Enhancements of the bisimulation proof method

Davide Sangiorgi

Focus Lab., INRIA (France) and University of Bologna (Italy)

Email: Davide.Sangiorgi@cs.unibo.it
 http://www.cs.unibo.it/~sangio/

BASICS 2009, Shanghai

CONTENTS

- Introduction [1]
 - Part I: Examples [3]
 - Part II: Counterexamples [40]
 - Part III: Towards an algebra of enhancements [48]
 - Part IV: Weak bisimilarity [58]

Equality on processes, coinductively

Bisimulation:

$$\begin{array}{ccccc} \text{A relation } \mathcal{R} \text{ s.t.} & P & \mathcal{R} & Q \\ & \alpha \downarrow & & \downarrow \alpha \\ & P' & \mathcal{R} & Q' \end{array}$$

Bisimilarity (\sim) :

 $\bigcup \{\mathcal{R} : \mathcal{R} \text{ is a bisimulation }\}$

Hence:

$x \mathrel{\mathcal{R}} y$	${\cal R}$ is a bisimulation	
	$x \sim y$	

(bisimulation proof method)

This talk

Enhancements of the bisimulation proof method

- Motivations
- Results and Examples
- Open problems

CONTENTS

- ✓ Introduction [1]
- Part I: Examples [3]
 - Part II: Counterexamples [40]
 - Part III: Towards an algebra of enhancements [48]
 - Part IV: Weak bisimilarity [58]

Examples, in CCS-like calculus

Pieces of syntax and transitions

Intuitively: $P = P | P | \dots | P$ (indeed $P | P \sim P$, as the transitions are the same)

Process abbreviations: $a \triangleq a.0$ $P^n \triangleq P \mid \ldots \mid P \quad (n \text{ times})$

Enhancements of the bisimulation method: an example

A property of replication

$$!(a+b) \sim !a \mid !b$$

Proof: Let's find a bisimulation...

Is this a bisimulation?

$$\mathcal{R} \, riangleq \, \left\{ \, \left(!(a+b) \, , \, !a \mid !b
ight) \,
ight\}$$

$$\mathcal{R} \, \triangleq \, \left\{ \, \left(\left! \left(a + b
ight) \, , \, \left! a \mid \left! b
ight) \,
ight\}
ight.$$

No!

$$\begin{array}{rcl} \mathsf{NB:} \forall n, m, & !(a+b) & \stackrel{a}{\longrightarrow} & (a+b)^n \mid 0 \mid (a+b)^m \mid !(a+b) \\ & & !a \mid !b & \stackrel{a}{\longrightarrow} & a^n \mid 0 \mid a^m \mid !a \mid !b \end{array}$$

Try again...

Is this a bisimulation?

Is this a bisimulation?

No!

Try again...

It is possible to write the full bisimulation, but one has to be careful

We started with the **singleton** relation

 $\{(!(a+b) \ , \ !a \mid !b)\}$

The added pairs: **redundant**? (derivable, laws of \sim)

Can we work with relations smaller than bisimulations?

Advantages:

- fewer and simpler bisimulation diagrams
- easier to find the relation to work with

Redundant pairs

What we would like to have:

 $\boldsymbol{\mathcal{R}}$: less work, simpler to find

Notation

Up-to techniques: example

– Rules for transitivity of \sim (up-to \sim)

$$\mathcal{R} \rightarrow \mathcal{R} \sim \mathcal{R} \sim \text{ implies } \mathcal{R} \subseteq \mathcal{R}$$

diagram :
$$P$$
 \mathcal{R} Q $\alpha \downarrow$ $\downarrow \alpha$ P' \sim P' \sim P' \sim Q'

Now we can establish $!(a + b) \sim !a \mid !b$ using the singleton relation

$$\mathcal{R} \triangleq \{!(a+b), !a \mid !b\}$$

and proving that it is a bisimulation up-to \sim

(laws $P \mid !P \sim !P$ and $0 \mid P \sim P$, congruence of \sim)

A more interesting example

$$!(a.P+b.Q) \sim !a.P \mid !b.Q$$

Proof: Let's find a bisimulation...

