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Abstract— Linear least squares (LLS) estimation is a low
complexity but sub-optimum method for estimating the location
of a mobile terminal (MT) from some distance measurements. It
requires selecting one of the fixed terminals (FTs) as a reference
FT for obtaining a linear set of expressions. However, selection
of the reference FT is commonly performed arbitrarily in the
literature. In this paper, a method for selection of the reference
FT is proposed, which improves the location accuracy compared
to a fixed selection of the reference FT. Moreover, a covariance-
matrix based LLS estimator is proposed in line of sight (LOS) and
non-LOS (NLOS) environments which further improves accuracy
since the correlations between the observations are exploited.
Simulation results prove the effectiveness of the proposed tech-
niques.

Index Terms— Least-Squares (LS) Estimation, Linearization,
Maximum Likelihood Estimation (MLE), Reference Selection,
Wireless Localization.

I. INTRODUCTION

Accurate location estimation is a challenging and important
problem in today’s wireless systems such as the cellular
networks, wireless local area networks, and wireless sensor
networks [1], [2]. These systems may employ numerous tech-
niques to solve for the position of a mobile terminal (MT) from
a set of measured distances. If the variance of distance mea-
surements at each of the MTs is available, it is well known that
the maximum likelihood (ML) solution can be obtained using
a weighed non-linear least squares (WNLS) approach [1]. If no
information about the measured distance variances is available,
or if they are assumed identical, a non-linear least squares
(NLS) solution can be obtained by using uniform weighting.
Solving the NLS problem requires an explicit minimization
of a loss function, and hence necessitates numerical search
methods such as the steepest descent or the Gauss-Newton
techniques. Such techniques may be computationally costly
and they typically require good initialization in order to avoid
converging to the local minima of the loss function [3].

In order to obtain a closed form solution and avoid explicit
minimization of the loss function, the set of expressions cor-
responding to each of the observations can be linearized using
the Taylor series expansion [4]. However, such an approach
still requires an intermediate location estimate to obtain the
Jacobian matrix, which should be sufficiently close to the true
location of the MT for the linearity assumption to hold.

An alternative linear least squares (LLS) solution based
on the measured distances was initially proposed in [5]. It
selects one of the fixed terminals (FTs) as a reference, and
subtracts the expressions corresponding to this reference FT

from the other (N−1) expressions in order to cancel the non-
linear terms, where N denotes the number of observations.
Eventually, once a linear set of expressions are obtained, a
simple LS matrix solution yields the location of the MT. Some
different versions of this LLS solution were also presented
later in the literature. For example, in [6], multiple sets of
linear expressions are obtained, where for each set a different
FT is selected as the reference. This provides N × (N − 1)/2
total number of different equations, likely yielding a better
location estimate compared to a random selection of the refer-
ence FT. In another work [7], a different averaging technique
is proposed. First, the non-linear expressions are averaged over
all the FTs. Then, the resulting expression is subtracted from
the rest of the expressions which still cancels out the non-
linear terms. In [8], the cost functions for LLS and NLS were
compared through simulations, which shows that NLS usually
performs better than the LLS in most of the topologies. A
similar result was also observed in [7], which clearly shows the
sub-optimality of the LLS for position estimation. Theoretical
mean square errors (MSEs) of the LLS for the line-of-sight
(LOS) and non-LOS (NLOS) scenarios were derived in [9].

While LLS is a sub-optimum location estimation technique,
with a reasonable position estimation accuracy, it can be used
by itself to obtain the MT location due to its lower implemen-
tation complexity compared to other iterative techniques (such
as the NLS). Moreover, in other high-accuracy techniques
(including the NLS approach and linearization based on the
Taylor series), it can be used to obtain an initial location esti-
mate for initializing the high-accuracy location algorithm (see
e.g. [10]). A good initialization may considerably decrease the
computational complexity and eventual localization error of a
high-accuracy technique. Therefore, improving the accuracy
of the LLS localization technique carries importance from
multiple perspectives.

In this paper, we propose two different techniques for
improving the performances of the LLS techniques in [5]–
[7]. First, a simple yet effective method for selecting the
reference FT for linearization is proposed. Second, the co-
variance matrices of the observations for different scenarios
are derived, and maximum likelihood estimators (MLEs) for
these scenarios are introduced. Simulation results in line-of-
sight (LOS) and non-LOS (NLOS) scenarios show that the
proposed techniques yield better accuracies compared to prior-
art techniques. The paper is organized as follows. Section II
introduces the system model and briefly reviews the prior art
techniques. The proposed LLS techniques are introduced in
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Section III. Section IV provides the simulation results and the
last section concludes the paper.

