Enhancements of the bisimulation proof method

Davide Sangiorgi

Focus Lab.,
INRIA (France) and University of Bologna (Italy)

Email: Davide.Sangiorgi@cs.unibo.it http://www.cs.unibo.it/~sangio/

BASICS 2009, Shanghai

CONTENTS

(T) Introduction [1]

- Part I: Examples
[3]
- Part II: Counterexamples [40]
- Part III: Towards an algebra of enhancements
- Part IV: Weak bisimilarity
[58]

Equality on processes, coinductively

Bisimulation:

$$
\begin{array}{cccc}
\text { A relation } \mathcal{R} \text { s.t. } & P & \mathcal{R} & Q \\
& \alpha \downarrow & & \downarrow \alpha \\
& P^{\prime} & \mathcal{R} & Q^{\prime}
\end{array}
$$

Bisimilarity (\sim) :
$\bigcup\{\mathcal{R}: \mathcal{R}$ is a bisimulation $\}$

Hence:

| $x \mathcal{R} y \quad \mathcal{R}$ is a bisimulation |
| :---: | :---: |
| $x \sim y$ |

(bisimulation proof method)

This talk

Enhancements of the bisimulation proof method

- Motivations
- Results and Examples
- Open problems

CONTENTS

\checkmark - Introduction [1]

- Part I: Examples
[3]
- Part II: Counterexamples [40]
- Part III: Towards an algebra of enhancements
- Part IV: Weak bisimilarity
[58]

Examples, in CCS-like calculus

Pieces of syntax and transitions

$$
\begin{aligned}
\text { inp: } a . P \xrightarrow{a} P & \text { rep: } \frac{P \mid!P \xrightarrow{a} P^{\prime}}{!P \xrightarrow{a} P^{\prime}} \\
\text { sumL: } \frac{P \xrightarrow{a} P^{\prime}}{P+Q \xrightarrow{a} P^{\prime}} & \text { sumR: } \frac{Q \xrightarrow{a} Q^{\prime}}{P+Q \xrightarrow{a} Q^{\prime}} \\
\text { parL: } \frac{P \xrightarrow{a} P^{\prime}}{P\left|Q \xrightarrow{a} P^{\prime}\right| Q} & \text { parR: } \frac{Q \xrightarrow{a} Q^{\prime}}{P|Q \xrightarrow{a} P| Q^{\prime}}
\end{aligned}
$$

Intuitively: $!P=P|P| \ldots \mid P$ (indeed $P \mid!P \sim!P$, as the transitions are the same)

Process abbreviations: $a \triangleq a .0$

$$
P^{n} \triangleq P|\ldots| P \quad(n \text { times })
$$

Enhancements of the bisimulation method: an example

A property of replication

$$
!(a+b) \sim!a \mid!b
$$

Proof: Let's find a bisimulation...

Is this a bisimulation?

$$
\mathcal{R} \triangleq\{(!(a+b),!a \mid!b)\}
$$

Is this a bisimulation?

$$
\mathcal{R} \triangleq\{(!(a+b),!a \mid!b)\}
$$

No!

$$
\begin{array}{ccc}
!(a+b) & \xrightarrow{a} & (a+b)^{n}|0|(a+b)^{m} \mid!(a+b) \\
\mathcal{R} & \text { 芚 } \\
!a \mid!b & \xrightarrow{a} & a^{n}|0| a^{m}|!a|!b
\end{array}
$$

NB: $\forall n, m, \quad!(a+b) \quad \xrightarrow{a}(a+b)^{n}|0|(a+b)^{m} \mid!(a+b)$

$$
!a\left|!b \xrightarrow{a} a^{n}\right| 0\left|a^{m}\right|!a \mid!b
$$

Try again...

Is this a bisimulation?

$$
\begin{aligned}
\mathcal{R} \triangleq & \cup_{n, m} \\
\{\quad & \left((a+b)^{n}|0|(a+b)^{m}\left|!(a+b), a^{n}\right| 0\left|a^{m}\right|!a \mid!b\right) \\
& \left((a+b)^{n}|0|(a+b)^{m}|!(a+b),!a| b^{n}|0| b^{m} \mid!b\right)
\end{aligned}
$$

Is this a bisimulation?

$$
\begin{aligned}
\mathcal{R} \triangleq & \cup_{n, m} \\
\{\quad & \left((a+b)^{n}|0|(a+b)^{m}\left|!(a+b), a^{n}\right| 0\left|a^{m}\right|!a \mid!b\right), \\
& \left((a+b)^{n}|0|(a+b)^{m}|!(a+b),!a| b^{n}|0| b^{m} \mid!b\right)
\end{aligned}
$$

No!

$$
\begin{array}{ccc}
(a+b)^{n}|0|(a+b)^{m} & \xrightarrow{b} & (a+b)^{n-1}\left|0^{2}\right|(a+b)^{m} \\
\mid!(a+b) & & \mid!(a+b) \\
\mathcal{R} & \text { 仅 } \\
& & \\
a^{n}|0| a^{m}|!a|!b \xrightarrow{b} & a^{n}|0| a^{m}|!a| b \mid!b
\end{array}
$$

Try again...

