristic (b) \ lc (c )  X acv  (d) A BestRes which
Selection was coincidentally

the highest heuristic 
selection.

Figure 4.6: Reconstruction o f phantom data on 576 element 2Dmesh, using different hyper
parameter selection strategies. Black bordered triangles are elements o f the ha lf amplitude 
set.

fie ld such as [64]. This is illustrated  in  figure 4.7 which compares the relative ly sharp corner 
of the T ikhonov L-Curve to  the shallower curves for the Gaussian H PF and NOSER priors.

The L-Curve method also requires the generation of an L-curve for each set o f data. I t  is 
preferable to  be able to  calculate a single hyperparameter value suitable for continuous use 
w ith  a specific configuration which can be done w ith  the BestRes and fixed NF methods.

i-i

1 -2

1-3
, - 0 .7  1 0 —0 .<

logio||Hx-z|

1- 0.4 , - 0.31-0.1 1- 0.5

Figure 4.7: L-curves reconstructed on 576 element 2D F E M  using data from  saline phantom  
fo r  p rio rs  R n k , R h p f , and Rdiag■ The L-curve shapes vary significantly; only R n k  shows 
a well-defined knee, while the others are much shallower.

4 .4 .4  G C V

I t  has been noted [111] th a t th a t the G C V method can lead to  very small values o f A 
leading to  solutions th a t are severely under-regularized. As illustra ted  in  figure 4.8 the 
G C V function can also be very shallow making i t  d ifficu lt to  isolate a clear m inim um . In  
some cases the G C V curve was m onotonically increasing thus d id  not have a m inim um . For 
example the G CV curve fo r a reconstruction using tank data on the 576 element mesh w ith  
the T ikhonov p rio r failed to  exh ib it a m inim um . Overall the G C V criterion was unreliable 
in  calculating hyperparameters for linearized one-step E IT  reconstructions.
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Figure 4,8: G C V curves fo r  different p rio rs  reconstructed on the same 576 element mesh 
using the same tank data. P lo t indicates shallowness o f some G C V curves and consequent 
potential d ifficu lty o f find ing  a clear m inimum.

Noise (% of signal amplitude)

Figure 4.9: A versus noise fo r  simulated data reconstructed on the 256 element mesh w ith  
the Gaussian H P F  p rio r. Simulated AW G N  was added to the signal.

4 .4 .5  B e s tR e s  R e su lts

As described in  section 4.3.5, the BestRes method can use real or simulated data to  calculate 
the hyperpaxameter w ith  sim ilar results. Using real data has the potentia l to  produce a 
hyperpaxameter for the given configuration th a t is ta ilored to  the equipment. In  practice the 
reconstructions obtained using th is  seemingly more accurate method are not qua lita tive ly 
improved over those th a t axe generated using simulated data. For both  tank and simulated 
data using a ll 18 configurations the resolution curve exhibited a d is tinct m in im um  poin t at 
which A BestRes could be calculated and subsequently used to  obta in a “good” reconstruction. 
I t  appears th a t resolution is a useful figure of m erit for E IT  reconstructions.

4 .4 .6  F ix e d  N F  R e su lts

W ith  bo th  the tank and simulated data \ n f = i  was consistently located in  the m in im al 
region o f the resolution curve. Moreover Ajvf= i always fell w ith in  the boundaries o f the 
hyperparameters selected by the experts (i.e. i t  was as consistent as the experts). Fixed NF 
w ith  N F  =  1  always calculated a hyperparameter th a t resulted in  a good reconstruction. 
O ur earlier experience using simulated, tank and clin ical data has shown th a t noise figures 
in  the range 0.5 — 2 consistently lead to  good reconstructions regardless of configuration 
while the associated A value can range over several orders of magnitude dependent on con-
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figuration. For the 18 configurations used in  th is  work, A ranged over 3 orders of magnitude 
for N F  — 1. The advantage o f the fixed N F  method is tha t the suitable NF range is not 
configuration dependent while A is.

4.5 D iscussion

This paper has investigated the performance o f various hyperparameter selection methods 
including the BestRes method herein introduced. In  the course o f these studies i t  became 
clear th a t several other aspects of E IT  image reconstruction are related to  hyperparameter 
selection. In  th is section we discuss the effects o f noise level, rad ia l position o f contrasts 
and normalization on hyperparameter selection. We also touch on app licability  to  nonlinear 
reconstructions and inverse crimes.

0.32

s03
o

0.3

J?

Blur Radius

0.28

Radial Position

Figure 4,10: A and resolution versus radia l position, simulated data reconstructed on the 
256 element mesh using the Gaussian H P F  p rio r. Left axis is log 1 0  AeestRes, r igh t axis is 
resolution measured in  terms o f b lur radius. Radial position o f 0 is centre o f the tank, radial 
position o f 1 is edge o f the tank. The simulated data included AW G N  w ith noise =  0.50% 
o f the signal amplitude.

4 .5 .1  E ffec t o f  n o ise  o n  A

We performed additional experiments in  order to  explore fu rther the behaviour of the fixed 
N F and BestRes methods. Simulated data from  an impulse contrast were generated w ith  
increasing amounts o f additive w hite  Gaussian noise (AW GN). Figure 4.9 shows A BestRes 

as a function o f increasing noise. Hyperparameter values calculated by a ll methods except 
fixed N F  increased as noise level increased resulting in  greater noise suppression through 
increased smoothing. The maxim um  noise levels used in  th is work are much larger than 
found in  practice bu t were used to  understand trends.

Since fixed N F is not a function o f the data, hyperparameters selected w ith  fixed N F do 
not change w ith  noise. Consideration of data noise w ill in  general require more smoothing 
(therefore larger A values). However at realistic noise levels X n f = i  falls w ith in  the m inim um  
region o f ; the resolution curve, is indistinguishable from  heuristic selections, and consistently 
results in  good reconstructions.

4 .5 .2  C lin ica l C o n s id e ra tio n s

The BestRes method is intended to  preserve in form ation in  the data through compensation 
o f the ill-cond ition ing o f the sensitiv ity m atrix , given a fixed noise level in  the data. As
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a hyperparameter selection method, BestRes does not consider problems associated w ith  
equipment such as uncertain electrode positioning, electrode and cable problems, and elec
trom agnetic interference (E M I) from  other sources in  the clinical environment. The problem 
o f uncertain electrode positioning is m itigated p rim arily  by using difference measurements 
and shoiild not be addressed through hyperparameter adjustments. Electrode and cable 
errors are best addressed by detecting the problem and alerting an operator to  f ix  it ,  or by 
compensating for the problem a posteriori through use o f an algorithm  such as th a t o f [7]. 
Excessive E M I in  a clin ical environment [89] w ill swamp the signal such th a t extraction of 
inform ation is impossible regardless o f hyperparameter. The BestRes method is a calibra
tion  technique to  choose a hyperparameter based on a noise level th a t is fixed, regardless 
o f whether the noise is representative of clin ical data or added to  simulated data.

4 .5 .3  E ffec t o f  rad ia l p o s it io n  o n  A BestRes

Figure 4L10 is a p lo t o f Resolution and AuestRes as a function o f rad ia l position of the 
generating contrast. These curves were generated by reconstructing a set o f simulated data 
generated by an impulse contrast located at increasing radial positions. The best resolution 
is achieved for contrasts located at 75% o f rad ia l distance from  the centre. A lthough AsestRes 
continues to  increase as the radia l position increases past 90%, the corresponding resolution 
starts to  decrease due to  b lu rring  caused by p rox im ity  to  the edge.

4.5.3.1 N orm alization

A lthough p rim arily  concerned w ith  proportiona l (normalized) difference imaging we also 
investigated the performance of the Fixed N F method using simple (non-normalized) differ
ence algorithms. The simple difference problem is solved using equation 4.2 w ith  x  defined 
as x  =  CT2  — <7 i  and z defined as z =  V2  — v i . (H  is also modified in  th a t its  columns 
are not divided by v ref  as in  section 4.2). S im ilar to  the proportional difference algorithm  
the Fixed N F  method was able to  consistently calculate a hyperparameter located in  the 
m in im um  region o f the associated resolution curve.

C om m ent on  N orm alization

N orm alization has some advantages. B y  normalizing the data, one does not need to  know 
the am plitude current injected. Thus, the forward problem can be solved using a value of 
injected current which is convenient for the algorithm  (usually ±1 ). The authors o f [90] 
ju s t ify  normalization w ith  the argument th a t a normalized sensitivity m a tr ix  is less sensitive 
to  the boundary shape o f the object and the position of the electrodes, which is a substantial 
problem in  clin ical applications. Also, some E IT  systems change the gain settings for each 
electrode depending on the am plitude of signal expected. Norm alization can compensate 
for thesei cases as well as instances where the calibrated gain settings are not exact.

Norm alization of the sensitiv ity m a trix  does not change the spectrum of singular values 
of H t H .  A lthough the condition number o f H T H  may improve by an order o f magnitude 
or more the relative change is not significant. For the meshes used in  th is  work the condition 
number o f H T H  improved by a factor of about 10. In  other work involving non-circular 
meshes we have seen changes from  as low as 1.5 to  as high as 1000. In  some cases (non- 
homogenous background conductiv ity) the condition number increased, so i t  is not possible 
to  state tha t, as a rule, normalization always improves the condition number o f H T H .
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4 .5 .3 .2  N onlinear R econstructions

We investigated the use of the fixed N F  method w ith  an iterative static reconstruction 
a lgorithm . In  th is  experiment we used fixed N F  to  calculate a single hyperparameter th a t 
was used fo r  each iteration. Running the algorithm  to  convergence indicated th a t the X n f = i  

was located in  the m in im um  region o f the resolution curve. I t  may be possible to  use the 
fixed N F method to  calculate a new hyperparameter for each step of the ite ra tive  algorithm , 
however, th is  was not pursued.

4.5 .3 .3  Inverse C rim e

The act Of employing the same model to  generate, as well as to  invert, simulated data is 
known as an inverse crime  [122]. In  th is  work, data were simulated using a 1968 element 
mesh, so reconstructions using the same mesh constitute an inverse crime. Such reconstruc
tions had noticeably better resolution than was achieved w ith  other meshes and, as shown 
in  figures 4.11(a) and 4.11(b), exhibited A B es t R es  and A l c  corresponding to  an uncharac
te ris tica lly  high NF. This suggests a method to  detect inverse crimes: using the suspect 
FEM , and associated data, construct a resolution curve or L-curve w ith  the simulated data 
and calculate the N F  corresponding to  A BestRes or A l c - I f  the N F  > > 3  (for example, 
figure 4.11(a) had N F  >  7) i t  is like ly  th a t the reconstruction algorithm  is com m itting 
an inverse crime. The method was validated by the observation th a t reconstructions over 
the 1968| element mesh using tank data d id  not exh ib it the large NF bias while the high 
N F  phenomenon was observed every an “ inverse crime” configuration was analyzed. One 
explanation for these results is th a t the optim al hyperparameter for the inverse crime case 
is significantly lower than th a t generally required, since the geometry matching between 
forward and inverse solutions is giving a regularizing effect.
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Figure 4.11: E ither the L-curve or resolution curve can be used to detect an inverse crime.

4.6  C onclusion

This paper proposes a new method of objective hyperparameter selection fo r use in  one- 
step image reconstructions and compares i t  to  some existing methods including heuristic 
selection* We present the follow ing observations:
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1. Heuristic selections o f hyperparameter are inconsistent among experts and unrepeat
able. This suggests th a t there is no single preferred value o f A, rather there is a 
preferred region o f A over which reconstructions are not subjectively distinguishable. 
Moreover, i t  was not possible fo r observers to  differentiate reconstructions based on 
heuristic hyperparameter selections from  those produced from  the objective methods.

2. The G C V method is unreliable for the class o f algorithms used in  th is work.

3. The L-Curve is, in  general, shallow for E IT  applications and is not reliable for a ll 
configurations (doesn’t  indicate a hyperparameter). When the method does work i t  
provides a lower hyperparameter value than the Fixed N F and BestRes methods.

4. W ith  N F  =  1 the Fixed N F  M ethod calculates a hyperparameter th a t falls in  the 
m in im um  region o f the Resolution Curve. A t low noise levels X n f = i  is very close to  
A BestRes- As AW G N is added to  the simulated data A BestRes increases while A a tf= i 
remains constant. However at the noise level found in our E IT  equipment a N F  o f 1 
produces good reconstructions th a t are close to  the optim al reconstructions achieved 
w ith  BestRes method.

5. The Fixed N F  M ethod provides a configuration independent method to  select A th a t 
is repeatable and is more consistent than expert selection. One could use the Fixed 
NF method w ith  N F  =  1  to  calculate a m in im um  hyperparameter value for any 
configuration. This method is repeatable and in  applications w ith  realistic noise levels 
w ill produce consistent stable reconstructions th a t are as good as heuristic selection.

6 . Hyperparameters taken from  the m in im um  region o f the Resolution Curve (BestRes 
method) always produce good solutions th a t are comparable to, bu t more consistent 
than expert selections. Moreover A BestRes is optim al in  terms o f our figure o f m erit.

For the class o f regularized reconstruction algorithms used in  th is work both  the Fixed NF 
and BestRes methods provide objective methods to  select a good value fo r A. The values 
were indistinguishable from those selected by human experts. Both  methods were developed 
using simulated data bu t shown to  be applicable (validated) using Tank data.

A lthough these methods do not completely solve the problem o f obtaining an optim al 
hyperparameter value, they do provide a rationale and method for objectively and auto
m atica lly selecting A. Using the BestRes method w ith  imaging equipment provides a sound 
engineering method for manufacturers or researchers to  obtain a configuration-dependent 
hyperparameter th a t is optim al in  terms o f resolution. This allows end users to  perform  
impedance imaging w ithou t the necessity o f having to  manually tweak parameters.
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Chapter 5

A  N od al Jacobian  Inverse Solver  
for R educed  C om plexity  EIT  
R econstructions

This chapter is the text, w ith  m inor revisions, o f a paper title d  “A  Nodal Jacobian Inverse 
Solver fo r Reduced Com plexity E IT  Reconstructions” by Bradley G R A H A M  and A ndy 
A D L E R  published in  the In ternationa l Journal o f In form ation &  Systems Sciences, Special 
Issue on Com putational Aspect o f Soft F ield Tomography, Volume 2, Number 4 (2006).

Th is paper addresses the problem o f solving increased resolution, high density, 3D E IT  
models (section 1.3 objective 0 2  and section 1.4.1 Contributions by Objective 02 ): develop 
an a lgorithm  th a t reduces the execution tim e and memory required to  calculate reconstruc
tions using dense high resolution 3D fin ite  element models.

In  [77] Kaipo et al use a 2D fin ite  element model based on a piecewise linear discretization 
o f the conductiv ity  as opposed to  the more common piecewise constant conductiv ity  model 
th a t is used in  element based solvers. Such models lead to a Jacobian m a trix  tha t scales 
w ith  the number o f nodes in  a model instead o f the much larger number o f elements, the 
consequence o f which is a large reduction in  the computational complexity o f the resulting 
linear system. The main contribution o f th is objective is the development o f Nodal Jacobian 
Inverse Solver, which is an a lgorithm  fo r efficiently calculating a nodal Jacobian which is 
used to  reduce the complexity o f the E IT  reconstruction problem. A dd itiona l contributions 
include the systematic evaluation o f the a lgorithm ’s performance in  bo th  2 and 3 dimensions.

A b stract

Electrical impedance tomography (E IT ) uses surface electrodes to  make measurements from 
which an image o f the conductiv ity  d is tribu tion  w ith in  some medium is calculated. Cal
culation; o f conductiv ity solutions requires inverting large linear systems th a t have to date 
restricted reconstructions to  2D or coarse 3D domains. This paper presents a Nodal Jaco
bian Inverse Solver th a t scales w ith  the number o f nodes in  a fin ite  element mesh rather 
than w ith  the number o f elements. For the example used in th is paper the size o f the linear 
system is reduced by a factor o f 26. We validate the algorithm  by comparing its  performance 
to  trad itiona l 2D Elemental Jacobian algorithms. We then analyze its performance w ith  a 
21504 element 3D mesh th a t is too large to  be solved w ith  linear algebra systems based on 
32 b it pointers (such as is available in  current versions o f M atlab). F ina lly, we demonstrate 
the app licability  o f the algorithm  for clin ical use by reconstructing experim entally measured
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human lung data.

K e y w o rd s : regularization, 3D, E IT , hyperparameter, Jacobian

5.1 In trod u ction

Electrical Impedance Tomography (E IT ) uses body surface electrodes to  make measure
ments from  which an image o f the conductiv ity  d is tribu tion  w ith in  some medium is calcu
lated. Calculation o f conductiv ity solutions using one o f the Newton type methods requires 
inverting large linear systems derived from  fin ite  element models of the medium under 
analysis. The Hessian m a trix  in  these linear systems scale w ith  the square o f number of 
elements in  the model and the square o f the number o f measurements used in  the recon
struction. A lm ost a ll E IT  algorithms use a piecewise constant conductiv ity  model, in  which 
the conductiv ity  is considered to  be constant over an element. The large number o f ele
ments required and large number o f measurements available for 3D reconstructions have 
to  date restricted 3D reconstructions to  coarse, low resolution models. Complex, accu
rate geometries, a p r io r i structures, the increased number o f measurements possible w ith  
newer machines and the desire for improved resolution in  the th ird  dimension leads to  a 
requirement to  solve large 3D models. Such reconstructions are beyond the capability  of 
contemporary computers such as the A M D  A th lon  64 3000+, 2GB R A M  computers used in  
our lab. Thus the development o f algorithms th a t can efficiently calculate fu ll 3D solutions 
over dense fin ite  element models w ith  many measurements is required.

In  th is paper we present and evaluate a Nodal Jacobian Inverse Solver a lgorithm  tha t 
reduces the execution tim e and memory required to  calculate reconstructions. In  addition 
to  gains in  reconstruction efficiency, the extraction and display o f data stored in  the nodal 
form at is much quicker than for data stored in  the elemental form at. Moreover, nodal 
solutions are easily processed using pixel based filte ring  algorithms sim ilar to  those used in 
image processing work.

The fin ite  element model used in  th is work includes a mesh th a t has a simple cylindrica l 
geometry bu t is comprised o f over 20,000 elements. This high mesh density is not warranted 
for a 16 electrode-208 measurement protocol, however i t  is used in  th is  work to show the 
performance improvement possible using the proposed solver. I t  is expected th a t appli
cations th a t use many electrodes or require huge numbers o f elements to  model complex 
geometries w ill be able exploit the performance benefits o f the proposed algorithm .

5.2 M eth od s

This paper introduces the Nodal Jacobian Inverse Solver as follows. In  the methods section 
we describe the trad itiona l fam ily o f E IT  reconstruction algorithms used in  our research, 
describe the Nodal Jacobian variation o f th is fam ily  o f algorithms, and describe the evalua
tion  procedure. In  the results we describe the effectiveness o f the new fam ily  o f algorithms 
compared to  the trad itiona l algorithms. In  the discussion we consider some additional 
observations o f th is  work and conclude w ith  a recommendation o f the proposed algorithm.

5 .2 .1  D a ta  A c q u is it io n

Lab data used in  th is paper was obtained using a 16 electrode adjacent drive E IT  machine 
(the Goe-MF I I  type tomography system, Viasys Healthcare, Hochberg, Germany) designed
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for use w ith  2D reconstruction algorithms based on data from  electrodes placed in  a planar 
section o f the medium as shown in  figure 5.1(a). Adjacent current stim ulation is used 
w ith  adjacent voltage measurement at a ll remaining electrodes except the driven electrode 
pair. The general form ula for the number of measurements, M , obtained using th is  type of 
injection-measurement protocol is M  =  (N ei — 3) /N ei where N e[ is the number o f electrodes. 
For 16 electrodes, 208 measurements are available per frame, while for a 32 electrode system 
the number of available measurements is 928. A lthough the 16 injection-measurement 
patterns are obtained over a fin ite  tim e interval, 80ms for the Goe-MF I I ,  the entire vector 
o f 208 measurements is treated as representing the boundary voltages at a single instant in  
tim e and is considered a frame o f data.

