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Abstract

The challenge of linking intergenic mutations to target genes has limited molecular understanding 

of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps 

of active enhancers and target genes in rare primary human T cell subtypes and coronary artery 

smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells 

creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA 

accessibility. These data provide a principled means of assigning molecular functions to 

autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to 

putative gene targets. Target genes identified with HiChIP are further supported by CRISPR 

interference and activation at linked enhancers, by the presence of expression quantitative trait 

loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of 

disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading 

to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular 

diseases.

Gene expression programs are intimately linked to the hierarchical organization of the 

genome. In mammalian cells, each chromosome is organized into hundreds of megabase-

sized topologically associated domains (TADs), which are conserved from early stem cells 

to differentiated cell types1. Within this invariant TAD scaffold, cell-type-specific enhancer–

promoter interactions establish regulatory gene expression programs2. Standard methods 

require tens of millions of cells to obtain high-resolution interaction maps and confidently 

assign enhancer–promoter contacts3–5. Thus, the principles that govern enhancer–promoter 

conformation in disease-relevant patient samples are incompletely understood. This gap in 

understanding is particularly problematic for interpreting the molecular functions of 

inherited risk factors for common human diseases, which reside in intergenic enhancers or 

other noncoding DNA features in up to 90% of cases6–9. Such disease-relevant enhancers 

may not influence the expression of the nearest gene (often reported as the default target in 

the literature) and may instead act in a cell-type-specific manner on distant target genes 

residing up to hundreds of kilobases away2,10–14. Recently, systematic perturbations of 

regulatory elements in select gene loci have shown that the effects of individual regulatory 

elements on gene activity can be predicted from the combination of (i) enhancer activity 

(marked by histone H3 lysine 27 acetylation (H3K27ac) level) and (ii) enhancer–target 

looping5,15. Here we leverage this insight to capture the combination of these two types of 

information across the genome in a single assay, mapping the enhancer connectome in 

disease-relevant primary human cells.

RESULTS

H3K27ac HiChIP identifies functional enhancer interactions

We recently developed HiChIP, a method for sensitive and efficient analysis of protein-

centric chromosome conformation16. Cohesin HiChIP in GM12878 cells identified similar 

numbers of loops as in situ Hi-C (~10,000) with high correlation (R = 0.83), demonstrating 

that HiChIP captures loops with high sensitivity and specificity. Here we evaluated the 

enhancer- and promoter-associated mark H3K27ac17–19 as a candidate factor to selectively 
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interrogate enhancer–promoter interactions across the genome. We performed H3K27ac 

HiChIP in mouse embryonic stem (ES) cells to compare to cohesin HiChIP (Supplementary 

Fig. 1a and Supplementary Table 1)16. 3,552 of the 4,191 H3K27ac HiChIP loops in mouse 

ES cells were also identified by cohesin HiChIP. The H3K27ac-biased loops (log2 (fold 

change) > 1) spanned shorter distances than the cohesin-biased loops and were enriched for 

H3K27ac ChIP–seq peaks (78.9%; Supplementary Fig. 1b–f and Supplementary Table 2). 

Moreover, systematic titration of input material showed that H3K27ac HiChIP retained high 

signal fidelity and reproducibility when using from 25 million to 50,000 cells as input 

material (loop signal correlation r = 0.918; Supplementary Figs. 2 and 3). Therefore, 

H3K27ac HiChIP identifies high-confidence chromatin loops focused around enhancer 

interactions from limited cell numbers.

To capture (i) conformational change during T cell differentiation and (ii) cell-type-specific 

chromatin contacts of risk variants for autoimmune diseases in protective and pathogenic T 

cell types, we performed H3K27ac HiChIP on primary human naive T cells (CD4+CD45RA
+CD25−CD127hi), regulatory T (Treg) cells (CD4+CD25+CD127lo), and T helper 17 (TH17) 

cells (CD4+CD45RA−CD25−CD127hiCCR6+CXCR5−) directly isolated from donors (Fig. 