Is this a bisimulation up-to \sim ?

$$\mathcal{R} \triangleq \{ (!(a.P+b.Q), !a.P | !b.Q) \}$$

Is this a bisimulation up-to \sim ?

No!

$$egin{aligned} \mathcal{R} &\triangleq \left\{ \left(!(a.\ P+b.\ Q) ,\ !a.\ P \mid !b.\ Q
ight)
ight\} \ & !(a.\ P+b.\ Q) & \stackrel{a}{\longrightarrow} \sim & P \mid !(a.\ P+b.\ Q) \ & \mathcal{R} & \swarrow \ & \swarrow \ & !a.\ P \mid !b.\ Q & \stackrel{a}{\longrightarrow} \sim & P \mid !a.\ P \mid !b.\ Q \end{aligned}$$

- Note also, if $P \xrightarrow{c} P'$:

so a bisimulation up-to \sim should include also such pairs of derivates

- Again, these added pairs may be considered redundant (for instance, $!(a. P + b. Q) \sim !a. P \mid !b. Q$ implies $P' \mid P \mid !(a. P + b. Q) \sim P' \mid P \mid !a. P \mid !b. Q)$
- We can avoid these additional pairs using a different form of up-to

Up-to techniques: example

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)

$$\mathcal{C}(\mathcal{R}) \ riangleq \ \{(C[P], C[Q]) \ : \ P \ \mathcal{R} \ Q\}$$

 $\mathcal{R} \rightarrow \mathcal{C}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$

diagram :P \mathcal{R} Q $\alpha \downarrow$ $\downarrow \alpha$ $\kappa \downarrow$ $\downarrow \alpha$ \swarrow P' \mathcal{R} \checkmark [P'] \mathcal{R} \checkmark [Q']

Example of composition of techniques

We can put together up-to \sim and up-to context

 $\mathcal{R} \rightarrow \mathcal{C}[\mathcal{R}] \sim \text{implies } \mathcal{R} \subseteq \mathcal{C}$

diagram :

 $\begin{array}{cccc} P & \mathcal{R} & Q \\ \alpha \downarrow & & \downarrow \alpha \\ P' & \sim & \swarrow [P''] \mathcal{R} \swarrow [Q''] & \sim Q' \end{array}$

$$\mathcal{R} \triangleq \{!(a.P+b.Q), !a.P \mid !b.Q\}$$

$$!(a. P + b. Q) \xrightarrow{a} (a. P + b. Q)^n | P | (a. P + b. Q)^m | !(a. P + b. Q)^m$$

 $| !(a. P + b. Q)$

$$\mathcal{R} \triangleq \{!(a.P+b.Q), !a.P \mid !b.Q\}$$

$$\begin{array}{ccc} !(a.\ P+b.\ Q) & \stackrel{a}{\longrightarrow} & (a.\ P+b.\ Q)^n \mid P \mid (a.\ P+b.\ Q)^m \\ & \mid !(a.\ P+b.\ Q) \\ & \sim \\ & P \mid !(a.\ P+b.\ Q) \\ & \mathcal{R} \\ & & \mathcal{R} \\ & & P \mid !a.\ P \mid !b.\ Q \\ & & \sim \\ & & (a.\ P)^n \mid P \mid (a.\ P)^m \mid !a.\ P \mid !b.\ Q \end{array}$$

$$\mathcal{R} \triangleq \{!(a.P+b.Q), !a.P \mid !b.Q\}$$

$$\begin{array}{ccc} !(a.\ P+b.\ Q) & \stackrel{a}{\longrightarrow} & (a.\ P+b.\ Q)^n \mid P \mid (a.\ P+b.\ Q)^m \\ & \mid !(a.\ P+b.\ Q) \\ & \sim \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ !a.\ P \mid !b.\ Q & \stackrel{a}{\longrightarrow} & (a.\ P)^n \mid P \mid (a.\ P)^m \mid !a.\ P \mid !b.\ Q \end{array}$$