It is possible to write the full bisimulation, but one has to be careful

We started with the singleton relation

$$
\{(!(a+b),!a \mid!b)\}
$$

The added pairs: redundant? (derivable, laws of \sim)
Can we work with relations smaller than bisimulations?
Advantages:

- fewer and simpler bisimulation diagrams
- easier to find the relation to work with

Redundant pairs

What we would like to have:

$$
\begin{array}{ccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & & \text { implies } \mathcal{R} \subseteq \sim \\
P^{\prime} & \mathcal{R} \cup\{\text { redundant pairs }\} & Q^{\prime}
\end{array}
$$

\mathcal{R} : less work, simpler to find

Notation

$$
\mathcal{R} \longmapsto \mathcal{S} \triangleq \begin{array}{ccc}
P & \mathcal{R} & Q \\
& \alpha \downarrow & \\
& \downarrow \alpha \\
& P^{\prime} & \mathcal{S}
\end{array} Q^{\prime}
$$

Up-to techniques: example

- Rules for transitivity of \sim (up-to \sim)

$$
\mathcal{R} \longmapsto \sim \mathcal{R} \sim \text { implies } \mathcal{R} \subseteq \sim
$$

diagram :

$$
\begin{array}{cccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & & & \downarrow \alpha \\
P^{\prime} & \sim & P^{\prime \prime} & \mathcal{R}
\end{array} Q^{\prime \prime} \sim Q^{\prime}
$$

Now we can establish $!(a+b) \sim!a \mid!b$ using the singleton relation

$$
\mathcal{R} \triangleq\{!(a+b),!a \mid!b\}
$$

and proving that it is a bisimulation up-to \sim

$$
\begin{array}{ccc}
!(a+b) & \xrightarrow{a} & (a+b)^{n}|0|(a+b)^{m} \mid!(a+b) \\
& & \sim \\
& & (a+b) \\
\mathcal{R} & \mathcal{R} \\
& & \\
& & \sim \\
& & \sim \\
!a \mid!b & \xrightarrow{a} & a^{n}|0| a^{m}|!a|!b
\end{array}
$$

(laws $P \mid!P \sim!P$ and $0 \mid P \sim P$, congruence of \sim)

A more interesting example

$$
!(a . P+b . Q) \sim!a . P \mid!b . Q
$$

Proof: Let's find a bisimulation...

Is this a bisimulation up-to \sim ?

$$
\mathcal{R} \triangleq\{(!(a . P+b . Q),!a . P \mid!b . Q)\}
$$

Is this a bisimulation up-to \sim ?

$$
\mathcal{R} \triangleq\{(!(a . P+b . Q),!a . P \mid!b . Q)\}
$$

No!

$$
\begin{array}{ccc}
!(a . P+b . Q) & \xrightarrow{a} \sim P \mid!(a . P+b . Q) \\
\mathcal{R} & \\
!a . P \mid!b . Q & \xrightarrow{a} \sim P|!a . P|!b . Q
\end{array}
$$

- Note also, if $\boldsymbol{P} \xrightarrow{\boldsymbol{c}} \boldsymbol{P}^{\prime}$:

$$
\begin{aligned}
!(a . P+b . Q) & \xrightarrow{a} \xrightarrow{a} \xrightarrow{c} P^{\prime}|P|!(a . P+b . Q) \\
!a . P \mid!b . Q & \xrightarrow{a} \xrightarrow{a} \xrightarrow{c} P^{\prime}|P|!a . P \mid!b . Q
\end{aligned}
$$

so a bisimulation up-to \sim should include also such pairs of derivates

- Again, these added pairs may be considered redundant (for instance, ! $(a . P+b . Q) \sim!a . P \mid!b . Q$ implies $\left.P^{\prime}|P|!(a . P+b . Q) \sim P^{\prime}|P|!a . P \mid!b . Q\right)$
- We can avoid these additional pairs using a different form of up-to