Data obtained from  a 2D electrode placement such as in  figure 5.1(a) is most often 
used to  calculate a 2D estimate of the conductiv ity although a 3D reconstruction algorithm  
could use these data. B y  placing the electrodes in  m ultip le  planes 2D equipment can be 
used to  acquire data th a t are better suited for 3D reconstructions. One such method is 
the hybrid  electrode placement strategy (described in  chapter 6) shown in  figure 5.1(b) in  
which electrodes are placed in  two axia lly aligned planes w ith  the 16 electrodes connected 
sequentially as shown by the numbers in  the figure. This arrangement w ill result in  an 
inter-plane injection-measurements between electrodes 8 and 9 as well as 16 and 1. This 
strategy is used in  th is  work in  order to  validate some o f the simulated results w ith  lab data 
collected using the Goe-MF I I .  The choice of 2 electrode planes was m ain ly one o f s im plic ity 
and convenience. Many other electrode placement strategies axe possible. The EIDO RS v3 
suite [8], using the Complete Electrode Model, was extended to  perform  the work in  th is 
paper.

V16i s t o ^ rrentInject.on 

^  V2 is discarded

.El

111
SE10

, E9

(a) 2D adjacent drive protocol showing 
current injection between electrodes 1 
and 2 with and 13 individual measure
ments being made betwene the remaining 
electrodes.

(b) (b) Hybrid 3D adjacent drive proto
col. Finite Element mesh has 28 layers 
with a total or 21504 elements and 4%05 
nodes. Electrodes are arranged in two 
layers of 8 electrodes.

Figure 5.1: 2D and 3D F in ite  Element meshes.

5 .2 .2  E IT  M o d e lin g

We consider E IT  difference imaging, which is w ideiy understood to  improve reconstructed 
image s tab ility  in  the presence o f problems such as unknown contact impedance, inaccu
rate electrode positions, non linearity, and the use o f 2D approximations for 3D electrical
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fields when reconstructing in  2D [18] [87]. We address the class o f one-step linearized recon
struction algorithms th a t calculate the change in  a fin ite  element conductiv ity d is tribu tion  
x =  <J2 <J\ indicated by a measured change in  difference signal, z =  V2  — V j , over a tim e
interval ( t i ,  t i ) .  B y  convention we consider the signal at t \  to  be the reference frame and 
the signal at t 2 to  be the data frame. Since we do not know <J\. x is interpreted as the 
change in  conductiv ity w ith  respect to  the unknown in it ia l conductiv ity  x = A a.

A  forward model is required when one wants to  solve the non-linear problem, generate 
simulated data or calculate the Jacobian using the efficient method described in  [98] tha t 
requires calculation of the electric fields in  the in terio r o f the object. Using the fin ite  element 
m ethod (FE M ), the voltage d is tribu tion  at E  electrodes is simulated by current in jection 
in to  the medium w ith  a conductiv ity  d is tribu tion  discretized on N  fin ite  elements. This 
model o f the forward problem accepts a vector of conductiv ity values and calculates the 
voltage Vij at each node i  fo r each current in jection pattern j  through the linear equation

V  =  Y(<t)_1I  (5.1)

where Y  (<r) is the admittance m a tr ix  o f the F E M  and is the current at each node i  during 
current in jection pattern  j .  W ith  the point electrode model each electrode is modeled as a 
single boundary node, thus the columns o f I  have only two non-zero entries corresponding 
to  the current injected at the two electrodes. Calculation o f the vector v  of M  voltage 
differences is represented by v  =  T [V (u )]. For instance i f  vq is defined to  correspond to  the 
voltage difference between electrodes 4 and 5 during injection pattern  2, then the operator 
T  w ill give T [V }g  — V42 -  V5 2 .

The most accurate m athem atical model for E IT  is the Complete Electrode Model (CEM )

(5.2)

where A m , A w , and A z  represent the C EM  boundary conditions. In  th is  paper we use 
the po in t electrode model for the 2D experiments and the CEM  for the 3D experiments. A  
complete derivation of the C EM  can be found in  [114] however the salient po in t is th a t in  
equation 5.1 and 5.2 A m  =  Y  is the N  by N  symmetric admittance m a trix  given by

Y ij =  J  a V w i-V w jd f l (5.3)

n

where Wi is a linear basis function w ith  value 1 on i th node and 0 elsewhere. In  the m a jo rity  
o f cases a  is considered constant on each element (piecewise constant) which allows a  to  be 
brought Outside the integral in  5.3

A m  +  A z  A w ' $  ' ' 0 '
A w  Am V I

Y ij
N f=  ^ 2 a k W w i-V w jd flk  (5.4)

fe=1

The integral in  5.4 is calculated ana lytica lly for each element w ith  each element contribu ting  
9 (for a triangle) or 16 (for a tetrahedron) entries to  the master admittance m a tr ix  Y .

For small changes around a background conductiv ity the relationship between x  and z 
may be linearized as

z =  H x  +  n  (5-5)
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where H  is the Jacobian or sensitiv ity m a tr ix  and n  is the measurement system noise, 
assumed to  be uncorreiated additive w hite  Gaussian (AW GN).

For piecewise constant conductiv ity  models, each element i,  j ,  o f H  is defined as H ij  =  

and relates a small change in  the i th difference measurement to  a small change in
iTO

the conductiv ity of j th element w ith  respect to  a background conductiv ity  vector, op. H  
is a function of the FEM , the current in jection pattern, the measurement pattern, and the 
background conductivity. We use the adjacent current in jection pattern  and a homogenous 
background conductiv ity w ith  op =  1 for each o f the elements. H  is a m a trix  comprised of 
E  columns o f length M  where E  is the number o f elements in  the fin ite  element model and 
M  is the number of measurements per frame. Thus the i th column represents the change 
in  the M  boundary measurements due to  a change in  the conductiv ity o f the i th element. 
There are several ways to  calculate the Jacobian; the EIDORS2D toolset [116] uses the 
method of [114] [127] (which is referred to  as the Standard Method) whereas the EIDORS3D 
toolset [93] uses a more efficient method involving the dot products o f the in terio r electric 
fields.

5 .2 .3  Im a g e  R e c o n s t ru c t io n

In  order to  overcome the ill-cond ition ing  o f H  we solve 5.5 using the follow ing regularized 
inverse orig ina lly described in  [4]

x  =  (H t W H  +  A2R )_1H t W z =  B z  (5.6)

where x  is an estimate o f the true  change in  conductivity, R  is a regularization m atrix , A 
is a scalar hyper parameter th a t controls the amount o f regularization, and W  models the 
system noise covariance. We calculate A using the BestRes a lgorithm  described in  chapter
4. Noise: is modeled as uncorrelated w ith  conductiv ity changes and among measurement 
channels; thus, W  is a diagonal m a trix  w ith  W i-i =  l / o f  where o f  is the noise variance 
for measurement i. W  can also be modified to  account for variable gain settings on each 
tomograph channel. W ith  R  =  I (labelled R n k )  equation 5.6 is the 0th order T ikhonov 
algorithm . W ith  R  =  d*a<?(HTH ) (labelled Rd,;«9) equation 5.6 is the regularization m a trix  
used in  the NOSER a lgorithm  [35]. In  [4] R  is a model of the inverse a p r io r i image 
covariance. E IT  has the potentia l fo r only a re lative ly few independent measurements. As 
a direct consequence there w ill be lim ited  high spatial frequency content and therefore low 
spatial resolution, associated w ith  any reconstructed image. This implies th a t the elements 
w ith  a separation less than the m in im um  recoverable spatial period (E IT  resolution) are 
h igh ly correlated. Consequently Ad ler and Guardo [4] model R  as a spatia lly  invariant 
Gaussian high pass filte r (labelled R h p f ) w ith  a cu t-o ff frequency selected so the spatial 
period is a given fraction o f the medium diameter. In  two dimensions a Gaussian high pass 
filte r o f spatial frequency uio has the form

F ( u , v )  =  1 -  e - a'° ( “ 2+,,2) (5.7)

In  the spatial domain the convolution kernel is

f { x ,  y) =  S(x, y) -  4 e - ( - 2/-o2) (*2+!/2) (5.8)
LOq

where 5 (x ,y )  is the D irac delta function. The filte ring  m a trix  F  m ultip lies an image vector 
x  to  give a filtered image F x . F tj  is calculated by centering the high pass filte r in  element
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i  and integrating across element j

=  f  [5 ( *  -  x h y -  yt) -  e- ^ 2lujo){(x- xif+ (y -y i? )
J . wn

dxdy (5.9)

Th is integration is performed num erically on a mesh o f 512 x  512 points superimposed over 
the 2D FEM . We define th is  as an integration density of 512 points per linear u n it or 5122 
points per square un it. The filte r cu t-o ff frequency is expressed in  terms o f the percentage 
of the diameter. Using a mesh of N p points

(% diameter) =  -  (5.10)
2 tc lo q

The regularization m a tr ix  is calculated as R h p f  =  F TF . This filte r could be extended to  
3D by including the z component in  equation 5.9 and integrating num erically over a mesh 
of integration density 512s points per cubic un it; however we do not use a 3D version of the 
Gaussian filte r in  th is  paper.

A lthough all three o f these priors are smoothing filters which attenuate the contribution 
of the high frequency components of the SVD of H TH , the Gaussian high pass filte r has 
the advantage of being mesh size and mesh shape independent in  th a t i t  is a function of 
the area weighted mesh inter-element correlations.

5 .2 .4  N o d a l J a c o b ia n

As the number of elements in  a F E M  increases, the tim e and memory required to  calculate 
the solution increases, such th a t solving problems o f useful resolution in  3D becomes d ifficu lt 
or impossible to  perform. For example the term  H TW H , in  equation 5.6 for the 21504 
element F E M  of figure 5.1(b) produces a m a trix  o f size 21504 x  21504 which exceeds the 
memory capabilities o f 32-bit m a tr ix  indexing arithm etic, such as is curren tly  available in  
M atlab software.

The ra tio  o f nodes to  elements can be up to  a factor of two for 2D F E M  meshes; the 
sum o f angles in  a triangle is 180, a point has 360 degrees, thus a dense mesh w ill tend to  
have an element to  node ra tio  of two. In  3D a po in t has a solid angle o f 4-7T, six tetrahedra 
f i t  in to  a cube (solid angle of 47t); a tetrahedron therefore has solid angle of 47t/ 6. Thus 
a dense mesh w ill tend to  have an element to  node ra tio  of six although practical meshes 
w ill have a lower ratio ; the 3D mesh used in  th is  paper has an element to  node ra tio  of 5.1. 
The incentive to  develop an algorithm  th a t scales w ith  the number of nodes rather than  the 
number o f elements is the fact th a t the size o f the Hessian m a trix  w ill be reduced by the 
square o f the element to  node ratio. Thus the Hessian m a trix  for the 3D mesh used in  th is 
paper w ill be reduced by a factor of 26 which is sufficient to allow i t  to  be formed w ith in  
the 32-bit m a trix  indexing environment o f M atlab.

The construction of a Nodal Jacobian is based on the development o f a nodal fin ite  
element model. In  [77] Ka ipo et al use a 2D fin ite  element model based on a piecewise 
linear discretization of the conductiv ity  in  which the conductiv ity o f an element is linearly 
interpolated throughout its  volume based on the conductiv ity values at its  vertices. The 
adoption; of piecewise linear conductiv ity  on each element means th a t the conductiv ity 
cannot be brought outside the integral in  equation 5.3 thus equation 5.4 cannot be used to  
calculate; the admittance m a trix  rather we must solve

N r
Y i j - ^ 2  ak(r) 'V w i - 'V w jdnk (5-U )
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where f  is a position vector w ith in  element k. For an inhomogenous isotropic m aterial 
(7k (t)  is a conductiv ity  tensor o f the form  Cfc(f) =  Ofc(r)I where r is a scalar function o f the 
conductiv ity  and I is the iden tity  m atrix .

In  [77] Ka ipo et al use the same linear basis functions, Wi, for a  as are used for the 
potentia l. In  [77] the authors do not discuss or explo it the complexity improvement associ
ated w ith  using the nodal basis. T he ir use o f piecewise linear conductiv ity  was motivated
by a requirement to  calculate the gradient o f the conductiv ity w ith in  each element for the
purposes o f incorporating a structu ra l p rio r in to  the ir reconstructions. By using a piecewise 
linear conductiv ity  model the gradient over each element is a constant. A n  implem entation 
o f the piecewise linear element is available in  the EIDORS2D toolset [116] in  which Y  is 
calculated from  equation 5.11. Also provided is a function to  calculate the corresponding 
Nodal Jacobian using the Standard Method.

E ID 0R S 3D  [93] calculates an Elemental Jacobian using the NSHI (nullspace scaled 
hybrid  isotropic) a lgorithm  described in  [121]. The NSHI algorithm  is over 60 times faster 
than the Standard Method for the example cited in  [98] bu t requires components calculated 
from  an element based master m atrix . Thus in  order to  retain the speed advantage o f the 
NSHI algorithm , we adapted the EIDO RS2D nodal master m a tr ix  construction algorithm  
to  construct a Nodal Jacobian, H jV, from  the elemental Jacobian, H s , as follows:

1 d — 3 for triangles or d =  1 for tetrahedrons

2 for each node, n, in  the mesh

3 elems=list o f elements using node n

4 H f), =  ^2 1/dHEi where H , i means the i th column o f m a tr ix  H .
iE e le m s

5 end for each node

In tu it ive ly  th is  can thought o f as having each element contribute an equal proportion  o f its 
sensitiv ity to  each o f its  three or four contained vertices.

W hen using the Nodal Jacobian in  the regularized inverse 5.6 the resulting solution w ill 
be in  the nodal basis. I t  is possible to  convert the nodal solution back to a piecewise constant 
element basis where i t  is determined by E  parameters. Conversion back to  an elemental 
basis can be done by setting the conductiv ity value for each element to  an average of 
the conductiv ity  values o f its  enclosing vertices. This has the advantage o f being simple 
to  implement and works well for meshes constructed o f regularly spaced nodes. I t  is also 
possible to  weigh the average as a function o f subtended angle or Voronoi cell area. In  either 
case the conversion to  an elemental solution w ill introduce additional smoothing through 
local averaging which may or may not be desirable. In  th is paper we m aintain solutions in 
the nodal basis.

Two advantages o f the nodal basis are the a b ility  to  store the solution in  a smaller 
number iof parameters, and the a b ility  to  rap id ly  extract and render graphical displays of 
solutions using a function such as M a tlab ’s b u ilt- in  tr is u r f  function. The tr is u r f  function 
takes as inpu t a lis t o f vertices and associated values at each vertex. No exp lic it knowledge 
o f the geometry is required, such as an element lis t providing connectedness between nodes, 
in  order to  display cut planes o f coplanar nodes. For example the 3D model o f figure 5.1(a) 
has coplanar nodes at each o f its 29 nodal layers as well as coplanar nodes at vertical slices 
such as x  =  0 and y — 0 and other angles. Figure 5.7(a) shows three m ultip lane conductiv ity 
representations o f figure 5.1(b) th a t were rendered by tr is u r f in  real tim e (60ms each).
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5 .2 .5  N o d a l G a u ss ia n  F ilte r

The Gaussian H igh Pass filte r, R h p f , o f [4] can be extended to  work over the nodes o f the 
mesh as opposed to  the elements. The regularization m a trix  is R h p f  =  F TF where F ij is 
calculated by centering the high pass filte r at node i  and integrating across the Voronoi cell 
o f node j  in  accordance w ith  equation 5.9. As w ith  equation 5.9 the filte r cut-off frequency 
is expressed in  terms o f the percentage o f the diameter in  accordance w ith  equation 5.10. 
Th is filte r is extended to  3D by including the z component in  equation 5.9 and integrating 
over the Voronoi polyhedra of node j .  A  Voronoi cell is a polygon (polyhedra in  3D) whose 
in terio r consists of a ll points in  the plane (hyper plane in  3D) which are closer to  a particular 
node than to  any other. Figure 5.2(b) shows part of a Voronoi diagram for a 64 element, 
41 node F E M  o f figure 5.2(a). Note th a t there are no closed Voronoi cells for the nodes 
located on the boundary since they are by defin ition unbounded and extend to  in fin ity . To 
overcome th is  problem for the 2D mesh, we add a set o f auxilia ry nodes by replicating the 
boundary nodes bu t located rad ia lly  offset from  the original location by a small distance 
(0.00001 was used for a mesh o f diameter 1). Figure 5.2(c) is for illus tra tive  purposes 
and shows the auxilia ry nodes at an exaggerated stand o ff distance resulting in  additional 
closed Voronoi cells. Figure 5.2(d) shows the auxilia ry nodes located almost coincident w ith  
the boundary nodes which brings the outer Voronoi cell edge close to  the boundary of the 
original mesh. The Voronoi cells, including the cells added through the auxilia ry nodes, are 
used as the domain of integration for the Gaussian filte r calculations. Note th a t i t  would 
also be possible to  integrate each element in  F over the basis function of each FE M  node.

(c)(a) (b)

Figure 5.2: One quarter o f a 2D F E M  showing development o f Voronoi Cells fo r  boundary 
nodes.

The 3D models used in  th is  work are constructed by using layers of nodes th a t are 
replicated and shifted versions of the nodes of an in it ia l 2D mesh. The 3D Voronoi cell 
fo r such a mesh is an extruded version of the 2D Voronoi cell. This perm its the numerical 
integration o f the 3D Gaussian filte r using equation 5.9. We use equation 5.9 and integrate 
w ith  an integration density of 5123 points per cubic unit.

5 .2 .6  L ap lacian  M a sk  F ilte r

A  fu rthe r advantage o f a nodal basis is th a t i t  facilitates the use of filters derived from  pixel 
oriented domains such as found in  the image processing literature. Rather than develop a 
low pass filte r and then invert i t ,  we follow the method o f [4] and develop a high pass filte r 
d irectly  (based on the Laplacian mask described in  [60] labelled R iMp th a t is subsequently 
inverted in  equation 5.6. We define the region o f support for the Laplacian as nodes located 
w ith  in  a radius o f some percentage o f medium diameter. In  th is w ork we use 10%, a number 
arrived at through experience. The filtered value for node i  is calculated as follows

x '( i)  =  (1 -  x ( i) )  ^ 2  H n )(r / dn) (5.12)
n££li
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where x ( i ) is the p rio r value of node i,  r  is the radius of the neighbourhood, d is distance 
between node i  and node n. O; represents the rad ia l neighbourhood o f node i; members 
of the set O are nodes th a t are located w ith in  a distance r  of node i.  n € £l,t means th a t 
n  belongs to  the radia l neighbourhood o f node i. r / d n is a weighing o f the nodal value. 
Th is form ulation for a Laplacian filte r is mesh size independent which is different from  the 
discrete Laplacian filters used in  [93] and [25].

5 .2 .7  S m o o th in g  M a sk  F ilter

In  addition to  the filters used d irectly  in  the regularized inverse i t  is also possible to  apply 
a spatial; smoothing filte r, R l p , to  the nodal solutions o f equation 5.6 by m u ltip ly ing  the 
solution w ith  the low pass filte r. Th is can be treated as a post processing step th a t increases 
the signal-to-noise ra tio  (SNR) o f the solution. This filte r is implemented through m a trix  
m u ltip lica tion  as x7 =  R ^pX . The exponent k indicates th a t th is  filte r can be applied 
m ultip le  times. In  th is  paper we use k =  1 bu t other values are possible. R /,p  calculates a 
filtered value for node i  as follows

x ' ( i )  = X] *(n)/lia|| (5.13)
n e U i

where n  € fl*  means th a t n  is a member of the rad ia l neighbourhood of node i  including 
node i  and ||Oj|| means the number of members o f fi* . We incorporate R lp  in to  equation
5.6 before hyperparameter selection. Thus equation 5.6 w ith  W = I is restated as

x = R|p(HTH + A2R)~xHtz (5.14)

w ith  hyperparameter selected using the BestRes a lgorithm  described in  chapter 4. The 
complete algorithm  can then be performed w ith  any z.

5 .2 .8  E v a lu a tio n  P ro c ed u r e

In  order to  evaluate the performance of th is a lgorithm , the follow ing test procedures were 
conducted.

1. In it ia lly  we validate the performance o f the new algorithm  by comparing its  per
formance to  the trad itiona l a lgorithm  for 2D reconstructions using tank  data o f a 
pseudo-impulse phantom. Comparisons are made between the nodal and elemental 
Jacobians using the R rifc■ R diag> R h p f  and R Lap priors.