II. SYSTEM MODEL

Consider a wireless network as in Fig. 1 where there are
N FTs, x = [x y]T is the estimate of the MT location,
xi = [xi yi]T is the position of the ith FT, d̂i is the measured
distance between the MT and the ith FT commonly modeled
as

d̂i = di + bi + ni = cτi, i = 1, 2, ..., N (1)

where τi is the TOA of the signal at the ith FT, di is the actual
distance between the MT and the ith FT, ni ∼ N

(
0, σ2

i

)
is the

additive white Gaussian noise (AWGN) with variance σ2
i , and

bi is a positive distance bias introduced due to LOS blockage,
which is zero for LOS FTs. For the rest of the paper, we
assume that the measurement variance is the same for all the
FTs (i.e., σ2

i = σ2) for simplicity.
Once all the distance estimates in (1) are available, the noisy

measurements and the NLOS biases at different FTs yield
circles which do not intersect at the same point, resulting in
the following inconsistent equations

(x− xi)2 + (y − yi)2 = d̂2
i , i = 1, 2, ..., N . (2)

A common way to solve for the target node’s location from (2)
is to perform a non-linear weighted least squares (NL-WLS)
estimation [1]; i.e.,

x̂ = arg min
x

{
N∑

i=1

βi

(
d̂i − ||x− xi||

)2
}

(3)

where the weight βi can be chosen to reflect the reliability of
the signal received at the ith FT. We may set βi = 1 ∀i if no
information about the reliability of the FTs is available, which
yields the NLS solution [11].

As discussed previously, solving for (3) normally requires
numerical search techniques such as the steepest descent or the
Gauss-Newton techniques. As an alternative to the NL-WLS
solution, it is possible to use the techniques proposed in [5],
[6] in order to obtain a linear set of equations. By fixing one
of the non-linear expressions in (2) for an arbitrary FT (called
a reference FT), subtracting it from the rest of the expressions,
and after some mathematical manipulation, we may obtain the
following linear model

Ax = p , (4)

where, letting the reference FT to be FT-r, we have

A = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 − xr y1 − yr

...
...

xr−1 − xr yr−1 − yr

xr+1 − xr yr+1 − yr

...
...

xN − xr yN − yr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

p = pc + pn , (6)

Fig. 1. Illustration of localization problem in a wireless mobile network and
selection of the reference FT based on the smallest measured distance.

where the constant and the noisy components of vector p are
denoted by pc and pn, respectively. From (2), the constant
part of p can be obtained as

pc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2
r − d2

1 − kr + k1

...

d2
r − d2

r−1 − kr + kr−1

d2
r − d2

r+1 − kr + kr+1

...

d2
r − d2

N − kr + kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where ki = x2
i + y2

i .
In order to derive the noisy part of p, we consider the LOS

and the NLOS scenarios separately. First, consider that all the
FTs are in LOS (i.e., bi = 0 ∀i). Then, we may obtain

pn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2drnr − 2d1n1 + n2
r − n2

1

...

2drnr − 2dr−1nr−1 + n2
r − n2

r−1

2drnr − 2dr+1nr+1 + n2
r − n2

r+1

...
2drnr − 2dNnN + n2

r − n2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In the presence of NLOS bias, the perturbation in the vector
p in (6) will be larger, which will degrade the accuracy
compared to LOS scenarios. We may re-write p in NLOS
scenarios as

p = pc + p̃n , (9)

where pc is as in (7) and p̃n is given by

p̃n = pn + b̃ . (10)
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By plugging (1) into (2) and after some manipulation, we may
derive the ith term of b̃ as

[b̃]i = b2
r − b2

ĩ
+ 2

(
drbr − dĩbĩ + brnr − bĩnĩ

)
, (11)

where

ĩ =

{
i , i < r

i + 1 , i ≥ r .
(12)

A. Prior Art LLS Localization Techniques

Given the linear model in (4), a simple LLS estimator to
obtain the MT location is given by [5]

x̂ = (AT A)−1AT p . (13)

In here, we call the estimator in (13) as the LLS-1. Note
that LLS-1 utilizes the measurements d̂i, i = 1, . . . , N , only
through the terms d̂2

r − d̂2
i , for i = 1, . . . , N and i �= r.

Therefore, the measurement set for LLS-1 effectively becomes

d̃i = d̂2
r − d̂2

i , i = 1, . . . , N, i �= r . (14)

Another LLS approach (call it LLS-2) obtains N × (N −
1)/2 linear equations by subtracting each equation from all of
the other equations [6]. In the LLS-2 technique, the following
observations are employed for position estimation:

ďij = d̂2
i − d̂2

j , i, j = 1, 2, . . . , N, i < j . (15)

Similar to the LLS-1, the linear LS solution as in (13) is
obtained for the position of the target node in the LLS-2
technique.