1a,b and Supplementary Fig. 4a)20,21. TH17 cells were sorted to include autoimmune 

disease–relevant pathogenic TH17 cells and to exclude follicular helper T cells with a 

distinct surface phenotype and immune function (Supplementary Fig. 4a)22–24. Peripheral 

blood CD4+ T cells were obtained from three healthy subjects, isolated by FACS, and 

subjected to H3K27ac HiChIP. The HiChIP libraries from each subset were high quality; 

greater than 40% of the reads represented unique paired-end tags (PETs) (Supplementary 

Fig. 4b–d and Supplementary Table 1). Furthermore, the libraries exhibited high 1D signal 

enrichment at enhancers and promoters and globally recapitulated publically available 

H3K27ac ChIP–seq data sets (74.7% overlap of ChIP–seq and 1D HiChIP peaks; Fig. 1c)25. 

Inspection of the interaction matrix at progressively higher resolution showed chromatin 

compartments, TADs, and focal loops, as previously reported in high-resolution Hi-C and 

HiChIP analyses from cell lines (Fig. 1b)4,16. Notably, H3K27ac HiChIP maps were capable 

of identifying focal interactions at 1-kb resolution, which is comparable to the resolution for 

in situ Hi-C maps generated from 100-fold more cells and sequenced to 13-fold greater 

depth4 (Fig. 1b).

Previous saturation perturbation screens demonstrated that functional enhancers can be 

identified by integrating H3K27ac ChIP–seq signal with chromosome conformation contact 

strength (Hi-C)5. Because H3K27ac HiChIP combines these two components into one assay, 

we reasoned that HiChIP signal, which we term enhancer interaction signal (EIS), should 

identify functional regulatory elements. To validate this prediction, we first generated 

H3K27ac HiChIP maps in a chronic myelogenous leukemia cell line (K562) as a direct 

comparison to published high-resolution CRISPR interference (CRISPRi) screens5. We then 

examined the 3D enhancer landscape of the MYC and GATA1 loci using virtual 4C (v4C) 

analysis, where a specific genomic position is set as an anchor viewpoint and all interactions 

occurring with that anchor are visualized in 2D16. v4C analysis of the MYC promoter 

demonstrated that EIS in K562 cells captured all functional enhancers identified in the 

CRISPRi screen (Fig. 2a). Analysis of the GATA1 locus demonstrated a similar agreement 

between the two methods (Fig. 2b). Quantitatively, the EIS in K562 cells was significantly 
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correlated with CRISPRi score in the same cell type, whereas the EIS in GM12878 (GM; B 

cell lymphoblast) cells was not correlated with the K562 CRISPRi score (Spearman’s ρ = 

0.332 and 0.145; P = 9.25 × 10−5 and 0.1246; Fig. 2c).

We found the enhancer landscapes of the MYC promoter to be highly cell type specific. v4C 

analysis of the MYC promoter in GM and My-La (CD4+ T cell leukemia) cells showed 

dramatically different regulatory interactions with the promoter as compared to K562 cells 

(Fig. 2d). To validate EIS specificity, we performed CRISPRi experiments in GM cells using 

single guide RNAs (sgRNAs) targeting enhancers identified in either GM or My-La HiChIP 

maps, as well as a positive-control sgRNA targeting the MYC promoter and a negative-

control sgRNA targeting lambda phage sequence (Fig. 2e). As expected, we found that 

simultaneous CRISPRi perturbation of GM enhancers, but not My-La enhancers, impacted 

MYC expression and cell growth in GM cells (Fig. 2e).

Finally, we focused on the CD69 locus, where a high-resolution CRISPR activation 

(CRISPRa) screen identified three enhancers upstream of the transcription start site (TSS)26. 