Up-to techniques: example

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)

$$
\mathcal{C}(\mathcal{R}) \triangleq\{(C[P], C[Q]): P \mathcal{R} Q\}
$$

$\mathcal{R} \longmapsto \mathcal{C}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$
diagram :

$$
\begin{array}{ccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & & \downarrow \alpha \\
\not \mathcal{K}^{\prime}\left[P^{\prime}\right] & \mathcal{R} & \not \chi^{\prime}\left[Q^{\prime}\right]
\end{array}
$$

Example of composition of techniques

We can put together up-to \sim and up-to context

$$
\mathcal{R} \longmapsto \sim C[\mathcal{R}] \sim \text { implies } \mathcal{R} \subseteq \sim
$$

diagram :

$$
\begin{array}{ccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & & \\
P^{\prime} & \sim & \notin\left[P^{\prime \prime}\right] \\
\mathcal{R} \not \&^{\prime}\left[Q^{\prime \prime}\right] & \sim \\
Q^{\prime}
\end{array}
$$

Back to our proof:

$$
\mathcal{R} \triangleq\{!(a . P+b . Q),!a . P \mid!b . Q\}
$$

is a bisimulation up-to \sim and up-to context

$$
\begin{aligned}
!(a . P+b . Q) \quad \xrightarrow{a} \quad & (a . P+b . Q)^{n}|P|(a . P+b . Q)^{m} \\
& \mid!(a . P+b . Q)
\end{aligned}
$$

\mathcal{R}
$!a . P\left|!b . Q \quad \xrightarrow{a} \quad(a . P)^{n}\right| P\left|(a . P)^{m}\right|!a . P \mid!b . Q$

Back to our proof:

$$
\mathcal{R} \triangleq\{!(a . P+b . Q),!a . P \mid!b . Q\}
$$

is a bisimulation up-to \sim and up-to context

$$
\begin{array}{ccc}
!(a . P+b . Q) \quad \xrightarrow{a} \quad & (a . P+b . Q)^{n}|P|(a . P+b . Q)^{m} \\
& & \mid!(a . P+b . Q) \\
& & \sim \\
\mathcal{R} & & \\
& \\
& \\
& \\
& & \sim(a . P+b . P \mid!b . Q \\
!a . P \mid!b . Q & \xrightarrow{a} \quad(a . P)^{n}|P|(a . P)^{m}|!a . P|!b . Q
\end{array}
$$

Back to our proof:

$$
\mathcal{R} \triangleq\{!(a . P+b . Q),!a . P \mid!b . Q\}
$$

is a bisimulation up-to \sim and up-to context

$$
\begin{aligned}
& !(a . P+b . Q) \quad \xrightarrow{a} \quad(a . P+b . Q)^{n}|P|(a . P+b . Q)^{m} \\
& \mid!(a . P+b . Q) \\
& \nless \quad!(a . P+b . Q) \\
& \mathcal{R} \\
& \nless \quad|!a . P|!b . Q \\
& !a . P\left|!b . Q \quad \xrightarrow{a} \quad(a . P)^{n}\right| P\left|(a . P)^{m}\right|!a . P \mid!b . Q
\end{aligned}
$$

Back to our proof:

$$
\mathcal{R} \triangleq\{!(a . P+b . Q),!a . P \mid!b . Q\}
$$

is a bisimulation up-to \sim and up-to context

$$
\begin{array}{ccc}
!(a . P+b . Q) \quad & \xrightarrow{a} \quad(a . P+b . Q)^{n}|P|(a . P+b . Q)^{m} \\
& & \mid!(a . P+b . Q) \\
& & \sim \\
\mathcal{R} & & \\
& & \mathcal{R} \mid!(a . P+b . Q) \\
& & \ll|!a . P|!b . Q \\
& \sim \\
!a . P \mid!b . Q & \xrightarrow{a} \quad(a . P)^{n}|P|(a . P)^{m}|!a . P|!b . Q
\end{array}
$$

More up-to techniques: example

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)
- rules for invariance of \sim under injective substitutions (up-to injective substitutions)
$\operatorname{lnj}(\mathcal{R}) \triangleq\{(P \sigma, Q \sigma): P \mathcal{R} Q, \sigma$ injective on names $\}$
$\mathcal{R} \longmapsto \operatorname{Inj}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$

More composition of techniques

$\mathcal{R} \longmapsto \sim C[\operatorname{lnj}(\mathcal{R})] \sim$ implies $\mathcal{R} \subseteq \sim$

diagram :

$$
\alpha \downarrow
$$

\mathcal{R}
Q

$$
P^{\prime} \sim \not \mathscr{K}^{\prime}\left[P^{\prime \prime} \not \subset\right] \mathcal{R} \not \chi^{\prime}\left[Q^{\prime \prime} \not \subset\right] \sim Q^{\prime}
$$

