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Equality on processes, coinductively

Bisimulation:

Arelation Rst. P R Q
a‘l, y
P R Q

Bisimilarity (~) :

U {R : R isabisimulation }

Hence:

xRy R is a bisimulation

r ~7y

(bisimulation proof method)
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This talk

Enhancements of the bisimulation proof method

— Motivations
— Results and Examples

— Open problems
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Examples, in CCS-like
calculus



Pleces of syntax and transitions

. a p|'P-L p
np : a. P — P rep : a
'P — P’
P2 p Q%L ¢
sumL: 7 SUmR 7
P+Q — P’ P+Q— Q
P2 p Q%L ¢
parL : park :

PIQ-5P|Q PIQ- 5 P|Q

Intuitively: '!P =P | P |...| P
(indeed P | ! P ~ ! P, as the transitions are the same)

a.(
P|...| P (ntmes)

Process abbreviations: a
P’n

A
A
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Enhancements of the bisimulation method: an
example

A property of replication

'a+b) ~!a|!b

Proof: Let’s find a bisimulation...



Is this a bisimulation?

R = {((a+b), la|!b)}
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Is this a bisimulation?

R = {((a+b), la|!b)}

No!
'(a + b) (a+b)" 0] (a+b)™|!(a+b)
R X
la | 'b a0 |a™|la|!b

NB:Vn,m, Y(a+b) — (a+b)"|0]|(a+b™]!(a+bd)
la | - a”|0]|a™|'a|!'b

Try again...
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Is this a bisimulation?

R £ Up,m

{

((a -

i b)’n

((a -

i b)n

L b)m

L b)m

'(a -

-b), a™ [0 |a™ [la|!b),

'(a -

b)), la|b™ | 0] b™ | 1b)
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Is this a bisimulation?

R £ Up,m
{ ((a+0d)"
((a + b)"

No!

L b)m

(a+b)" 0] (a+0)™

| 1(a +b)

R

a®|0|a™|!a|!b

Try again.

L b)m

'a@a+b), a™ |0|a™ |!a|!b),

(a4 b), la|b™|0|b™|!b)

(a+b)"1 | 02| (a+b)™
| 1(a + b)

X

a” | 0|a™|!la|b]|!b

page 9

}



It is possible to write the full bisimulation, but one has to be
careful

We started with the singleton relation

{({(a+Dd), la|!b)}

The added pairs: redundant ? (derivable, laws of ~)
Can we work with relations smaller than bisimulations?
Advantages:

— fewer and simpler bisimulation diagrams

— easiler to find the relation to work with
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Redundant pairs

What we would like to have:

P R Q implies R C ~
ol vo
P’ R U {redundant pairs } Q’

R: less work, simpler to find

Notation

R—S 2 P R Q
04 e
P S Q
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Up-to techniques: example

— Rules for transitivity of ~ (up-to ~)

R — ~R ~ implies R C ~

P R Q
Qo l, Vv &
P/ -~ P// R Q// -~ Q/

diagram :
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Now we can establish !(a 4+ b) ~ !a | !b using the singleton
relation

R = {!(a+0b),!a]|!b}

and proving that it is a bisimulation up-to ~

(a+b)" 0] (a+0)"[!(a+0b)

a”|0|a™|la|!db

(laws P | !P ~!P and 0 | P ~ P, congruence of ~)
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A more interesting example

'(a.P+b.Q) ~'!'a. P |'b.Q

Proof: Let’s find a bisimulation...
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Is this a bisimulation up-to ~?

R 2{(a.P+b.Q), 'a.P|'b.Q)}
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Is this a bisimulation up-to ~?