These sites were also identified by H3K27ac HiChIP in naive T cells. Moreover, HiChIP 

identified four additional distal enhancers that were outside the region spanned by the 

sgRNA tiling array (Fig. 2f and Supplementary Fig. 5). To functionally validate these new 

enhancers, we performed CRISPRa experiments in Jurkat cells with sgRNAs targeting these 

enhancers, the CD69 promoter, and the KLRF2 promoter as a locus negative control, as well 

as a non-human-genome-targeting negative control. We observed a significant increase in 

CD69 RNA and protein levels in the four HiChIP enhancers as compared to the negative 

controls (Fig. 2g and Supplementary Fig. 5). Interestingly, two of the four new enhancers 

identified were within the promoter regions of distant genes. These findings are in line with 

previous reports that identified widespread distal gene regulatory functions of promoters 

across the genome27,28. Altogether, these results suggest that H3K27ac HiChIP EIS 

identifies functional regulatory elements and that enhancers that regulate a gene of interest 

can differ significantly between cell types.

Landscape of enhancer interactions in primary T cells

We examined global features of the enhancer connectome associated with cellular 

differentiation from naive T cells into either TH17 cells or Treg cells. We identified a total of 

10,706 high-confidence loops in the union set of the three cell types (Supplementary Table 

2). Analysis of loop read support between biological replicates demonstrated high 

reproducibility (Supplementary Fig. 4c), and ~91% of loop anchors were associated with 

either a promoter or an enhancer29, as expected, with a median distance of 130 kb 

(Supplementary Fig. 6a,b). Notably, high-resolution enhancer–promoter connectivity maps 

identified several features that could not be discerned from 1D epigenomic data (that is, 

H3K27ac ChIP–seq or assay for transposase-accessible chromatin using sequencing, ATAC–

seq; Fig. 3a). These features included (i) ‘enhancer skipping’: enhancers that had stronger 

EIS with a more distal target promoter; (ii) higher-order structures such as ‘enhancer 

cliques’ (related to loop cliques30): multiple regulatory elements that had strong EIS with a 

single target promoter; (iii) promoter–promoter interactions13,31; and (iv) ‘enhancer 
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switching’: enhancers that exhibited differential EIS with a target promoter in a cell-type-

specific manner (Fig. 3a).

We found that EIS contacts were very cell type specific. After quantile–quantile 

normalization of contact reads at high-confidence loops (correcting for false positives caused 

by 1D fragment visibility; Supplementary Note), we focused on the top and bottom 5% of 

EIS ranked by cell type bias for each pairwise comparison (Supplementary Figs. 6c–g and 7, 

and Supplementary Tables 3 and 4). Cell-type-specific enhancer loop anchors identified 

genes encoding canonical T cell subtype transcription factors and effector molecules (Fig. 

3b and Supplementary Figs. 8 and 9). Deeper v4C analysis of shared and cell-type-specific 

loci pinpointed regulatory elements interacting with each gene promoter of interest as well 

as local conformational landscape changes (Supplementary Figs. 8 and 9). Transcription 

factor motifs located within cell-type-specific loop anchors were enriched for transcription 

factors known to drive T cell subtype differentiation and nominated new transcription factors 

involved in regulation (Fig. 3c). Furthermore, cell type EIS bias was associated with 

differential expression of genes located within corresponding EIS anchors for the same cell 

type (naive to TH17: Spearman’s ρ = 0.242 and P = 4 × 10−15; naive to Treg: Spearman’s ρ = 

0.207 and P = 2 × 10−11); Fig. 3d).

Cell-type-specific EIS may be driven by cell-type-specific enhancer activation (based on 

H3K27ac ChIP–seq) or stable enhancer activation with cell-type-specific looping (Hi-C) in a 

gene-specific manner. We first examined H3K27ac ChIP–seq signal at differential EIS 

anchors and found that many biased H3K27ac HiChIP interactions also exhibited biased 

ChIP–seq signal, as expected. 58.5% of naive T cell–biased loops contained at least one 

naive T cell–biased ChIP–seq peak (log2 (fold change) > 1) located on the anchors. 