More sophistication \Rightarrow

- more powerful technique
- harder soundness proof for the technique

More examples, in a

 higher-order calculus (the Ambient calculus)
Ambients: syntax

$$
P \begin{array}{lll}
P: & & \text { Processes } \\
& n\langle P\rangle & \text { ambient } \\
& \text { in } n . P & \text { in action } \\
& \text { out } n . P & \text { out action } \\
\left\lvert\, \begin{array}{ll}
\text { open } n . P & \text { open action } \\
& P \mid P
\end{array}\right. & \text { parallel } \\
& \nu n P & \text { restriction } \\
& \ldots &
\end{array}
$$

The in movement

The out movement

Example property

The perfect-firewall equation in Ambients
\boldsymbol{P} : a process with \boldsymbol{n} not free in it

$$
\nu n \quad n\langle P\rangle \sim 0
$$

Proof: Let's find a bisimulation...

Is this a bisimulation?

$$
\mathcal{R} \triangleq\{(\nu n n\langle P\rangle, 0)\}
$$

Is this a bisimulation?

$$
\mathcal{R} \triangleq\{(\nu n n\langle P\rangle, 0)\}
$$

No!
Suppose $\boldsymbol{n}\langle\boldsymbol{P}\rangle \xrightarrow{\text { enter_ } \boldsymbol{k}\langle\boldsymbol{Q}\rangle} \boldsymbol{n}\langle\boldsymbol{P}\rangle$
(the loop: simplifies the example, not necessary)

Try again...

Is this a bisimulation?

$$
\begin{aligned}
\mathcal{R} \triangleq & \{(\nu n n\langle P\rangle, 0)\} \\
\cup_{k, Q} & \{(k\langle Q \mid \nu n n\langle P\rangle\rangle, k\langle Q\rangle \mid 0)\}
\end{aligned}
$$

Is this a bisimulation?

$$
\begin{aligned}
& \mathcal{R} \triangleq \quad\{(\nu n n\langle P\rangle, 0)\} \\
& \cup_{k, Q}\{(k\langle Q \mid \nu n n\langle P\rangle\rangle, k\langle Q\rangle \mid 0)\}
\end{aligned}
$$

No!

Try again...

Is this a bisimulation?

$$
\begin{aligned}
\mathcal{R} \triangleq & \{(\nu n n\langle P\rangle, 0)\} \\
\cup_{k, Q} & \{(k\langle Q \mid \nu n n\langle P\rangle\rangle, k\langle Q\rangle \mid 0)\}
\end{aligned}
$$

Suppose $Q=$ in $h . Q^{\prime}$

$$
\begin{array}{ccc}
\boldsymbol{k}\langle\boldsymbol{Q} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\rangle & \mathcal{R} & \boldsymbol{k}\langle\boldsymbol{Q}\rangle \mid \mathbf{0} \\
\text { enter_h}\langle R\rangle \downarrow & \downarrow \text { enter_h }\langle \\
\boldsymbol{h}\left\langle\boldsymbol{R} \mid \boldsymbol{k}\left\langle\boldsymbol{Q}^{\prime} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\right\rangle\right\rangle & \text { 双 } & \boldsymbol{h}\left\langle\boldsymbol{R} \mid \boldsymbol{k}\left\langle\boldsymbol{Q}^{\prime}\right\rangle\right\rangle \mid \mathbf{0}
\end{array}
$$

Try again...

The bisimulation:
$\mathcal{R} \triangleq \cup_{C}$ is a static contexts

$$
\left.\begin{array}{rl}
\{(S, T): & S \\
& \sim C[\nu n n\langle P\rangle] \\
& T
\end{array}\right)
$$

$C::=k\langle C\rangle|P| C|\nu a C|[]$
We started with the singleton relation

$$
\{(\nu n n\langle P\rangle, 0)\}
$$

The added pairs: redundant? (derivable, laws of \sim)

Proof of the firewall, composition of up-to techniques

We can prove $\nu n n\langle\boldsymbol{P}\rangle \sim 0$ using the singleton relation

$\boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle$	\mathcal{R}	$\mathbf{0}$
enter_k $k\langle Q\rangle$	\downarrow enter_ $k\langle Q\rangle$	
$\boldsymbol{k}\langle\boldsymbol{Q} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\rangle$		$\boldsymbol{k}\langle\boldsymbol{Q}\rangle \mid \mathbf{0}$