R £ { ({(a.P+b.Q), 'a.P | !b.Q) }

NoO!
'(a. P + b.Q) P|'a.P+b.Q)

R X

la. P | 1b.Q P|'a.P|'b.Q



— Note also, If P £, pr

a a cC

'(a. P + b. Q) P’ | P|!(a.P +b.Q)

a a c

la. P | 1b.Q P'|P|'a.P|!b.Q

S0 a bisimulation up-to ~ should include also such pairs of
derivates

— Again, these added pairs may be considered redundant
(for instance, !(a. P +b.Q) ~ !a. P | !b. Q
implies P | P | '(a.P+b.Q) ~ P | P|!a.P |!b.Q)

— We can avoid these additional pairs using a different form of
up-to
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Up-to techniques: example

— Rules for transitivity of ~ (up-to ~)
— rules for substitutivity of  ~ (up-to context)

C(R) = {(C[P],C[Q]) : PR Q}

R — C(R) implies R C ~

diagram : P R Q
ay e
& [P] R &I[Q]



Example of composition of techniques
We can put together up-to ~ and up-to context

R — ~ C[R] ~ implies R C ~

diagram : R

P Q
al ‘La
P~ BZ[P”] R X[Q”] ~ Q'
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Back to our proof:
R =2 {(a.P+b.Q),!a. P | 'b.Q}

IS a bisimulation up-to ~ and up-to context

l(a. P + b. Q) (a.P+b.Q)" | P | (a. P+ b.Q)™
| 1(a. P + b. Q)

(a. P)" | P | (a. P)™ | la. P | 'b.Q
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Back to our proof:
R =2 {(a.P+b.Q),!a. P | 'b.Q}

IS a bisimulation up-to ~ and up-to context

l(a. P + b. Q) (a.P+b.Q)" | P | (a. P+ b.Q)™
| 1(a. P + b. Q)

(a. P)" | P | (a. P)™ | la. P | 'b.Q
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Back to our proof:
R =2 {(a.P+b.Q),!a. P | 'b.Q}

IS a bisimulation up-to ~ and up-to context

l(a. P + b. Q) (a.P+b.Q)" | P | (a. P+ b.Q)™
| 1(a. P + b. Q)

X

X

(a. P)" | P | (a. P)™ | la. P | 'b.Q

page 22



Back to our proof:
R =2 {(a.P+b.Q),!a. P | 'b.Q}

IS a bisimulation up-to ~ and up-to context

'(a. P 4+ b.Q) (a. P+b.Q)" | P|(a.P+b.Q)™
| (a. P 4+ b.Q)

X

R

X

(a. P)" | P | (a. P)™ | la. P | 'b.Q
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More up-to techniques: example

— Rules for transitivity of ~ (up-to ~)
— rules for substitutivity of ~ (up-to context)

— rules for invariance of ~ under injective substitutions
(up-to injective substitutions)

Inj(R) = {(Po,Qo) : PR Q, oinjective on names}

R — Inj(R) implies R C ~

o ad o
jagram : P’}( - Q’)( implies C ~

o . an injective function
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More composition of techniques

R — ~ C[Inj(R)] ~ implies R C ~

diagram : P R Q

P~ KPP, ] REQK] ~ Q

More sophistication =

— more powerful technigue

— harder soundness proof for the technique
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More examples, In a

higher-order calculus
(the Ambient calculus)



Ambients: syntax

2= n(P)
inn. P
out n. P
openn. P
P|P

vn P

Processes
ambient

In action
out action
open action
parallel

restriction
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The in movement

The out movement

3
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Example property
The perfect-firewall equation in Ambients
P: a process with n not free Iin it

vn n{(P) ~ 0

Proof: Let’s find a bisimulation...
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Is this a bisimulation?

R = {(vn n(P), 0) }
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Is this a bisimulation?

R = {(vn n(P), 0) }

ter _k
No! Suppose n{P) e <Q>>n

(P)

(the loop: simplifies the example, not necessary)

vn n{P) R 0

EQ|vn n(P)) K  kQ)|O0

Try again...
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Is this a bisimulation?