Similarly, 66.7% of TH17 cell–biased and 67.8% of Treg cell–biased interaction anchors 

were cell type specific in 1D (Supplementary Fig. 10a). Therefore, while on average ~64% 

of the differential EIS corresponds to changes in 1D data, ~36% is likely also driven by 

changes in 3D chromatin loop strength. To further assess the contribution of cell-type- 

specific 3D signal to EIS, we examined HiChIP 1D signal at differential EIS anchors. We 

found that HiChIP 1D signal correlated better with ChIP–seq signal than EIS, with a higher 

likelihood of differential ChIP–seq signal overlapping differential HiChIP 1D signal as 

compared to 3D signal, suggesting that EIS bias is in part driven by 3D changes 

(Supplementary Fig. 10b).

We asked whether the integration of reference cell line Hi-C data with primary T cell 

H3K27ac ChIP–seq data could recapitulate HiChIP EIS in primary T cells. We binned GM 

Hi-C loops with increasing primary T cell ChIP–seq signal at loop anchors and then 

determined the overlap of loops in each bin with loops derived from H3K27ac HiChIP. As 

expected, increased ChIP–seq signal at the Hi-C anchors led to increased overlap with the 

HiChIP loops. However, the overlap was lower in all T cell subtypes as compared to the 

same analysis performed using GM HiChIP data. These observations demonstrate that cell-

type-specific 3D interactions can impact EIS independently of differences in 1D ChIP–seq 

signal (Supplementary Fig. 10c). Similarly, previously generated enhancer–promoter maps 

obtained from bulk T cells did not identify T cell subtype-specific interactions obtained 

using H3K27ac HiChIP. To assess the unique information obtained through cell-type-
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specific interaction maps, we compared promoter-capture Hi-C maps14 in bulk CD4+ T cells 

to H3K27ac HiChIP maps in naive T, TH17, and Treg cells. Strikingly, the most cell-type-

specific loops in TH17 and Treg cells (16-fold enriched) demonstrated a low discovery rate in 

promoter-capture Hi-C T cells (11.83% in 415 loops and 13.83% in 373 loops, respectively; 

Supplementary Fig. 10d). Many of these subset-specific interactions included genomic loci 

encoding functionally important effector genes, such as LRRC32. The LRRC32 locus 

contained Treg-specific loops that were neither visualized in HiChIP maps from naive T or 

TH17 cells nor in bulk CD4+ promoter-capture Hi-C maps (Supplementary Fig. 10e). 

Because primary human TH17 and Treg cells are present in human blood at low frequencies, 

it would also be challenging to generate subset-specific promoter-capture Hi-C maps with 

published promoter-capture Hi-C protocols. In summary, EIS is derived from a combination 

of 1D ChIP–seq signal and 3D interaction signal and cannot be accurately predicted from 

3D maps in reference cell lines or unsorted primary cell data sets.

Cell-type-specific EIS can occur at sites of shared chromatin accessibility. Paired chromatin 

accessibility profiles from ATAC–seq32 for each T cell subset showed that most cell-type-

specific loop anchors had equivalent chromatin accessibility across all three cell types (Fig. 

3e–g). To illustrate this finding, we examined the BACH2 promoter, which exhibited shared 

chromatin accessibility at enhancers but increased EIS in naive T cells (Fig. 3e). Globally, 

only 14.2%, 27.8%, and 16.5% of naive-, TH17-, and Treg-biased loops, respectively, 

contained at least one biased ATAC–seq peak (log2 (fold change) > 1) located on the 

anchors. Furthermore, the majority of cell-type-specific transcription factor motifs were 

observed in shared ATAC–seq peaks within differential interactions, highlighting the notion 

that these regions are functioning in T cell differentiation (Fig. 3f,g). Altogether, these 

results suggest that, in highly related—yet functionally distinct—cell types, a portion of 

transcriptional control is achieved through differential chromosome looping, rather than 

differential chromatin accessibility. This finding is consistent with previous studies that 

demonstrated that T cell subset-specific transcription factors, such as FOXP3, act 

predominantly at pre-accessible chromatin sites to establish subset-specific gene 

expression33.

