
Enhancements of the bisimulation proof
method

Davide Sangiorgi

Focus Lab.,
INRIA (France) and University of Bologna (Italy)

Email: Davide.Sangiorgi@cs.unibo.it
http://www.cs.unibo.it/ ˜ sangio/

BASICS 2009, Shanghai

CONTENTS

☞ • Introduction [1]

• Part I: Examples [3]

• Part II: Counterexamples [40]

• Part III: Towards an algebra of enhancements [48]

• Part IV: Weak bisimilarity [58]

Equality on processes, coinductively

Bisimulation:

A relation R s.t. P
α

R Q

α

P ′ R Q′

Bisimilarity (∼) :

∪ {R : R is a bisimulation }

Hence:

x R y R is a bisimulation

x ∼ y
(bisimulation proof method)

page 1

This talk

Enhancements of the bisimulation proof method

– Motivations

– Results and Examples

– Open problems

page 2

CONTENTS

✓ • Introduction [1]

☞ • Part I: Examples [3]

• Part II: Counterexamples [40]

• Part III: Towards an algebra of enhancements [48]

• Part IV: Weak bisimilarity [58]

Examples, in CCS-like
calculus

page 3

Pieces of syntax and transitions

inp : a. P
a

−→ P rep :
P | !P

a
−→ P ′

!P
a

−→ P ′

sumL:
P

a
−→ P ′

P + Q
a

−→ P ′

sumR:
Q

a
−→ Q′

P + Q
a

−→ Q′

parL :
P

a
−→ P ′

P | Q
a

−→ P ′ | Q
parR :

Q
a

−→ Q′

P | Q
a

−→ P | Q′

Intuitively: !P = P | P | . . . | P

(indeed P | !P ∼ !P , as the transitions are the same)

Process abbreviations: a , a. 0

P n , P | . . . | P (n times)
page 4

Enhancements of the bisimulation method: an
example

A property of replication

!(a + b) ∼ !a | !b

Proof: Let’s find a bisimulation...

page 5

Is this a bisimulation?

R , { (!(a + b) , !a | !b) }

page 6

Is this a bisimulation?

R , { (!(a + b) , !a | !b) }

No!

!(a + b)
a

−→ (a + b)n | 0 | (a + b)m | !(a + b)

R R"

!a | !b
a

−→ an | 0 | am | !a | !b

NB: ∀n, m, !(a + b)
a

−→ (a + b)n | 0 | (a + b)m | !(a + b)

!a | !b
a

−→ an | 0 | am | !a | !b

Try again...
page 7

Is this a bisimulation?

R , ∪n,m

{ ((a + b)n | 0 | (a + b)m | !(a + b) , an | 0 | am | !a | !b) ,

((a + b)n | 0 | (a + b)m | !(a + b) , !a | bn | 0 | bm | !b) }

page 8

Is this a bisimulation?

R , ∪n,m

{ ((a + b)n | 0 | (a + b)m | !(a + b) , an | 0 | am | !a | !b) ,

((a + b)n | 0 | (a + b)m | !(a + b) , !a | bn | 0 | bm | !b) }

No!

(a + b)n | 0 | (a + b)m b
−→ (a + b)n−1 | 02 | (a + b)m

| !(a + b) | !(a + b)

R R"

an | 0 | am | !a | !b
b

−→ an | 0 | am | !a | b | !b

Try again...
page 9

It is possible to write the full bisimulation, but one has to be
careful

We started with the singleton relation

{(!(a + b) , !a | !b)}

The added pairs: redundant ? (derivable, laws of ∼)

Can we work with relations smaller than bisimulations?