In a third LLS technique (call it LLS-3), instead of ob-
taining the difference of the equations directly as in the LLS-
1 and LLS-2 approaches, the average of the measurements
is obtained first, and this average is subtracted from all the
equations resulting in N linear relations [7]. Then, the linear
LS solution as in (13) is obtained for the position of the target
node. The observation set employed in the LLS-3 technique
can be expressed as

d̄i = d̂2
i −

1
N

N∑
j=1

d̂2
j , i = 1, 2, . . . , N . (16)

III. REFERENCE FT SELECTION AND MLE FOR LOS AND

NLOS SCENARIOS

A. Reference FT Selection

The LLS-1 solution in (13) selects an arbitrary FT as the
reference FT. However, observing the noisy terms in pn given
in (8), we can see that all the rows of the vector pn depend
on the true distance between the MT and the reference FT.
If the FT is away from the MT location, this implies that
all the elements of vector p will be more noisy, degrading the
localization accuracy. Hence, how the reference FT is selected
may considerably affect the mean square error (MSE) of the
estimator. A simple method to select the reference FT for
improved location accuracy in LOS scenarios is to choose
the FT with the smallest measured distance among all the
distance measurements. The index of the reference FT that
has the smallest measured distance is given by

r = arg min
i
{d̂i} , i = 1, 2, . . . , N . (17)

Fig. 2. Block diagram of the proposed reference FT selection and MLE using
the covariance matrix. Modifications to a conventional LLS are indicated in
dashed boxes.

Then, the matrix A and the vector p can be obtained using
the selected reference FT (FT-r), and we refer to the resulting
estimator as LLS with reference selection (LLS-RS). A simple
localization scenario where the reference FT is selected based
on its minimum measured distance is illustrated in Fig. 1.
In this example, FT-1 is used to obtain the linear model
from non-linear expressions since d̂1 is the minimum among
all the measured distances. Note that for a better accuracy,
it may also be possible to include the variance of distance
measurements as a second criteria while selecting the reference
FT. Since we assume that the measured distance variances are
the same at different FTs in this paper, we do not consider
it here. Nevertheless, in practical scenarios, the variance of
the measurements for closer distances between the FT and
the MT would likely be smaller, which further motivates the
use of (17) for selecting the reference FT. A generic block
diagram of LLS-RS is illustrated in Fig. 2 along with the
MLE technique to be introduced in the next section.

In NLOS scenarios, how to select the reference FT becomes
more complicated. In particular, the b2

r , the drbr, and the
brnr terms for the reference FT in (11) may dominate, and it
may become undesirable to select an NLOS biased FT as a
reference FT even for small bias values. Therefore, a simple
reference selection technique utilizing the minimum distance
measurement criteria and only the LOS FTs can be written as
(call it LLS-RS-NLOS)

r = arg min
i
{d̂i} , i ∈ CLOS , (18)

where CLOS denotes the index set for all the LOS FTs. Some
NLOS identification techniques as in [12], [13] may be used to
determine the NLOS FTs and exclude them from the set CLOS .
Note that the geometry of the nodes and how the reference FT
is placed with respect to the NLOS FT and the MT becomes
more important in an NLOS scenario. A drawback of (18) is
that it never selects the NLOS FT as a reference. However,
for certain cases where NLOS bias is small and when the MT
is sufficiently close to the NLOS FT, it may be preferable to
select it as the reference.

Another possible approach in NLOS scenarios is, if some
estimates b̂i of the NLOS bias are available, we may use d̂i−
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b̂i as the corrected measurements and use the LOS reference
selection rule in (17). However, obtaining the estimate b̂i is
not typically easy. Nevertheless, in certain cases, it may be
possible to know the statistics of bi. Letting μ̃i = E{bi} to
denote the mean of bi, we may use the following decision
rule for selecting the reference FT when the bias statistics are
available

r = arg min
i
{d̂i − μ̃i} , i = 1, 2, . . . , N . (19)