Enhancer interactions link disease variants to target genes

The high specificity of EIS enabled us to identify putative target genes of autoimmune 

disease risk loci in functionally relevant T cell subsets. To achieve this, we used a previously 

described list of putatively causal variants associated with 21 autoimmune diseases, known 

as PICS SNPs, which were fine-mapped on the basis of dense genotyping data25. We 

determined that PICS autoimmune disease–associated SNPs were significantly enriched in T 

cell loop anchors, with variants for specific autoimmune diseases showing greater than 

fivefold enrichment as compared to a shuffled control loop set (Supplementary Fig. 11). 

Next, we constructed a set of all possible connections between autoim-mune disease risk 

SNPs and TSSs within 1 Mb and measured the EIS for each SNP–TSS pair (Fig. 4a). We 

aggregated these signals to determine the overall interaction activity in each T cell subtype 

for each disease (Fig. 4b). We observed high interaction strength enrichments and cell type 

specificity for autoimmune disease–associated SNPs, but low enrichment and cell type 

specificity for variants associated with non-immune traits (Fig. 4b). To further visualize 
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HiChIP bias in shared or differential enhancers, we analyzed SNP–TSS interactions grouped 

by their presence near H3K27ac ChIP–seq peaks (Supplementary Fig. 12a,b). We observed a 

large number of active SNP–TSS pairs that were present in regulatory regions that were 

shared by T effector cell types (Treg and TH17 cells), whereas relatively less EIS was 

observed for SNPs located in cell-type-specific enhancers, supporting the concept that many 

autoimmune disease variants impact common T cell effector/activation pathways25,34. 

Notably, SNPs present in enhancers shared by all three cell types could still be distinguished 

by HiChIP bias (Supplementary Fig. 12a,b). For example, although we could not detect cell 

type bias at risk loci for alopecia areata using H3K27ac ChIP–seq data (Supplementary Fig. 

12a,b and ref. 3), H3K27ac HiChIP identified increased SNP–TSS activity in Treg cells at 

shared T cell enhancers, consistent with several studies identifying the crucial role of this 

cell type in disease pathogenesis35. Of note, autoimmune disease signal enrichments were 

not readily apparent from 1D H3K27ac ChIP–seq peaks, aggregated ChIP–seq signal within 

the TAD containing the SNP, or cell line H3K27ac HiChIP data sets (Fig. 4b and 

Supplementary Fig. 12c). Therefore, examining 3D disease variant interactions may capture 

cell type biases more robustly than 1D epigenomic data. Finally, to validate our findings 

with an orthogonal data set, we performed SNP–TSS EIS analysis on an overlapping set of 

autoimmune disease–associated SNPs obtained from the National Heart, Lung, and Blood 

Institute (NHLBI) GRASP catalog. We observed a similar pattern of enrichment for T cell 

subset-specific HiChIP signal in disease-associated variants (Supplementary Fig. 12d).

We leveraged HiChIP to identify potential gene targets of intergenic SNPs, which have 

classically been paired to the nearest neighboring gene. We overlapped the SNP–TSS pairs 

with loops to call a discrete set of target pairs. We then performed differential analysis on the 

SNP–TSS loops to ascertain bias for specific T cell subsets (Fig. 4c and Supplementary 

Table 5). Examples of biased SNP–TSS pairs included FOXO1 in naive T cells (rs9603754), 

BATF (rs2300604) in memory T cells, CTLA4 (rs10186048) in Treg cells, and IL2 

(rs7664452) in TH17 cells (Fig. 4c and Supplementary Table 5). Next, we sought to 

characterize the connectivity landscape of the SNP–TSS loops. We identified an average of 

1.75 gene targets per autoimmune disease–associated SNP (ranging from 0 to over 10 target 

genes), whereas variants for non-immune traits did not demonstrate an increase in the 

number of targets (0.33 genes per SNP; Supplementary Fig. 12e). For 684 autoimmune 

disease intergenic SNPs, we identified a total of 2,597 HiChIP target genes, representing a 

fourfold increase in the number of target genes for known disease-associated SNPs (Fig. 4d). 

Only 367 (~14%) of all targets were the nearest gene to the SNP, while approximately ~86% 

of SNPs skipped at least one gene to reach a predicted target TSS (Supplementary Fig. 12e). 