Proof of the firewall, composition of up-to techniques

We can prove $\nu n n\langle\boldsymbol{P}\rangle \sim 0$ using the singleton relation

$\boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle$	\boldsymbol{R}	$\mathbf{0}$
enter_k $\langle Q\rangle \downarrow$	\downarrow enter_ $k\langle Q\rangle$	
$\boldsymbol{k}\langle\boldsymbol{Q} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\rangle$		$\boldsymbol{k}\langle\boldsymbol{Q}\rangle \mid \mathbf{0}$
\sim	\sim	
$\boldsymbol{k}\langle\boldsymbol{Q} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\rangle$	$\boldsymbol{k}\langle\boldsymbol{Q} \mid \mathbf{0}\rangle$	

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \boldsymbol{n}\langle\boldsymbol{P}\rangle \sim 0$ using the singleton relation
$\boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle$
enter_k$\langle Q\rangle \downarrow$
$\boldsymbol{k}\langle\boldsymbol{Q} \mid \boldsymbol{\nu} \boldsymbol{n} \boldsymbol{n}\langle\boldsymbol{P}\rangle\rangle$

[Zappa-Nardelli, Merro, JACM]
"up-to \sim " and "up-to context"
(full proof also needs up-to injective substitutions)

Conclusions, part I

- Enhancements of the bisimulation proof methods: extremely useful
* essential in π-calculus-like languages, higher-order languages
- Various forms of enhancement ("up-to techniques") exist
* composition of techniques
- Proofs of soundness of these techniques may be non-trivial
* separate ad hoc proofs for each technique

CONTENTS

\checkmark - Introduction [1]
\checkmark - Part I: Examples
[3]

- Part II: Counterexamples [40]
- Part III: Towards an algebra of enhancements
[48]
- Part IV: Weak bisimilarity
[58]

Redundant pairs: first attempt

$\mathcal{S} \triangleq$ a set of inference rules valid for \sim (P, Q) redundant in $\{(P, Q)\} \cup \mathcal{R}$ if

$$
\mathcal{S} \frac{\mathcal{R} \subseteq \sim}{P \sim Q}
$$

Sound? i.e.:

False!

Counterexample (in CCS)

$$
\mathcal{S} \triangleq \frac{a . P \sim a . Q}{P \sim Q}
$$

$$
\mathcal{R} \triangleq\{(a . b, a . c)\}
$$

$\{(b, c)\}$ redundant in $\mathcal{R} \cup\{(b, c)\}$

$$
\mathcal{S} \frac{\mathcal{R} \subseteq \sim}{b \sim c}
$$

$\begin{array}{ccc}a . b & \mathcal{R} & a . c \\ a \downarrow & & \downarrow a \\ b & \mathcal{R} \cup\{(b, c)\} & \begin{array}{c}\text { c }\end{array}\end{array}$

Another example

Recall the "bisimulation up-to context and up-to \sim " technique:
diagram :

It seems valid because \sim is transitive and is a congruence, hence usable in all languages where \sim has these 2 properties

False!

$$
\begin{aligned}
& P:=f(P)|a \cdot P| 0 \\
& \xrightarrow[{f(P) \xrightarrow{a} P^{\prime \prime}}]{P \xrightarrow{a} P^{\prime} \quad P^{\prime} \xrightarrow{a} P^{\prime \prime}}
\end{aligned}
$$

Bisimulation is a congruence, yet:

$$
\begin{array}{cccc}
a .0 & & \mathcal{R} & \\
a \downarrow \\
a & \sim f(a .0) & & f(a . a .0) \sim
\end{array} \begin{gathered}
a . a .0 \\
\downarrow a \\
a .0
\end{gathered}
$$

False!

$$
\begin{aligned}
& P:=f(P)|a \cdot P| 0 \\
& \xrightarrow[{f(P) \xrightarrow{a} P^{\prime \prime}}]{P \xrightarrow{a} P^{\prime} \quad P^{\prime} \xrightarrow{a} P^{\prime \prime}}
\end{aligned}
$$

Bisimulation is a congruence, yet:

$$
\begin{aligned}
& \text { a. } 0 \\
& \begin{array}{r}
a \downarrow \\
0
\end{array} \\
& \mathcal{R} \\
& \text { a.a. } 0 \\
& \downarrow a \\
& 0 \sim \not \mathscr{(}(a .0) \quad \mathcal{R} \quad \not \mathscr{L}(a . a .0) \sim a .0
\end{aligned}
$$

Weak bisimilarity (\approx)