$$\mathcal{R} \triangleq \{!(a.P+b.Q), !a.P \mid !b.Q\}$$

More up-to techniques: example

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)
- rules for invariance of \sim under injective substitutions (up-to injective substitutions)

$$\mathsf{Inj}(\mathcal{R}) \, \triangleq \, \{ (P\sigma, Q\sigma) \; : \; P \; \mathcal{R} \; Q \; , \; \sigma \; \mathsf{injective \; on \; names} \}$$

$$\mathcal{R} \longrightarrow \mathsf{Inj}(\mathcal{R})$$
 implies $\mathcal{R} \subseteq \sim$

diagram : $\begin{array}{cccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & \qquad \downarrow \alpha \\
P' \not \leftarrow \mathcal{R} & Q' \not \leftarrow \\
\sigma: \text{ an injective function} \end{array} \quad \text{implies } \mathcal{R} \subseteq \sim \\
\end{array}$

More composition of techniques

More sophistication \Rightarrow

- more powerful technique
- harder soundness proof for the technique

More examples, in a higher-order calculus (the Ambient calculus)

Ambients: syntax

			Processes
P	::=	$n\langle P angle$	ambient
		$ ext{in} n. P$	in action
		$ ext{out} n. P$	out action
		$ ext{open} n. P$	open action
		$P \mid P$	parallel
		u n P	restriction

• • •

The in movement

The out movement

Example property

The perfect-firewall equation in Ambients

P: a process with n not free in it

$$u n \, \left< P \right> \sim 0$$

Proof: Let's find a bisimulation...

Is this a bisimulation?

$$\mathcal{R}\, riangleq\, \{\, (
u n\,\, n \langle P
angle\,,\,\, 0)\, \}$$

$$\mathcal{R} \, riangleq \, \left\{ \, \left(
u n \, \, n \langle P
ight
angle \, , \, 0
ight) \,
ight\}$$

No!

Suppose
$$n\langle P
angle \xrightarrow{ ext{enter} k\langle Q
angle} n\langle P
angle$$

(the loop: simplifies the example, not necessary)

$$egin{aligned} &
un \ n\langle P
angle & \mathcal{R} & 0 \ & & & & \downarrow ext{enter} k\langle Q
angle \ & & & \downarrow ext{enter} k\langle Q
angle & & & & \downarrow ext{enter} k\langle Q
angle \ & & & & k\langle Q \mid un \ n\langle P
angle
angle & & & & \lambda\langle Q \mid 0 \end{aligned}$$

Try again...

Is this a bisimulation?

No! Suppose $Q = h \langle \text{out } k. R \rangle \mid Q'$

Try again...
Also: Suppose $Q = \operatorname{in} h. Q'$

 $\begin{array}{cccc} k\langle Q \mid \nu n \ n \langle P \rangle \ \rangle & \mathcal{R} & k \langle Q \rangle \mid 0 \\ \\ \texttt{enter} h \langle R \rangle \downarrow & & \downarrow \texttt{enter} h \langle R \rangle \\ h \langle R \mid k \langle Q' \mid \nu n \ n \langle P \rangle \ \rangle & \swarrow & h \langle R \mid k \langle Q' \rangle \ \rangle \mid 0 \end{array}$

Try again...

The bisimulation:

We started with the **singleton** relation

 $\{\left(
u n \,\, n \langle P
ight
angle \,, \,\, 0
ight)\}$

The added pairs: **redundant**? (derivable, laws of \sim)

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $\begin{array}{c|c} \nu n \ n \langle P \rangle & \mathcal{R} & 0 \\ \texttt{enter}_k \langle Q \rangle \downarrow & & \downarrow \texttt{enter}_k \langle Q \rangle \\ k \langle Q \mid \nu n \ n \langle P \rangle \rangle & & k \langle Q \rangle \mid 0 \end{array}$