Advantages:

– fewer and simpler bisimulation diagrams

– easier to find the relation to work with

page 10

Redundant pairs

What we would like to have:

P
α

R Q

α

P ′ R ∪ {redundant pairs } Q′

implies R ⊆ ∼

R: less work, simpler to find

Notation

R S , P
α

R Q

α

P ′ S Q′

page 11

Up-to techniques: example

– Rules for transitivity of ∼ (up-to ∼)

R ∼ R ∼ implies R ⊆ ∼

diagram : P
α

R Q

α

P ′ ∼ P ′′ R Q′′ ∼ Q′

page 12

Now we can establish !(a + b) ∼ !a | !b using the singleton
relation

R , {!(a + b), !a | !b}

and proving that it is a bisimulation up-to ∼

!(a + b)
a

−→ (a + b)n | 0 | (a + b)m | !(a + b)

∼

!(a + b)

R R

!a | !b

∼

!a | !b
a

−→ an | 0 | am | !a | !b

(laws P | !P ∼ !P and 0 | P ∼ P , congruence of ∼)
page 13

A more interesting example

!(a. P + b. Q) ∼ !a. P | !b. Q

Proof: Let’s find a bisimulation...

page 14

Is this a bisimulation up-to ∼?

R , { (!(a. P +b. Q) , !a. P | !b. Q) }

page 15

Is this a bisimulation up-to ∼?

R , { (!(a. P +b. Q) , !a. P | !b. Q) }

No!
!(a. P + b. Q)

a
−→ ∼ P | !(a. P + b. Q)

R R"

!a. P | !b. Q
a

−→ ∼ P | !a. P | !b. Q

page 16

– Note also, if P
c

−→ P ′:

!(a. P + b. Q)
a

−→
a

−→
c

−→ P ′ | P | !(a. P + b. Q)

!a. P | !b. Q
a

−→
a

−→
c

−→ P ′ | P | !a. P | !b. Q

so a bisimulation up-to ∼ should include also such pairs of
derivates

– Again, these added pairs may be considered redundant

(for instance, !(a. P + b. Q) ∼ !a. P | !b. Q

implies P ′ | P | !(a. P + b. Q) ∼ P ′ | P | !a. P | !b. Q)

– We can avoid these additional pairs using a different form of
up-to

page 17

Up-to techniques: example

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

C(R) , {(C[P], C[Q]) : P R Q}

R C(R) implies R ⊆ ∼

diagram : P

α

R Q

α

C" [P ′] R C" [Q′]

page 18

Example of composition of techniques

We can put together up-to ∼ and up-to context

R ∼ C[R] ∼ implies R ⊆ ∼

diagram : P

α

R Q

α

P ′ ∼ C"[P ′′] R C"[Q′′] ∼ Q′

page 19

Back to our proof:

R , {!(a. P + b. Q), !a. P | !b. Q}

is a bisimulation up-to ∼ and up-to context

!(a. P + b. Q)
a

−→ (a. P + b. Q)n | P | (a. P + b. Q)m

| !(a. P + b. Q)

R

!a. P | !b. Q
a

−→ (a. P)n | P | (a. P)m | !a. P | !b. Q

page 20

Back to our proof:

R , {!(a. P + b. Q), !a. P | !b. Q}

is a bisimulation up-to ∼ and up-to context

!(a. P + b. Q)
a

−→ (a. P + b. Q)n | P | (a. P + b. Q)m

| !(a. P + b. Q)

∼

P | !(a. P + b. Q)

R

P | !a. P | !b. Q

∼

!a. P | !b. Q
a

−→ (a. P)n | P | (a. P)m | !a. P | !b. Q

page 21

Back to our proof:

R , {!(a. P + b. Q), !a. P | !b. Q}

is a bisimulation up-to ∼ and up-to context

!(a. P + b. Q)
a

−→ (a. P + b. Q)n | P | (a. P + b. Q)m

| !(a. P + b. Q)

∼

P" | !(a. P + b. Q)

R

P" | !a. P | !b. Q

∼

!a. P | !b. Q
a

−→ (a. P)n | P | (a. P)m | !a. P | !b. Q

page 22

Back to our proof:

R , {!(a. P + b. Q), !a. P | !b. Q}

is a bisimulation up-to ∼ and up-to context

!(a. P + b. Q)
a

−→ (a. P + b. Q)n | P | (a. P + b. Q)m

| !(a. P + b. Q)

∼

P" | !(a. P + b. Q)