Weak bisimulation
Too heavy: $\quad \boldsymbol{P} \quad \mathcal{R} \quad Q$
$\begin{array}{ccc}\alpha \Downarrow & & \Downarrow \alpha \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$
$\begin{array}{lcll}\text { Better: } & P & \mathcal{R} & Q \\ \text { (read: } \Rightarrow \text {) } & \alpha \downarrow & & \downarrow \alpha \\ & P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$

Example: up-to bisimilarity that fails

\approx is transitive, yet:

$\tau . a .0$	\mathcal{R}	0
\downarrow		\downarrow
a.0		0
\approx		\approx
$\tau . a .0$	\mathcal{R}	0

Conclusions, part II

- When is a pair redundant?
- Needed: a general theory of enhancements of the bisimulation proof method
* powerful techniques
* combination of techniques
* easy to derive their soundness
- An attempt: sound functions, respectful functions
[Sangiorgi]
- NB: all results that follow proved in Coq

CONTENTS

\checkmark - Introduction [1]
\checkmark - Part I: Examples
[3]
\checkmark • Part II: Counterexamples [40]

- Part III: Towards an algebra of enhancements
- Part IV: Weak bisimilarity
[58]

Sound functions

$\mathcal{F}: \wp(\mathcal{P} \times \mathcal{P}) \mapsto \wp(\mathcal{P} \times \mathcal{P}):$
sound if $\mathcal{R} \longmapsto \mathcal{F}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$

Each sound function: a valid enhancement

- Are there interesting sound functions?
- Properties:
* membership easy to check?
* nice compositionality properties?

Sound functions

$\mathcal{F}: \wp(\mathcal{P} \times \mathcal{P}) \mapsto \wp(\mathcal{P} \times \mathcal{P}):$
sound if $\mathcal{R} \longmapsto \mathcal{F}(\mathcal{R})$ implies $\mathcal{R} \subseteq \sim$

Each sound function: a valid enhancement

- Are there interesting sound functions? YES
- Properties:
* membership easy to check? NO
* nice compositionality properties? NO

Towards an algebra of up-to techniques

$\mathcal{F}:$ Relations $\mapsto \wp(\mathcal{P} \times \mathcal{P})$

$$
\text { respectful if } \begin{array}{ll}
\mathcal{R} \subseteq \mathcal{S} & \mathcal{R} \longmapsto \mathcal{S} \\
\mathcal{F}(\mathcal{R}) \subseteq \mathcal{F}(\mathcal{S}) & \mathcal{F}(\mathcal{R}) \longmapsto \mathcal{F}(\mathcal{S})
\end{array}
$$

Examples:

$$
\begin{array}{rll}
\text { identity } & \mathcal{I} & {[\mathcal{I}(\mathcal{R})=\mathcal{R}]} \\
\text { constant-to } \sim & \mathcal{U} & {[\mathcal{U}(\mathcal{R})=\sim]}
\end{array}
$$

closure under monadic contexts \mathcal{C} closure under inj. substitutions Inj

Proofs of respectfulness: easy

Non-example: constant-to $\mathcal{P} \times \mathcal{P}$

Compositionality properties

A respectful second-order function:

 preserves the respectfulness of its argumentsExamples:
composition

$$
[(\mathcal{G} \circ \mathcal{F})\langle\mathcal{R}\rangle=\mathcal{G}\langle\mathcal{F}\langle\mathcal{R}\rangle\rangle]
$$

union $\bigcup_{i \in I} \quad\left[\left(\bigcup_{i \in I} \mathcal{F}_{i}\right)\langle\mathcal{R}\rangle \triangleq \bigcup_{i \in I}\left(\mathcal{F}_{i}\langle\mathcal{R}\rangle\right)\right]$
chaining $\frown[(\mathcal{G} \frown \mathcal{F})\langle\mathcal{R}\rangle=\mathcal{G}(\mathcal{R}) \mathcal{F}(\mathcal{R})]$
Proofs of respectfulness: easy

The previous up-to techniques before can be derived:

$$
\left.\begin{array}{c}
\mathcal{U} \frown \mathcal{I} \frown \mathcal{U}
\end{array}=\text { up-to } \sim \begin{array}{ccc}
P & \mathcal{R} & Q \\
\alpha \downarrow & & \downarrow \alpha \\
P^{\prime} & \sim \mathcal{R} \sim & \\
Q^{\prime}
\end{array}\right]
$$

Similarly we derive: \mathcal{C}^{*} (up-to polyadic contexts) $\sim \mathcal{C}^{*}(\operatorname{Inj}(\mathcal{R})) \sim$

