
1

Enhancements to SQL Server Column Stores
Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson, Mostafa Mokhtar,
Michal Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan,

Remus Rusanu, Mayukh Saubhasik
Microsoft

{palarson, ciprianc, cfraser,ehans, mostafm, michalno, vasilp,
srikumar, remusr, maysau }@microsoft.com, prices08@gmail.com

ABSTRACT

SQL Server 2012 introduced two innovations targeted for data

warehousing workloads: column store indexes and batch

(vectorized) processing mode. Together they greatly improve

performance of typical data warehouse queries, routinely by 10X

and in some cases by a 100X or more. The main limitations of the

initial version are addressed in the upcoming release. Column store

indexes are updatable and can be used as the base storage for a

table. The repertoire of batch mode operators has been expanded,

existing operators have been improved, and query optimization has

been enhanced. This paper gives an overview of SQL Server’s

column stores and batch processing, in particular the enhancements

introduced in the upcoming release.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – relational databases,

Microsoft SQL Server

General Terms

Algorithms, Performance, Design

Keywords

Columnar storage, column store, index, OLAP, data warehousing.

1. INTRODUCTION
SQL Server has long supported two storage organizations: heaps

and B-trees, both row-oriented. SQL Server 2012 introduced a new

index type, column store indexes, where data is stored column-wise

in compressed form. Column store indexes are intended for data-

warehousing workloads where queries typically process large

numbers of rows but only a few columns. To further speed up such

queries, SQL Server 2012 also introduced a new query processing

mode, batch processing, where operators process a batch of rows

(in columnar format) at a time instead of a row at a time.

Customers have reported major performance improvements when

using column store indexes. One customer achieved a speedup of

over 200X on a star schema database with a fact table containing

two billion rows. They ran a nightly report generation process that

took 18 hours. After upgrading to SQL Server 2012 and creating a

column store index on the fact table, they were able to generate the

reports in 5 minutes on the same hardware. Some queries that scan

the fact table now run in about three seconds each compared with

up to 17 minutes previously. References to this and other case

studies can be found in a column store index FAQ [11].

The initial implementation in SQL Server 2012 had several

limitations that are remedied in the upcoming release: column store

indexes are updatable, they can be used as the primary storage of a

table, they can be further compressed to save disk space, and batch-

mode processing has been significantly extended and enhanced.

This paper describes the main enhancements of column stores

indexes and batch processing in the upcoming release of SQL

Server. For completeness, we begin with an overview of the basics

of column store indexes and batch processing in section 2. Section

3 outlines the extensions needed to allow a column store index to

be used as the primary or base storage for a table. Section 4 covers

how inserts, deletes and updates of a column store index are

handled. Enhancements to query optimization and query processing

are discussed in section 5. Archival compression is covered in

section 6. Some performance results are presented in section 7.

2. BACKGROUND
This section describes the basic structure of column store indexes

and how they are constructed and stored. It also outlines how batch

processing works. More detailed information can be found in the

paper on the initial implementation [9], product documentation

[10], and the column store index FAQ [11].

2.1 Index Storage
Figure 1 illustrates how a column store index is created and stored.

The set of rows is first divided into row groups of about one million

rows each. Each row group is then encoded and compressed

independently and in parallel, producing one compressed column

segment for each column included in the index. For columns that

use dictionary encoding the conversion may also produce a number

of dictionaries. Note that data in a column store index is not sorted,

not even within a column segment.

Figure 1 shows a table with three columns divided into three row

groups. The conversion produces nine compressed column

segments, three segments for each of columns A, B, and C. Column

A used dictionary encoding so the output also includes three

dictionaries, one for each segment of column A. More details about

encoding and compression can be found in our earlier paper [9].

The column segments and dictionaries are then stored using

existing SQL Server storage mechanisms as illustrated on the right

side of Figure 1. Each column segment and dictionary is stored as

a separate blob (LOB). A blob may span multiple disk pages but

this is automatically handled by the blob storage mechanisms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.
Copyright © ACM 978-1-4503-2037-5/13/06…$15.00.

2

A directory keeps track of the location of segments and dictionaries

so all segments comprising a column and any associated

dictionaries can be easily located. The directory contains additional

metadata about each segment such as number of rows, size, how

data is encoded, and min and max values.

Storing the index in this way has several benefits. It leverages the

existing blob storage and catalog implementation - no new storage

mechanisms are needed - and many features are automatically

enabled for the new index type, for example, storage space

management, logging, recovery, and high availability.

2.2 Caching and I/O
Column segments and dictionaries are brought into memory as

needed during query processing. They are not stored in the buffer

pool but in a new cache for large objects. Each object is stored

contiguously on adjacent memory pages. This simplifies and

speeds up scanning of a column because there are no "page breaks"

to worry about.

A blob storing a column segment or dictionary may span multiple

disk pages. To improve I/O performance, read-ahead is applied

aggressively both within and among segments. In other words,

when reading a blob storing a column segment, read-ahead is

applied at the page level. A column may consist of multiple

segments so read-ahead is also applied at the segment level. Read-

ahead is of course also applied when loading data dictionaries.

2.3 Batch Mode Processing
SQL Server traditionally uses a row-at-a-time execution model,

that is, a query operator processes one row at a time. Several new

query operators were introduced that instead process a batch of

rows at a time. This greatly reduces CPU time and cache misses

when processing a large number of rows.

A batch typically consists of around a thousand rows. As illustrated

in Figure 2, each column is stored as a contiguous vector of fixed-

sized elements. The "qualifying rows" vector indicates whether a

row has been logically purged from the batch.