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $\begin{array}{c|c} \nu n \ n \langle P \rangle & \mathcal{R} & 0 \\ \texttt{enter}_k \langle Q \rangle \downarrow & & \downarrow \texttt{enter}_k \langle Q \rangle \\ k \langle Q \mid \nu n \ n \langle P \rangle \rangle & & k \langle Q \rangle \mid 0 \end{array}$

 \sim

 \sim

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $\begin{array}{c|c} \nu n \ n \langle P \rangle & \mathcal{R} & 0 \\ \texttt{enter}_k \langle Q \rangle \downarrow & & \downarrow \texttt{enter}_k \langle Q \rangle \\ k \langle Q \mid \nu n \ n \langle P \rangle \rangle & & k \langle Q \rangle \mid 0 \end{array}$

 \sim

 \sim

 $k \langle Q \mid \nu n \mid n \langle P \rangle
angle \quad \mathcal{R} \quad k \langle Q \mid 0
angle$

[Zappa-Nardelli, Merro, JACM]

"up-to \sim " and "up-to context"

(full proof also needs up-to injective substitutions)

Conclusions, part I

- Enhancements of the bisimulation proof methods: extremely useful
 - * essential in π -calculus-like languages, higher-order languages
- Various forms of enhancement ("up-to techniques")
 exist
 - * composition of techniques
- Proofs of soundness of these techniques may be non-trivial
 - * separate ad hoc proofs for each technique

CONTENTS

- ✓ Introduction [1]
- ✓ Part I: Examples [3]
- Part II: Counterexamples [40]
 - Part III: Towards an algebra of enhancements [48]
 - Part IV: Weak bisimilarity [58]

Redundant pairs: first attempt

Sound ? i.e.:

False!

Counterexample (in CCS)

$$\mathcal{S} riangleq rac{a.\,P \sim a.\,Q}{P \sim Q}$$

$$\mathcal{R} \hspace{.1in} riangleq \hspace{.1in} \{(a.\,b,a.\,c)\}$$

$$\{(b,c)\}$$
 redundant in $\mathcal{R} \cup \{(b,c)\}$ s

$$S \quad rac{\mathcal{R} \subseteq \sim}{b \sim c}$$

Another example

Recall the "bisimulation up-to context and up-to \sim " technique:

It seems valid because \sim is transitive and is a congruence, hence usable in all languages where \sim has these 2 properties

False!

$$P := f(P) \mid a. P \mid 0$$

$$\frac{P \xrightarrow{a} P' \quad P' \xrightarrow{a} P''}{f(P) \xrightarrow{a} P''}$$

Bisimulation is a congruence, yet:

$$\begin{array}{cccc} a.0 & \mathcal{R} & a.a.0 \\ a \downarrow & & \downarrow a \\ 0 & \sim f(a.\ 0) & f(a.\ a.\ 0) \sim a.0 \end{array}$$

False!

$$P := f(P) \mid a. P \mid 0$$

$$\frac{P \xrightarrow{a} P' \quad P' \xrightarrow{a} P''}{f(P) \xrightarrow{a} P''}$$

Bisimulation is a congruence, yet:

$$\begin{array}{cccc} a.0 & \mathcal{R} & a.a.0 \\ a & & & & & \\ a & & & & \\ 0 & \sim & (a.0) & \mathcal{R} & (a.a.0) \sim a.0 \end{array}$$

Weak bisimilarity (\approx)

Weak bisimulation

Too heavy:P \mathcal{R} Q $\alpha \downarrow$ $\downarrow \alpha$ P' \mathcal{R} Q'

Better: (read: \Rightarrow)

$$egin{array}{cccc} P & \mathcal{R} & Q \ lpha \downarrow & & \downarrow lpha \ P' & \mathcal{R} & Q' \end{array}$$

 \approx is transitive, yet:

$ au . 0 \ rac{1}{4} a. 0$	${\cal R}$	0 ↓ 0
\approx		\approx
au.a.0	${\cal R}$	0

Conclusions, part II

- When is a pair redundant?
- Needed: a general theory of enhancements of the bisimulation proof method
 - * powerful techniques
 - * combination of techniques
 - * easy to derive their soundness