R = i (vn n(P), 0) }
Uk, {(k(Q|vn n(P)), k(Q)|0) }



Is this a bisimulation?

R = i (vn n(P), 0) }
Uk, {(k(Q|vn n(P)), k(Q)|0) }

No! Suppose Q = h{out k. R) | Q’

k(Q | vn n(P) ) R k(Q) | 0

K(Q |vn n(P)) |R(R) R  KQ)|h(R)| O

Try again...



Is this a bisimulation?

R = i (vn n(P), 0) }
Uk, {(k(Q|vn n(P)), k(Q)|0) }

Also: Suppose Q = inh. Q’

k(Q | vn n(P) ) R k(Q) | 0

h(R|Kk(Q |vnn(P))) K  h(R|kQ))]|0

Try again...



The bisimulation:

R £ Uc is a static contexts

{(S,T) : S ~ Clvn n(P) |
T ~ CI0] }

C ::= k(C) ‘ P |C | va C ‘ [ ]

We started with the singleton relation

{(vn n(P), 0)}

The added pairs: redundant ? (derivable, laws of ~)
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Proof of the firewall, composition of up-to
techniques

We can prove vn n(P) ~ 0 using the singleton relation
vn n(P) R 0

k(Q | vn n(P)) £(Q) | 0
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Proof of the firewall, composition of up-to
techniques

We can prove vn n(P) ~ 0 using the singleton relation
vn n(P) R 0

k(Q | vn n(P)) £(Q) | 0

Y Y

k(Q | vn n(P)) k{Q | 0)



Proof of the firewall, composition of up-to
techniques

We can prove vn n(P) ~ 0 using the singleton relation

vn n(P) R 0
’ ’
k(Q | vn n(P)) k(Q) | 0

th/n n(P) ) R k>é| 0)

“up-to ~” and “up-to context”

(full proof also needs up-to injective substitutions)
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Conclusions, part |

— Enhancements of the bisimulation proof methods:
extremely useful

x essential in wr-calculus-like languages, higher-order
languages

— Various forms of enhancement (“up-to techniques”)
exist

x composition of techniques

— Proofs of soundness of these technigues may be
non-trivial
x separate ad hoc proofs for each technique
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Redundant pairs: first attempt

S £ a set of inference rules valid for ~
(P, Q) redundant in {(P,Q)} U R if

R C ~
P~Q

Sound ? le.:
R Q implies R C ~

P
a¢ X! ?

P’ R U {redundant pairs } Q’ s
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False!
Counterexample (in CCS)

a.P ~ a.Q
P~ Q

S £

R = {(a.b,a.c)}

{(b,c)} redundantin R U {(b,c)}

R but

a.b a.c
a) la
b RU{(b,c)} ¢
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Another example

Recall the “bisimulation up-to context and up-to ~” technique:

diagram : R

P Q
al ‘La
I BZ[P”] R X[Q”] ~ Q)

It seems valid because ~ is transitive and is a congruence,
hence usable in all languages where ~ has these 2 properties
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False!

P:=f(P) | aP| o0

P i) P’ P’ i) P
f(P) = P"

Bisimulation is a congruence, yet:

a.0 R
al
0 ~ f(a.0) f(a. a. 0) ~

a.a.(

a.(

page
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False!

P:=f(P) | aP| o0

P i) P’ P’ i) P
f(P) = P"

Bisimulation is a congruence, yet:

a.0 R
o
0 NX(G“ 0) R X(a. a. 0) ~

a.a.(

la

a.(

page
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Weak bisimilarity ( =)

—— p— —_— et e e ———>
(81 A o
— 2 —_— —, —

Weak bisimulation

Tooheavy: P R Q

aJL | o
P R Q
Better: P R Q
(read: =) o J o

P R Q

page
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Example: up-to bisimilarity that fails

= IS transitive, yet:

S
O = O

e
e

7.a.0 R 0

page
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Conclusions, part I

— When is a pair redundant?