2. We validate the 2D hyperparameter selection method, BestRes, (chapter 4) for 3D 
reconstructions.

3. We quantify the performance of the 3D nodal a lgorithm  using the H r ik t  R diag> R H P F  

and R ia j, priors, w ith  two sets o f simulated impulse phantom data. Both  sets o f sim
ulated data were created by moving an impulse contrast through 28 vertical positions 
o f a 28 layer, 86016 element, 15805 node F E M  th a t is sim ilar to, bu t denser than 
the F E M  o f figure 5.1(b). Reconstructions are made using the 21504 element mesh 
o f figure 5.1(b) One set o f data had the impulse contrasts located at the axial center 
( r  =  0), the second set of data had the contrasts located halfway between the axial 
center and the tank  boundary (r /2 ) .

4. F ina lly  we validate the Nodal Jacobian a lgorithm  w ith  some lab data o f human lungs.
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Q uantita tive  figures of m erit axe required in  order to  compare the accuracy of the recon
structed images. Several figures o f m erit for E IT  proposed in  the lite ra ture  were reviewed 
in  [120]. The p rim ary figures o f m erit used in  th is  work are resolution, image energy, and 
signal to  noise ra tio  of the reconstruction. We define resolution in  terms o f b lu r radius 
(BR). B R  calculates the area fraction of the elements tha t contain the largest amplitude 
contributions to  50% o f the to ta l image am plitude and is therefore a measure o f the con
centration of image amplitude. B R  is defined as B R  =  r z/ r o =  \JV z/V q for 3D, where 
ro and Vo are the radius and volume respectively o f the entire medium and r z and Vz are 
the radius and volume o f the reconstructed contrast containing ha lf the magnitude o f the 
reconstructed image [4]. In  2D, V  represents area and a square roo t is taken. Image Energy,
an a rb itra ry  bu t global measure, is defined as P  =  y ]  SffVi. For elemental solutions x% is the

i
solution am plitude at element i, while for nodal solutions x t is the solution am plitude at 
node i. Signal to  Noise R atio  is defined as S N R  =  xV/<7xv which is the volume weighted, 
solution mean over the volume weighted, solution standard deviation). Again area is used 
for 2D. For elemental solutions the area and volumes used are those of the element triangles 
(2D) and tetrahedrons (3D), for nodal solutions the Voronoi cell area is used in  2D while 
the extruded Voronoi cell is used for 3D.

5.3 R esu lts

5 .3 .1  2 D  R e su lts

We in it ia lly  validated the performance o f the nodal a lgorithm  by calculating 2D reconstruc
tions using data collected from  a single plane o f electrodes arranged around the m iddle o f a 
tank. This is 3D tank data reconstructed w ith  the assumption th a t the fields are confined 
in  2D. The phantom data used are from  a 2cm non-conductive sphere located at r /2  in  a 
tank o f diameter 29cm and height 29cm. Data were collected using the Goe-MF I I  using the 
adjacent protocol described in  section 5.2.1. Figure 5.3 shows reconstructions made using 
the R T ik , R diag-, and R h p f  priors w ith  the element based Jacobian. Figure 5.4 shows the 
same data reconstructed over the same mesh using the nodal based Jacobian and the R n k ;  
R diagt R h p f  and R i ap priors. Resolution and signal to  noise ra tio  are indicated in  the 
figures.

(a) (b) (c)
R-diag R r/P F

BR=.S09, BR =.233, BR=.279,
S N R = 4 5 0  S N R =.337  S N R = 4 U

Figure 5.3: Comparison o f 2D Elemental reconstructions using tank data fo r  different filte rs  
and Jacobians using 1024 element mesh. Reconstructions are normalized so that the vertical 
axis and color scales are maximized.

Figures 5.3 and 5.4 show reconstructions normalized so th a t the vertical axis and color 
scales are maximized. The nodal algorithms produce much larger peak signals than the
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(a)
T t-T ik
BR=.S28,
S N R = 4 6 2

(b)
Rdiag 
BR =.236, 
SNR=.332

(c)
R H P F  
BR=.S24, 
SNR=.440

(d)
R Lap
B R=.296,
SN R =.485

Figure 5.4: Comparison o f 2D Nodal reconstructions using tank data fo r  different filte rs and 
Jacobians using 1024 element mesh. Reconstructions are normalized so that the vertical axis 
and color scales are maximized.

corresponding elemental solutions; however, th is  can be compensated for through normal
ization which is how the solutions o f figures 5.3 and 5.4 are displayed. Resolution and SNR 
are better discrim inators between algorithms. The elemental Jacobian algorithm  w ith  a 
Tiding p rior is the best a ll around reconstruction in  terms o f resolution. The nodal algo
r ith m  w ith  the TTdiag p rio r is competitive w ith  its  elemental counterpart in  terms o f both  
resolution and SNR. Conversion from  nodal to  elemental basis, as described in  section 5.2.4, 
im parts add itional smoothing to  the elemental solutions. This effect is not quantified here, 
however the elemental solutions do have the advantage o f th is add itional smoothing. The 
solutions^ presented in  figures 5.3 and 5.4 are in  the elemental basis.

I t  is possible to  improve the signal to  noise ra tio  while m aintain ing the peak signal 
advantage of the nodal solutions by applying one or more stages o f spatial filte r discussed 
in  5.2.7. As shown in  figure 5.5 the results are substantive. Repeated applications of the 
smoothing filte r to  the TTdiag solution increase the SNR at the expense o f peak amplitude 
and resolution. One or two passes of the filte r can improve the SNR by 50% for a small 
cost in  resolution.

The 2D results validate the app licability  o f the Nodal Jacobian algorithms by showing 
th a t for the configuration tested here, the nodal a lgorithm  produces reconstructions as good 
as the elemental algorithms in  terms of resolution and SNR. Moreover the nodal algorithms 
require less memory and run  faster due to  the smaller linear system th a t must be solved. 
A lthough not im portan t for 2D reconstructions these speed and memory improvements 
allow the solution o f larger systems inherent to  3D applications.

5 .3 .2  H y p e rp a ra m e ter  S e lec t io n

The BestRes method o f hyperparameter selection for 2D E IT  is described in  chapter 4. 
Th is method suggests selecting a hyperparameter th a t results in  a reconstruction th a t has 
m axim um  resolution for an impulse contrast. The method was evaluated for 3D as follows. 
ABestRes was evaluated as a function o f rad ia l position at the centre plane. For the TTdiag 
p rio r the curve does not have a narrow m in im um  (is fla t) for contrasts near the centre bu t 
becomes stable w ith  a pronounced m in im um  for contrasts located between 20 and 75% of 
the radius from  the centre. The curve becomes unstable for contrasts located at 85% radia l 
position (close to  the edge). The Rxifc curve remains fla t for contrasts located near the 
centre and is unreliable u n til the contrasts are at rad ia l positions between 30 and 65% to  
the edge. The resolution curve is very fla t for the R Lap p rior bu t has detectable m inimums 
th a t allow selection of the hyperparameter when the radia l position of the target phantom
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(a) (b) (c) (d)
Rdiog Filtered, Filtered Filtered
BR=.236, Once Twice 3 times
SNR=.S32 BR=.25S, BR=.282, BR=.318,

SNR =.444 8N R =.546 SNR=.644

Figure 5.5: Spatial smoothing f ilte r  applied to nodal inverse solver algorithm  w ith B,diag 
prio r, 1024 element mesh. Reconstructions are normalized so that the vertical axis and 
color scales are maximized.

is between 10% and 75%.
In  chapter 4 Graham and Ad ler recommend using A BestRes calculated for a contrast 

located at r /2  for the 2D case. This suggestion is valid for the 3D case w ith  the added 
rule th a t the contrast be located halfway between the electrode planes. Figure 5.6 shows 
resolution as a function o f radia l position and shows the effective ranges o f the BestRes 
a lgorithm  for a given priors.

Resolution vs rad Pos
0.55

Useful range for R i (

Useful range tor Kyj0.5

« 0.45 

§
3

0.4

Useful range for R^ic
0.35

Tikhonov
Laplacian

0.3
100

Radial Position (%)

Figure 5.6: Resolution vs Radial Position fo r  R T ik , R diag and R Lap Prio rs  

5 .3 .3  3 D  S im u la t io n  R e s u lts

Due to  the excessive memory requirements i t  is not possible to  calculate elemental solutions 
o f the 3D models using 32 b it M atlab. Consequently we do not evaluate the performance 
o f the nodal 3D algorithm  by comparison w ith  its  elemental counterpart. Rather we report 
on the performance of the nodal algorithms for 3D.

We calculated four sets of solutions, one for each prior, for each o f the two data sets 
( r  =  0 and r /2 )  described in  section 5.2.8. These data sets were reconstructed using the 
F E M  illustra ted  in  figure 5.1(b) and the hybrid  adjacent protocol described in  section 5.2.1.

Some reconstructions from  the r /2  data set are shown in  figure 5.7. Th is figure shows 
vertical slices through a one quarter section o f the reconstructed tank for 3 different vertical
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positions of the impulse phantom. The leftmost column is the R n k  prior, the centre column 
is the R diag, the righ t most is the R Lap prior. We do not show the R h p f  solutions as they 
were sim ilar to  the f i n k  results.

Prom: a qualita tive po in t o f view the three priors provide sim ilar reconstructions in  tha t 
none of them  appears superior to  the others in  terms o f a qualitative assessment o f figure 
5.7. Analysis of the various plots o f figure 5.8 show th a t the f i n k  is inferior to  the others 
in  terms image energy while the fldiag p rio r is s ligh tly  superior in  terms o f resolution.

(a) Target Height 23cm

(b) Target Height 19cm

(c) Target Height 15cm

Figure 5.7: Q uarter section reconstructions o f contrasts located at radial offset o f r /2 . Left 
column is l i n k  p rio r, centre column is fldiag p rio r, right column is flLap p rio r. Two 
electrodes per layer are shown

Figure 5.8(a) shows the resolution for a ll three priors for the two sets o f simulated data, 
r= 0  and r/2 . The resolution varies by 20% as a function o f height. The best resolution 
for each p rio r occurs near the electrode planes w ith  the worse resolution occurring in  the
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plane located halfway between the electrode planes. Th is is expected as resolution or its  
counterpart, sensitivity, decreases as position moves from  current in jecting or measuring 
electrodes. Thus resolution w ill be worse ha lf way between the electrode planes. Radial 
position error as shown in  figure 5.8(b) is lowest for contrasts at the centre of the tank  and 
increases as contrasts move rad ia lly  outward. In  general however, the radia l position error 
is small.
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Figure 5.8: Performance Measures fo r  3D Reconstructions o f Two Simulated Data Sets. 
Legend in  figure (c) applies to a ll figures. Electrode Planes are centered at heights o f 8.5 
and 19.5cm as indicated in  5.8(d) and 5 .8(f)

Height error as shown in  figure 5.8(c) is common for a ll priors. There is a general 
tendency for contrasts to  be reconstructed closer to  the electrode planes than they actually 
are.

Position error is shown in  figure 5.8(d) is a combination of the radia l and vertical position 
errors and m ain ly indicates an asymmetry in  the vertical axis. Figure 5.8(e) shows the
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variab ility  of image energy as a function o f target height. The R diag and R Lap priors 
provide the largest image energy b u t are also the most variable w ith  respect to  target vertical 
position. For example targets located in  one of the electrode planes result in  reconstructions 
w ith  four times as much energy as the same target located at the extreme ends of the tank. 
F igure 5.8(f) shows the signal to  noise ra tio  of the reconstructed images.

Overall the R ^las p rior gives the best results however the difference between i t  and the 
R Lap p rior is m inor. No work was completed for th is  paper concerning the effect o f electrode 
plane separation on reconstruction performance.

5 .3 .4  H u m a n  L u n g  D a ta  R e su lts

The basic analysis o f sections 5.3.1 and 5.3.3 are based on impulse contrasts which are not 
necessarily representative o f complex contrasts. In  order to  test the Nodal Jacobian Inverse 
Solver for complex contrasts we reconstructed some lab data o f human lungs using the R diag 
prior. Data were measured from  a human subject using the equipment and 3D protocol 
of section 5.2.1. The reconstruction shown in  figure 5.9 was calculated in  12s on an A M D  
A th lon  64 3000+ w ith  2GB R A M  using 45 iterations o f M atlab ’s b u ilt- in  preconditioned 
conjugate gradient function. The image on the le ft o f figure 5.9 shows vertical planes of 
the 3D volume. The images on the righ t o f figure 5.9 are two horizontal slices of the 3D 
reconstruction model. The lungs are readily observed in  the two horizontal slices. The 
vertical slice on the le ft shows th a t the vertical extent of the lungs does not extend to  the 
vertical extremes of the 3D modeled volume. These results suggest th a t the Nodal Jacobian 
a lgorithm  can be used for clin ical applications.

Electrode Layers

Figure 5.9: Human Lung Data reconstructed using Nodal Jacobian A lgorithm  w ith the Udiag 
prio r.

5.4 D iscussion

This paper has presented a new fam ily  of algorithms for solving the inverse problem in 
E IT . The main advantage o f the Nodal Jacobian a lgorithm  is th a t i t  reduces the size of 
the linear system th a t must be solved. This allows the reconstruction o f images from  3D
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models th a t axe d ifficu lt or impossible to  solve using element based algorithms. 16 electrode 
protocols were used in  th is  work. Existing and fu ture  3D E IT  systems have 32, 64 or even 
128 electrodes. The associated Jacobian w ill be large bu t i t  is possible to  construct an 
elemental Jacobian for meshes w ith  up to  130,000 elements w ith  the 32 b it  computers used 
in  our lab. However the corresponding Hessian m a trix  w ill be too large to  form , consequently 
such large models w ill be unsolvable using the elemental Jacobian via  equation 5.6. The 
a lgorithm  introduced in  th is  paper reduces the computational requirements by a factor o f 
up to  36 (26 for th is paper’s model) for dense 3D meshes and provides a prom ising way to 
solve high density 3D models w ith  many electrodes. A  secondary advantage o f the nodal 
a lgorithm  is the improvement in  data extraction and rendering speeds which allow the 
display o f m ultip le  reconstructed image slices in  real time.

The Nodal Jacobian a lgorithm  is not an element or mesh free method, since the element 
based model is used to  solve the forward problem and to  calculate the elemental Jacobian 
from  which the Nodal Jacobian is calculated. Future work could look at developing an 
a lgorithm  to  calculate a nodal Jacobian d irectly  instead o f calculating i t  from  the elemental 
Jacobian.

A lthough the m otiva tion fo r th is  work was to  solve 3D problems, the Nodal Jacobian 
Inverse Solver a lgorithms produce solutions as good, in  terms o f resolution and SNR, as tra 
d itiona l algorithms for 2D configurations. 3D reconstructions from  simulated data indicate 
th a t the: Nodal Jacobian Inverse Solver w ith  the or R jMp p rio r is useful for imagin
ing situations th a t have to  date used an element based Jacobian w ith  a smoothing prior. 
F inally, the successful reconstruction o f a conductiv ity  change image o f human lungs from 
clin ical data shows th a t the Nodal Jacobian Inverse Solver a lgorithm  has good potentia l 
for clin ical use.
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Chapter 6

E lectrode P lacem en t  
C onfigurations for 3D  EIT

This chapter is the tex t o f a paper tit le d  “Electrode Placement Configurations for 3D 
E IT ” by Bradley G R A H A M  and A ndy A D LE R  accepted for pub lica tion in  Physiological 
Measurement.

Th is paper addresses the problem  o f determ ining good electrode placement strategies 
for collecting 3D data from  the chest given some equipment lim ita tions and a specific set 
o f constraints concerning electrode placement: (section 1.3 objective 0 3  and section 1.4.1 
C ontributions by Objective 0 3 ). Electrode placement for 2D reconstruction algorithms 
is typ ica lly  confined to  planar arrangements th a t match the 2D reconstruction geometry; 
yet the E IT  problem is inherently 3D as currents cannot be confined to  flow in  the plane. 
Consequently 2D reconstructions are subject to  artefacts generated by o ff plane contrasts. 
3D reconstruction algorithms w ith  m ulti-p lane electrode arrangements have been used to 
more accurately reconstruct impedance d istribu tions [90] [99] [115]. Compared to  2D there 
are many more ways to  arrange and sequence electrodes when placing them  in  3D. Given 
the variety o f possible 3D electrode placement strategies, i t  is im portan t to  know which 
ones perform  best in  a specific application such as lung imaging.

The m ain contribu tion  o f th is  objective is the proposal o f several EP configurations, 
followed; by a rigorous evaluation o f the ir performance, concluding w ith  a recommendation 
for which of the proposed strategies is the best way to  collect 3D lung data using existing 
adjacent drive tomography systems intended for 2D.

A b stract

This paper investigates several configurations for placing electrodes on a 3D cylindrica l 
medium to  reconstruct 3D images using 16 electrode E IT  equipment intended for use w ith  
a 2D adjacent drive protocol. Seven different electrode placement configurations are com
pared in  term s o f the follow ing figures o f m erit: resolution, rad ia l and vertica l position error, 
image energy, im m unity  to  noise, im m unity  to  electrode placement errors, and qualitative 
evaluation o f image artefacts. Results show th a t for ideal conditions, none o f the configura
tions considered performed significantly better than the others. However, when noise and 
electrode placement errors were considered the planar electrode placement configuration 
(two rings o f vertica lly aligned electrodes w ith  electrodes placed sequentially in  each ring) 
had the overall best performance. Based on these results, we recommend planar electrode 
placement configuration fo r 3D E IT  lung imaging o f the thorax.
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6.1 In trod u ction

E IT  attem pts to  calculate a stable and accurate image of the conductiv ity  or conductiv
ity  change w ith in  a medium from  electrical measurements made on the medium boundary. 
Due to  com putational complexity, reconstructions have usually been over a 2D F in ite  Ele
ment Mesh (FE M ). Continued improvements in  com puting power have perm itted  the recent 
exploration o f 3D reconstructions [90] [98]. Electrode placement for 2D reconstruction al
gorithm s is confined to  planar arrangements th a t match the 2D reconstruction geometry; 
yet the E IT  problem is inherently 3D as currents cannot be confined to  flow in  the plane. 
Consequently 2D reconstructions axe subject to  artefacts generated by off plane contrasts.

3D reconstruction algorithms w ith  m ulti-p lane electrode arrangements have been used 
to  more accurately reconstruct impedance d is tribu tions [90] [98] [113]. Dehghani et al in  [41] 
investigated excitation  patterns for applications o f 3D breast imaging using 64 electrodes 
arranged in  four layers. Performance was evaluated in  terms o f singular value decomposition 
and qualita tive evaluation o f reconstructed images. Polydorides and McCann [99] developed 
and evaluated an electrode segmentation scheme for 3D reconstructions. They examined 
the effects o f the singular values o f the Jacobian on the spatial resolution and concluded th a t 
the electrode segmentation scheme sign ificantly improved the conditioning o f the Jacobian 
and resulted in  improved resolution.

M any E IT  research groups use 16 electrode systems using adjacent stim ulation and 
measurement, based on the orig inal configuration o f [17] and [127]. This is the case, for 
example, o f the Goe-MF I I  adjacent stim ulation tomography system (Viasys Healthcare, 
Hochberg, Germany) available in  our lab. W ith  the adjacent drive pattern  the 16 electrodes 
are arranged equispaced in  a single plane around the perimeter o f the medium. Current is 
applied to  an adjacent pa ir o f electrodes and the resultant voltages between the remaining 
13 adjacent pairs o f electrodes is measured. The three possible measurements involving 
one or both  o f the current in jecting electrode are not used. This is repeated 16 times w ith  
current injected between successive pairs o f adjacent electrodes u n til a ll 16 possible pairs of 
adjacent electrodes have been used to  apply the known current. This is shown schematically 
in  figure 6.1. Th is procedure produces 16 x  13 =  208 voltage measurements called an E IT  
data frame. Since the electrodes are numbered 1 through 16 the adjacent pattern  in  2D is 
obtained through a simple sequencing o f the 16 machine leads to  the 16 electrodes. This 
work is m otivated by the desire to  use such a 2D system to  perform  3D E IT  reconstructions.