Row batches can be processed very efficiently. For example, to

evaluate a simple filter like “Col1 < 5”, all that is needed is to scan

the Col1 vector and, for each element, perform the comparison and

set/reset a bit in the "qualifying rows" vector. As shown by the

MonetDB/X100 project [2], this type of vector processing is very

efficient on modern hardware; it enables loop unrolling and

memory pre-fetching and minimizes cache misses, TLB misses,

and branch mispredictions.

In SQL Server 2012 only a subset of the query operators are

supported in batch mode: scan, filter, project, hash (inner) join and

(local) hash aggregation. The hash join implementation consists of

two operators: a build operator and an actual join operator. In the

build phase of the join, multiple threads build a shared in-memory

hash table in parallel, each thread processing a subset of the build

input. Once the table has been built, multiple threads probe the table

in parallel, each one processing part of the probe input.

Q
u

a
li
fy

in
g

 r
o

w
s
 v

e
c
to

r

Column vectors

Row batch

Figure 1: Illustrating how a column store index is created and stored. The set of rows is divided into row groups that are

converted to column segments and dictionaries that are then stored using SQL Server blob storage

Figure 2: A row batch is stored column-wise and contains

one vector for each column plus a bit vector indicating

qualifying rows

CA B

Encode,

compress

Encode,

compress

Encode,

compress

R
o

w
 g

ro
u

p
 3

R
o

w
 g

ro
u

p
 1

R
o

w
 g

ro
u

p
 2

SegmentDictionary

D
ir
e

c
to

ry

Blobs

3

Note that the join inputs are not pre-partitioned among threads and,

consequently, there is no risk that data skew may overburden some

thread. Any thread can process the next available batch so all

threads stay busy until the job has been completed. In fact, data

skew actually speeds up the probing phase because it leads to higher

cache hit rates.

The reduction in CPU time for hash join is very significant. One

test showed that regular row-mode hash join consumed about 600

instructions per row while the batch-mode hash join needed about

85 instructions per row and in the best case (small, dense join

domain) was a low as 16 instructions per row. However, the SQL

Server 2012 implementation has limitations: the hash table must fit

entirely in memory and it supports only inner join.

The scan operator scans the required set of columns from a segment

and outputs batches of rows. Certain filter predicates and bitmap

(Bloom) filters are pushed down into scan operators. (Bitmap filters

are created during the build phase of a hash join and propagated

down on the probe side.) The scan operator evaluates the predicates

directly on the compressed data, which can be significantly cheaper

and reduces the output from the scan.

The query optimizer decides whether to use batch-mode or row-

mode operators. Batch-mode operators are typically used for the

data intensive part of the computation, performing initial filtering,

projection, joins and aggregation of the inputs. Row-mode

operators are typically used on smaller inputs, higher up in the tree

to finish the computation, or for operations not supported by batch-

mode operators.

3. CLUSTERED INDEXES
In SQL Server 2012 column store indexes could only be used as

secondary indexes so data was duplicated. One copy of the data

would be in the primary storage structure (heap or B-tree) and

another copy would be in a secondary column store index. The

upcoming release of SQL Server removes this restriction and

allows a column store to be the primary and only copy of the data.

Although column store data is not really ‘clustered’ on any key, we

decided to retain the traditional SQL Server convention of referring

to the primary index as a clustered index. This section briefly

touches on the SQL Server engine enhancement needed to enable

this feature.

3.1 Improved Index Build
The way a column store index is built has been improved to make

the process more dynamic and improve the quality of the index.

SQL Server column stores use a form of dictionary encoding

wherein frequently occurring values are mapped to a 32 bit id via

the dictionary. SQL Server uses two forms of dictionaries, a global

dictionary associated with the entire column and a local dictionary

associated with a row group. The earlier implementation would fill

in the entries in the global dictionary as it built the index. This did

not guarantee that the most relevant values went into the global

dictionary.

We modified the query plan to build the index in two steps. The

first step samples the data for each column, decides whether or not

to build a global dictionary for a column, and picks the set of values

to include in the global dictionary. This ensures that the most

relevant values are included in the global dictionary. The second

step actually builds the index using the global dictionaries

constructed in the first step.

The column store build process is quite memory intensive, hence

we do a memory reservation up-front before starting the build

process. Each thread needs enough memory to hold a full row group

plus sufficient scratch space. Depending on the initial memory

reservation and the memory estimate for each thread we then

choose the number of threads that will participate in the build

process. The number of threads does not change after we’ve made

this initial determination. This static degree of parallelism (DOP)

can sometimes cause the build process to use a suboptimal number

of threads to build the index, because the initial memory estimate

can be quite inaccurate. It is difficult to accurately estimate the

memory requirement without looking at the actual data, because the

memory required depends on the data distribution.

We solved this problem by enabling the build process to

dynamically vary the number of threads that actively participate in

the build. The build process continually monitors the memory being

consumed by each thread and the amount of memory available to

the query to calculate the optimal number of active threads.

3.2 Sampling Support
The SQL Server query optimizer uses statistics about the data

distribution of columns involved in a query to generate the query

plan. The statistics consists of histograms that are computed from a

random sample of rows. To enable this scenario we implemented

sampled scans on column stores. Non-clustered column stores did

not need to support sampling because the statistics could be

computed from the base data.

We implemented two forms of sampled scans. One implementation

is optimized for performance while giving up some accuracy,

whereas the second algorithm is highly accurate but has a higher IO

and CPU cost.