Conclusions, part III

- An attempt of an algebra of enhancements
* Minimal basic ingredients
(identity function, constant functions,)
* 2nd order functions to derive more powerful techniques
- Sufficient to derive many techniques of practical interest (for strong bisimulation)
- However, in this theory:
* ad hoc definitions?
* all proofs very easy

Problem 1: Robust definition of enhancement

- Better definition of respectfulness ?
- Abstract formulations of a more powerful bisimulation principle ?
- Generalisation to coinduction?
* Partial results on coalgebras [Lenisa, Honsell]

Problem 2: soundness of up-to context

- What conditions on contexts for the up-to context to be sound?
* Bisimulation as a congruence? i.e.:

- And for respectfulness?
* Bisimulation as a congruence? No!
* Partial answer: some behavioural conditions on contexts [Sangiorgi]

Problem 3: up-to context in higher-order languages

Example: $\boldsymbol{\lambda}$-calculus (call-by-value/name,typed/untyped,...)

$$
M \xrightarrow{\lambda R} N \triangleq M \Longrightarrow \lambda x \cdot M^{\prime} \& N=M^{\prime}\{R / x\}
$$

Applicative bisimulation (\simeq) :

M	\mathcal{R}	N
$\lambda R \Downarrow$		$\Downarrow \lambda R$
M^{\prime}	\mathcal{R}	N^{\prime}

Theorem: \simeq is a congruence
Applicative bisimulation up-to polyadic contexts

- Related to the problem of compositionality of bisimulation?
- Soundness of limited forms of up-to context :
* [Pitts 96, Lassen 98]: typed and untyped $\boldsymbol{\lambda}$-calculus, for various reduction strategies
* [Koutavas, Wand 06]: a $\boldsymbol{\lambda}$-calculus with references

Example of use:

Park-induction property for various fixed-point combinators (Curry, Turing, call-by-value, rec)

$$
\frac{\lambda x \cdot e\{\boldsymbol{v} / \boldsymbol{f}\} \lesssim v}{\operatorname{rec} \boldsymbol{f}=\boldsymbol{\lambda} \cdot \boldsymbol{v} \cdot \boldsymbol{v}}
$$

CONTENTS

\checkmark - Introduction [1]
\checkmark - Part I: Examples
[3]
\checkmark • Part II: Counterexamples [40]
\checkmark • Part III: Towards an algebra of enhancements

- Part IV: Weak bisimilarity [58]

Example: up-to bisimilarity that fails

$\tau . a .0$	\mathcal{R}	0
\downarrow		\Downarrow
a.0		0
\approx		\approx
$\tau . a .0$	\mathcal{R}	0

Example: up-to bisimilarity that fails

$\tau . a .0$	\mathcal{R}	0
\downarrow		\downarrow
a.0		0
\approx		\approx
$\tau . a .0$	\mathcal{R}	0

- Chaining (ie: relational composition) is not respectful
- What in place of \approx ?
* Expansion (\lesssim)
[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]
* Controlled relations [Pous '05]

Example: up-to bisimilarity that fails

$\tau . a .0$	\mathcal{R}	0
\downarrow		\downarrow
a.0		0
\approx		\approx
$\tau . a .0$	\mathcal{R}	0

- Chaining (ie: relational composition) is not respectful
- What in place of \approx ?
* Expansion (\lesssim)
[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]
* Controlled relations [Pous '05]
- The culprit: chaining (ie, relational composition)
- Everything else: respectfulness is ok
- An important use of chaining:

- What should we use in place of \approx above?
* Expansion (\lesssim)
[Arun-Kumarm, Hennessy '91; Milner, Sangiorgi '92]
* Controlled relations [Pous '05]

Theorem

If \mathcal{F} weakly respectful:

implies $\mathcal{R} \subseteq \approx$

Powerful:
candidate relations contain only "normal forms"

Example: correctness of an abstract machine for (Safe) Ambients

[Giannini, Sangiorgi, Valente, '04]
Nesting of ambients yields a tree

Example:
$a\langle b\rangle \mid c\langle d\langle \rangle\rangle\rangle \quad$ becomes

Movements of ambients:

- modify the tree structures
- can produce forwarders

The abstract machine - graphical representation

- Forwarders: common in distributed systems
- Forwarder chains
- Possible useless forwarders

Correctness proof (sketch)

- Ideally, using $\mathcal{R} \triangleq\{(\llbracket P \rrbracket, P)\}$
\boldsymbol{P} : an Ambient term
$\llbracket P \rrbracket$: representation of \boldsymbol{P} in the AM
- However:

- Further: in the AM there may be messages floating around (cf: non-atomicity of the implementation of Ambient basic operations)
- Indeed: the bisimulation relation needed is very complex.