B. MLE for LOS Scenarios

While the reference FT selection discussed above improves
the location accuracy, it does not account for the correlation
between the rows of the vector pn, which become correlated
during the linearization process. To our best knowledge, this
correlation was not explicitly considered in the prior art
techniques on LLS, which we will use below for improving
the location accuracy. As discussed in [14], the optimum
estimator in the presence of correlated observations is given by
an ML estimator. First, we consider the following modification
of the relationship in (6) for a LOS scenario

p = Ax̃ + pn , (20)

where x̃ is the actual location of the MT, and hence pc = Ax̃.
Then, based on (20), the MLE1 for this linear model can be
written as [14]

x̂ = (AT C−1A)−1AT C−1p , (21)

where C = Cov(pn) is the covariance matrix of vector pn.
When all the FTs are in LOS, the covariance matrix of

vector pn can be derived as (see Appendix A)

C = 4d2
rσ

2 + 2σ4 + diag
{

4σ2d2
1 + 2σ4, ...,

4σ2d2
i + 2σ4, ..., 4σ2d2

N + 2σ4
}

, (22)

with i ∈ {1, 2, ..., N}, i �= r, and where diag{λ1, ..., λN} is a
diagonal matrix obtained by placing λi on the diagonal of an
(N − 1)× (N − 1) zero matrix ∀i. Note that since di are not
available in practice, the noisy measurements d̂i can be used
to evaluate the covariance matrix. Once an estimate of x is
available, then, its PDF can be shown to be [14]

x̂ ∼ N
(
x̃, (AT C−1A)−1

)
. (23)

C. MLE for NLOS Scenarios

Now consider that some of the FTs are in NLOS with
the MT. Similar to as discussed in previous section, if some
estimate b̂i of the NLOS bias are available, we may correct
the distance measurements as d̂i− b̂i, and then apply the MLE
in (21). While this may not be very practical, we may have
some prior knowledge about the statistics of NLOS bias. In
here, we consider that the NLOS bias is a Gaussian distributed
random variable as in [8], where bi ∼ N (μ̃i, σ̃

2
i ) for some

1Note that in order have the MLE as in (21), the elements of pn should be
zero-mean and Gaussian distributed random variables. While there are some
non-Gaussian terms (i.e., the noise-square terms) in pn, they are assumed to
be negligible, or fit closely to a Gaussian distribution to obtain the MLE.

NLOS FTs. If such information is available, we may modify
the distance measurements as

d̃i = d̂i − μ̃i = di + ñi , (24)

where ñi ∼ N (0, σ2 + σ̃2
i ). Then, the covariance matrix of

pn using (24) as distance measurements can be written as
(see Appendix A)

C = 4d2
r(σ

2 + σ̃2
r) + 2(σ2 + σ̃2

r)2 + diag
{

γ1, ..., γi, ..., γN

}
,

(25)

with i ∈ {1, 2, ..., N}, i �= r, and where γi = 4d2
i (σ

2 + σ̃2
i ) +

2(σ2 + σ̃2
i )2. Once we obtain (25), we may plug it into (21)

to obtain the MLE solution.

IV. SIMULATION RESULTS

Monte-Carlo simulations are performed in order to compare
the proposed LLS estimators with the prior art techniques.
Four FTs are positioned on the corners of a square at x1 =
[−50,−50],x2 = [50,−50],x3 = [−50, 50], and x4 =
[50, 50] (all in meters). For LLS-1, the FT-1 is used as a
reference FT. The MT location x̃ is changed with 15 meter
intervals within [−45, 45] m both in x and y directions,
yielding a 7 × 7 grid of possible MT locations. The MSE
of different techniques are simulated at each location on the
grid, and then averaged over all the MT locations on the grid.

The LOS results in Fig. 3 show that the LLS-1 performs
worst compared to all the other techniques. The LLS-2 and
LLS-3 techniques perform slightly better than LLS-1, and their
MSEs are identical. However, they are both beaten by the
LLS-RS technique. The accuracy of the MLE solution is not
affected from how the reference FT is selected, and it performs
slightly better than that of LLS-RS. The accuracy gains using
the LLS-RS and the MLE improve with increasing noise
variance (i.e., decreasing signal-to-noise ratio). The CRLBs
provide the lower bound for all the other techniques.

For NLOS simulations, we consider that FT-4 is the NLOS
FT, and the rest of the FTs are all in LOS. In Fig. 4,
simulation results for LLS-1 when different FTs are selected
as the reference FT are presented for different noise variances
(σ2 ∈ {0.3, 1, 3} m2). The NLOS bias at FT-4 is changed from
0 meters to 3 meters. The CRLBs with biased measurements
are also indicated. A critical observation is that when FT-4
is selected as the reference FT, the MSE is the worst for all
scenarios. This verifies the claim in Section III-A that on the
average, an NLOS FT should not be selected as a reference
FT2. On the other hand, FT-1, which is the FT that is furthest
from the NLOS FT, is always the best reference FT to select.