- An attempt: sound functions, respectful functions

[Sangiorgi]

- NB: all results that follow proved in Coq

CONTENTS

- ✓ Introduction [1]
- ✓ Part I: Examples [3]
- ✓ Part II: Counterexamples [40]
- Image: Part III: Towards an algebra of enhancements
 [48]
 - Part IV: Weak bisimilarity [58]

Sound functions

 $\mathcal{F}:\wp(\mathcal{P} imes\mathcal{P})\mapsto\wp(\mathcal{P} imes\mathcal{P})$:

sound if $\mathcal{R} \longrightarrow \mathcal{F}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$

$$\begin{array}{ccc} P & \mathcal{R} & Q \\ \alpha \bigvee & & \bigvee \alpha \\ P' & \mathcal{F}(\mathcal{R}) & Q' \end{array}$$

Each sound function: a valid enhancement

- Are there interesting sound functions?

- Properties:

- * membership easy to check?
- * nice compositionality properties?

Sound functions

Each sound function: a valid enhancement

– Are there interesting sound functions? YES

- Properties:

- * membership easy to check? NO
- * nice compositionality properties? NO

Towards an algebra of up-to techniques

 $\mathcal{F}: \text{Relations} \mapsto \wp(\mathcal{P} \times \mathcal{P})$

$$\begin{array}{ll} \textbf{respectful if} & \mathcal{R} \subseteq \mathcal{S} & \mathcal{R} \rightarrowtail \mathcal{S} \\ \hline \mathcal{F}(\mathcal{R}) \subseteq \mathcal{F}(\mathcal{S}) & \mathcal{F}(\mathcal{R}) \rightarrowtail \mathcal{F}(\mathcal{S}) \end{array}$$

Examples:

- identity $\mathcal{I} = [\mathcal{I}(\mathcal{R})] = \mathcal{R}$
- constant-to $\sim \mathcal{U} [\mathcal{U}(\mathcal{R}) = \sim]$
- $[\mathcal{I}(\mathcal{R})] = \mathcal{R}$ $[\mathcal{U}(\mathcal{R})] = \sim$

closure under monadic contexts C

closure under inj. substitutions Inj

Proofs of respectfulness: easy

Non-example: constant-to $\mathcal{P} \times \mathcal{P}$

Compositionality properties

A respectful second-order function: preserves the respectfulness of its arguments

Examples:

Proofs of respectfulness: easy

The previous up-to techniques before can be derived:

$$\mathcal{U}^{\mathcal{I}}\mathcal{U} = \text{up-to} \sim \begin{bmatrix} P & \mathcal{R} & Q \\ \alpha \downarrow & & \downarrow \alpha \\ P' & \sim \mathcal{R} \sim & Q' \end{bmatrix}$$

$$\bigcup_{n > 0} \underbrace{\mathcal{I} \cap \cdots \cap \mathcal{I}}_{n} = \text{up-to transitive closure} \begin{array}{ccc} P & \mathcal{R} & Q \\ \alpha \bigvee & & \bigvee \alpha \\ P' & \mathcal{R}^+ & Q' \end{array}$$

Similarly we derive: C^* (up-to **polyadic** contexts)

 $\sim \mathcal{C}^*(\operatorname{Inj}(\mathcal{R})) \sim$

Conclusions, part III

- An attempt of an algebra of enhancements

* Minimal basic ingredients

(identity function, constant functions,)

- * 2nd order functions to derive more powerful techniques
- Sufficient to derive many techniques of practical interest

(for strong bisimulation)

- **However**, in this theory:
 - * ad hoc definitions?
 - * all proofs very easy

Problem 1: Robust definition of enhancement

- Better definition of respectfulness ?
- Abstract formulations of a more powerful bisimulation principle ?
- Generalisation to coinduction ?
 - * Partial results on coalgebras [Lenisa, Honsell]

Problem 2: soundness of up-to context

- What conditions on contexts for the up-to context to be sound?
 - * Bisimulation as a congruence? i.e.:

- And for respectfulness?
 - * Bisimulation as a congruence? **No!**
 - * Partial answer: some behavioural conditions on contexts
 [Sangiorgi]

Problem 3: up-to context in higher-order languages

Example: λ -calculus (call-by-value/name,typed/untyped,...)