R R

P" | !a. P | !b. Q

∼

!a. P | !b. Q
a

−→ (a. P)n | P | (a. P)m | !a. P | !b. Q

page 23

More up-to techniques: example

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

– rules for invariance of ∼ under injective substitutions
(up-to injective substitutions)

Inj(R) , {(Pσ, Qσ) : P R Q , σ injective on names}

R Inj(R) implies R ⊆ ∼

diagram :

P

α

R Q

α

P ′σ" R Q′σ"
σ: an injective function

implies R ⊆ ∼

page 24

More composition of techniques

R ∼ C[Inj(R)] ∼ implies R ⊆ ∼

diagram : P

α

R Q

α

P ′ ∼ C"[P ′′σ"] R C"[Q′′ σ"] ∼ Q′

More sophistication ⇒

– more powerful technique

– harder soundness proof for the technique

page 25

More examples, in a
higher-order calculus
(the Ambient calculus)

page 26

Ambients: syntax

Processes
P ::= n〈P 〉 ambient

| inn. P in action

| outn. P out action

| openn. P open action

| P | P parallel

| νn P restriction

| . . .

page 27

The in movement

n

inm.P |

m

Q −→

m

n

P | Q

The out movement

m

n

outn.P1 | P2 | Q
−→

n

P1 | P2
|

m

Q

page 28

Example property

The perfect-firewall equation in Ambients

P : a process with n not free in it

νn n〈P 〉 ∼ 0

Proof: Let’s find a bisimulation...

page 29

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

page 30

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

No! Suppose n〈P 〉
enter k〈Q〉

−−−−−−−−−→ n〈P 〉

(the loop: simplifies the example, not necessary)

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 R" k〈Q〉 | 0

Try again...

page 31

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

page 32

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

No! Suppose Q = h〈out k. R〉 | Q′

k〈Q | νn n〈P 〉 〉 R k〈Q〉 | 0

k〈Q′ | νn n〈P 〉 〉 | h〈R〉 R" k〈Q′〉 | h〈R〉 | 0

Try again...
page 33

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

Also: Suppose Q = inh. Q′

k〈Q | νn n〈P 〉 〉

enter h〈R〉

R k〈Q〉 | 0

enter h〈R〉

h〈R | k〈Q′ | νn n〈P 〉 〉 〉 R" h〈R | k〈Q′ 〉 〉 | 0

Try again...

page 34

The bisimulation:

R , ∪C is a static contexts

{(S, T) : S ∼ C[νn n〈P 〉]

T ∼ C[0] }

C ::= k〈C〉 | P | C | νa C | []

We started with the singleton relation

{(νn n〈P 〉 , 0)}

The added pairs: redundant ? (derivable, laws of ∼)

page 35

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

page 36

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q | νn n〈P 〉 〉 k〈Q | 0〉

page 37

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q |νn n〈P 〉 〉" R k〈Q | 0〉"
[Zappa-Nardelli, Merro, JACM]

“up-to ∼” and “up-to context”

(full proof also needs up-to injective substitutions)
page 38

Conclusions, part I

– Enhancements of the bisimulation proof methods:
extremely useful

∗ essential in π-calculus-like languages, higher-order
languages

– Various forms of enhancement (“up-to techniques”)
exist

∗ composition of techniques

– Proofs of soundness of these techniques may be
non-trivial

∗ separate ad hoc proofs for each technique

page 39

CONTENTS

✓ • Introduction [1]

✓ • Part I: Examples [3]

☞ • Part II: Counterexamples [40]

• Part III: Towards an algebra of enhancements [48]

• Part IV: Weak bisimilarity [58]

Redundant pairs: first attempt

S , a set of inference rules valid for ∼

(P, Q) redundant in {(P, Q)} ∪ R if

S
R ⊆ ∼

P ∼ Q

Sound ? i.e.:

P
α

R Q

α

P ′ R ∪ {redundant pairs } Q′

implies R ⊆ ∼

?

page 40

False!