The performance optimized sampled scan uses cluster sampling: a

set of row groups is first randomly selected, followed by a random

sample of rows within each group. The number of rows and row

groups selected are mandated by the sampling percentage. Row

groups that are not selected in the initial step are not read from disk.

Sampling from a B-tree or heap also uses cluster sampling and

selects a random subset of pages.

The second form of sampling is truly random row level sampling.

This implementation scans all segments of a column and randomly

selects a subset of rows. Truly random row sampling is always used

when building a histogram from a column store for later use in

query optimization. This produces more accurate histograms than

for B-trees and heaps which use page sampling. Cluster sampling

of the columnstore is only used to help with dictionary creation

during the index build process, never to create histograms for query

optimization.

3.3 Bookmark Support
In SQL Server terminology a bookmark is a value that uniquely

identifies a row: a logical row pointer. The actual bookmark type

depends on the clustered index; if it is a heap, the bookmark

consists of <page ID, row ID> and if it is a B-tree it is the B-tree

key, possibly augmented with an additional uniquifier column.

Any index in SQL Server storing the primary copy of a table must

be able to locate a row given a bookmark. Bookmarks are used by

a variety of query plans, the most frequent of which is a delete plan

which first collects the bookmarks for a set of rows to delete before

actually deleting them.

4

So a clustered column store index also needs to support bookmark

lookup. Since a column store index does not have a key that

uniquely identifies a row, we associated a unique tuple id with each

row within a row group (simply its sequence number, which is not

stored) and used the combination of row group id and tuple id to

uniquely identify a row.

3.4 Other Enhancements
The SQL Server 2012 implementation did not support a number of

data types such as numeric beyond precision 18, datetimeoffset

beyond precision 2, GUID and binary columns. The upcoming

version adds support for all the above data types. It also introduces

support for storing short strings by value instead of converting all

strings to a 32 bit id within a dictionary. This removes the extra

overhead associated with the dictionary and helps improve the

column store compression even further.

We also extended a number of other features and added several new

features to improve feature parity between the column store indexes

and row store indexes. For example, it is possible to add, drop and

modify the set of columns that are part of a clustered column store,

unlike the nonclustered columnstore index which does not allow

such changes. We extended the data check functionality for column

stores to do more in-depth data validity checks, and shrink file and

shrink database functionality now work with column store indexes.

4. UPDATE HANDLING
Columnar storage greatly improves read performance but once

compressed, the data is prohibitively expensive to update directly.

Some compressed formats allow for append-only updates, one row

at a time, but they achieve lower compression ratios than techniques

that compress large blocks (segments) of data at a time.

Compression is more effective if a significant amount of data is

compressed at once, allowing the data to be analyzed and the best

compression algorithm chosen.

The prime target for columnar storage is data warehouse fact tables

which typically have a high rate of inserts and a very low rate of

updates or deletes. Data past its retention period can be removed in

bulk almost instantly from a partitioned table via partition

switching. This being the case, it is crucial to achieve high

performance for regular insert and bulk insert operations while the

performance of update and delete operations is less critical.

Two new components were added to make SQL Server column

store indexes updatable: delete bitmaps and delta stores.

Each column store index has an associated delete bitmap that is

consulted during scans to disqualify rows that have been deleted. A

bitmap has different in-memory and on-disk representations. In

memory it is indeed a bitmap but on disk it is represented as a B-

tree with each record containing the row ID of a row that was

deleted.

New and updated rows are inserted into a delta store which is a

traditional B-tree row store. An index may have multiple delta

stores. Delta stores are transparently included in any scan of the

column store index.

With this infrastructure in place, insert, delete and update

operations on column stores become possible.

 Insert: The new rows are inserted into a delta store. This can

be done efficiently because delta stores are traditional B-tree

indexes.

 Delete: If the row to be deleted is in a column store row

group, a record containing its row ID is inserted into the B-

tree storing the delete bitmap. If it is in a delta store, the row

is simply deleted.

 Update: An update operation is simply split into a delete and

an insert action. That is, the old row is marked as deleted and

the new row is inserted into a delta store.

 Merge: A merge operation is split into corresponding insert,

delete, or update actions.

A delta store contains the same columns as the corresponding

column store index. The B-tree key is a unique integer row ID

generated by the system (column stores do not have unique keys).

A column store can have zero, one, or more delta stores. New delta

stores are created automatically as needed to accept inserted rows.

A delta store is either open or closed. An open delta store can accept

rows to be inserted. A delta store is closed when the number of rows

it contains reaches a predefined limit.

SQL Server automatically checks in the background for closed

delta stores and converts them to columnar storage format. This

periodic background task is called the Tuple Mover. After the Tuple

Mover has converted a delta store, it is deallocated. The Tuple

Mover does not block read scans but concurrent deletes are forced

to wait for the conversion to complete. The Tuple Mover can also

be invoked on demand.

The Tuple Mover reads one closed delta store at a time and starts

building the corresponding compressed segments. During this time

scans continue to see and read the delta store. When the Tuple

Mover has finished compressing the delta store, the newly created

D
el

et
e

Bi
tm

ap

(B
-t

re
e)

Im
m

ut
ab

le

U
pd

at
ea

bl
e

Delta
Store

(B-tree)

Row
Group

Row
Group

Row
Group

Figure 3: A column store index may include a delete bitmap

and a number of delta stores which are both implemented

as B-trees.

5

segments are made visible and the delta store is made invisible in a

single, atomic operation. New scans will see and scan the

compressed format. The Tuple Mover then waits for all scans still

operating in the delta store to drain after which the delta store is

removed.