Compared to  2D there are many more ways to  arrange and sequence electrodes when 
placing them in 3D. Given the variety o f possible 3D electrode placement strategies, i t  is 
im portan t to  know which ones perform  best. However the large numbers o f possibilities 
make th is problem intractable. Consequently we choose to  study a small set o f possibilities 
guided by our intention to  use the results for pulm onary imaging.

In  th is  paper we propose and evaluate seven EP configurations in  which the electrodes are 
arranged in  two parallel planes o f eight electrodes each, w ith  electrodes equispaced around 
the medium. We define an EP configuration as the combination o f physical placement 
o f the electrodes and current in jection pattern. D ifferent current in jection patterns are 
obtained through various sequencings or mappings o f the 16 electrode leads to  electrodes. 
Performance is evaluated in  terms o f several figures o f m erit as well as im m unity  to  noise and 
performance in  the presence o f electrode placement errors. The results apply to  any medium 
which is approxim ately cylindrica l; however, we are specifically interested in  lung imaging
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(a) First of 16 drive pairs (b) Second of 16 drive pairs

Figure 6.1: 2D Adjacent drive patterns. In  figure 6.1(a) current is injected through electrode 
p a ir  (1,2) and the resulting boundary voltage differences are measured from  electrode pairs 
(3,4), ( 4 ,5 ) , ( 1 4 ,1 5 ) ,  (15,16). Voltages are not measured between pairs (16,1), (1,2), or 
(2,3). In  figure 6.1(b) the current is injected between p a ir  (2,3), and the voltage differences 
measured between pairs (4,5), (5 ,6 ),..., (15,16), (16,1). Voltages are not measured between 
pairs (1,2), (2,3), or  (3,4).

applications, in  which one wants to  obtain more accurate tomographic slices through the 
chest.

6.2 M eth od s

We consider E IT  difference imaging, which is w ide ly understood to  improve reconstructed 
image s tab ility  in  the presence o f problems such as unknown contact impedance, inaccu
rate electrode positions, nonlinearity, and in  the 2D case, the use o f 2D approximations for 
3D electrical fields [17] [87]. We address the class of normalized one-step linearized recon
struction algorithms th a t calculate the change in  a fin ite  element conductiv ity  d is tribu tion, 
*  =  <T2  — <7i due to  a change in  E IT  difference signal, z =  V2  — v i  over a tim e interval 
( t \ , t 2 ). B y  convention we consider the signal at t \  to  be the reference frame and the signal 
at t 2 to  be the data frame. Since we do not know <ti, x  is interpreted as the change in  
conductiv ity  w ith  respect to  the unknown in it ia l conductiv ity x  =  A c t  —  — a \ .

For small changes around a background conductiv ity the relationship between x  and z 
may be linearized as

z =  H x  +  n (6.1)

where H  is the Jacobian or sensitiv ity m a tr ix  and n  is the measurement system noise, 
assumed to  be uncorrelated additive w hite  Gaussian (AW G N). Each element i,  j ,  o f H  is

calculated as =  J-^ and relates a small change in  the i  difference measurement to

a small change in  the conductiv ity o f j tfl element. H  is a function o f the FEM , the current 
in jection pattern, and the background conductivity. We use a homogenous background 
conductiv ity  in  which cro =  1  for each o f the elements.
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6 .2 .1  Im a g e  R e c o n str u c t io n

In  order to  overcome the ill-cond ition ing  o f equation H  we solve equation 6.1 using the 
follow ing regularized inverse

x  =  (H t W H  +  A2R ) - 1 H t W z =  B z  (6.2)

where x  is an estimate o f the true change in  conductiv ity  d is tribu tion , R  is a regularization 
m atrix , A is a scalar hyperparameter th a t controls the amount o f regularization, and W  
models the system noise. Since noise is uncorrelated in  the system, W  is a diagonal m atrix  
w ith  W a =  1 /o f where o f  is the noise variance for measurement i. W  can also be modified 
to  account for variable gain settings on each tomograph channel. However, for th is  work we 
assume th a t a ll measurements have equal noise variance w ith  the result th a t W  becomes a 
m ultip le  o f the iden tity  m atrix .

In  th is  work we use R  =  diatjf(HT H ) which is the regularization m a tr ix  used in  the 
NOSER a lgorithm  o f Cheney et al [35]. Hyperparameter selection was performed using the 
BestRes method [52] extended for 3D as described in  Graham and Adler [53].

Solution o f 6.2 for 3D requires solving linear systems th a t are too large to  be solved 
w ith  linear algebra systems based on 32 b it pointers (such as is available in  current versions 
o f M atlab). Graham and Ad ler [53] describe a Nodal Jacobian inverse solver a lgorithm  
th a t converts the element based Jacobian o f equation 6.2 to a nodal based Jacobian. This 
a lgorithm  reduces the size o f H T W H  by up to  a factor of 36 (the improvement factor for 
the model used in  th is work is 26.15) and allows the solution o f F in ite  Element Models w ith  
21000 elements and over 4000 nodes such as those used in  th is w ork1.

6 .2 .2  F in ite  E le m e n t M o d e ls

Simulated data were generated from  a dense 28 layer, 86016 element, 15805 node F E M  mesh, 
while reconstructions were performed on a coarser 28 layer, 21504 element, 4205 node mesh. 
Both meshes matched the geometry o f the 28cm diameter by 28cm high cylindrica l tank in 
our lab which can be used w ith  the Goe-MF I I  type tomography system. Thus each layer 
was 1cm thick. Electrodes were 2.8cm by 1cm in  size and arranged in  two parallel planes 
11cm apart which can be seen in  figure 6.2. The lower plane o f electrodes are located in 
the 9th layer (z=8 to  z=9cm ), while the upper plane o f electrodes are located in  the 20th 
layer (z=19 to  z=20cm). Figure 6.3 shows the dense mesh while figure 6.2 shows the coarse 
meshes.

6 .2 .2 .1  E le c tro d e  P la c e m e n t C o n fig u ra tio n s

Electrodes can be arranged in  m ultip le  planes or random locations, however the EP con
figurations proposed in  th is  paper a ll consist o f electrodes arranged at two layers o f the 
mesh. The choice o f 2 layers is based on the desire for a “regular” arrangement tha t w ill 
be easy to  apply to  the thorax. W ith  2 layers o f electrodes the 16 electrode leads can be 
connected to  the 16 tank electrodes in  an a rb itra ry  way th a t we call a sequence. We call 
the combination o f electrode arrangement on the tank  (either aligned or offset in  th is work) 
and sequencing an Electrode Placement (EP) configuration. The fo llow ing 7 EP configu
rations are proposed and evaluated in  th is paper: Planar, Planar-Offset, Planar-Opposite, 
Zigzag, Zigzag-Offset, Zigzag-Opposite, and Square. Table 6.1 provides a mapping o f the 16

:The work discussed in this paper was developed with the E ID O R S Version 3 package using the complete 
electrode model [113]. Software for this work is currently being added to E ID O R S Version 3 [8].
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sequentially numbered electrodes, indicated in  figure 6.1, to  the 16 physical tank locations 
which are identified by le tter on figures 6.2(a) and 6.2(b).

(a) Aligned (b) Offset

Figure 6.2: Meshes used fo r  reconstruction. Figure 6.2(a) is the aligned electrode arrange
ment. Figure 6.2(b) is the offset electrode arrangement. W ith the offset arrangement the 
lower electrode plane is rotated such that the electrodes are offset by ha lf the inter-electrode 
spacing.

For the three Planar EP configurations, measurements are m ainly taken between elec
trodes in  the same plane (in tra-planar), w ith  the exception o f measurements taken be
tween electrodes 8 &  9, and 16 &  1 which are inter-p lanar measurements. W ith  the three 
Zigzag patterns measurements are always taken between electrodes in  different planes (inter- 
planar). The Square EP configuration has an equal amount o f data taken from  inter- and 
in tra-p lanar electrode pairs.

6 .2 .3  E v a lu a tio n  P ro c ed u r e

The seven EP configurations were evaluated using three simulation experiments for each 
configuration: vertical target movement, rad ia l target movement, and contrast discrim ina
tion. For each of the seven EP configurations a single homogenous reference frame was 
simulated using the dense F E M  shown in  figure 6.3. The vertical target movement exper
iment consisted o f data frames generated using a small target located halfway along the 
radius o f the tank (r/2 ) th a t was moved through 28 vertical positions as illustra ted  by the 
vertical stack o f (green) elements indicated in  figure 6.3. The radia l target movement ex
periment consisted o f data frames generated using a small target located at the m idplane 
o f the figure 6.3 tank (a height o f 14 cm) th a t was moved from  the centre to  the side of 
the mesh in  14 steps along the radius. The contrast d iscrim ination experiment consisted of 
data frames generated using two small targets: a conductiv ity decrease located vertica lly 
at a height of 14cm, at a rad ia l distance o f r /2  at 0° (3 o’clock) and a conductiv ity  increase 
located vertica lly at height 4cm, at a rad ia l distance o f r /2  at 180° (9 o’clock - opposite 
side o f tank).

Subsequently, for each o f the seven EP configurations, 28 reconstructions were calculated 
for the vertica l target movement experiment and 14 reconstructions were calculated for
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Aligned, fig 6.2(a) Planar Zigzag Zigzag-Opposite Square
Offset, fig 6.2(b) Planar-Offset Zigzag-Offset Planar-Opposite

1 a a a a a
2 b B E e b
3 c b b b B
4 d C F f C
5 e c c c c
6 f D G g d
7 g d d d D
8 h E H h E
9 A e e D e
10 B F A H f
11 C f f C F
12 D G B G G
13 E g g B g
14 F H C F h
15 G h h A H
16 H A D E A

Table 6.1: Mapping o f electrode number to tank location (letter) fo r  the seven E P  configu
rations. F irs t column is electrode lead number, other columns are corresponding electrode 
position on tank as shown in  6 .2 .

the radia l target movement experiment under various conditions o f noise and electrode 
placement errors. A  single reconstruction was made for each o f the EP configurations 
for the contrast d iscrim ination experiment. Two planes o f electrodes lead to  a logical 
pa rtition ing  o f the tank in to  three zones (top and bo ttom  end zones, and the m iddle zone). 
I t  is assumed th a t in  many cases the region o f interest (RO I) w ill be confined to  the m iddle 
zone. A  good EP configuration w ill m inim ize reconstruction artefacts in  the m iddle zone 
caused by contrasts in  the end zones.

Reconstructions were evaluated and compared based on the follow ing criteria:

1. SNR and Conditioning: The SNR o f the difference signals for each configuration were 
compared. We define SNR =  201og10 m ean(z)/stdD ev(z). The condition numbers 
and singular values o f each Jacobian m a tr ix  were compared: the SVD of a m a trix  H  
is a decomposition o f the form

H  =  U E V t  =  ^ 2  ui<Rvf
i —1

where U  =  ( u i , . . . ,u „ )  and V  =  ( v i , ..., v „ ) are matrices w ith  orthonorm al columns, 
U TU  =  V TV  =  I „ ,  and where E is a diagonal m a trix  w ith  non-negative diagonal 
elements, <r, arranged in  non-increasing order such tha t <Ti >  ... >  an >  0. The are 
the singular values o f H. The condition number o f H  is cond(H ) =  a \ ja n .

2. Resolution is a figure o f m erit (FO M ) defined in  terms o f the 3D extension o f the 
b lu r radius measure used in  Ad ler and Guardo [4]. For 3D B R  is defined as B R  =  
r z / r o =  yV z /V o  where ro and Vo are the radius and volume respectively o f the entire 
3D medium and r z and Vz are the radius and volume o f the reconstructed contrast 
containing h a lf the magnitude o f the reconstructed image. B R  calculates the volume 
fraction o f the elements th a t contain the largest amplitude contributions to 50% of
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Figure 6.3: The r /2  impulse was generated from  a three tetrahedron wedge taken from  each 
of the 28 layers o f the large mesh. This produced 28 data frames per E P  configuration. 
Lower electrode plane is at z= 8  to z=9cm. Upper electrode plane is at z=19 to z=20cm.

the to ta l image amplitude. I t  is a measure o f the concentration of image amplitude. 
The set o f elements th a t contribute to  the b lu r radius is called the ha lf amplitude 
(H A ) set [52],

3. Radial Position E rro r (PE) is a FO M  defined as the proportiona l difference in  radia l 
position o f the centre o f mass o f the reconstructed image H A  set and the centre o f mass 
o f the generating small target. This is expressed as a percentage where a negative 
quantity  indicates th a t the reconstructed image is closer to  the centre of the tank than 
the corresponding generating impulse.

4. Vertical PE  is a FO M  defined as the proportiona l difference in  the vertica l position 
o f the centre o f mass o f the reconstructed image H A  set and the centre of mass of 
the generating small target. This is expressed as a percentage of tank height where a 
negative quantity  indicates th a t the reconstructed image is closer to  the central plane 
o f the tank than the corresponding generating impulse.

5. Image Magnitude ( IM )  is a FO M  th a t measures the magnitude of the H A  set. I t  is 
defined as the sum o f the volume-weighted element conductiv ity magnitudes where the
only elements o f the H A  set are included: I M  =  / /  \<jt \ \V,t where V.t is the volume

i& H A
o f the i th element, a.L is the estimated change in  conductiv ity of the i th element.

6. Qualitative Evaluation  o f reconstructed images which is p rim arily  a subjective evalu
ation of image artefacts. We expect a qua lita tive ly  good image to  appear as a small 
spherical b lu r corresponding to  the generating target. A  poor image could exhib it 
artefacts such as non-spherical extent, features th a t exist in  the wrong locations or 
th a t do not correspond to  the generating target, and protrusions from  the main image.

7. Im m un ity  to Noise. Using the vertica l target movement data, an additional six sets
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of reconstructions were calculated for each o f the seven EP configurations in  which 
AW G noise was added in  six steps from  0.1% to  0.6% of the difference signal, z. The 
a b ility  of each EP configuration to  reconstruct images in  the presence of th is  noise 
was then compared in  terms of the FOMs described earlier.

8. Im m un ity  to systematic electrode placement errors. Two techniques were used to  
evaluate electrode position errors.

(a) In  the firs t technique reconstructions were performed w ith  a systematic elec
trode position error in  which data collected w ith  one of the EP configurations 
were reconstructed using the same electrode sequence bu t w ith  the lower plane 
o f electrodes rotated by ha lf the inter-electrode distance ( O ffset-E rror). Thus 
in  th is  firs t case data generated w ith  the Planar EP configuration were recon
structed using the Planar-Offset EP configuration. This is shown in  figure 6.4 
d irection A . In  the second case data generated w ith  the Planar-Offset EP con
figuration were reconstructed using the P lanar EP configuration. This is shown 
in  figure 6.4 direction B. In  the case o f pulmonary imaging th is  error simulates 
a tw is ting  o f the thorax.

Figure 6.4: Offset E rro r. D irection A : Data observed w ith aligned arrangement were recon
structed w ith offset arrangement. D irection B : Data observed w ith offset arrangement were 
reconstructed w ith aligned arrangement

(b) In  the second technique an Electrode Plane Separation E rro r  was evaluated as 
follows: For each EP configuration 9 sets o f data were simulated w ith  the distance 
between the electrode planes increasing from  the correct separation o f 11cm, to  
a layer separation o f 20cm. Each set was comprised o f homogenous reference 
frame and 28 data frames generated w ith  a small target as in  section 6.2.3. Each 
of 9 data sets per EP configuration was then reconstructed on the same mesh 
geometry bu t always w ith  the electrodes at the interplanar distance o f 11cm. 
This simulates a systematic electrode placement error in  which the reconstruction 
model does not match the actual electrode placement for 8 o f the 9 simulated 
data sets. In  the case o f pulm onary imaging th is error simulates an inaccurate 
application o f the electrodes.

6.3 R esu lts

In  th is  section, we compare each EP strategy against each figure o f m erit, in  order to  
differentiate amongst the performance o f the various EP configurations.
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Figure 6.5: Singular Values o /H  fo r  the 7 EP Configurations

6 .3 .1  E v a lu a t io n  o f  M a x im u m  P e r fo rm a n c e  E x p e r im e n ts .

The in it ia l evaluation looked at the best case performance of the EP configurations in  th a t 
noise was not added to  the vertical or rad ia l movement data described in  section 6.2.3 nor 
were electrode errors present. The follow ing observations were made concerning th is best 
case set o f reconstructions:

6.3.1.1 S N R  and C ondition ing

The normalized SNR is listed in  table 6.2. The P lanar and Planar-Offset EP configurations 
have sim ilar and significantly larger SNRs than the other configurations. This indicates tha t 
these two configurations should be more robust to  noise than the others. This is observed 
in  section 6.3.2 - Evaluation o f Noise Effects. The condition numbers are also listed in  table
6.2 bu t are less informative. A lthough there is a difference o f a factor o f 10 between the 
Square and Planar-Opposite configurations th is  is not significant in  th a t a ll o f the condition 
numbers are in  excess of 1022.

EP Configuration SNR
(normalized)

SNR
(db)

cond(H TH )
(x lO 23)

Planar 1.0000 -3.9568 0.7826
Planar-Offset 0.9709 -4.0849 3.8234
Planar-Opposite 0.3852 -8.0997 0.4019
Zigzag 0.2965 -9.2365 2.0639
Zigzag-Offset 0.2702 -9.6406 2.6358
ZigZag-Opposite 0.2924 -9.2971 0.6721
Square 0.3907 -8.0380 5.8860

Table 6.2: Comparison o f E P  Configurations in  terms o f SNR and Jacobian Condition  
Number.

The singular values o f each Jacobian were calculated for each EP configuration and are 
p lo tted in  figure 6.5. Also included are the singular values for the 2D EP configuration 
in  which the 16 electrodes are arranged in  a single plane. The long te rm  trend o f the 
singular values is not significantly different between the various EP configurations w ith  the 
exception; o f the 2D configuration. Figure 6.5(a) shows the firs t 25 singular values, in  th is
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case normalized to  the firs t and largest singular value. A lthough there are variations in  
the singular values the long te rm  trends are sim ilar and we conclude in  th is case th a t the 
singular values are not useful discrim inators o f the seven EP configurations. P icard plots of 
a ll EP configurations are sim ilar; the Picard condition is satisfied for each EP configuration, 
however the singular values never cross the Picard coefficients. Thus i t  is not possible to  
use Picard plots to  determine the number o f singular values above the noise.

6.3 .1 .2  R esolu tion

Figure 6.6(a) shows Resolution as a function of reconstructed height. The resolution of all 
EP configurations varies as a function of the height of the contrast. The resolution curves of 
figure 6.6(a) show th a t the range o f variation in  resolution amongst the EP configurations, 
in  the end regions is large compared to  the range o f variation in  the m iddle section. The 
P lanar EP configuration has the best resolution in  the end zones, the opposite configurations 
have the: worse performance in  the m iddle zone; however, the differences are small and i t
appears th a t Resolution is not a strong discrim inator o f EP configurations. In  general the
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Figure 6.6: Performance measures fo r  7 E P  Stategies vs Contrast Height fo r  noise free 
reconstructions o f a contrast moving through 28 vertical positions at r / 2. Legend in  figure 
6 .6 (b) is fo r  a ll plots.

resolution of a ll EP configurations varies as a function o f distance from  electrode plane so 
none o f the EP configurations have a stable resolution vs contrast height function; however, 
the relative magnitude of the ins tab ility  is small.
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6.3 .1 .3  V ertical P E

Figure 6.6(b) shows Vertical PE vs reconstructed height. For perfect reconstructions the 
curves would be stra ight lines. A ll o f the EP configurations suffer from  a vertical range 
compression in  the end sections. The Zigzag, Zigzag-Offset, Square, and Planar-Opposite 
EP configurations have a large non-linearity in  the central region o f the graph. This is 
undesirable as i t  causes the reconstruction to  be unstable; a small change in  the vertical 
position o f the generating contrast can cause a large change in  the vertical position o f the 
reconstruction. A  good EP configuration should have a near linear response in  the m iddle 
zone. Vertical PE is an useful d iscrim inator o f EP configurations.