Furthermore, approximately ~45% of SNP to HiChIP target interactions had increased signal 

as compared to the interaction between the same SNP and the nearest gene, despite distance 

biases.

Target gene validation by eQTL and CRISPRi

HiChIP enhancer–target gene interactions can be validated using previously identified point 

mutations that alter expression at distantly located genes in T cells—that is, expression 

quantitative trait loci (eQTLs)36. For example, the celiac disease–associated SNP rs2058660 

impacts expression of the inflammatory cytokine receptor genes IL18RAP, IL18R1, 
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IL1RL1, and IL1RL2, which are known regulators of intestinal T cell differentiation and 

response37. HiChIP EIS showed contacts between rs2058660 and the promoters of each of 

these predicted target genes (Supplementary Fig. 13a). Similarly, the Crohn’s disease risk 

variant rs6890268 and the multiple sclerosis risk variant rs12946510 impact the expression 

of PTGER4 and IKZF3, respectively, and H3K27ac HiChIP also demonstrated clear contacts 

between these SNPs and their predicted promoters (Supplementary Fig. 13a). Globally, 

HiChIP contact signal was increased in eQTLs in T cells as compared to a distance-matched 

background loop set (P < 2.2 × 10−16; Fig. 4e) or to eQTLs identified in an unrelated cell 

type (liver; P < 2.2 × 10−16). The overlap of HiChIP and eQTL loci provides support for 

chromosome interactions as a physical basis for distal eQTLs10–12 and further validates the 

HiChIP approach to assign enhancer–target gene relationships.

We next sought to directly validate HiChIP SNP–gene target interactions using CRISPRi in 

My-La cells. First, we focused on three loci of interest in primary T cells and then confirmed 

that the SNP–TSS loops were also present in My-La cells (Fig. 4f and Supplementary Fig. 

13b). We then targeted sgRNAs to these SNP-containing enhancers, as well as positive-

control sgRNAs to the HiChIP target gene promoters and a non-human-genome-targeting 

negative control. As expected, we observed a significant reduction in RNA levels for the 

HiChIP target genes upon CRISPRi of the corresponding SNP-containing enhancers (Fig. 

4f).

Fine-mapping of disease-associated DNA variants

As SNP–TSS HiChIP signal is capable of identifying the target genes of candidate SNPs, we 

asked whether TSS–SNP HiChIP signals could also be used to nominate functional causal 

variants within haplotype blocks in a reciprocal manner. We first performed a proof-of-

principle analysis using fine-mapped SNPs associated with inflammatory bowel disease 

(IBD)38 or type 1 diabetes (T1D)39 as well as high-confidence PICS SNPs and examined 

EIS from putatively causal SNPs to all gene promoters within 300 kb. EIS from putatively 

causal SNPs to gene promoters was significantly higher than EIS from a distance-matched 

set of SNPs within the same linkage disequilibrium (LD; r2 ≥ 0.8) block to gene promoters 

(P = 2.4 × 10−15, 8.7 × 10−8, and 3.9 × 10−3 for IBD fine-mapped SNPs, T1D fine-mapped 

SNPs, and high-confidence PICS SNPs, respectively; Fig. 5a and Supplementary Fig. 14a). 

Next, we assessed the fine-mapping ability of HiChIP EIS at individual loci of interest. We 

focused on IBD- and multiple sclerosis–associated SNPs neighboring the PTGER4 and 

SATB1 loci and performed v4C analysis anchored at the gene promoters. We calculated EIS 

signal at 1-kb resolution and identified specific regions within the LD blocks that contained 

the highest EIS to the target promoters, positioning the likely causal SNPs within these 

regions (Fig. 5b and Supplementary Fig. 14b). For example, at the PTGER4 locus (Fig. 5b), 

the ~160-kb genomic interval spanned by LD SNPs in association with Crohn’s disease was 

refined to two bins of 3 kb and 4 kb, which both contained PICS SNPs.