Because the Tuple Mover does not block reads and inserts, it has

minimal impact on overall system concurrency. Only concurrent

delete and update operations against a delta store may be blocked

while the delta store is converted by the Tuple Mover.

4.1 Trickle Inserts
Normal, non-bulk insert operations – here called trickle inserts -

are handled by transparently intercepting the data to be inserted into

a column store index and writing it instead into a delta store. The

Query Processing layer is unaware of this and operates as if it had

inserted the data into a column store. The internal Access Methods

layer is responsible for managing the delta stores, for including

their contents in column store scans, for creating delta stores and

for locating a delta store when needed.

4.2 Bulk Inserts
Large bulk insert operations do not insert rows into delta stores but

convert batches of rows directly into columnar format. The

operation buffers rows until a sufficient number of rows has

accumulated, converts them into columnar format, and writes the

resulting segments and dictionaries to disk. This is very efficient; it

reduces the IO requirements and immediately produces the

columnar format needed for fast scans. The downside is the large

memory space needed to buffer rows.

Bulk insert operations must compress and close the data when the

statement finishes. The batch_size parameter of the bulk insert API

determines how many rows are processed by one bulk insert

statement. For efficient compression a large batch size of 1M rows

is recommended.

But even with a large batch size there may be cases where there

simply are not enough rows to justify a compressed row group.

SQL Server handles this situation transparently by automatically

switching to a delta store if a statement finishes without having

enough rows accumulated. This simplifies the programming and

administration of column store ETL operations because there is no

requirement to force a large volume of rows to accumulate in the

ETL pipeline. SQL Server will decide the proper storage format

and, if the data was saved in the row store format, it will later

compress the delta store when it has accumulated enough rows. The

number of rows in a row group is kept high (around one million) to

achieve high compression ratios, and maintain a large column store

segment size to yield fast, low-overhead query processing.

Given the significant performance advantage of the bulk insert API

over traditional insert statements, the query execution engine will

internally use the bulk insert API for “insert into … select from …”

statements that are targeting a column store. This operation is fairly

frequent in ETL pipelines and this change allows it to create

directly the highly efficient compressed format.

4.3 Deletes and Updates
Delete operations operate differently on compressed row groups vs.

delta stores. For rows stored in compressed format, a delete

operation will insert the row ID (ordinal position number within the

row set) of the deleted row in the deleted bitmap. For rows stored

in a delta store, the row is removed because B-trees support

efficient row removal. Recall that an update operation is executed

as a delete operation and an insert operation.

4.4 Effect on Query Execution
The handling of delta stores and the deleted bitmap is done entirely

in the Access Methods layer. The Query Execution layer will see

the compressed data and the delta store data as one uniform set of

rows that has columnar storage characteristics, exposed for batch

processing. This allows the system to maintain the orders-of-

magnitude query speedups possible with column stores and batch

mode, even with the introduction of row-based delta stores.

The deleted bitmap is consulted by scans and if the current row id

is present in the deleted bitmap, the row is skipped. This is handled

internally in the Access Methods layer; thus deleted rows are never

surfaced to query processing.

The process of segment elimination during scans (by checking

segment metadata containing the minimum and maximum values

in columns) does not need to consult the deleted bitmap. The

interval between the minimum and maximum values within a

column cannot grow when rows are deleted. Therefore, the original

minimum and maximum values computed during column store

segment creation can safely be used for segment elimination even

after deletes.

A large number of deleted rows can reduce scan performance. The

cost of IO for reading the segments is not reduced by deleting rows

because compressed segments are immutable and the cost of

reading and consulting the bitmap is added. The workloads targeted

by columnar storage typically have a low frequency of updates and

deletes so having many deleted rows rarely occurs. Column store

indexes with a large volume of deleted rows can be rebuilt to restore

performance and reclaim space.

Parallel scans assign each delta store to a single thread of execution.

A single delta store is too small to justify scanning in parallel but

multiple delta stores can be scanned in parallel. Scanning delta

stores is slower than scanning data in columnar format because

complete records have to be read and not just the columns needed

by the query. This is mitigated by the relatively small size of delta

stores and by the fact that the engine actively converts delta store

data into the compressed columnar format. This keeps the number

of delta stores low, so under normal operating conditions, the great

majority of data stays in columnar format, optimized for efficient

space usage and query execution.

5. QUERY PROCESSING AND

OPTIMIZATION
Batch processing in SQL Server 2012 supported only the most

heavily used query patterns in data warehousing scenarios, for

example, inner but not outer joins, and group-by-aggregate but not

scalar aggregates. Query plan segments using batch processing had

a rigid shape; the join order was fixed and generated heuristically

based on cardinality estimates. Query plans had to prepare for the

possibility of a “bailout” to row-by-row processing, in case of

insufficient memory during execution.

The upcoming release of SQL Server extends batch processing

capabilities in several ways. We consider batch execution for

iterators anywhere in the query plan, regardless of whether their

inputs are using batch execution, and regardless of whether the data

originates in a column store or row store. The join order for batch

execution is no longer a fixed one generated heuristically. Batch

processing is supported for all SQL Server join types, union all, and

6

scalar aggregation. Finally, we have done extensive work on

memory management and spilling support for batch mode

operators.

5.1 Mixed Execution Mode
In SQL Server 2012 the transition between row and batch

processing happens only at prescribed points in the plan, and the

transition between batch and row processing occurs only when

absolutely necessary. This limitation is cumbersome and the

forthcoming release of SQL Server has a completely new model for

dealing with batch to row mode transitions.