6.3 .1 .4  R adial PE

Figure 6.6(c) shows th a t fo r a ll o f the EP configurations Radial PE is largest at the ends, 
improves as the generating contrast approaches the electrode planes, and decays as the con
tras t moves between the electrode planes. The various Radial PE curves behave differently 
in  the inter-p lanar region; however, the difference is m ain ly one o f sign w ith  the magnitudes 
being small. Radial PE is not a strong d iscrim inator o f EP configurations.

6.3 .1 .5  Im age M agnitude

Figure 6.6(d) is a p lo t o f Image M agnitude vs phantom height showing th a t Image Mag
n itude increases as the phantom location moves from  the ends o f the tank toward the 
electrode planes. A lthough the behaviour o f the various EP configurations in  the m iddle 
section is different for each configuration i t  is d ifficu lt to  say what behaviour is desired and 
therefore which EP configuration is preferable. Overall, Image M agnitude is not a strong 
d iscrim inator o f EP configurations.

6.3 .1 .6  R adial Perform ance

Figure 6,7 shows various performance measures for reconstructions from  the radia l move
ment data. As expected, the resolution p lo t o f figure 6.7(a) shows a large va riab ility  in  
resolution as a function o f rad ia l position for a ll the EP configurations. The Zigzag and 
Zigzag-Opposite EP configurations have the most stable response a lbeit at a lower average 
resolution while the Planar-offset and Zigzag-offset configurations show the most va riab ility  
in  resolution yet have the best peak resolution (at the 80% radius). Figure 6.7(b) shows a 
large va riab ility  in  vertical position error for a ll EP configurations w ith  the exception o f the 
Planar-Opposite, and Planar-Offset configurations which are re lative ly stable. Image radia l 
position error, figure 6.7(c), is s im ilar for a ll configurations thus is a poor d iscrim inator 
for the set o f configurations being evaluated. F inally, figure 6.7(d), indicates tha t image 
m agnitude o f the P lanar and Planar-offset EP configurations are m arginally more stable 
than the other configurations; however, image magnitude does not appear to  be a strong 
discrim inator between configurations.

6.3 .1 .7  Q ualitative E valuation

Figure 6.8 shows several reconstructions for contrasts located at the centre plane o f the 
tank. The Planar, Planar-Opposite, Planar-Offset and Square EP configurations, figure 
6.8(a), produce circular reconstructions tha t are all circular/spherical. The Zigzag figure 
6.8(b) and Zigzag-Opposite figure 6.8(c) configurations produce images tha t are vertica lly 
elongated while the reconstruction o f the Zigzag-Offset EP configuration figure 6.8(d) is
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Figure 6.7: Performance measures fo r  7 EP Stategies vs Contrast Radial Position fo r  noise 
free reconstructions o f a contrast moving through 1 4  radial positions at the vertical centre 
o f the tank. Legend in  figure 6.7(c) is fo r  a ll plots.

banana shaped. A dd itiona lly  the Zigzag-Opposite configuration figure 6.8(c) has “finger” 
like artefacts extending from  the image to  the electrode planes. The best performance for 
targets located in  the end sections are obtained w ith  the Zigzag and Square EP configura
tions while reconstructions using the Planar, Planar-Offset (sim ilar) and Planar-Opposite 
EP configurations produce images w ith  large artefacts. As mentioned in  section 6.2.3, in  
some applications the region o f interest (RO I) may be confined to  the m iddle zone in  which 
case i t  may be preferable to  use an EP configuration th a t works very well in  the R O I despite 
producing artefacts for contrasts located in  the end zones.

6.3 .1 .8  C ontrast D iscrim ination

Figure 6.9 show vertical slices through the mesh for 3D reconstructions o f the contrast dis
crim ination experiment data. A ll of the 3D EP configurations are able to  localize the two 
contrasts as shown in  figures 6.9(a) to  6.9(c). The Square and Zigzag-Offset EP configu
rations, figure 6.9(a), provide the best qua lita tive  performance in  terms o f section 6.2.3(6); 
however, the Planar, Planar-offset and Zigzag EP configurations, which are sim ilar in  ap
pearance to  each other, figure 6.9(b), axe almost as good. O f the 3D EP configurations, the 
Planar-opposite is clearly the worst performer w ith  the lower phantom being quite b lurred, 
figure 6.9(c). Figure 6.9(d) shows th a t the 2D electrode arrangement cannot accurately lo
cate the contrasts: the centrally located phantom appears as a conductiv ity  decrease image 
w ith  a large vertical extent and a crescent shape centred in  the mesh while the phantom
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(a) Planar- 
Offset, Planar, 
Planar-Opposite, 
and Square are 
similar.

(b) Zigzag-Offset (c) Zigzag (d) Zigzag-
Opposite

Figure 6.8: Baseline reconstructions fo r  the r / 2  small target at midplane (z =  14cm).

located at 4cm height is also reconstructed as a large crescent shape centered through the 
m iddle of the mesh.

\ A
(a) Zigzag-Offset, (b) Planar, Zigzag, (c) Planar-Oposite (d) 2D Adjacent 
Square Planar-Offset

Figure 6.9: 2D slices taken vertica lly through the centre o f the reconstruction mesh showing 
3D localization o f contrasts.

6 .3 .2  E v a lu a tio n  o f  N o ise  E ffec ts

In  add ition  to  the baseline reconstructions discussed above, an add itional six sets of re
constructions were calculated fo r each o f the seven EP configurations in  which AW G noise 
was added in  six steps from  0.1% to  0.6%. The noise was added to  the data simulated as 
described in  section 6.2.3. The Zigzag and Zigzag-Offset EP configurations could not pro
duce useful reconstructions for noise levels above 0.2% while the Square EP configuration 
d id  not work w ith  noise above 0.3%. A lthough useful reconstructions could be calculated 
using the two Opposite EP configurations w ith  up to  0.6% noise, the ir Resolution and PE 
performance degraded rapidly. The P lanar and Planar-Offset EP configurations were very 
robust to  noise; resolution and PE degraded slowly and good images were reconstructed 
w ith  noise in  excess o f 0.6%.

6 .3 .3  E le c tr o d e  P o s it io n  E rrors - O ffset E rror

A ll of the EP configurations suffered degradation in  resolution due to  the offset error. The 
Zigzag-Offset pattern  has the largest loss o f resolution; however, the Planar-Opposite EP
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configuration gave the worse overall performance: a conductiv ity decrease resulted in  images 
of a conductiv ity increase. The Planar, Planar-Offset, and Zigzag EP configurations were 
able to  reconstruct a circu lar/spherica l image w itho u t introducing image shape artefacts. In  
a ll cases the centre o f mass o f the reconstructions were rotated in  the axial plane by about 
20°. Since E IT  is expected to  be used fo r functional imaging as opposed to  anatomical 
imaging, the ro ta tion  position error may not be im portan t as long as the magnitude o f the 
conductiv ity change is accurate.

6 .3 .4  E le c tr o d e  P o s it io n  E rrors - E le c tr o d e  P la n e  S ep a ra tio n  E rror

Radial PE, Vertical PE and Resolution are not significantly affected by electrode plane 
separation errors for any o f the EP configurations. A ll o f the performance measures de
graded smoothly. This can be seen w ith  some representative plots in  figures 6.10(a) to  
6.10(c). Q ualitatively, a ll configurations produced vertica lly elongated images w ith  the 
Square and the two Opposite EP configurations being most affected, Zigzag and Zigzag- 
Offset configurations less so, and the P lanar and Planar-Offset EP configurations the least. 
For contrasts located in  the end zones, the Zigzag, Zigzag-Offset, and Square configurations
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Figure 6.10: Degradation o f selected performance measures fo r  selected configurations due 
to electrode plane separation error. The E rro r Free curves represent no electrode plane 
separation error. The dotted curves represent increasing electrode plane separation to a 
maximum o f 1 0  cm error represented by the red solid line.

show a sw irling artefact while the Opposite EP configurations show an extensive vertical 
lengthening o f the reconstructed contrast. The Planar and Planar-Offset EP configurations

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



also showed an increased Radial PE  due to  the contrast being pushed toward the tank 
centre for phantoms located in  the end sections. This effect was less noticeable w ith  the 
Planar EP configuration. Both  the Planar and Planar-Offset EP configurations show lit t le  
degradation due to  electrode plane separation errors o f up 20% (6cm on the 28cm ta ll tank). 
The Planar-Offset is s ligh tly  more robust than the Planar EP configuration in  th is regard.

6 .3 .5  2 D  L im ita tio n s

In  addition to  the seven 3D EP configurations additional reconstructions were performed 
using the same 3D meshes bu t w ith  the 16 electrodes arranged in  a single plane at a height 
of 14cm. The plots o f figure 6.11 were generated s im ilarly  to  those of section 6.2.3: 28 
data frames from  the r j 2 phantom moving through 28 vertical locations. Figure 6.11(c) 
validates the obvious insight th a t vertical position cannot be resolved using a single plane of 
electrodes. Regardless o f actual phantom height, the 2D arrangement always reconstructs 
an image th a t is located in  the plane of the electrodes. As the small target moves farther 
away from  the electrode plane the resolution, figure 6.11(a), and the image magnitude, 
figure 6.11(d), both  decrease while the the radia l error, figure 6.11(b), increases.
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Figure 6.1:1: Performance measures vs Phantom Height fo r  noise free reconstructions with  
single layer o f 16 electrodes fo r  the small target moving through 28 vertical positions at r / 2 .

6 .3 .6  S u m m a ry

A  qualita tive  summary o f the significant discrim inators is presented in  table 6.3. Five of 
the configurations show poor performance in  one or more of the discrim inators while the
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Planar and Planar-offset configurations, which have sim ilar performance, do not.

F ig u r e  o f  M e r it R es V P E Q u a l N o is e O f fs e t  E r r S e p  E r r V P E  ( R a d ia l )
R e fe re n c e F ig  6 .6 ( a ) F ig  6 .6 ( b ) S e c t 6 .3 .1 .7 S e c t  6 .3 .2 S e c t  6 .3 .3 S e c t  6 .3 .4 F ig  6 .7 ( b )
P l a n a r + + + +
P la n a r - O f f s e t + + + + +
P la n a r - O p p o s i t e + +
Z ig z a g +
Z ig z a g -O ff s e t
Z ig Z a g - O p p o s i te
S q u a r e +

Table 6.3: Comparison Summary o f EP  Configurations - in  the ROI.

6.4  C onclusion

This paper has investigated the performance o f a small set o f 3D electrode placement con
figurations under the constraints o f a 16 electrode adjacent drive system intended for 2D 
applications arranged in  two planes. We make the follow ing observations:

1. Opposite EP configurations are h igh ly susceptible to  corruption by noise and are not 
recommended.

2. The Zigzag EP configuration performs poorly  in  the presence o f noise.

3. The Zigzag-Offset EP configuration is susceptible to  Offset error.

4. The Square configuration suffers from  the ins tab ility  in  VPE, has poor noise perfor
mance, and shows electrode to  contrast “finger” artefacts.

5. The P lanar and Planar-Offset EP configurations are most robust to  noise and sys
tematic electrode placement errors and have performance as good or better than the 
other configurations fo r targets in  the ROI.

6. The Planar EP configuration provides the largest image energy for contrasts located in 
the centre section, and is the most robust to noise (s lightly better than Planar-offset).

The current data suggest th a t no one EP configuration offers a worthwhile improvement over 
the others under ideal conditions. This observation th a t there is lit t le  difference in  the noise 
free cases may be a ttribu tab le  to  the fact th a t the various patterns are linearly dependent; 
thus given noise free data, i t  is possible to  calculate any set from  any other. O nly when 
noise and electrode placement errors are considered does the choice o f EP configuration 
become im portant. The d ifficu lty  o f accurately placing a large number o f electrodes on a 
person may be the largest d iscrim inating factor amongst EP configurations intended for 
clin ical use. Moreover electrode placement errors are exacerbated and change throughout 
the imaging session due to  subject movement. This leads one to  prefer an EP configuration 
th a t is robust to  electrode placement errors and is easy to  apply on a patient.

The addition o f more electrodes to  a 2D planar arrangement w ill allow higher resolution 
2D reconstructions, however i t  is not known how the addition o f more electrode layers 
w ill improve the vertical resolution on 3D reconstructions. Future work is required to 
analyze such configurations in  order to  understand how such electrode arrangements may 
be generalized.

In  summary, the goal o f th is paper is to  evaluate some electrode placement strategies for 
16 electrode adjacent drive E IT  systems in  order perform  3D image reconstructions. Based 
on the results, and considering the value o f easy o f electrode placement, we recommend the
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Planar electrode placement. Thus, 16 electrodes should be placed in  two rings o f vertica lly 
aligned electrodes w ith  electrodes placed sequentially in  each ring.
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Chapter 7

T otal V ariation R egularization  in 
EIT

This chapter is the text, w ith  m inor revisions, o f a paper titled  “Total Varia tion Regular
ization in  E IT ” by Andrea BORSIC, Bradley G R A H A M , A ndy A D LE R , and B ill L IO N - 
H E A R T to  be subm itted to  IE EE  Transactions on Biological Medical Imaging.

This paper addresses the problem o f determ ining the v iab ility  o f a non-b lurring regular
ization method for 3D lung imaging (section 1.3 objective 0 4  and section 1.4.1 C ontributions 
by Objective 0 4 )  by evaluating the P D -IP M  a lgorithm  for T V  regularization o f E IT  re
constructions and comparing the a lgorithm ’s performance to  the com putationa lly simpler 
quadratic regularization. T V  regularised reconstructions are considerably more expensive 
to  calculate than quadratic reconstructions, however the T V  P D -IM P  a lgorithm  is able to 
compute 2D non-smooth reconstructions in  the presence o f moderate noise, and is therefore 
o f practical use in  certain applications. The m ain contribution o f th is objective was the im 
provement in  convergence o f the P D -IP M  a lgorithm  and the evaluation o f the a lgorithm ’s 
performance in  2D and 3D applications.

Th is is a collaborative work. The development o f the P D -IP M  algorithm , its  explanation 
and im plem entation are the original work o f Andrea Borsic and can be found in  [23]. The 
analysis o f the a lgorithm ’s performance, including the improvement in  convergence, the 
sim plification o f the (3 decay schedule as well as the design and execution o f the a lgorithm ’s 
performance evaluation and subsequent conclusions are the original contribu tion  o f th is 
thesis.

A b stract

The paper presents a P rim al-D ual In te rio r Point Method (P D -IP M ) fo r efficiently solv
ing the Total Varia tion (T V ) regularized inverse conductiv ity problem for E IT . The T V  
functional leads to  the form ulation o f the inverse problem as a m in im ization o f a non- 
differentiable function which cannot be efficiently solved w ith  trad itiona l m in im ization 
techniques such as Steepest Descent and Newton Methods. The a b ility  o f the T V  func
tiona l to  preserve discontinuities in  reconstructed profiles promotes the development o f new 
algorithms, such as P D -IP M , th a t are able to  efficiently solve the non-differentiable m in i
m ization.

This paper in it ia lly  outlines o f the d iscontinuity preserving properties o f the T V  func
tiona l followed by the development o f the P D -IP M  algorithm. The paper concludes w ith  
an evaluation o f the P D -IP M  a lgorithm  and a comparison o f its performance to  th a t of
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the trad itiona l quadratic regularized inverse. Results show th a t T V  regularized images for 
E IT  have an improved a b ility  to  reconstruct images w ith  sharp discontinuities for low noise 
data. Noise performance was sim ilar for T V  and quadratic inverse.

K e y w o rd s : regularization, E IT , T V  Electrical Impedance Tomography, Total Variation, 
P rim a l Dual In te rio r Point Methods

7.1 In trod u ction

Electrical Impedance Tomography (E IT ) uses surface electrodes to  make measurements 
from  which an image o f the conductiv ity d is tribu tion  w ith in  some medium is calculated. 
The inverse conductiv ity  problem is ill-posed [26]; consequently regularization techniques 
have been adopted in  order to  stabilize the inversion. Most common regularization methods 
impose (exp lic itly  or im p lic itly ) a penalty on non-smooth regions in  a reconstructed image. 
Such methods confer s ta b ility  to  the reconstruction process, bu t l im it the capability  of 
describing sharp variations in  the sought parameter.

One technique to  perm it image regularization w itho u t imposing smoothing is the Total 
Varia tion (T V ) form ulation o f regularization. The Total Variation functional is assuming 
an im portan t role in  the regularization o f inverse problems belonging to  many disciplines, 
thanks to  its a b ility  to  preserve discontinuities in  the reconstructed profiles. A pplica tion  o f 
non-smooth reconstruction techniques is im portan t for medical and process imaging app li
cations o f E IT , as they involve discontinuous profiles. Q ualita tive and quantita tive  benefits 
can be expected in  these fields.

We outline the properties o f the T V  functional in  the next section, to motivate its  use as 
a regularization penalty term  and to  understand the numerical difficulties associated w ith  
it .  The use o f the T V  functional leads in  fact to  the form ulation o f the inverse problem 
as a m in im ization o f a non-differentiable function. Applica tion  o f trad itiona l m in im ization 
techniques (Steepest Descent M ethod, Newton M ethod) has proven to  be inefficient [44] [23]. 
Recent developments in  non-smooth optim ization (P rim al D ua l-In te rio r Point Methods) 
have brought the means o f dealing w ith  the m in im ization problem efficiently. The perfor
mance o f th is a lgorithm  w ith  respect to  trad itiona l smooth algorithms is the subject o f th is 
paper.

7.2 M eth od s

This paper introduces the P D -IP M  a lgorithm  as follows. In  the Methods section we describe 
the trad itiona l fam ily  o f E IT  reconstruction algorithms used in  our research, describe the 
T V  functional and its P D -IP M  implem entation for E IT , and describe the evaluation pro
cedure. In  the Results section we describe the effectiveness o f the T V  functional compared 
to  the quadratic regularized inverse. In  the Discussion section we consider some additional 
observations o f th is  work.

7 .2 .1  S ta t ic  Im a g e  R e c o n str u c t io n

We consider static E IT  imaging where the goal o f the algorithm  is to  recover the absolute 
conductiv ity o f the medium under analysis. The technique requires a forward operator F
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on the conductiv ity  vector, cr, which calculates V  =  F ( a ) ,  the simulated voltages at the 
boundary. The reconstruction is commonly stabilized using regularization; the inversion is 
stated as:

&rec — a rg in in ^  ||F (tr) V  meas j| a G ( a )  (7.1)
<T Z

where V meas is the vector o f the measured voltages F ( t r )  the forward model prediction, 
G(<r) the regularization functional, a  is a hyperparameter contro lling the level o f applied 
regularization and the norm  || • || is the 2-norm.

7.2.2 Quadratic Solution

The functional G ( tr )  is often assumed to  be o f the form:

G ( a )  =  \ \ L ( a - a * ) f  (7.2)

where L  is an appropriate regularization m a tr ix  and cr* a p rio r estimate o f the conductiv ity  
d is tribu tion . In  the lite ra ture  there are several choices for the m a trix  L , for example the 
iden tity  m a trix  [126], a positive diagonal m a trix  [35], approximations o f firs t and second 
order differentia l operators [71], and the inverse o f a Gaussian m a trix  [4]. A lgorithm s o f 
th is class fa ll in to  general framework expressed by equations 7.1 and 7.2, th a t is:

&rec — argrm n i  ||F(cr) V  meas ||2 +  a ||L (< 7 -< 7 *)H 2 (7.3)

The framework expressed by equation 7.3 can be called quadratic regularization since the 
2-norm is used. A  norm  guarantees th a t the functional is always positive, as a penalty 
term  should be, and more im portant, the resulting functional is differentiable, leading to  an 
easier solution o f the m in im ization problem. Q uadratic regularization, because o f its  simple 
d ifferentiability, has been the common framework fo r solving several inverse problems, and 
particu la rly  for E IT  [126] [35] [71] [26] [78] [24].

The optim ization problem 7.3 can be solved by replacing F ( t r )  w ith  its  linear approxi
mation for a small change about an in itia l conductiv ity  d is tribu tion  cro

F (c r)  «  F (< r0) +  J ( a -  tr0) (7.4)

where J  is the Jacobian m a trix  o f F (c r)  calculated at the in itia l conductiv ity estimate tro- 
The function to  be m inim ized, equation 7.1, w ith  regularizing penalty term , equation 7.2, 
becomes a quadratic function when F  is replaced by its  linear approximation, equation 7.4. 
Defining 5cr =  cr — ctq and J V  =  F(ero) — V meas, the solution to  the linearized regularization 
problem is given by

5 a  =  (J r J  +  a L TL ) _1 J T<SV +  a L r L(<r -  a n f ) (7.5)

Equation 7.5 is solved ite ra tive ly  w ith  cTi+ \ =  <Tt +  Scr. The drawback is that, regardless 
o f the choice o f L , the technique cannot reconstruct step changes, smooth solutions are 
favoured.