Counterexample (in CCS)

S ,
a. P ∼ a. Q

P ∼ Q

R , {(a. b, a. c)}

{(b, c)} redundant in R ∪ {(b, c)} S
R ⊆ ∼

b ∼ c

a. b
a

R a. c

a

b R ∪ {(b, c)} c

but a. b 6∼ a. c

page 41

Another example

Recall the “bisimulation up-to context and up-to ∼” technique:

diagram : P

α

R Q

α

P ′ ∼ C"[P ′′] R C"[Q′′] ∼ Q′

It seems valid because ∼ is transitive and is a congruence,
hence usable in all languages where ∼ has these 2 properties

page 42

False!

P := f(P) | a. P | 0

P
a

−→ P ′ P ′ a
−→ P ′′

f(P)
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0

a

R a. a. 0

a

0 ∼ f" (a. 0) R f" (a. a. 0) ∼ a. 0

page 43

False!

P := f(P) | a. P | 0

P
a

−→ P ′ P ′ a
−→ P ′′

f(P)
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0

a

R a. a. 0

a

0 ∼ f"(a. 0) R f"(a. a. 0) ∼ a. 0

page 44

Weak bisimilarity (≈)

, −→ · · · −→

α
,

α
−→

Weak bisimulation

Too heavy: P
α

R Q

α

P ′ R Q′

Better:
(read: ⇒)

P
α

R Q

α

P ′ R Q′

page 45

Example: up-to bisimilarity that fails

≈ is transitive, yet:

τ . a. 0 R 0

a. 0 0

≈ ≈

τ . a. 0 R 0

page 46

Conclusions, part II

– When is a pair redundant?

– Needed: a general theory of enhancements of the
bisimulation proof method

∗ powerful techniques
∗ combination of techniques
∗ easy to derive their soundness

– An attempt: sound functions, respectful functions
[Sangiorgi]

– NB: all results that follow proved in Coq

page 47

CONTENTS

✓ • Introduction [1]

✓ • Part I: Examples [3]

✓ • Part II: Counterexamples [40]

☞ • Part III: Towards an algebra of enhancements [48]

• Part IV: Weak bisimilarity [58]

Sound functions

F : ℘(P × P) 7→ ℘(P × P) :

sound if R F(R) implies R ⊆ ∼

P

α

R Q

α

P ′ F(R) Q′

Each sound function: a valid enhancement

– Are there interesting sound functions?

– Properties:

∗ membership easy to check?
∗ nice compositionality properties?

page 48

Sound functions

F : ℘(P × P) 7→ ℘(P × P) :

sound if R F(R) implies R ⊆ ∼

P

α

R Q

α

P ′ F(R) Q′

Each sound function: a valid enhancement

– Are there interesting sound functions? YES

– Properties:

∗ membership easy to check? NO
∗ nice compositionality properties? NO

page 49

Towards an algebra of up-to techniques

F : Relations 7→ ℘(P × P)

respectful if
R ⊆ S R S

F(R) ⊆ F(S) F(R) F(S)

Examples:
identity I [I(R) = R]

constant-to ∼ U [U(R) = ∼]

closure under monadic contexts C

closure under inj. substitutions Inj

Proofs of respectfulness: easy

Non-example: constant-to P × P
page 50

Compositionality properties

A respectful second-order function:
preserves the respectfulness of its arguments

Examples:

composition ◦ [(G ◦F)〈R〉 = G〈F〈R〉〉]

union ∪i∈I [(
⋃

i∈I Fi)〈R〉 ,
⋃

i∈I(Fi〈R〉)]

chaining ⌢ [(G⌢F)〈R〉 = G(R) F(R)]

Proofs of respectfulness: easy

page 51

The previous up-to techniques before can be derived:

U⌢I⌢U = up-to ∼
P

α

R Q

α

P ′ ∼R∼ Q′

⋃

n > 0 I⌢ · · · ⌢I︸ ︷︷ ︸
n

= up-to transitive closure
P

α

R Q

α

P ′ R+ Q′

Similarly we derive: C∗ (up-to polyadic contexts)

∼ C∗(Inj(R)) ∼

page 52

Conclusions, part III

– An attempt of an algebra of enhancements

∗ Minimal basic ingredients
(identity function, constant functions,)

∗ 2nd order functions to derive more powerful techniques

– Sufficient to derive many techniques of practical
interest

(for strong bisimulation)

– However , in this theory:

∗ ad hoc definitions?
∗ all proofs very easy

page 53

Problem 1: Robust definition of enhancement

– Better definition of respectfulness ?