Like the sortedness of output rows, the execution mode is treated

as a physical property of a query plan iterator, and the physical

property framework is used to manage execution mode transitions.

It is now possible to transition from one execution mode to another

at any point in an execution plan. These transitions have a cost

associated with them, thus ensuring that the optimizer does not

become too transition-happy. The ability to freely transition

between batch and row modes allows the optimizer to explore the

logical space only once, and moves all decisions related to

execution model into the implementation phase.

The example plan in Figure 4 illustrates how it is now possible to

have mixed execution modes. The query is TPCH Q22, and most

of the execution occurs in batch mode, except for the four

unsupported iterators (inside the red boxes) that run in row mode.

5.2 Hash Join
Improvements in query execution were focused mainly on the

batch-mode hash join operator. Its original implementation had

limitations that meant it could not be used in some important

scenarios.

Firstly, only inner joins were supported. The current version

handles the full spectrum of join types: inner, outer, semi- and anti-

semi joins.

Secondly, there had to be enough memory available for the query

to build a hash table containing all the rows coming from the build

side of the join. It the hash table did not fit entirely into memory,

join processing switched on the fly from batch mode to row mode.

Row-mode hash join is able to execute in low memory conditions

by spilling some of the input data temporarily to disk. This solution,

however, was not satisfactory because query performance dropped

significantly when the switch happened. We enhanced batch-mode

hash join by adding spilling functionality.

Thirdly, we improved our implementation of bitmap filters for

batch-mode hash joins. Bitmap filters are used to reject at an early

processing stage rows on the probe side of a join that do not have

matching rows on the build side. Bitmap filters have been enhanced

to support any number of join key columns of any type.

5.2.1 Spilling
When forced to spill to disk, it is important to minimize the amount

of data that is written to disk. Let us first consider a single join that

spills a fraction of its input data from the build side. Before building

the hash table, this data is partitioned in memory into many buckets

based on a hash function. Each time we decide to spill more data,

another bucket is chosen and marked for spilling. A new temporary

file is created and all rows that have already been assigned to this

bucket are written to it and released from memory. All rows that

are assigned to this bucket in the future will be appended to this file

directly. After processing in this way all input from the build side,

a hash table is created for the buckets that remain in memory.

When processing the probe side of a join, we do not partition

incoming rows, but before doing a hash table lookup for a row we

check whether its corresponding bucket on the build side has been

spilled. If so, the row is written to another temporary file that stores

probe side rows belonging to the bucket. After having processed all

input rows on the probe side the hash table is released.

We are then left with pairs of files generated for the build and the

probe side, one pair for each spilled bucket. For each pair the same

join algorithm is executed but this time it is getting inputs from files

instead of child operators. The new iteration of a join deals with

less data. Spilling may happen again, of course, but fewer rows

will be spilled.

We use a slightly modified version of TPCH Q10 to illustrate the

effects of spilling. The query joins four tables (lineitem, orders,

customer, nation) and then applies a group-by and a top operator.

The query plan contains a sequence of batch-mode hash joins:

lineitem is first joined with orders, then customer, and finally

nation. Consequently, three hash tables (on orders, customer, and

nation) are present in memory at the same time, competing for

space.

In order to measure performance under spilling, we gradually

reduced the memory available to the query, with the expectation

that query performance will degrade slowly and not show any cliff-

like behavior. The x-axes in Figure 5 represent the percentage of

memory available to the query, 100% being the “desired” memory

level that avoids all spilling. The left chart shows the impact of

spilling on response time as the memory situation becomes tighter.

The performance of the new implementation (labeled SQLNext)

degrades gracefully. With just 6% of the desired memory, the

Figure 4: Query plan with mixed batch and row mode processing. The operators enclosed in red boxes run in row mode,

the rest in batch mode.

7

response time degrades by 5X, whereas the SQL Server 2012

implementation degrades by almost 37X. (Note that both the x and

y axes are normalized. Actual response time and absolute memory

requirements are both lower for SQLNext than for SQL2012).

Most of the cost of spilling involves IO, but there is also a CPU-

time penalty. The chart on the right of Figure 5 shows that the CPU

overhead grows with the amount of spilling involved and reaches

90% for SQL Server 2012 and a much lower 33% for SQLNext.

 What is new in batch-mode hash join compared to its row-mode

equivalent is the way a right-deep chain of joins is treated, e.g. a

join between a fact table and several dimension tables. All joins

share the same memory pool, which allows some flexibility in

deciding how much each join should spill when approaching the

limit for available memory.

We use the simple rule of always spilling from a hash table with

more rows before spilling from a table with fewer rows. The

number of rows can only be estimated, of course. The logic behind

the rule can be explained by an example. Suppose we join a large

fact table F containing 10M rows with two dimension tables, D1

containing 1,000 rows and D2 containing 10,000 rows. On average

each D1 row will join with 10,000 F rows and each D2 row will

join with 1,000 F rows. This means that if we spill one row from

D1, we will on average have to spill 10,000 F rows but only 1,000

F rows for each row spilled from D2. It follows that spilling rows

from the larger dimension table is expected to minimize the

expected spill on the (much larger) probe side.

For each right-deep chain of joins, we sort the hash tables based on

estimated size and start building from the smallest. However, we

make exceptions from this rule when we need to satisfy bitmap

dependencies. If a bitmap created by join A is to be used as a filter

on the build side of join B, then we force hash table A to be built

before hash table B.