7.2.3 Total Variation Functional

There are situations in  almost every field o f application o f E IT  where the imaged conductiv
ity  has discontinuities. In  the medical field an example is th a t o f the in ter organ boundaries
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where each organ has its  own electrical properties. In  archaeology a buried wall w ill give 
rise to  a sudden step in  conductivity, and in  process tomography a m ultiphasic flu id  w ill 
give rise to  discontinuities at each phase interface. I t  is therefore im portan t to  be able to  
reconstruct these situations correctly, even though such conductivities are d ifficu lt to  deal 
w ith  using trad itiona l algorithms. Several approaches have been investigated in  order to  
overcome these lim ita tions. Often they can be considered a way to  introduce p rior in fo rm s  
tion. A n  example is anisotropic regularization [78] [24] where the structure o f the expected 
sudden changes is assumed to  be roughly known. The smoothness constraints are relaxed 
therefore in  the direction normal to  the discontinuities. In  th is  way the algorithm  better 
describes rap id  variations in  the object, however p rio r structura l inform ation needs to  be 
known in  order to  adopt such methods.

M any regularization matrices are discrete representations o f d ifferentia l operators and 
are used in  conjunction w ith  the 2-norm . A  different approach is represented by the choice 
of the to ta l variation functional, which is s till a differential operator bu t leads to  a f 1 

regularization. The to ta l variation (T V ) o f a conductiv ity  image is defined as:

T V  (a) =  J  |V<r|dfi (7.6)

where is the region to  be imaged.
The T V  functional was firs t employed by Rudin, Osher, and Fatemi [102] for regular

izing the restoration of noisy images. The technique is particu la rly  effective for recovering 
“blocky” images, and has become well known to  the image restoration com m unity [31]. 
The effectiveness o f the method in  recovering discontinuous images can be understood by 
examining the follow ing one dimensional situation. Suppose th a t the two points A  and B

B

h(x)

Figure 7.1: Two points A  and B  can be connected by several paths. A l l  o f them have the 
same TV.

of figure 7.1 are connected by a path. Three possible functions f ( x )  connecting them  are 
shown. As the functions are m onotonically increasing, the T V  o f each function is:

B

T V {f )  =  J f  (x) dx =  f  (B )  — f  (A ) (7.7)

A

which is the same value for each function. T V  treats fa, fa  and fa  in  the same way and 
when used as a penalty te rm  in  a T ikhonov regularized inverse problem, w ill not bias the 
result towards a smooth solution. On the other hand, the £2 norm  assumes different values 
for f a , f a  and f a .  When used as a penalty term  the £2 norm w ill bias the solution towards 
smoother functions, for which the £2 norm  assumes smaller values. In  the cited example fa  
is inadmissible as a quadratic solution since its  £2 norm  is infin ity . W ith  the use o f T V  as
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a regularization penalty term  a much broader class o f functions are therefore allowed to  be 
the solution o f the inverse problem, including functions w ith  discontinuities. Another way 
to  understand the differences w ith  other techniques is to  consider the discretized version o f 
equation 7.6. Suppose th a t the conductiv ity  is described by piecewise constant elements, 
the T V  o f the 2D image can be expressed as the sum o f the T V  o f each of the k  edges, w ith  
each edge weighted by its  length:

T V  (°0 =  \<7m(k) -  O’n(fc)| (7.8)
k

where l k is the length o f the k th edge in  the mesh, m {k)  and n(k )  are the indices o f the 
two elements on opposite sides o f the k th edge, and the index k  ranges over a ll the edges. 
Equation 7.8 can be expressed in  terms o f matrices as:

TV(<t ) = Y ,  M  (7.9)
k

where L  is a sparse m atrix , w ith  one row per each edge in the mesh. Every row L*. has 
two non zero elements in  the columns m {k)  and n  (k) : L * =  [0,..., 0,1^,0,..., 0, —/fc, 0...0]. 
T V  regularization is therefore o f the I 1 k ind: i t  is a sum of absolute values, in  th is case a 
sum o f vector lengths. The absolute value guarantees the pos itiv ity  o f the penalty function 
bu t unfo rtunate ly  results in  non-d iffe ren tiab ility  in  the points where =  <Tn(k). The
numerical problem thus needs to  be addressed properly. However, the im portan t gain is 
th a t the I 1 regularization does not penalize discontinuities.

7.2.3.1 Solving T V  - Early A pproaches.

Two different approaches were proposed for application o f T V  to  E IT , the firs t by Dobson 
and Santosa [44] and the second by Somersalo et al [109] and Kolehmainen [85]. Dobson 
and Santosa replace the absolute value function in  the neighbourhood o f zero by a poly
nom ial to  obta in  continuously differentiable function upon which steepest descent is then 
used to  perform  the m in im ization. The ir approach is suitable for the linearized problem 
but suffers from  poor numerical efficiency. Somersalo and Kolehmainen successfully applied 
M arkov Chain Monte Carlo (M C M C ) methods to  solve the T V  regularized inverse problem. 
The advantage in  applying M C M C  methods over determ inistic methods is th a t they do not 
suffer from  the numerical problems involved w ith  non-d iffe rentiab ility  o f the T V  functional; 
they do not require ad hoc techniques. P robabilis tic  methods, such as M C M C , offer cen
tra l estimates and error bars by sampling the posterior p robab ility  density o f the sought 
parameters (therefore d iffe ren tiab ility  is not required). The sampling process involves a 
substantial com putational effort, often the inverse problem is linearized in  order to  speed 
up the sampling. W hat is required is an efficient method for determ inistic T ikhonov style 
regularization, to  calculate a non-linear T V  regularized inversion in  a short time.

Exam ination o f the lite ra ture  shows th a t a variety o f determ inistic numerical methods 
have been used for the regularization o f image de-noising and restoration problems w ith  the 
T V  functional (a good review is offered by Vogel in  [117]). The numerical efficiency and 
s tab ility  are the main issues to  be addressed. Use o f ad hoc techniques is common, given the 
poor performance o f trad itiona l algorithms. Most o f the determ inistic methods draw from 
ongoing research in  optim ization, as T V  m in im ization belongs to  the im portan t classes of 
problems known as “M in im iza tion  o f sum o f norms” [11] [13] [39] and “Linear problems” 
[19] [125]r
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Recent developments in  operations research [13] have provided new classes of methods 
to  deal efficiently w ith  the problems o f m inim ising the  sum o f absolute values. Chan, 
Golub and M ule t [30] have drawn from  these advances and investigated the problem of 
restoring images w ith  P rim a l D ua l-In te rio r Point Methods (P D -IP M ). The form ulation of 
the image restoration problem is very sim ilar to  the E IT  reconstruction problem, and results 
can be easily exploited. In  the next section we summarize some results from  Andersen, 
Christiansen, Conn and Overton [13] th a t are at the base of the method proposed by Chan 
[30] in  image restoration applications, and o f the method we propose for E IT .

7.2.4 Duality Theory for the Minimization of Sums of Norms Problem

The m in im ization o f the term  T V  (tr) =  |Lfccr|, can be thought to be a M in im iza tion  of
k

Sum o f Norms problem (MSN) as \^Jka ’\ =  11Lcr11, and in  th is  case im portant results
k k

for MSN problems can be applied. The most general way o f expressing the MSN problem 
is

n

m in 5 Z P i y - C i | |  (7.10)
y i= i

w ith  y  £ Mm; c, £ R d and A.t £ MdXm, which is equivalent to

(P ) m in Hzjll : A ^y -I-Z j =  Cj, i  =  l , . . . , n |  (7.11)

w ith  zi £ Rrf. We call equation 7.11 the prim al problem, and we label i t  (P). An equivalent 
problem ;to (P), which is called dual, and which is a m axim ization problem, can be obtained 
in  the following way

n
m in / l lZ fc l l  =  m in max x f  z*

y:4ty+z*=Ci "  y:Aiy+Zi=a x<:||xi||<l ,
2 =  1  2 = 1

n

=  max m in N x f  z,
Xi:||xi||<l y:Ajy+Zj=Ci *r~.'

2 = 1

( n n
y  c [  x , —y T y  a j  x ,

2 = 1  2 =  1

(7.12)

: ||xi|| <  l j ^ A f x i  =  o j  

where the firs t equality follows from  Cauchy-Schwartz, the second from  m in max theory
n

[13] [101], the th ird  tr iv ia lly , and the fourth  because i f  A f x i  is not zero, the minimised
2 =  1

value would be —oo. The dual problem o f (P) is therefore

{ n n \

^ c f x 8 : | |x i | | < l ; ^ A f x i =  0, (7.13)

i= l i= l J

and the variables y  are called prim al variables and the variables x,- £ Rd dual variables. 
The problems (P) and (D) are therefore equivalent. The concept o f dua lity  and the relation
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between p rim a l and dual op tim a l points can be formalised defining the p rim a l feasible region 
as

y  =  | ( y , z ) e Rm x  R dn : A y  +  z =  c j  (7.14)

and the dual feasible region as

X  =  j x  € R dn : A Tx  =  0; ||xj || <  1, i  =  1 , . . . ,  n  j  (7.15)

where x  is obtained by stacking the vectors x ,. Andersen et al [13] have shown tha t for 
feasible points (y , z) e y ,  x  e X

n  n

>  0 (7-16)
2=1 2=1

and th a t for optim al points (y*, z*) G y ,  x *  G X

X ^ K I I  - £ cf x *  =  0 (7.17)
2=1 2=1

n  n
In  words: for feasible points the te rm  ]T] ||z,|| is an upper bound to  c [x ,  and vice-versa.

i= l i= l
n  n  n

The difference ||zj|| — Y l cI x i =  (IIzjII ~  x f zi)  is called the p rim a l-dua l gap; i t  is 
2=1 2=1 2=1

positive except at an optim al po in t where i t  vanishes. The p rim a l-dua l gap can be zero i f
and only if, for each i  =  1 ,n  , either ||z,;|| is zero or x , =  Z j/||z j||. Th is can be expressed
conveniently in  a form  called complementary condition

Zj -  llz jllx ; =  0, i  =  1 , . . . ,  n  (7.18)

The complementary condition encapsulates therefore the op tim a lity  o f both  (P) and (D). 
A n  im portan t class o f algorithms called P rim a l Dual In te rio r Point Methods (P D -IP M ) is 
based on the observation th a t equation 7.18 w ith  the feasib ility conditions equation 7.14
and equation 7.15 captures completely the o p tim a lity  o f both  problems. The framework for
a P D -IP M  a lgorithm  for MSN problem works by enforcing the three follow ing conditions 
(prim al feasibility, dual feasibility, complementary)

A y .+  z =  c (7.19a)

A Tx  =  0 (7.19b)

Zj -  ||z i||x j =  0 (7.19c)

The Newton M ethod cannot be applied in  a straightforward manner to  equation 7.19 as 
the complementary condition is not differentiable for ||zj|| =  0. Andersen et al [13] suggest 
replacing i t  w ith  the so called centering condition

Zi -  (||z i||2 + /? 2)^X j =  0, i  =  1 , . . .  ,n  (7.20)

where /? is a small positive scalar parameter. Even i f  at firs t sight the centring condition is 
very s im ilar to  the smooth approximations th a t are generally used in  the firs t attempts in
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using to ta l variation as a regularization functional [2] [ 118] [45] [32], where TV (er) is approx
imated w ith  $3 y / ||Lfc0 ’ ||2 +  0 , i t  has different im plications in  th is  context. Particularly,

k
i t  was shown in  [12] th a t the centering condition is the complementary condition o f the 
follow ing pair o f smooth optim ization problems

(Pp) m in l^^dlziH2 +  /?2)i : (y,z) e v j  

(Dp) m in i c Tx  +  / 3 ^ ( l  -  ||x j||2)5 ; x  G A"
_1  ̂ (7-21)

V. 2=1 J

The problem and are a p rim a l dual pair. Specifically, has the solution (y(j3), z((3)) 
and Pp has the solution x (0 ), a ll satisfying equations 7.19a, 7.19b, and 7.20.

In troducing the perturbation  (5 in  the complementary condition for the original pair 
o f problems is therefore equivalent to  smoothing the norms in  (P) and in troducing a cost

n  t
in to  (D). P articu la rly  the cost function $3(1 — ||x ,j | 2 ) 2  can be understood to  keep the dual

2 —  1

solution away from  its boundary (||x j|| =  1), from  which the name o f centring condition 
for equation 7.20, and o f in terio r po in t method for the algorithm . The concept o f keeping 
iterates away from  the boundary o f feasible regions originates from  in te rio r po in t methods 
for linear programming (LP ) [124]. In  LP  optim al points are known to  lie on vertices o f the 
feasible set; trad itiona l algorithms, such as the simplex method, exploited th is by working on 
the frontier o f the feasible region and examining vertices to  find the solution. This approach 
changed in  the m id  80s w ith  Karm arkar’s [80] in troduction  o f in te rio r po in t methods, which 
work by following a smoother path inside the feasible region called a central path (identified 
by a centering condition), and possibly making larger steps at each ite ra tion. In  MSN the 
central path  is defined by the solutions (y(/3), z(/3), x(/?)) o f Pp. Dp  for /? >  0, /? —> 0. Using 
these results Andersen et al realised an efficient P D -IP M  algorithm  th a t works m aintain ing 
feasib ility conditions, equations 7.19a, 7.19b and applies the centering condition, equation 
7.20, w ith  a centering parameter (3 which is reduced during iterations, follow ing the central 
path to the optim al point.

In  the next Section we describe the application o f the P D -IP M  framework to  T V  regu
larized linear inverse problems.

7 .2 .5  D u a lity  for T ik h o n o v  R e g u la r ize d  In v erse  P ro b lem s

In  inverse problems, w ith  linear forward operators, the discretized T V  regularized inverse 
problem, can be formulated as

(.P ) m in i  ||A x  — b ||2 + a ^ | L fcx| (7.22)
k

where L , as in  7.9, is a discretization o f the gradient operator. We w ill label i t  as the prim al 
problem (P ). The dual problem, can be derived noting, as for the M SN problem, tha t

|L fex | =  ||L fcx|| =  max y  L fcx  (7.23)
y:||y|l<i

By applying 7.23 to  (P ), the dual problem (D )  is obtained as follows [23]

(D )  max m in i  ||A x  — b ||2 +  a y TL x  (7-24)
y^y .ll^1 x 2
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The optim iza tion  problem

m in  -  || Ax — b||2 +  o:yTLx (7.25)
x 2

has an optim al po in t defined by the firs t order conditions

At (Ax — b) + aLTx = 0 (7.26)

the dual problem can be w ritten  therefore as

(D )  max ^ ||Ax — b||2 +  ayTLx (7.27)
y : IN I < 1 2

AT (Ax — b) + aLTx = 0

The p rim a l-dua l gap for (P )  and (D )  is therefore:

i||A x -  b ||2 + |Lfcx| -  ^||Ax -  b ||2 -  ayrLx =

a  |Lfcx| -  yrLx^
(7.28)

The complementary condition, which nulls the p rim a l-dua l gap, for 7.22 and 7.27 is 
therefore:

X )  |L fcx | -  y TL x  =  0 (7.29)
k  •

which w ith  the dual feasib ility ||y* || <  1 is equivalent to  requiring tha t

L *x  — y i||L jx || =  0 i = l ,  . . . , n  (7.30)

The P D -IP M  framework for the T V  regularized inverse problem can thus be w ritte n  as

| | y i | | < l  i  =  1 , . . . , n (7.31)

A t  (A x  — b) +  a L Tx  =  0 (7.32)

L jX  — y i||L jx || =  0 i  =  l ,  . . . , n  (7.33)

I t  is not possible to  apply the Newton method d irectly  to  equations 7.31,7.32,7.33 as equa
tio n  7.33 is not differentiable fo r L ,x  =  0. A  centering condition has to  be applied [13] [23], 
obtaining a smooth pair o f optim ization problems (Pp) and (Dp) and a central path pa

rameterized by (3. This is done by replacing L ,x  by ( ||L jx ||2 +  /3) 2 in  7.33.

7 .2 .6  P D -I P M  for E IT

The P D -IP M  algorithm  described in  section 7.2.5 was developed by Chan et al [30] for in 
verse problems w ith  linear forward operators. We next describe a numerical implementation 
o f the P D -IP M  algorithm , based on [23], to  calculate the non-linear solution to

&  re c = argmmi||F(er) V meas 11 “1“ aTV (< r) (7.34)
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W ith  a s im ilar notation as used in  Section 7.2.1. This is recognized as equation 7.1 w ith  
G (a ) =  T V (a ) .  The system o f non-linear equations th a t defines the P D -IP M  method for 
7.34 can be w ritten  as

IN I < i
J T (F(<T) -  V m eas) +  OtLT a  =  0 

L a  — E y  =  0
(7.35)

w ith  E  a diagonal m a tr ix  defined by E  =  diag j|L.(o jj +  /3 j and J  the Jacobian o f

the forward operator F {a ) .  N ew ton’s method can be applied to  solve 7.35 obtaining the 
follow ing system for the updates 5a  and 5y o f the p rim al and dual variables

■ J TJ a h T 6a ■ J T ( 2 » - V meas) + a l 7 y  '
K L - E

. 5y .
L a  — E y

w ith

K  =  diag

equation 7.36 can be solved as follows

[ j TJ + a L TE " 1h L ] 6a  =  -  [JT (F (a )  -  V meas) +  a l^ E ^ L c r ]

(7.36)

(7.37)

(7.38)

5 y =  —  y  +  E  1L a  +  E K L J c r (7.39)

Equations 7.38 and 7.39 can therefore be applied ite ra tive ly  to solve the non-linear inversion 
7.34. The iterative procedure must be in itia lized which is done by setting yo =  0. Thus in 
the firs t ite ra tion  7.38 is solved as

6a =  (J TJ  +  a L T L ) ~ 1 (JT (F (a )  -  V meas) (7.40)

and 6 y  =  E _1L<r +  EKL<5er. This is recognizable as the firs t step o f the 2-norm  regularized 
inverse o f equation 7.3. Some care must be taken on the dual variable update, to  m aintain 
dual feasibility. A  trad itiona l line search procedure w ith  feasib ility checks is not suitable as 
the dual update direction is not guaranteed to  be an ascent direction fo r the modified dual 
objective function (Dp).