– Abstract formulations of a more powerful bisimulation
principle ?

– Generalisation to coinduction ?

∗ Partial results on coalgebras [Lenisa, Honsell]

page 54

Problem 2: soundness of up-to context

– What conditions on contexts for the up-to context to be
sound?

∗ Bisimulation as a congruence? i.e.:

P

α

R Q

α

C"[P ′] R C"[Q′]

sound iff C preserves ∼?
– And for respectfulness?

∗ Bisimulation as a congruence? No!
∗ Partial answer: some behavioural conditions on contexts

[Sangiorgi]

page 55

Problem 3: up-to context in higher-order
languages

Example: λ-calculus (call-by-value/name,typed/untyped,...)

M
λR

N , M λx. M ′ & N = M ′{ R/x }

Applicative bisimulation (≃) : M
λR

R N
λR

M ′ R N ′

Theorem: ≃ is a congruence

Applicative bisimulation up-to polyadic contexts
M

λR

R N

λR

C"[M1, . . . , Mn] R C"[N1, . . . , Nn]

implies R ⊆ ≃?
page 56

– Related to the problem of compositionality of bisimulation?

– Soundness of limited forms of up-to context :

∗ [Pitts 96, Lassen 98] : typed and untyped λ-calculus, for
various reduction strategies

∗ [Koutavas, Wand 06] : a λ-calculus with references

Example of use:

Park-induction property for various fixed-point combinators
(Curry, Turing, call-by-value, rec)

λx. e{ v/f } . v

rec f = λx. e . v

page 57

CONTENTS

✓ • Introduction [1]

✓ • Part I: Examples [3]

✓ • Part II: Counterexamples [40]

✓ • Part III: Towards an algebra of enhancements [48]

☞ • Part IV: Weak bisimilarity [58]

Example: up-to bisimilarity that fails

τ . a. 0 R 0

a. 0 0

≈ ≈

τ . a. 0 R 0

page 58

Example: up-to bisimilarity that fails

τ . a. 0 R 0

a. 0 0

≈ ≈

τ . a. 0 R 0

– Chaining (ie: relational composition) is not respectful

– What in place of ≈ ?

∗ Expansion (.)
[Arun-Kumarm, Hennessy ’91; Milner, Sangiorgi ’92]

∗ Controlled relations [Pous ’05]
page 59

Example: up-to bisimilarity that fails

τ . a. 0 R 0

a. 0 0

≈ ≈

τ . a. 0 R 0

– Chaining (ie: relational composition) is not respectful

– What in place of ≈ ?

∗ Expansion (.)
[Arun-Kumarm, Hennessy ’91; Milner, Sangiorgi ’92]

∗ Controlled relations [Pous ’05]
page 60

– The culprit: chaining (ie, relational composition)

– Everything else: respectfulness is ok

– An important use of chaining:

P
α

R Q

α

P ′ ≈ F(R) ≈ Q′

– What should we use in place of ≈ above?

∗ Expansion (.)
[Arun-Kumarm, Hennessy ’91; Milner, Sangiorgi ’92]

∗ Controlled relations [Pous ’05]

page 61

Theorem

If F weakly respectful:

P
α

R Q

α

P ′ & F(R) ≈ Q′

implies R ⊆ ≈

Powerful:

candidate relations contain only “normal forms”

page 62

Example: correctness of an abstract machine
for (Safe) Ambients

[Giannini, Sangiorgi, Valente, ’04]

Nesting of ambients yields a tree

Example:

a〈b〈〉 | c〈d〈〉〉〉 becomes

Movements of ambients:

– modify the tree structures

– can produce forwarders

page 63

The abstract machine – graphical representation

– Forwarders: common in
distributed systems

– Forwarder chains

– Possible useless forwarders

page 64

Correctness proof (sketch)

– Ideally, using R , {([[P]], P)}
P : an Ambient term
[[P]] : representation of P in the AM

– However:

[[P]] R P

νh (h ⊲ k | [[Q(h)]]) R" Q(k)

– Further: in the AM there may be messages floating around
(cf: non-atomicity of the implementation of Ambient basic
operations)

– Indeed: the bisimulation relation needed is very complex.

page 65

Expansion (.)