5.3 Bitmap Filters
The next release of SQL Server also has many changes around how

bitmap filters are generated and placed in the plan. In SQL Server

2012 bitmaps were generated only in cases where the optimizer was

able to predetermine their exact final placement. This choice was

working well because it did not force the optimizer to spend time

moving bitmap filters around but at the same time it seriously

limited the potential benefits of bitmap filters.

With the support for outer joins and semi-joins this approach began

to show its limitations. Adding filters below each join and relying

on exploration rules to push the filters into the right position quickly

proved infeasible because it leads to an explosion of the logical plan

space. To avoid this explosion, hash join operators now store

information about bitmaps and their estimated selectivity. At

implementation time, the selectivity information is passed to the

child, enabling it to adjust its cost to account for the bitmap

selectivity. In order to limit the amount of optimization requests to

child groups the optimizer does not treat each request as different,

but rather clusters requests based on their selectivity thus being able

to reuse far more than it would otherwise. Once a plan is chosen,

the optimizer performs an extra pass over the plan to push down all

bitmap filters from their respective join operators to the lowest

possible location.

There are two kinds of bitmaps that can be generated from a batch-

mode hash join. The first is called a simple bitmap, which is an

array of bits indexed by an integer column value relative to some

base value. The second is a complex bitmap, which is a modified

Bloom Filter optimized for better use of CPU caches. In SQL

Server 2012 bitmap use was limited to single column keys, and to

data types that can be represented as 64-bit integers. Currently

complex bitmaps can be used for multiple columns and all data

types. Only for the previously supported data types can they be

pushed down as far as the scan in the storage engine layer. For the

newly supported data types a filter iterator is inserted in the query

execution plan. If a bitmap is generated for multiple integer key

columns, we still try to split it into multiple single-column bitmaps

and push them down to the storage engine.

Bloom filters may return false positives, and there is a trade-off

between the false positives rate and the size of the filter. Compared

to SQL Server 2012, we improved both the performance and false

positives rate for complex bitmaps. Based on the actual cardinality

of the input set and other statistics, computed during the

repartitioning phase of a batch-mode hash join, we decide whether

to pick a simple or complex bitmap. In case of a complex bitmap,

we also decide how many bits per key value to use. For small

cardinalities we use larger complex bitmaps to achieve a lower false

positive rate.

One of the problems observed in SQL Server 2012 was that when

a hash join runs out of memory and spills some data to disk, bitmap

filters are not created and therefore in some cases a lot more data

0%

20%

40%

60%

80%

100%

100% 83% 69% 55% 41% 27% 13%

P
er

ce
n

t
C

P
U

 o
ve

rh
ea

d

Percent of desired memory

SQLNext SQL2012

1
2
4
8

16
32
64

1
0

0
%

9
3

%

8
3

%

7
6

%

6
9

%

6
2

%

5
5

%

4
8

%

4
1

%

3
4

%

2
7

%

2
0

%

1
3

%

8
%

N
o

rm
al

iz
ed

 r
es

p
o

n
se

 t
im

e

Percent of desired memory

SQLNext SQL2012

Figure 5: Performance comparison of old and new hash join implementation under memory pressure.

8

on the probe side must be processed. When adding spill support to

batch-mode hash join we allowed it to create a complex bitmap also

when the data does not fit into memory. We reserve some memory

for that purpose but if the bitmap grows too large, its creation may

be abandoned.

6. ARCHIVAL COMPRESSION
Most data warehouses have some data that is frequently accessed

and some that is accessed more infrequently. For example, the data

may be partitioned by date and the most recent data is accessed

much more frequently than older data. In such cases the older data

can benefit from additional compression at the cost of slower query

performance. To enable this scenario we added support for archival

compression of SQL Server column stores.

The archival compression option is enabled on a per table or

partition (object) basis; a column store can contain objects with

archival compression applied and objects without. To allow for

easy extensibility of existing on-disk structures, archival

compression is implemented as an extra stream compression layer

that transparently compresses the bytes being written to disk during

the column store serialization process and transparently

decompresses them during the deserialization process. Stream

decompression is always applied when data is read from disk. Data

is not cached in memory with stream compression.

We used the Xpress 8 compression library routine for compression.

Xpress 8 is a Microsoft internal implementation of the popular

LZ77 algorithm. For performance and scalability, it is designed to

work in a multi-threaded environment and uses data streams up to

64KB in size.

Table 1 shows the compression ratios achieved with and without

archival compression for several real data sets. The further

reduction obtained by archival compression is substantial, ranging

from 37% to 66% depending on the data. We also compared with

GZIP compression of the raw data. Archival compression

consistently achieved a better compression ratio, sometimes

considerably better.

7. PERFORMANCE RESULTS
In this section we present measurements for query, update, and load

performance, as well as compression rates, given the new

capabilities recently added to SQL Server.

7.1 Batch Mode Performance
SQL Server 2012 introduced vectorized batch-mode query

execution for data coming from non-clustered (secondary) column

store indexes. For some operations, this can reduce CPU cycles per

row by over 40X, and improve cycles per instruction as well. This

is a critical component that goes hand-in-hand with columnar

storage to improve query speed. It is even more important than

columnar format if all data fits in memory.

To illustrate the kind of performance that can be achieved in batch

mode, we ran some queries on the TPC-DS database at the 100GB

scale factor. We compared the results from a copy of this database

with clustered column store indexes on every table, to a copy of the

same database with B-tree indexes on every table.

A 16 core machine with 48GB RAM and 4 hard drives was used

for the tests. We focused on the table store_sales which contains

approximately 288 million rows, and ran the following five queries.