Expansion (\lesssim)

$$
P \lesssim Q \text { if: }\left\{\begin{array}{l}
\mathrm{P} \approx \mathrm{Q} \\
\mathrm{P} \text { is more efficient than } \mathrm{Q}
\end{array}\right.
$$

Definition:

1. $\quad P \lesssim Q$
read: (\Rightarrow)
2. $\begin{aligned} & Q \gtrsim P \\ & \alpha \downarrow \\ & Q^{\prime} \gtrsim P^{\prime} \\ & Q^{\prime}\end{aligned}$

read: (\Rightarrow)

Examples: $\quad P \lesssim \tau . P$

$$
P \not Z \tau . P
$$

\mathcal{R} works if we use expansion:

Lemma: If h used only for messages in A

$$
\nu h(h \triangleright k \mid A) \gtrsim A\{k / h\}
$$

Similarly for features other than forwarders

Lemma

$$
\nu h(h \triangleright k \mid A) \gtrsim A\{k / h\}
$$

- Simple proof
* local property of the AM
* up-to techniques applicable to expansion (ex: expansion up-to expansion)

Rigidity of expansion

$P \lesssim Q$ says: P is better at every step
Example: optimise the AM [Hirschkoff, Pous, Sangiorgi, '05]

- garbage collection of useless forwarders * use counters in forwarders (= number of children)
- remove chains of forwarders
* adapt Tarjan's union-find algorithm (relocation)

Relocation (cf: Tarjan sets)

$\llbracket P \rrbracket \triangleq$ the original machine
$[P] \triangleq$ the optimised machine

- $[P]$ obviously better, but $[P] \mathbb{L} \llbracket P \rrbracket$
* initial adminstrative work, that only later pays off
- Worst: in the optimised machine:

$$
\nu h(h \triangleright k \mid A) \not Z A\{k / h\}
$$

$\nu h(h \triangleright k \mid A) \not Z A\{k / h\}$
$\sum_{\{M \mathrm{M}\}} \quad R \quad \sum_{\{\mathrm{M}, \mathrm{N}, \mathrm{O},}$

$\underset{\{M, N\}}{ }$

${ }_{\{O\}}$

R

Equivalence between the two machines

- Ideally, using $\mathcal{R} \triangleq\{(\llbracket P \rrbracket,[P])\} \quad$ (normal forms) But \mathcal{R} is not a bisimulation up-to expansion
- Correctness proof in [Hirschkoff, Pous, Sangiorgi, '05]: a full bisimulation
- [Pous 05]: A proposal for relations more flexible than \lesssim * Now \mathcal{R} works
* Define properties needed in a relation for the "up-to"

Example: termination of the transitive closure

* The relation need not be behaviourally interesting
* Drawbacks: proving the conditions, compositionality

Conclusions, part IV

- \lesssim, or other relations:
* needed to control silent moves
* allow us to reduce candidate relations only normal forms
- \lesssim : nice mathematical properties, sometimes too rigid

Problem 4: up-to in the weak case

a) Improvements of \lesssim

- better notion of "efficiency"
- more powerful up-to (goal: normal forms in candidate relations)
b) Composition of up-to techniques
- how can chaining be replaced?

Important! (practical relevance of weak bisimilarity)
Partial results: [Pous 05]

Problem 5: Mechanical verification

- How can these enhancements be integrated in tools?
- Partial results [Hirschkoff]
* theorem provers
* automatic checking
* Applied to infinite-state processes

Problem 6: Other primitive techniques

- Example: up-to substitutions sound in the π-calculus

$$
\begin{array}{cccc}
P & \mathcal{R} & Q & \text { implies } \mathcal{R} \subseteq \sim \\
\alpha \downarrow & & \downarrow \alpha \\
P^{\prime} \not \subset & \mathcal{R} & Q^{\prime} \nless
\end{array}
$$

References

This course is based on the draft book:

- Davide Sangiorgi, An introduction to bisimulation and coinduction, Draft, 2009

Please contact me if you'd like to read and comment parts of it.

Focus lab

A joint initiative between INRIA (France) and Univ. Bologna (Italy)

Permanent members: M. Bravetti, U. Dal Lago, M. Gabbrielli,
C. Laneve, S. Martini, D. Sangiorgi, G. Zavattaro.

Scientific theme: semantic foundations for distributed software systems (ubiquitous systems)

Eg: methods for the analysis and synthesis, at various levels of abstraction; issues of expressiveness

Central concepts: 'interaction', 'component'
Basis: logics, types, algebra, operational semantics
NB: A recently established "Collegio di Cina" within the University of Bologna