P . Q if:

{

P ≈ Q

P is more efficient than Q

Definition:

1. P
α

. Q

α

P ′ . Q′

read: (⇒)

2. Q

α

& P
α

Q′ & P ′

Q & P

Q′ & P

read: (⇒)

Examples: P . τ . P

P 6& τ . P

page 66

R works if we use expansion:

[[P]] R P

νh (h ⊲ k | [[Q(h)]]) Q(k)

& ≈

[[Q(k)]] R Q(k)

Lemma: If h used only for messages in A

νh (h ⊲ k | A) & A{ k/h }

Similarly for features other than forwarders

page 67

Lemma νh (h ⊲ k | A) & A{ k/h }

– Simple proof

∗ local property of the AM
∗ up-to techniques applicable to expansion

(ex: expansion up-to expansion)

page 68

Rigidity of expansion

P . Q says: P is better at every step

Example: optimise the AM [Hirschkoff, Pous, Sangiorgi, ’05]

– garbage collection of useless forwarders

∗ use counters in forwarders (= number of children)

– remove chains of forwarders

∗ adapt Tarjan’s union-find algorithm (relocation)

page 69

Relocation (cf: Tarjan sets)

page 70

[[P]] , the original machine
[P] , the optimised machine

– [P] obviously better, but [P] 6. [[P]]

∗ initial adminstrative work, that only later pays off

– Worst: in the optimised machine:

νh (h ⊲ k | A) 6& A{ k/h }

page 71

νh (h ⊲ k | A) 6& A{ k/h }

page 72

Equivalence between the two machines

– Ideally, using R , {([[P]], [P])} (normal forms)

But R is not a bisimulation up-to expansion

– Correctness proof in [Hirschkoff, Pous, Sangiorgi, ’05]:
a full bisimulation

– [Pous 05]: A proposal for relations more flexible than .

∗ Now R works
∗ Define properties needed in a relation for the “up-to”

Example: termination of the transitive closure
∗ The relation need not be behaviourally interesting
∗ Drawbacks: proving the conditions, compositionality

page 73

Conclusions, part IV

– ., or other relations:

∗ needed to control silent moves
∗ allow us to reduce candidate relations only normal forms

– .: nice mathematical properties, sometimes too rigid

page 74

Problem 4: up-to in the weak case

a) Improvements of .

– better notion of “efficiency”
– more powerful up-to

(goal: normal forms in candidate relations)

b) Composition of up-to techniques

– how can chaining be replaced?

Important! (practical relevance of weak bisimilarity)

Partial results: [Pous 05]

page 75

Problem 5: Mechanical verification

– How can these enhancements be integrated in tools ?

– Partial results [Hirschkoff]

∗ theorem provers
∗ automatic checking
∗ Applied to infinite-state processes

page 76

Problem 6: Other primitive techniques

– Example: up-to substitutions sound in the π-calculus

P

α

R Q

α

P ′σ" R Q′σ"

implies R ⊆ ∼?

page 77

References

This course is based on the draft book:

– Davide Sangiorgi, An introduction to bisimulation and
coinduction, Draft, 2009

Please contact me if you’d like to read and comment parts of it.

page 78

Focus lab

A joint initiative between INRIA (France) and Univ. Bologna
(Italy)

Permanent members: M. Bravetti, U. Dal Lago, M. Gabbrielli,
C. Laneve, S. Martini, D. Sangiorgi, G. Zavattaro.

Scientific theme: semantic foundations for distributed
software systems (ubiquitous systems)

Eg: methods for the analysis and synthesis, at various levels
of abstraction; issues of expressiveness

Central concepts: ‘interaction’, ’component’

Basis: logics, types, algebra, operational semantics

NB: A recently established “Collegio di Cina” within the
University of Bologna

page 79