 $M \xrightarrow{\lambda R} N \triangleq M \longrightarrow \lambda x. M' \& N = M' \{ R/x \}$

Applicative bisimulation (\simeq):M \mathcal{R} N $\lambda R \downarrow$ $\downarrow \lambda R$ M' \mathcal{R} M' \mathcal{R} N'

Theorem: \simeq is a congruence

Applicative bisimulation up-to polyadic contexts

 $\begin{array}{cccc} M & \mathcal{R} & N & \text{implies } \mathcal{R} \subseteq \simeq \\ \lambda R & & & \downarrow \lambda R \\ \swarrow [M_1, \dots, M_n] & \mathcal{R} & \swarrow [N_1, \dots, N_n] \end{array}$

- Related to the problem of **compositionality** of bisimulation?
- Soundness of limited forms of up-to context :
 - * [Pitts 96, Lassen 98]: typed and untyped λ -calculus, for various reduction strategies
 - * [Koutavas, Wand 06]: a λ -calculus with references

Example of use:

Park-induction property for various fixed-point combinators (Curry, Turing, call-by-value, rec)

$$rac{\lambda x.\,e \{ \, v/f \,\} \lesssim v}{{
m rec} f = \lambda x.\, e \lesssim v}$$

CONTENTS

- ✓ Introduction [1]
- ✓ Part I: Examples [3]
- ✓ Part II: Counterexamples [40]
- ✓ Part III: Towards an algebra of enhancements [48]
- Part IV: Weak bisimilarity [58]

- Chaining (ie: relational composition) is not respectful
- What in place of \approx ?
 - * Expansion (\lesssim)

[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]

* Controlled relations [Pous '05]

- Chaining (ie: relational composition) is not respectful
- What in place of \approx ?
 - * Expansion (\lesssim)

[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]

* Controlled relations [Pous '05]

- The culprit: chaining (ie, relational composition)
- Everything else: respectfulness is ok
- An important use of chaining:

$$\begin{array}{ccc} P & \mathcal{R} & Q \\ \alpha \downarrow & & \downarrow \alpha \\ P' & \approx \mathcal{F}(\mathcal{R}) \approx & Q' \end{array}$$

- What should we use in place of \approx above?
 - * Expansion (\lesssim)

[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]

* Controlled relations [Pous '05]

Theorem

Powerful:

candidate relations contain only "normal forms"

Example: correctness of an abstract machine for (Safe) Ambients

[Giannini, Sangiorgi, Valente, '04]

Nesting of ambients yields a tree

Example:

 $a\langle b \langle \rangle \mid c \langle d \langle \rangle \rangle
angle$ becomes

Movements of ambients:

- modify the tree structures
- can produce forwarders

The abstract machine – graphical representation

- Forwarders: common in distributed systems
- Forwarder chains
- Possible useless forwarders

Correctness proof (sketch)

- Ideally, using $\mathcal{R} \triangleq \{(\llbracket P \rrbracket, P)\}$

P: an Ambient term $\llbracket P \rrbracket$: representation of P in the AM

- However:

$$\begin{bmatrix} P \end{bmatrix} \qquad \mathcal{R} \qquad P \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \nu h \ (h \triangleright k \mid \llbracket Q(h) \rrbracket) \qquad \widecheck{X} \qquad Q(k)$$

- Further: in the AM there may be messages floating around (cf: non-atomicity of the implementation of Ambient basic operations)
- Indeed: the bisimulation relation needed is very complex.