— Needed: a general theory of enhancements of the
bisimulation proof method

x powerful techniques
x combination of techniques
x easy to derive their soundness

— An attempt: sound functions, respectful functions

— NB: all results that follow proved in Coq
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Sound functions
F:0p(PXP)— p(P XP):
sound if R >— F(R) implies R C ~
P R Q
a¢, @a
P F(R) Q'

Each sound function: a valid enhancement

— Are there interesting sound functions?

— Properties:

x membership easy to check?
x Nice compositionality properties?

page
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Sound functions
F:0p(PXP)— p(P XP):
sound if R >— F(R) implies R C ~
P R Q
a¢, @a
P F(R) Q'

Each sound function: a valid enhancement

— Are there interesting sound functions? YES

— Properties:

x membership easy to check? NO
x Nice compositionality properties? NO
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Towards an algebra of up-to technigues

F : Relations — (P X P)

RCS R—S

respectful if F(R) C F(S) F(R) — F(S)

Examples:
identity Z [Z(R) = R]
constant-to ~ U [U(R) = ~]
closure under monadic contexts C
closure under inj. substitutions Inj

Proofs of respectfulness: easy

Non-example: constant-to P X P
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Compositionality properties

A respectful second-order function:
preserves the respectfulness of its arguments

Examples:
composition 0 | (G F)(R) =G(F(R)) |
union Wier [ (Usjer F)(R) & Uier(Fi(R)) ]
chaining B (G F)(R)=G(R) F(R) |

Proofs of respectfulness: easy
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The previous up-to techniques before can be derived:

P R Q

U T U = upto~ af e

P ~R~ Q
P R Q
Un >0 Z_::-"Z = up-totransitive closure e
n P R+ Q/

Similarly we derive: C* (up-to polyadic contexts )

~ C*(INj(R)) ~
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Conclusions, part Il

— An attempt of an algebra of enhancements
x Minimal basic ingredients

(identity function, constant functions, ....)
x 2nd order functions to derive more powerful techniques

— Sufficient to derive many techniques of practical
Interest

(for strong bisimulation)

— However, in this theory:

x ad hoc definitions?
x all proofs very easy
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Problem 1: Robust definition of enhancement

— Better definition of respectfulness ?

— Abstract formulations of a more powerful bisimulation
principle ?

— Generalisation to coinduction ?
« Partial results on coalgebras [l enisa, Honsell]
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Problem 2: soundness of up-to context

— What conditions on contexts for the up-to context to be
sound?

x Bisimulation as a congruence? I.e.:

P R Q soundiff C preserves ~
a¢' @a ?
& [Pl R &[Q'] )

— And for respectfulness?

x Bisimulation as a congruence? No!
* Partial answer: some behavioural conditions on contexts
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Problem 3: up-to context in higher-order
languages

Example: A-calculus (call-by-value/name,typed/untyped,...)

AR
M—N 2 M— Xxa.M' & N=M{8/z}

Applicative bisimulation (  ~): M R N
AR VAR
M’ R N’

Theorem: ~~ Is a congruence

Applicative bisimulation up-to polyadic contexts
M R N implies R C ~
ARV IR ?
& [M,...,Mp] R &[N1,..., Ny -
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— Related to the problem of compositionality of bisimulation?

— Soundness of limited forms of up-to context

* . typed and untyped A-calculus, for
various reduction strategies
* . a A-calculus with references

Example of use:

Park-induction property for various fixed-point combinators
(Curry, Turing, call-by-value, rec)

Az.e{V/f} S
rec f =Ax.e S v
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Example: up-to bisimilarity that fails

S
O = QO



Example: up-to bisimilarity that fails

-
O = 0O

— Chaining (ie: relational composition) is not respectful

— What in place of =~ ?
x Expansion ( <)

% Controlled relations
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Example: up-to bisimilarity that fails