The NLOS simulations in Figs. 5-7 compare the accuracies
of the proposed techniques with those of LLS-1 for different
values of σ2. The FT-1 (which shows to be the best reference
in Fig. 4) is always selected as the reference FT for LLS-1.
The results show that the LLS-RS and the LLS-RS-NLOS
perform better than LLS-1 for LOS scenarios or for small
NLOS bias values. When the NLOS bias value gets larger,

2Note again that the MSE is averaged over different locations on the grid,
and given b4, there may be individual locations close to FT-4 on the grid
where selecting FT-4 as a reference may be preferable.
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after some point, the LLS-1 starts performing better. This is
because the LLS-RS uses the measured distances d̂i, which
gets considerably biased as the NLOS bias increases. For
larger σ2, the range of NLOS bias values where the LLS-RS
beats the LLS-1 is larger. Moreover, we observe that there is
only marginal improvement of using LLS-RS-NLOS rather
than LLS-RS, which appears when σ2 is small and when
NLOS bias is large. This is because LLS-RS-NLOS never
selects the NLOS FT as a reference FT even when MT is
very close to it. In all the three figures, MLE with perfect
bias knowledge performs close to the CRLB (as in a LOS
scenario)3, while without any knowledge of bi, it still performs
better than those of LLS-RS.

Finally in Fig. 8, performances of different techniques
when b4 ∼ N (1, 0.2) are compared. Due to simulation time
constraints, only a single grid location at x̃ = [10, 10] meters
is considered. The results show that when some statistics about
the NLOS bias are available, the localization accuracy of
the LLS-RS and MLE can be improved by using corrected
measurements. The MLE with know bias statistics is very
close to the CRLB even in the NLOS scenario. On the other
hand, when there is no a-priori information available about the
NLOS bias, both the LLS-RS and MLE is beaten by LLS-1
at small σ2, as also implied by Figs. 5-7.

V. CONCLUSION

In this paper, various algorithms have been proposed for
the enhancement of the LLS localization techniques and
performance comparisons have been presented for LOS and
NLOS scenarios. In the first technique (LLS-RS), the FT with
the smallest distance measurement is selected as the reference
FT. The second approach (MLE) uses the correlation of the
observations to obtain a more accurate estimator. Simulation
results show that both techniques perform better than the
other prior art techniques (e.g., LLS-1, LLS-2, and LLS-3) in
LOS scenarios. In NLOS scenarios, they are more effective
at low SNRs and small NLOS bias values. If some prior
statistics about the NLOS bias are available, the accuracies of
both techniques can be improved. Our future work includes
detailed theoretical analysis of the proposed techniques in
NLOS scenarios.

APPENDIX

A. Derivation of the Covariance Matrices

The elements of the covariance matrix of a vector pn is
calculated as

[C]ij = E
{(

[pn]i − E
{
[pn]i

})(
[pn]j − E

{
[pn]j

})}
(26)

where E{pn} denotes the expectation of pn. Then, in LOS
scenarios, the covariance matrix can be derived as

[C]ij = E
{(

2drnr − 2dini + n2
r − n2

i

)
× (

2drnr − 2djnj + n2
r − n2

j

)}
= 4d2

rσ
2 + 2σ4 + I(i, j)

(
4d2

i σ
2 + 2σ4

)
, (27)

3Note that we may also consider LLS-RS with perfect bias knowledge,
which would yield the same accuracy as in a LOS scenario.

where I(i, j) is an indicator function which is 1 for i = j,
and is 0 otherwise. From (27), we can easily obtain (22).

In an NLOS scenario, when only the statistics of the NLOS
bias are available, similar to (27), the covariance matrix can
be written as

[C]ij = E
{(

2drñr − 2diñi + ñ2
r − ñ2

i

)
× (

2drñr − 2dj ñj + ñ2
r − ñ2

j

)}
= 4d2

r(σ
2 + σ̃2

i ) + 2(σ2 + σ̃2
i )+

I(i, j)
(
4d2

i (σ
2 + σ̃2

i ) + 2(σ2 + σ̃2
i )
)

. (28)

Then, (25) follows easily from (28).
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Fig. 3. Comparison of different techniques in LOS scenario.
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Fig. 4. Comparison of LLS-1 for different NLOS scenarios.
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Fig. 5. MSE with respect to NLOS bias (σ2 = 0.3 m2).
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Fig. 6. MSE with respect to NLOS bias (σ2 = 1 m2).
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Fig. 7. MSE with respect to NLOS bias (σ2 = 3 m2).
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Fig. 8. Comparison of different techniques when the NLOS bias is Gaussian
distributed.
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