Q_count:
select count(*) from store_sales

Q_outer:
select item.i_brand_id brand_id, item.i_brand brand,
 sum(ss_ext_sales_price) ext_price
from item left outer join store_sales

 on (store_sales.ss_item_sk = item.i_item_sk)
where item.i_manufact_id = 128
group by item.i_brand_id, item.i_brand
order by ext_price desc, brand_id

Q_union_all:
select d.d_date_sk, count (*)
from (select ss_sold_date_sk as date_sk,
 ss_quantity as quantity
 from store_sales
 union all
 select ws_sold_date_sk as date_sk,
 ws_quantity as quantity
 from web_sales) t, date_dim d
where t.date_sk = d.d_date_sk
and d.d_weekend = 'Y'
group by d.d_date_sk;

Q_count_in:
-- Here, store_study_group contains a
-- set of 100 IDs of interesting stores.

select count(*)

from store_sales

where ss_store_sk

 in (select s_store_sk from store_study_group);

Q_not_in:
-- bad_ticket_numbers contains a set of ticket numbers
-- with known data errors that we want to ignore.
select ss_store_sk, d_moy, sum(ss_sales_price)
from store_sales, date_dim
where ss_sold_date_sk = d_date_sk and d_year = 2002
and ss_ticket_number
 not in (select * from bad_ticket_numbers)
group by ss_store_sk, d_moy

Database

Name

Raw data

size (GB)

Compression ratio

Archival compression? GZIP

No Yes

EDW 95.4 5.84 9.33 4.85

Sim 41.3 2.2 3.65 3.08

Telco 47.1 3.0 5.27 5.1

SQM 1.3 5.41 10.37 8.07

MS Sales 14.7 6.92 16.11 11.93

Hospitality 1.0 23.8 70.4 43.3

Table 1: Comparison of compression ratios with and

without archival compression and GZIP compression.

9

Table 2 contains a summary of the performance for these queries

with the recent extensions to SQL Server. All times are in seconds.

Prior to the recent query processing enhancements of batch mode

query execution, the warm start execution times were roughly

equivalent for column store and row store, because the queries did

not use batch mode. Column stores still benefited in the past for

cold start from reduced I/O.

The large cold speedup (64.1X) for Q_outer is in large part due to

selection of a plan with an index nested loop join when using the

row store, which caused random I/O in a cold start situation. This

illustrates the fact that column store performance is more consistent

compared with index-based plans using B-trees because sequential

scan of the column store is always used.

7.2 Storage Requirements
In clustered column store format, the store_sales table requires

13.2GB of space, or 46 bytes per row. This is versus 35.7GB in the

uncompressed row store (clustered B-tree) format, plus an

additional 7.7GB of non-clustered B-trees, or 43.5GB total and 151

bytes per row. This data set is not particularly compressible since it

contains randomly generated data. Real data sets tend to be more

compressible.

7.3 Delete Performance
Delete performance was measured on another table “Purchase”

containing 101 million rows of movie ticket purchase information.

“Purchase” is a data warehouse fact table with 19 columns. About

5.5% of the rows (about 5.5M rows) were deleted from the

Purchase table at random throughout the table using this statement:

delete from Purchase where MediaId % 20 = 1;

In our experience with customers, they sometimes delete or modify

around 5% of the rows in a table to correct errors or adjust data with

late-arriving values, so this level of deletions is interesting from a

practical perspective.

On a 4-core machine, with the data on one disk, the delete statement

finished in 57 seconds. On the same machine, when the Purchase

table was stored as a clustered B-tree, the same delete statement

took 239 seconds. The reason the deletes are faster with the column

store is that we simply insert a set of <row_group_id, row_number>

pairs in a B-tree (the delete bitmap) to mask the rows. For the

clustered B-tree, the rows are actually removed from pages. This

generates more log data and requires more storage reorganization,

so it takes longer. If enough data is deleted (say >>10%) then a

manual column store index rebuild is recommended to reclaim

space.

7.4 Bulk and Trickle Load Rates
Bulk load rates for clustered column store have been measured at

about 600GB/hour on a 16 core machine, using 16 concurrent bulk

load jobs (one per core) targeting the same table

We did a trickle load test on a single thread whereby we inserted

3.93 million rows, one at a time in independent transactions, into

an empty column store index. This was done on a machine with 4

cores and 8 hardware threads. The test was implemented with a

cursor reading from a source table and inserting one row at a time

into the target. The data was drawn from the Purchase table

mentioned earlier. The test took 22 minutes and 16 seconds. The

insertion rate was 2,944 rows/second.

The tuple mover had completed compressing three row groups to

column store format at the end of the test, and the remainder was in

one open delta store, so these figures include compression time.

The table could be queried with interactive response time during

the insertions.

Much higher load rates can be obtained by batching groups of rows

together (say 1,000 at a time) in small bulk loads and by using

concurrent streams to add data, rather than a single thread as was

done in this test.

As a basic demonstration of this, we loaded 20 million rows in

batches of 1,000 rows using the SQL Server bcp program, our

external bulk loader. The test was single-threaded. The target was

an empty version of the Purchase table, with a clustered column

store index. The 20 million rows were loaded in 9 minutes 46

seconds, which is a rate of 34,129 rows per second. This is 11.5

times faster than when inserting a row at a time. During this trickle

bulk load test, the data could be queried with interactive response

time for full scans. Immediately after the bcp job completed there

were 20 total row groups, with 18 compressed row groups, one

closed delta store, and one open. In just over a minute, the tuple

mover had moved the closed row group to compressed format,

leaving 19 compressed row groups and one open row group.