The simplest way to compute the update is called the scaling rule  [13] which is defined 
to  work as follows

y(fc + l)  =  (y{k) +  S yiV 'j (741)

where <p* is a scalar value such th a t

y> *=su p {v?:v> ||y ;{fe) +  <W fc)|| <  1, * =  (7.42)

A n alternative way is to  calculate the exact step length to  the boundary, applying what is 
called the step length rule [13]

y(fc + l) =  y (*) +  m in (1) §y(k) ^
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PD-IPM Algorithm

\  ||F(<r0) -  V meas || +  a T V (a )

find a homogeneous <To to minimise ||.F(<ro) — V meas||; 
initialise dual variable y to zero;
initialise primal variable cr with one step of traditional quadratic 
regularised inversion; 
set initial /?; 
k=0;
while (termination condition not met)

SVk =  (F ( a k) Vmeas)!
Jk =  J(& k)\
E k =  diag ( y / \ \ L i  crfe||2 + /? ) ;

Kk =  diag (1 -  ̂ gy);
5trk =  -[J T J  +  a l f E ^ K h L ] - 1 J% 5V k + a L TE ~ l L * k- 
fyk = y  k +  E ^ L tT k  +  E j f l K kL  5tTk;
Ac- =  argmin i/j(crk +  A cr Strk);
Ax =  max{Ay : ||y, +  Ay%  || < 1, t =  1,..., n};
if a reduction of primal objective function has been achieved 

crk+1 =<*■*; +  A cr S<Tk; 
yfc+1 =  yfc +  min(l, Ay) 6yk; 
decrease (3 by a factor /?r e d u c t io n; 
decrease r e d u c t io n> 

else
increase (3 ;  

end if
k=k+l; evaluate termination condition; 
end while

Figure 7.2: Pseudo code fo r  the P D - IP M  algorithm with continuation on (3, line search on 
cr and dual steplength rule on y .

where ip* is a scalar value such th a t 

ip* =  sup |(p  :

In  the context o f E IT , and in  tomography in  general, the computation involved in  calculating 
the exact step length to  the boundary o f the dual feasib ility region is negligible compared 
to  the whole algorithm  iteration. I t  is convenient therefore to  adopt the exact update, 
which in  our experiments resulted in  a better convergence. The scaling rule has the further 
disadvantage o f always placing y  on the boundary o f the feasible region, which prevents the 
a lgorithm  from  following the central path. Concerning the updates on the p rim a l variable, 
the update direction 8a  is a descent d irection for (Pp) therefore a line search procedure 
could be appropriate. In  our numerical experiments, based on the pseudo code illustrated 
in  Figure 7.2 we have found th a t for relatively small contrasts (e.g. 3:1) the prim al line 
search procedure is not needed, as the steps are unitary. For larger contrasts a line search 
on the p rim a l variable guarantees the s tab ility  o f the algorithm.
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7.3 E valuation  P roced ure

A  reconstruction algorithm  th a t formulates the inverse problem as in  equation 7.34 and 
solves i t  as in  equations 7.38 and 7.39 was developed in  the M A T L A B  environment. The 
m ethod proposed by Chan et al [31] to  solve equation 7.35 assumes the forward operator 
to  be linear. The reconstructions th a t we present in  th is  section of the paper are fu lly  
non-linear, the algorithm  is shown to  work on the cases we used as tests, bu t we do not 
provide a p roof o f convergence.

Evaluation was performed by comparing the performance o f the T V  P D -IP M  algorithm  
w ith  th a t o f the quadratic a lgorithm  equation 7.3. In  equation 7.3 L — Rh p f  where 
R h p f  is the Gaussian spatial high pass filte r orig ina lly described in  [4]. 2D Simulated 
data were computed on a 1024 element circular mesh using the two phantoms shown in  
figures 7.3(a) and 7.3(b). Phantom A  is a single “blocky” contrast w ith  a conductiv ity

Increasing a

(a) Phantom A (b) Phantom B  (c) Phantom C

Figure 7.3: 2D Phantom contrasts on a 1024 element mesh, used to generate simulated data 
using 16 electrode adjacent current in jection protocol.

o f 0.90, phantom B consists o f 2 “blocky” contrasts w ith  conductivities o f 0.90 and 1.10. 
Phantom  C has a single contrast whose conductiv ity  varies linearly from  1 at the edge to
1.6 at the centre. 15 sets of reconstructions were made for phantoms A  and B for each 
a lgorithm  (T V  regularization and t 2 Gaussian regularization) w ith  increasing amounts of 
simulated noise added. 15 reconstructions were made of phantom C w itho u t adding noise. 
The 16 electrode adjacent protocol was used [4]. 2D reconstructions were performed on a 
576 element circular mesh, not matching the mesh used for forward computations, in  order 
to  avoid w hat is referred as an inverse crime  [122].

7.4 R esu lts

7 .4 .1  P h a n to m  A

Figure 7.4(a) and 7.4(b) shows th a t after the firs t iterative step the T V  and the quadratic 
solutions axe sim ilar. The resolution, in  terms of b lu r radius, is slightly better for the T V  
solution, however visual inspection o f figures 7.4(a) and 7.4(b) shows th a t the T V  solution 
has more noise. B lu r Radius (BR) is defined as a measure o f the resolution: B R  =  y jA z/ A q 
where Ao is the area o f the entire 2D medium and A z is the area o f the reconstructed 
contrast containing ha lf the magnitude o f the reconstructed image [4]. B R  calculates the 
area fraction o f the elements th a t contain 50% o f the to ta l image amplitude. We call th is  the 
ha lf am plitude (H A ) set. The convergence behaviour of the two algorithms is illustrated  
in  Figure 7.5 in  which Residual E rro r, Total Variation, and Resolution are p lotted against
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(a) First step, T V  solu- (b) First step, t 2 solution,
tion. B R t v  — 0.3741 B R l2  =  0.3643

Figure 7.4: Black bordered triangles are elements o f the HA set. No noise added.

ite ra tion  number. Both  the I 2 and t 1 solutions show steady decrease in  Residual E rro r over 
the firs t 4 iterations. B y  the 5*^ ite ra tion  bo th  solutions have converged in  th is  measure.

3D visualizations of selected T V  solutions axe shown in  Figure 7.7. The characteristic 
blocky structures o f a T V  solution s ta rt to  emerge by the 3rd ite ra tion  as shown in  Figure 7.7 
and by the profile plots of figure 7.6. V is ib ly  detectable improvements in  the T V  solution are 
impossible to  detect after the 8 th ite ra tion  w ith  no appreciable changes in  the to ta l variation 
or in  the reconstructed images. The profile plots o f figure 7.6 show th a t the T V  algorithm  
is able to  reconstruct the profile o f phantom almost exactly in  the noise free case. A lthough 
the residual error o f the £2 solution decreases over the firs t 4 iterations the Resolution, 
shown in  Figure 7.5(c), has peaked by the 5th ite ra tion  . A lthough not shown, the resulting 
£ 2 images are visually sim ilar. Figure 7.5(c) indicates th a t the resolution measure o f B lu r 
Radius is not a good ind icator o f T V  image qua lity  since the T V  and visual images steadily 
improve while the B lu r Radius decrease for the firs t 3 iterations then increase u n til i t  has 
stabilized by the 8 th iteration.

7 .4 .2  N o ise  E ffec ts

Noise was added to  the simulated data in  15 increments from  0 to  a maxim um  standard 
deviation o f 3% o f the signal. Good images, such as those in  figures 7.8(a) and 7.8(b) were 
produced by both  algorithms for noise levels smaller than 0.6%. AW GN up to  1.0% produced 
T V  images th a t by the 7th ite ra tion  were recognizable bu t had large noise artefacts.

AW G N up to  1.0% produced T V  images th a t by the 7th ite ra tion  were recognizable 
bu t had large noise artefacts. T V  reconstructions o f data w ith  more than 1.5% noise, as 
illustra ted  in  figure 7.9(b), were dominated by noise artefacts. The quadratic a lgorithm  
was more robust to  noise w ith  the best reconstructions occurring w ith  the firs t step o f the 
algorithm . As more iterations were used the quadratic reconstructions became corrupted 
by noise. However, the firs t step o f the quadratic a lgorithm  produced a re lative ly good 
image qua lity  w ith  noise as high as 2.5%, see Figure 7.9(a).

7 .4 .3  P h a n to m  B

W ith  low noise, the T V  algorithm  is able to  recover a single blocky object almost exactly. 
W ith  two objects the T V  algorithm  provides a reasonable reconstruction however i t  is unable 
to  recover the profile as accurately as i t  does in  the phantom A  case. Figure 7.10 shows the 
profiles for the T V  and £2 algorithms while figures 7.11(a) and 7.11(b) show reconstructions
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Figure 7.5: Convergence Behaviour o f Algorithms. No Noise added.

from  both  algorithms for the 8 th ite ra tion. Figure 7.10 shows the profiles fo r the T V  and 
£2 algorithms while figures 7.11(a) and 7.11(b) show reconstructions from  both  algorithms 
for the 8 th iteration.

7 .4 .4  P h a n to m  C

W ith  a single smoothly varying, non-blocky, contrast the T V  algorithm  provides a rea
sonable reconstruction o f step changes however i t  is unable to  recover the the profile as 
accurately as i t  does in  the phantom A  case. Figure 7.12 shows the profiles for the T V  
a lgorithm  while figures 7.13 show associated reconstructions for several iterations. Figure 
7.5(e) shows the T V  convergence o f the algorithm  for Phantom C, while figure 7.5(f) shows 
the RMS i error between the generating phantom and the reconstruction. The algorithm  has 
converged by the 6 th ite ra tion. Interestingly the best image in  terms of qua lita tive  match
ing of the phantom conductiv ity profile is the 3rd ite ra tion  however figure 7.5(f) shows tha t 
the RMS error is s till decreasing after the 3rd ite ra tion  even though later iterations cannot 
reconstruct the edge between the two largest conductiv ity values.
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Figure 7.6: Profile plots o f the orig inating contrast, TV, and £2 reconstructions. No Noise 
added. Profiles are vertical slices through the m iddle o f the reconstructed image.

7.4.5 Parameters

The P D -IP M  method has two tuneable parameters /? and A. The value o f [3 has a large 
effect on convergence. Too large a value o f (3 (greater than 10-6 ) prevented convergence 
to  the desired “blocky” solution; the solution stabilized bu t showed smoothed features th a t 
were not consistent w ith  the edges obtained w ith  smaller values o f fi. U ltim a te ly  i t  was 
determined th a t the quickest convergence occurred when f3 was in itia lized  to  a small value 
(we used 10-12) and le ft unchanged. This was the method used in  the results shown in  th is 
paper.

W ith  an ite ra tive  a lgorithm  m ultip le  values o f the regularization hyperparameter, A, 

could be used for each iteration. In  th is  work, fo r the T V  algorithm , a different value was 
used for Ao, in  the in itia liza tion  step (7.40) and for Aj in  the iterative steps (7.38). Ao 

was selected using the BestRes method described in  [52]. BestRes is an a lgorithm  for ob
jective ly Calculating the hyperparameter fo r linearized one-step E IT  image reconstruction 
algorithms. This method suggests selecting a hyperparameter th a t results in  a reconstruc
tion  th a t has maxim um  resolution for an impulse contrast. A lthough T V  is not intended 
for use in  imaging impulse type contrasts the firs t step o f the algorithm  requires solution 
o f the quadratic problem. In  previous work the BestRes a lgorithm  has provided A values 
based on an impulse contrast th a t has generalized well to  non-impulse contrasts. See, for
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Figure 7.7: T V  reconstructions o f Phantom A at increasing iterations. Vertical axis is 
absolute conductivity. Normalized to 0. No Noise added.

(a) T V  solution at 7th iteration. (b) L 2 solution at 7th iteration. 

Figure 7.8: Reconstructions o f Phantom A with 0.6% AW GN.

example, the use o f BestRes in  chapter 5. The P D -IP M  algorithm  d id  not show to  be 
strongly sensitive to  the value o f Ao- We varied the value of Ao three orders o f magnitude 
above and one order of magnitude below Ab r  w ithou t appreciably changing the T V  solution 
at convergence or the rate of convergence.

The in it ia l hyperparameter, Ao, was always selected using Best Res, however, several 
numerical experiments were performed to  determine the effect o f the ite ra tive  hyperparam
eter, Ai, on algorithm  performance. A lthough A,; could be changed at each ite ra tion, in  
the reconstructions shown in  th is  manuscript A j was maintained constant, thus A* =  A,;+ i . 
Figure 7.14 shows the results o f running the algorithm  to  convergence six times w ith  a 
different value Ai  for each run. I t  is obvious from  the figure th a t the algorithm  is sensitive 
to  the value o f A*; too small a value o f A* prevents a “blocky” solution, too large a value of 
Ai  w ill allow blocky reconstructions bu t suppress the amplitude. The BestRes method was 
orig ina lly  used to  calculate A* however the method was unable to  find  a good value for A*. 
Best results were obtained by the ad hoc visual inspection of figures such as figure 7.14 for 
various values o f A,. Further work is required to  develop an objective method to  select A *.

The orig inal P D -IP M  methods includes updating the Jacobian m a tr ix  at each iteration.
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(a) L 2 solution with 2.5%  (b) T V  solution with 1.5%
AW GN, first step. Noisy AW GN, first step. Noise
but useful reconstruction. dominated solution.

Figure 7.9: Reconstructions o f Phantom A.

I t e r a t i o n  8

- L 2
phantom

Figure 7.10: Phantom B  profiles.

In  our work numerical experiments th is  d id  not result always in  a significant improvement in  
reconstructed images. We adopted therefore a the arrangement of not updating the Jacobian 
at each single iteration. Th is provides a reduction in  the reconstruction com putational time.

As an additional numerical experiment, we evaluated the use o f the same regularization 
m a tr ix  L  as fo r T V  regularization, (equation 7.9), w ith  the quadratic a lgorithm  (7.3). 
A lthough reconstructions from  the firs t step were identical to  T V  reconstructions, the 
quadratic solutions rap id ly  degraded, producing noisy reconstructions th a t were dominated 
by noise artefacts after the 10th iteration. The T V  p rio r is not recommended for use w ith  
the quadratic algorithm.

7 .4 .6  P re lim in a ry  te s t in g  in  3D

The generality o f the P D -IP M  scheme allows its  use for the 3D E IT  reconstructions. The 
method was expected to  work equally well in  three dimensions, and to  be easily extended 
to  th is case. To validate th is  a single experiment w ith  the simulated tank o f figure 7.15 was 
performed- The tank has 315 nodes, 1104 elements, 32 electrodes and is constructed o f 4 
identical layers of tetrahedrons and was used for both  simulating data and reconstruction. A  
single object in  the shape o f a crescent was used to  generate simulated data. Reconstructions 
were made on the same mesh. The convergence o f the P D -IP M  algorithm  is shown in  figure 
7.16. Convergence occurred rap id ly  w ith  a reasonable image appearing in  the firs t ite ra tion  
and convergence being achieved by the 8 th ite ra tion  - there was no appreciable improvement 
in  the image or change in  the error norm  after the 8 th iteration. Figure 7.17 shows slices 
taken at the five layer boundaries (including top and bottom  tank surfaces) o f the simulated 
tank. Figure 7.17 shows reconstructed conductivities after the firs t ite ra tion, Figure 7.18 
shows reconstructed conductivities after 8 iterations. The results were not as good as
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(a) T V  solution at 8th it- (b) 12 solution at 8th iter- 
eration ation

Figure 7.11: Reconstructions o f Phantom B  w ith 2.5% AW GN.

(b)(a) (c)
I t e r a t i o n  4  I t e r a t i o n  5 I t e r a t i o n  6

—  T V  
' phantom

(f)

— s15
' phantom

Figure 7.12: Profile plots o f the originating contrast and T V  reconstructions fo r  the phantom  
C, non-blocky, contrast. No Noise added. Profiles are vertical slices through the m iddle of 
the reconstructed image.

the results obtained from  the 2D numerical experiments. This may be a ttribu tab le  to  poor 
qua lity  of the 3D model in  terms o f number o f mesh elements. More work is required in  
order to  properly evaluate the performance o f P D -IP M  in  3D.

A s id e  o n  an  In ve rse  C r im e  The act o f employing the same model to  generate, as well 
as to  invert, simulated data is known as an inverse crime [122]. In  earlier work [87] we have 
cautioned against unqualified publication o f results obtained in  th is manner. The fact tha t 
an algorithm  works w ith  self simulated data does not im p ly  th a t i t  w ill work well w ith  real 
data because the use o f self simulated data confers an advantage to  the algorithm . The acid 
test for an algorithm  occurs when i t  works successfully w ith  empirical data. However, i t  
is common methodology for researchers to  sta rt development o f new algorithms using the 
same model for generation and subsequent inversion of simulated data. The jus tifica tion  is 
th a t an algorithm  th a t does not work w ith  such advantageous data w ill not work at a ll w ith  
real data. Once satisfactory results are obtained w ith  the advantageous data, researchers
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(d) i= 4  (e) i= 5  (f) i= 6

Figure 7.13: T V  reconstructions o f Phantom C at increasing iterations. Vertical axis is 
absolute conductivity. Normalized to 0. No Noise added.

use lab data or more often noise contaminated simulated data obtained using a different 
mesh. This paper is p rim arily  concerned w ith  2D performance. The 3D results reported 
herein are pre lim inary and have not yet progressed past the firs t stage o f development. 
Thus we re luctantly publish results in  which an inverse crime is committed. However our 
aim  in  th is  case is sim ply to  demonstrate th a t the P D -IP M  framework can be used for 3D 
T V  regularized reconstructions.

7.5 D iscu ssion  and C onclusion

Practical results of the T V  regularisation and the efficiency of P D -IP M  method are of 
interest in  process and medical imaging. In  th is  work we have demonstrated a practical 
implem entation of a T V  regularized reconstruction algorithm  for E IT , and compared its  per
formance to  a trad itiona l P  regularized reconstruction algorithm. Currently, T V  regularised 
reconstructions are considerably more expensive to  calculate than quadratic reconstructions, 
however the T V  P D -IM P  algorithm  is able to  compute non-smooth reconstructions in  the 
presence o f moderate noise, and i t  is therefore of practical use.

The typ ica l number o f iterations required by the T V  P D -IP M  algorithm  for convergence, 
and thus fo r being able to  show sharp profiles in  the reconstructed images, is on the order 
of 10 iterations. The quadratic a lgorithm  produces good, albeit smooth, solutions in  1 to  
3 steps. Thus there is a clear execution tim e advantage in  using quadratic regularisation. 
On a 1.8GHz A M D  Turion 64 w ith  1GB ram, one step of the quadratic a lgorithm  took
0.78 seconds fo r the 576 element mesh, while one step o f the P D -IP M  algorithm  took 0.86 
seconds. Thus the T V  solution at convergence takes about 9 seconds to  calculate compared 
to  the 1 to  2 seconds needed by the quadratic solution.

In  our experiments we have found th a t the quadratic a lgorithm  is s ligh tly  more robust 
to  noise however both  algorithms produce useful reconstructions at realistic noise levels. 
Further work w ill be required to  better understanding the convergence behaviour of the 
P D -IP M  algorithm  in  order to  possibly reduce the number of iterations th a t th is  a lgorithm  
typ ica lly  requires in  order to  converge, and thus to  make i t  more competitive in  terms of
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A =  1(T7

A =  i c r 6 A =  10"5 A =  i c r 4

Figure 7.14: Profiles o f T V  solutions at the 7th ite ra tion (convergence). Showing effect o f 
using different A,- values in  equation 7.38. Dotted line is qeneratinq contrast, solid line is 
T V  solution. A* e [IQ -9,10~4]

computational requirements.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7.15: Four layer tank used fo r  3D reconstructions. Red patches are the 32 electrodes 
in  2 layers. Phantom contrast are the blue elements which are only in  the second layer 
(between z = l and z=2). Simulated water depth is fu l l  vertical extent o f tank.
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Figure 7.16: Convergence o f 3D P D -IP M  algorithm.

(a) z=0  (bottom) (b) z = l  (c) z= 2  (d) z= 3  (e) z=4 (top)

Figure 7.17: Slices o f 3D reconstructions fo r  Ite ration 1. No noise added.

(a) z= 0  (bottom) (b) z = l  (c) z= 2  (d) z = 3  (e) z—4 (top)

Figure 7.18: Slices o f 3D reconstructions fo r  Ite ra tion  8. No noise added.
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Chapter 8

C onclusion and Future W ork

A t the s ta rt o f th is w ork the prevailing algorithms in  use for lung/chest imaging were lim ited  
to  2D models th a t relied on ad hoc tweaking to  produce reconstructions. The aim  o f th is 
thesis was to develop enhancements in  E IT  image reconstruction fo r 3D lung imaging; in 
other words, to remove some o f the lim ita tions th a t continue to  impede the routine use o f 3D 
models for lung imaging. Due to  our desire to  validate theoretical and simulated models w ith  
lab data we constrained our field o f investigation to  models th a t could be realized w ith  a 16 
electrode scanner designed for te trapolar (ostensibly adjacent drive protocol) measurements 
in  a 2D configuration. Th is required the application o f engineering principles to  develop 
and analyze reconstruction algorithms and protocols suitable for use w ith  the 16 electrode 
E IT  systems such as the Goe-MF Type I I  scanner.

The aim was attained through the systematic achievement o f the four main objectives:

1. The development o f the BestRes objective hyperparameter selection method provides 
a calibration based method o f calculating a hyper parameter once fo r a specific con
figuration o f mesh and equipment. Using th is  a lgorithm  elim inates the necessity of 
ad hoc tweaking by users during reconstruction. Disparate researchers can now more 
easily repeat the work o f others. Moreover, by calculating the hyperparameter off-line, 
a good image can be obtained from  a single m a trix  inversion. Contrarily, methods 
such as L-curve and expert selection require m ultip le  inversions to  be calculated for 
each useful solution. Moreover the L-Curve method is shown to  be unreliable for E IT .