Expansion (<<)

$$P \lesssim Q$$
 if: $\begin{cases} \mathbf{P} \approx \mathbf{Q} \\ \mathbf{P} \text{ is more efficient than } \mathbf{Q} \end{cases}$

Definition:

$$\begin{array}{cccc} 1. & P & \lesssim & Q & \text{read: (} \Rightarrow \text{)} \\ & \alpha \downarrow & & \downarrow \alpha \\ & P' & \lesssim & Q' \end{array}$$

read: (\Rightarrow)

Examples: $P \lesssim \tau.P$ $P \gtrsim \tau.P$
\mathcal{R} works if we use expansion:

Lemma: If *h* used only for messages in *A*

 $u h \ (h arphi \, k \mid A) \gtrsim A \{ \, k/h \, \}$

Similarly for features other than forwarders

- Simple proof

- * local property of the AM
- * up-to techniques applicable to expansion

(ex: expansion up-to expansion)

Rigidity of expansion

 $oldsymbol{P} \lesssim oldsymbol{Q}$ says: $oldsymbol{P}$ is better at **every** step

Example: optimise the AM [Hirschkoff, Pous, Sangiorgi, '05]

- garbage collection of useless forwarders
 - * use counters in forwarders (= number of children)
- remove chains of forwarders
 - * adapt Tarjan's union-find algorithm (relocation)

Relocation (cf: Tarjan sets)

- $\llbracket P \rrbracket \triangleq$ the original machine
- $[P] \triangleq$ the optimised machine
- [P] obviously better, but $[P] \not\lesssim \llbracket P \rrbracket$
 - * initial adminstrative work, that only later pays off
- Worst: in the optimised machine:

 $\nu h \ (h \rhd k \mid A) \precneqq A \set{k/h}$

 $u h \ (h arphi \, k \mid A) \
ot \gtrsim \ A \set{k/h}$

Equivalence between the two machines

- Ideally, using $\mathcal{R} \triangleq \{(\llbracket P \rrbracket, \llbracket P \rrbracket)\}$ (normal forms) But \mathcal{R} is not a bisimulation up-to expansion
- Correctness proof in [Hirschkoff, Pous, Sangiorgi, '05]: a full bisimulation
- [Pous 05]: A proposal for relations more flexible than \lesssim
 - * Now \mathcal{R} works
 - * Define properties needed in a relation for the "up-to" Example: termination of the transitive closure
 - * The relation need not be behaviourally interesting
 - * Drawbacks: proving the conditions, compositionality

Conclusions, part IV

– \leq , or other relations:

- * needed to control silent moves
- * allow us to reduce candidate relations only normal forms
- \leq : nice mathematical properties, sometimes too rigid

Problem 4: up-to in the weak case

a) Improvements of \lesssim

- better notion of "efficiency"
- more powerful up-to

(goal: normal forms in candidate relations)

b) Composition of up-to techniques

- how can chaining be replaced?

Important! (practical relevance of weak bisimilarity)

Partial results: [Pous 05]

Problem 5: Mechanical verification

- How can these enhancements be integrated in tools ?
- Partial results [Hirschkoff]
 - * theorem provers
 - * automatic checking
 - * Applied to infinite-state processes

Problem 6: Other primitive techniques

– Example: up-to substitutions sound in the π -calculus

References

This course is based on the draft book:

- Davide Sangiorgi, *An introduction to bisimulation and coinduction*, Draft, 2009

Please contact me if you'd like to read and comment parts of it.

Focus lab

A joint initiative between INRIA (France) and Univ. Bologna (Italy)

Permanent members: M. Bravetti, U. Dal Lago, M. Gabbrielli, C. Laneve, S. Martini, D. Sangiorgi, G. Zavattaro.

Scientific theme: semantic foundations for distributed software systems (ubiquitous systems)

Eg: methods for the analysis and synthesis, at various levels of abstraction; issues of expressiveness

Central concepts: 'interaction', 'component'

Basis: logics, types, algebra, operational semantics

NB: A recently established "Collegio di Cina" within the University of Bologna