8. RELATED WORK AND SYSTEMS
The idea of decomposing records into smaller subrecords and

storing them in separate files goes back to the seventies. Hoffer

and Severance [6] published a paper on the optimal decomposition

into subrecords in 1975. A 1979 paper by Batory [1] considered

how to compute queries against such files. A 1985 paper by

Copeland and Khoshafian [3] discussed fully decomposed storage

where each column is stored in a separate file, that is, full columnar

storage.

Many prototype and commercial systems relying on columnar

storage have been developed. MonetDB was one of the early

pioneers; its development began in the early nineties at CWI [4].

Sybase launched Sybase IQ, the first commercial columnar

database system, in 1996. A 2005 paper by Stonebraker et al [12]

on C-Store rekindled interest in column stores.

Several commercial systems using column-wise storage are

available today. Most are pure column stores but some are hybrid

systems that support both column-wise and row-wise storage.

The earliest pure column stores are Sybase IQ [21] and MonetDB

[18], which have been available for well over a decade. Newer

players include Vertica [23], Exasol [14], Paraccel [19], InfoBright

[16] and SAND [20]. In addition to SQL Server, three other systems

support both row-wise and column-wise storage: Actian

VectorWise [17], Greenplum [15], and Teradata [22].

Query

Rowstore Columnstore Speedup

Cold Warm Cold Warm Cold Warm

Q_count 13.0 4.33 0.309 0.109 42.1 39.7

Q_outer 263 1.03 4.1 0.493 64.1 2.1

Q_union_all 20.8 19.0 3.0 1.41 6.9 13.5

Q_count_in 62.5 24.0 2.29 1.15 27.3 20.9

Q_not_in 12.0 10.2 6.95 1.31 1.7 7.8

Table 2: Comparison of execution times with and without

column store indexes.

10

VectorWise [17] originated in the MonetDB/X100 project [2] and

is now embedded in the Ingres DBMS [8]. VectorWise began as a

pure column store but now also supports hybrid storage. Updates

are handled by a technique called Positional Delta Trees (PDT).

Conceptually, a PDT is an in-memory structure that stores the

position and the change (delta) at that position. Scans merge the

changes in PDTs with data stored on disk. PDTs only use a

configurable amount of memory. Once the memory pool is

exhausted the PDT changes must be written to persistent storage.

This can be an expensive operation since it effectively rewrites the

entire table.

Greenplum [15] began as a row store but added column store

capabilities. Their Polymorphic Storage feature allows different

partitions of the same table to be stored in different form, some row-

wise and some column-wise. We have not been able to find

information on how deeply column-wise processing has been

integrated into the engine and whether data stored column-wise can

be updated.

Teradata introduced columnar storage in Teradata 14 [22]. In their

approach, a row can be divided into sub-rows, each containing a

subset of the columns. Sub-rows can then be stored column-wise or

row-wise. Whether Teradata 14 uses any form of vectorized or

batch processing is not clear. Deletes and updates may be expensive

because Teradata appears not to use any form of delta store so all

affected columns have to be accessed and updated.

9. REFERENCES
[1] Batory, D. S.: On searching transposed files. ACM Trans.

Database Syst. 4, 4 (1979), 531-544.

[2] P. A. Boncz, M. Zukowski, and N.Nes, MonetDB/X100:

Hyper-pipelining query execution. CIDR, 2005, 225-237.

[3] G. P. Copeland and S. Khoshafian, A decomposition storage

model. SIGMOD, 1985, 268 -279.

[4] Harizopoulos, S., Liang, V., Abadi, D.J., and Madden, S.:

Performance tradeoffs in read-optimized databases. VLDB,

2006, 487-498.

[5] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris

Sidirourgos, Peter A. Boncz: Positional update handling in

column stores. SIGMOD, 2010: 543-554.

[6] J. A. Hoffer and D. G. Severance, The use of cluster analysis

in physical data base design, VLDB, 1975, 69-86.

[7] M. Holsheimer and M. L. Kersten, Architectural support for

data mining, KDD, 1994, 217-228.

[8] D. Inkster, M. Zukowski, and P. A. Boncz, Integration of

VectorWise with Ingres, SIGMOD Record, 40(3):45-53,

2011.

[9] P.-Å. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price,

S. Rangarajan, A. Surna, and Q. Zhou, Sql Server column

store indexes, SIGMOD, 2011, 1177-1184.

[10] Microsoft, Column store Indexes in Books Online for SQL

Server 2012, available at http://msdn.microsoft.com/en-

us/library/gg492088.aspx.

[11] Microsoft, SQL Server Column store Index FAQ,

http://social.technet.microsoft.com/wiki/contents/articles/354

0.sql-server-column store-index-faq-en-us.aspx.

[12] M. Stonebraker et al. C-Store: A Column-oriented DBMS.

VLDB, 2005, 553-564.

[13] TPC Benchmark DS (Decision Support), Draft Specification,

Version 32, http://tpc.org/tpcds.

[14] ExaSolution, http://www.exasol.com

[15] Greenplum Database, http://www.greenplum.com

[16] InfoBright, http://www.infobright.com

[17] Actian VectorWise,

http://www.actian.com/products/vectorwise.

[18] MonetDB, http://monetdb.cwi.nl

[19] ParAccel Analytic Database, http://paraccel.com

[20] SAND CDBMS, http://www.sand.com

[21] Sybase IQ Columnar database,

http://www.sybase.com/products/datawarehousing/sybaseiq

[22] Teradata Columnar, http://www.teradata.com/products-and-

services/database/teradata-14

[23] Vertica, http://www.vertica.com