2. The development o f the Nodal Jacobian Inverse Solver a lgorithm  enables the solution 
o f large dense 3D fin ite  element models tha t, previous to  th is work, were not easily 
solvable using linear algebra systems based on 32 b it pointers. This solver allows 
one to  model and solve complex, accurate geometries containing a p r io r i structures 
w ith  linear algebra software th a t could not solve the same model using the trad itiona l 
elemental Jacobian.

3. The evaluation o f an adm itted ly small set o f potentia l 3D EP configurations, nev
ertheless provides a sound basis fo r recommending a specific method to  collect 3D 
lung data. Moreover i t  provides a firm  basis to  discontinue fu rthe r evaluation of 
configurations th a t perform  poorly, such as the proposed opposite configurations.

4. The convergence improvements and subsequent evaluation o f the P D -IP M  algorithm  
for T V  regularization provide a defensible argument for when and when not to  use T V  
regularization. Moreover the promising 2D results provide jus tifica tion  and incentive 
for fu rthe r research in to  th is a lgorithm  aimed at increasing the size o f 3D models tha t

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be solved w ith  the a lgorithm . The development o f a nodal T V  p rio r is a promising 
avenue for fu rthe r research.

The work described in  th is thesis has removed some of the m ajor lim ita tions th a t have 
discouraged or prevented the routine use o f 3D models for lung imaging. Th is thesis con
cludes w ith  the follow ing recommendation for how to  effectively collect and reconstruct 3D 
E IT  images o f the lungs given the stated constraints on equipment and choice o f electrodes 
arranged in  2 planes.

8.1 R ecom m en d ation

We recommend the follow ing system to  obta in 3D E IT  difference images o f the lungs for 
clin ical applications. I t  is based on m in im ization o f the non-linear optim ization problem
3.7 which is reproduced below:

x =  a rgm in  j||Hx -  z||2 + A2 ||Rx||2 j  (8.1)

Th is is solved using the M A P  regularized framework of equation 3.22 again repeated below:

x = (Ht WH + ARtR )-1HtWz = B(A)z (8.2)

where z '=  V2  — v i .  The parameters o f equation 8.2 are as follows:

1. The regularization hyperparameter A, is selected using the BestRes method o f chapter 
4.

2. The norm  o f the p rio r is the 2-norm. Use o f the 1-norm v ia  the T V  P D -IP M  algorithm  
for 3D requires fu rthe r work to  extend i t  to  the nodal basis discussed in  chapter 5.

3. The p rio r m atrix , R, is the diagonal m a trix  used in the NOSER algorithm , R = 
diag( HrH), due to  its  performance in  3D. The Gaussian p rio r performs slightly better 
in  2D bu t does not have a suitable analog for 3D.

4. The data weighting m a trix  W  is le ft as the iden tity  m atrix , and is therefore removed 
from  the algorithm . In  the case th a t erroneous electrode data has been revealed 
through a method such as th a t o f Asfaw and Adler [7] the problem measurements can 
be accounted for by zeroing each column o f the Jacobian m a trix  H in  equation 8.2.

5. The in itia l conductivity, oq, is le ft at a homogenous value o f 1.

6. The conductiv ity used to  calculate the Jacobian, a*, is le ft at a homogenous value of
1.

7. Using the Nodal inverse solver requires th a t the FE M  parameters include tetrahedral 
meshes w ith  linear conductiv ity  on each element.

8. For pulm onary imaging we recommend the Planar Electrode Placement Strategy dis
cussed in  chapter 6. This is an adjacent current injection and measurement protocol.
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8.2 F uture W ork

There is always more work to  do. W ith  respect to  the work o f th is  thesis the following 
subjects are prom ising areas o f fu tu re  development th a t could be undertaken to  extend the 
capabilities o f the system described in  section 8.1:

1. The work o f chapter 6 is an in it ia l investigation into the analysis o f electrode place
ments fo r the thorax. This work was constrained by the availab ility  o f 16 electrode 
equipment and should be extended to  consider newer equipment w ith  more than 16 
electrodes. Thus fu ture  work should systematically investigate potentia l performance 
improvements available from  electrode placement configurations using more than 16 
electrodes arranged in  two layers.

2. C lin ical measurements to  extend the conclusions o f the chapter 6, Electrode Placement 
Configurations fo r E IT , should be conducted

3. Develop a T V  a lgorithm  th a t uses the nodal inverse solver. The main problem here 
w ill be to  develop a nodal version o f the T V  p rio r m atrix . S im ilar work has been 
started in  [96].

4. Investigate the number o f electrodes required to  obtain higher resolution reconstruc
tions in  3D. There is speculation th a t 16 electrodes are not enough for 3D.

F inally, the a b ility  o f researchers to  extend the contributions in  any field o f endeavour, 
bu t especially fields reliant on software, is made much easier by the ready availab ility  o f the 
software and data used in  previously published work. To th a t end all software used in  th is 
work th a t was developed using M atlab, the EIDORS2D [116] toolbox, and the EIDORS3D
[93] toolbox was re-contributed to  the EIDO RS3D project.
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A ppendix: 
V ariability  in EIT  Im ages O f 
Lungs: Effect o f Im age  
R econ stru ction  R eference

Authors:
Bradley G R A H A M  and A ndy A D LE R

In  the course o f completing th is thesis several side problems, such as mesh generation, 
mesh solution bias, and background conductiv ity  effects were examined. These problems are 
im portan t b u t are not d irectly  applicable to  the aim  of th is thesis. Morover the the results 
obtained from  these side problems are not yet sufficient for publication. Th is appendix 
serves as a means to  document the observations made to date on some o f the issues caused 
by background conductiv ity  effects in  reconstruction algorithms.

A b stract

There is significant interest in  E lectrical Impedance Tomography for measurement o f breath
ing. However, Kunst et al [83] have shown th a t va riab ility  in  parenchyma density (in emphy
sema and haemodialysis patients compared to  normals) had a large effect on the am plitude 
o f E IT  images for the same inspired volume. We hypothesize th a t th is  effect is due to  the 
assumption made by E IT  difference imaging th a t impedance changes occur relative to  a 
homogeneous conductiv ity d is tribu tion . To test th is  hypothesis, we developed a 3D fin ite  
element model o f the thorax, and simulated E IT  measurements for a small tid a l volume at 
different levels o f lung conductivity. Images were reconstructed using: 1) a homogeneous 
model, 2) a model w ith  physiologically realistic conductiv ity levels, and 3) a model w ith  
conductivities matching the simulation model.

Results show th a t the reconstructed image am plitude of the homogeneous model varies 
strongly w ith  lung conductivity. The magnitude o f the variations is compatible w ith  the data 
o f K unst et al. The physiologically realistic model showed a slightly less, bu t insignificantly 
so, variation. The matched conductiv ity  model showed much more un ifo rm  am plitude 
response bu t depended on the area o f the inhomogenous region used in  construction o f the 
Jacobian.

These results suggest tha t the va riab ility  in  E IT  image amplitude o f the lungs is due to 
the assumption o f homogeneity made by difference E IT  image reconstruction algorithms.

Keywords: E lectrical Impedance Tomography, Lung Function, Image Reconstruction
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A .l  In trod u ction

One o f the most prom ising applications o f E lectrical Impedance Tomography (E IT ) is for 
m onitoring lung function [50] such as measuring the amount and d is tribu tion  o f inspired air. 
E IT  images o f the lung benefit from  its  large size and large conductiv ity  contrast to  other 
body tissues. Moreover there is a linear relationship between the measured tid a l volume and 
the am plitude o f E IT  difference images (e.g. [94]). However, the constant o f p roportiona lity  
varies dram atically between subjects.

K unst et al [83] studied the variation in E IT  image am plitude between subjects. Images 
o f a given tida l volume1 were compared between normals and groups w ith  high parenchyma 
density (haemodialysis patients) and low parenchyma density (emphysema patients). Re
sults were measured in  terms o f the sum o f image pixels per litre  o f tid a l volume. The emphy
sema group had sign ificantly lower impedance change (11.6±6.4) than normals (18.6±4.2), 
while the haemodialysis group showed a sign ificantly larger impedance change (30 .5± 13.1). 
Furthermore, during dialysis, the la tte r group showed impedance changes much closer to 
the normals (21.4 ±  8.6). These results show E IT  in  poor light: not on ly can measurements 
o f the same tid a l volume vary by a factor o f three between patient groups, bu t even i f  
calibration is performed, the calibration factor can undergo large changes rapidly.

We are interested in  understanding the cause o f and compensating fo r th is va riab ility  
in  image amplitude. In  th is  paper we deal w ith  the cause. Future work w ill look at 
compensation. In  th is  paper, we propose th a t th is  effect is m ainly caused by the assumption 
o f homogeneity made in  the form ulation o f difference images in  E IT  via  the Jacobian m atrix. 
In  order: to  explore th is  effect, a fin ite  element model o f the thorax was constructed, and 
sim ulation data at different baseline lung conductivities generated. Subsequently, images 
were reconstructed from  these data under different difference imaging assumptions, and 
compared to  the results o f Kunst et al [83].

A .2 M eth od s

A .2.1  Im a g e  R e c o n str u c t io n

We consider E IT  difference imaging, which is w ide ly understood to  improve reconstructed 
image s tab ility  in  the presence o f problems such as unknown contact impedance, inaccurate 
electrode positions, non linearity, and in  the 2D case, the use o f 2D approximations for 3D 
electrical fields [17] [87]. We address the class o f normalized one-step linearized reconstruc
tio n  algorithms th a t calculate the normalized change in  fin ite  element conductiv ity d is tri
bution, x,  due to  a change in  normalized difference signal, z, over a tim e interval ( i i , 2̂ ) -

le n g th (x .)

Here x  is defined as x , =  (a-2,1 — &\,i) /<ri,i w ith  <J\ a n d  0 2 , 1  being the i th elements
i

le n g th (v )

of the vectors cr\ and <r2 respectively, and z is defined as Zj =  (v2,i — v i,i) / v \  t w ith
i

v \ ti and V24 being the i th elements of the vectors V i and v 2 respectively. By convention we 
consider the signal at t \  to  be the reference frame and the signal at t? to  be the data frame.

For small changes around a background conductiv ity  the relationship between x  and z 
may be linearized as

z =  H x  +  n (A.3)

'T id a l Volume is the amount of air inhaled and exhaled during normal breathing, normally about between 
500 and 1000ml.
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where H  is the Jacobian or sensitiv ity m a tr ix  calculated from  a F E M  (F ( a )), and n  is the 
measurement system noise, assumed to  be uncorrelated additive w hite  Gaussian (AW G N). 

Each element i,  j ,  o f H  is calculated as H jj  =  and relates a small change in  the
3 <7*0

i th difference measurement to  a small change in  the conductiv ity of j th element. H  is a 
function o f the FEM , the current in jection pattern, and the background conductivity, cr0. 
Here <to is a vector containing the conductiv ity  o f each element o f the mesh.

In  order to  overcome the ill-cond ition ing  o f H  we solve A.3 using the follow ing regularized 
inverse

x  =  (H t W H  +  A2R TR ) _1H T W z  =  B z  (A.4)

where x  is an estimate o f the true  change in  conductiv ity d is tribu tion , R  is a regular
ization m atrix , A is a scalar hyperparameter th a t controls the amount of regularization, 
and W  models the system noise. The regularization m atrix , R , is the spatia lly invariant 
Gaussian high pass filte r o f [4] w ith  a cut-o ff frequency of 10% o f the medium diameter. 
Hyperparameter selection was performed using the BestRes method [52].

Reconstruction algorithms for E IT  difference images often assume th a t the background 
conductivity, era, o f the region being imaged is homogeneous, and conductiv ity changes 
occur w ith  respect to  th is baseline value. This assumption is clearly unwarranted for imaging 
of the thorax, where the lungs are sign ificantly less conductive than other tissue. In  order 
to  m odify the assumption o f a homogeneous background conductivity, ctq can be altered to 
account for the conductiv ity  o f the various tissues in  the thorax. The sensitiv ity m atrix , H , 
is then constructed from  the modified era and used to  calculate the reconstructed image.

A . 2 .2  S im u la te d  D a ta

Simulated data was generated using the 3D fin ite  element mesh of figure 8.1(b) w ith  the 
conductive properties o f the thorax. This fin ite  element mesh is an extrusion o f the 2D 
mesh o f figure 8.1(a). The F E M  uses 10368 tetrahedra l elements and covers a region 15cm 
vertica lly centered on the heart. The sixteen electrodes were spaced equally around the 
thorax at the level of the centre of the heart. Background conductiv ity  was held constant

(a) 2D horizontal slice through 3D thorax (b) 3D Finite Element mesh of thorax used 
mesh of figure 8.1(b). fo r simulated data.

Figure A . l:  F in ite  Element Mesh fo r  generating simulated data, era is the vector containing  
the conductivity o f each element, is a scalar value o f the conductivity o f elements o f the 
lung tissue.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



while the lung conductiv ity  (ox) was varied. S imulation data were calculated to  model the 
E IT  difference measurements due to  in troduction  o f a small tid a l volume (A U ) at different 
levels o f baseline ox. Since the relationship between ox and lung volume (Vl ) is not precisely 
known in  vivo [94], we model lung conductiv ity as inversely proportiona l to  Vl - For a small 
A V  we make the follow ing approximation:

o x  - A v /vr

Using th is  approximation, tid a l volume, A U , constitutes a constant decrease in  log conduc
tiv ity . Difference measurements are simulated for inspiration and expiration as:

- Av/v  
Vinsp =  F {p 'L e )

^exp i  =  F{(7l )

Simulations were conducted for A V  /V l  =  10% over a range o f 20 values from  5 m S /m  to 
2000 m S/m . This large non-physiological range was simulated in  order to  c larify  the trend 
o f the results. The reference frame was taken at the background lung conductivity.

A .2 .3  E v a lu a tio n  P ro c ed u r e

Six sets o f reconstructions were calculated using a 1968 element 2D fin ite  element model. 
Images were reconstructed from  the simulated data and using three different reconstruction 
algorithms: 1) using a homogeneous tro, 2) using <70 w ith  physiological values and (To at its 
insp ira tion value (60 m S/m ) (A VEiTjnspi), and 3) using (To w ith  physiological values and 
ox matching ox th a t was used to  simulate the data A VEir,Simul- In  the th ird  algorithm  
the area o f the non-homogenous region, A aL of the F E M  was varied; thus four sets of 
reconstructions were calculated w ith  areas o f A aL =  33%, A „L =  51%, A „L =  73%, and 
A „ l — 86% as shown in  figure A .2. Thus the single set o f 20 simulated measurements was 
used to  reconstruct six sets of 20 images.

A n  E IT  estimate o f tid a l volume, A  Ve i t , was then calculated by summing all pixels of
E

the 2D F E M  weighted by the p ixe l’s area. A V e i t  — Y  where A  is the area/volume
i= 1

of element i  and <x is the conductiv ity  o f element i.

A .3 R esu lts

Figure A ,3 shows four plots of image am plitude vs baseline lung conductivity, ox, for each 
algorithm . The different subplots correspond to  non-homogenous Jacobians of d iffering 
area. The two curves for the homogenous Jacobian algorithms (blue and black lines) are 
the same in  each of the subplots.

The results for A Ve it -H ottio (black curve) axe consistent w ith  those o f Kunst et al
[83]. Image am plitude for the same proportiona l volume change increases dram atically w ith  
increasing baseline (s ta rtin g /in it ia l)  lung conductivity; there is a large increase in  image 
am plitude as ox increases from  60 m S /m  to  120 m S/m . Use of constant bu t physiologically 
realistic values reduces the dependence only s ligh tly  (blue curve). The use o f parameters 
th a t match the simulation (red curve) results in  significant decrease in  the dependence on 
ox. However the effect is strongly dependent on the area o f the inhomogeneity o f the recon
struction mesh used to  calculate the Jacobian. Figure 8.3(a), in  which the inhomogeneous 
area, A a. is 33%, shows a strong dependence on ox for ox <  120 m S /m  bu t becomes
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(a) A at =  33% (b) A , l =  51% (c) A „ t  =  74%

(d) A aL =  86%

Figure A .2: Meshes used fo r  non-homogenous Jacobian construction. D ark elements are 
the inhomogenous regions o f the matched algorithm.

independent after. The most stable response occurs w ith  A ai =  73% which is almost fla t 
throughout the range of al - A ll three of the curves from  A a i >  51% to  A a i <  86% have 
improved independence o f ox. Figures A .4 and A .5 are 2D reconstructions for the two 
homogenous algorithms. These images clearly show the increasing image am plitude as ox 
increase from  5m S/m  to  2000mS/m. Figures A .6 and A .7 are images from  two o f the 
inhomogeneous algorithms. They show th a t the va riab ility  in  image am plitude over the 
range o f ax is considerably reduced compared to  the two homogenous models.

A .4 C onclusion

I t  is desired th a t a given proportiona l lung vo lum e/conductiv ity change always produce the 
same proportiona l signal. We show th a t th is is not possible using a homogenous recon
struction model. However analysis o f the experimental data suggest a method to  reduce 
the magnitude o f th is variab ility. By incorporating an inhomogenous region in  the centre 
o f the reconstruction mesh used to  construct the Jacobian and setting the inhomogenous 
to  the matched conductiv ity of ox, the va riab ility  o f the am plitude of the reconstructed 
image can be reduced. O f course th is  is impossible in  practice since we cannot know ox of 
the patient. However, these results suggest method to  reduce the va riab ility  i f  an estimate 
o f the background conductiv ity could be obtained perhaps through a crude two parameter 
estimate o f the static conductiv ity of the patient.

O ur m otiva tion for th is  study is to  understand the causes o f the results o f K unst et 
al [83] in  which different baseline lung conductiv ity  levels introduced a dram atic difference 
in  the magnitude o f E IT  images o f the same tid a l volumes. We have developed a rough 
simulation model of the effect o f the assumption o f homogeneous baseline lung conductiv ity
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Figure A .3: E IT  difference image amplitude due to a small tida l volume as a function  o f 
baseline lung conductivity (v l )  (m S/m ). Image amplitude is normalized to a value o f 1.0 
when lung conductivity matches expiration (120 m S/m ). Black curve: images reconstructed 
with homogeneous background, Blue curve: images reconstructed w ith  lung region conduc
tiv ity  o f 60 mS/m, Red curve: images reconstructed w ith lung region conductivity equal to 
the simulation model value (on horizontal axis).

on E IT  images, which is able to  account fo r the magnitude of the observed effect. This 
result suggests th a t the va riab ility  observed could possibly be elim inated by enhancements 
to  E IT  image reconstruction algorithms. On the other hand, many other factors could 
contribute to  the observed effect, such as:

1. breathing pattern differences (abdominal versus thoracic breathing),

2. size o f thorax,

3. nonlinear relationship o f conductiv ity  change to  inspired volume,

4. movement of the chest w ith  breathing,

5. changes in  Cole-Cole parameters o f lung tissue in  patients w ith  haemodialysis and 
emphysema.

We postulate th a t the baseline conductiv ity  effect is dominant, as most o f the other 
factors would appear to  be significantly smaller than the observed variab ility. For example, 
a simulation study o f the movement o f the chest w ith  breathing showed changes due to
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Figure A.4: Reconstructions w ith homogenous Jacobian: ao =  1 mS.

movement o f approximately 20% [5], M odifications in  baseline conductiv ity may also explain 
the va riab ility  in  E IT  images w ith  changes in  posture [66].

In  conclusion, these results suggest th a t an im portan t contribution to  va riab ility  in  the 
am plitude of E IT  difference images of the lungs is the assumption o f homogeneity o f the 
background conductiv ity in  difference image reconstruction; furtherm ore, modifications to  
image reconstruction algorithms may be able to  reduce the magnitude o f the variab ility.
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Figure A .5: Reconstructions w ith physiologically realistic homogenous Jacobian: <jq 
480mS.
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Figure A .6: Reconstructions w ith non-homogenous Jacobian w ith A „L =  73%.
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Figure A .7: Reconstructions w ith non-homogenous Jacobian w ith  A a i =  86%.
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