-
O = 0O

— Chaining (ie: relational composition) is not respectful

— What in place of =~ ?
x Expansion ( <)

% Controlled relations
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— The culprit: chaining (ie, relational composition)
— Everything else: respectfulness is ok

— An important use of chaining:

P R Q
o |
P =~F(R)= Q
— What should we use in place of = above?
*x Expansion ( <)
[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]
x Controlled relations [Pous '05]
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Theorem

If F weakly respectful:
P R Q

Implies R C =
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Example: correctness of an abstract machine
for (Safe) Ambients

Nesting of ambients yields a tree

Example:

a(b() | c(d{))) becomes b[F] ¢

Movements of ambients:

— modify the tree structures

— can produce forwarders

page 63



The abstract machine — graphical representation

A

— Forwarders: common In
‘ A distributed systems
N — Forwarder chains
— Possible useless forwarders
I
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Correctness proof (sketch)

P : an Ambient term

- a
—Ideally, using R = {([P], P)} [P] : representation of P in the AM

— However:

[P] R P

vh (h>k|[QMR)]) K Qk)

— Further: in the AM there may be messages floating around
(cf: non-atomicity of the implementation of Ambient basic
operations)

— Indeed: the bisimulation relation needed is very complex.

page 65



Expansion ( <)

p<qir! P¥Q
P I1s more efficient than Q
Definition:
1. P S Q read: (=)
al |
P S Q
2. Q > P Q > P read: (=)
ay fo { |
Q2 P Q2 P

Examples: P<rt.P
PZr.P
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R works if we use expansion:

[P] R P

vh (h >k | [Q(h)]) Q(k)
> ~

[Q(K)] R Q(k)

Lemma: If h used only for messages in A

vh (h>k| A > A{k/n}

Similarly for features other than forwarders
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Lemma vh (h> k| A) > A{k/n}

}{\ >

— Simple proof
x local property of the AM
x Up-to techniques applicable to expansion
(ex: expansion up-to expansion)
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Rigidity of expansion
P < @ says: P is better at every step

Example: optimise the AM

— garbage collection of useless forwarders
x Use counters in forwarders (= number of children)

— remove chains of forwarders
x adapt Tarjan’s union-find algorithm (relocation )
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{M}

Relocation (cf: Tarjan sets)

{M}

{M}

{M}
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the original machine
the optimised machine

[P]
[P]

A4
A

— [P] obviously better, but [P] £ [P]
x Initial adminstrative work, that only later pays off

— Worst: in the optimised machine:
vh(h> k| A) 7 A{k/n}

Xu %




vh(h>k|A) 7 A{k/n}

R

{M,N,O}



Equivalence between the two machines

— ldeally, using R = {([P],[P])} (normal forms)
But R is not a bisimulation up-to expansion

— Correctness proof in [Hirschkoff, Pous, Sangiorgi, '05]:
a full bisimulation

— [Pous 05]: A proposal for relations more flexible than S

x Now R works

x Define properties needed in a relation for the “up-to”
Example: termination of the transitive closure

x The relation need not be behaviourally interesting

x Drawbacks: proving the conditions, compositionality
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Conclusions, part IV

— <, or other relations:

x needed to control silent moves
x allow us to reduce candidate relations only normal forms

— <! nice mathematical properties, sometimes too rigid
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Problem 4: up-to in the weak case

a) Improvements of <

— better notion of “efficiency”
— more powerful up-to
(goal: normal forms in candidate relations)

b) Composition of up-to techniques
— how can chaining be replaced?

Important! (practical relevance of weak bisimilarity)

Partial results:
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Problem 5: Mechanical verification
— How can these enhancements be integrated in tools ?

— Partial results [Hirschkoff]

x theorem provers
x automatic checking
x Applied to infinite-state processes
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Problem 6: Other primitive techniques

— Example: up-to substitutions sound in the 7r-calculus

ON v
PR R QK

P R @ implies ’RQN?
H
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