We asked whether complex disease–associated loci containing more than one gene could be 

fine-mapped using HiChIP. We focused on two disease-associated enhancers in between the 

STAT1 and STAT4 gene promoters (Fig. 5c). These two genes encode transcription factors 

with distinct roles in immune regulation. Signal transducer and activator of transcription 1 
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(STAT1) is critical for type I interferon (IFN) and IFN-γ signaling, whereas STAT4 induces 

TH1 differentiation and IFN-γ expression40. We investigated bias of these enhancers to 

STAT1 and STAT4 and found that, despite comparable linear distances and 1D signals at the 

promoters, the enhancers were biased to interact with STAT4. Next, we fine-mapped the 

disease-associated SNPs within this locus using 1-kb-resolution EIS from the STAT4 

promoter and narrowed down candidate functional variants within the two enhancers (Fig. 

5c). In summary, HiChIP EIS can nominate functional causal variants within haplotype 

blocks, and two-way analysis of target gene identification from an enhancer of interest and 

high-resolution interaction maps of that enhancer with its target gene can be used to fine-

map disease-associated loci containing several candidate genes.

Allelic target gene bias of cardiovascular disease variants

Finally, we asked whether this approach could be applied broadly to other categories of 

human disease and whether we could directly test SNP–TSS associations using allele-

specific HiChIP. We generated high-resolution enhancer–promoter maps from primary 

human coronary artery smooth muscle cells (HCASMCs), which can be used to inform on 

variants linked to cardiovascular diseases41. First, to validate cell type specificity, we 

examined the gene promoter for TCF21, a transcription factor required for the differentiation 

of HCASMCs42, and observed enrichment of HCASMC EIS relative to naive T cells (Fig. 

6a). We next examined the 9p21.3 locus, which harbors risk associations with several 

cardiovascular disorders43–45. We found that the promoters of all three genes in the locus 

interacted with one another and with CAD-variant-containing enhancers located 

approximately 100 kb upstream of the CDKN2B promoter (Supplementary Fig. 15). We 

then generated SNP–TSS target lists using CAD-associated SNPs identified in the 

CARDIoGRAMplusC4D study46. We again performed differential analysis on the SNP–TSS 

loops to ascertain bias for HCASMCs versus naive T cells (Fig. 6b). Overall, 75.1% of 

HCASMC-biased SNP–TSS pairs involved CAD-associated SNPs, whereas only 5.5% of 

naive T cell–biased SNP–TSS pairs were CAD SNP–TSS loops. Next, we examined the 

connectivity of the HCASMC SNP–TSS contacts and identified 1,062 gene targets, of which 

only 120 (~11%) mapped to the nearest gene. Furthermore, approximately 89% skipped at 

least one gene to reach a predicted target TSS, and 64% of SNPs were mapped to more than 

a single gene target.

We took advantage of genome phasing information in HCASMCs to measure enhancer–

promoter interactions at allele-specific CAD-associated SNPs, allowing us to examine the 

functional consequence of a risk variant as compared to its alternative allele in the same 

nucleus. First, 4.2% of high-confidence loops in HCASMCs with no observed mapping bias 

in the anchors exhibited significant allelic bias (FDR < 0.05; Fig. 6c), consistent with the 

frequency of allelic imbalance of RNA expression and prior evidence of allele-specific 

regulation of specific enhancer–promoter interactions47,48. We leveraged this global 

enhancer–promoter allelic bias to examine the effect of a risk-associated variant as 

compared to its control alternative allele for a set of CAD-associated SNP–target gene pairs 

(Fig. 6d)49. We found that many risk alleles disrupted enhancer–target gene interactions, but 

a subset of pathogenic SNPs increased enhancer–target gene interaction. At CAD risk 

variant rs1537373 in the 9p21.3 locus, the risk allele (T) showed increased EIS to the 
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CDKN2A promoter as well as an additional enhancer within the long noncoding RNA 

(lncRNA) ANRIL gene relative to the reference allele (G) (Fig. 6e). We further observed 

increased EIS of the CAD risk variant rs4562997 to an additional SMAD3 enhancer 10 kb 

downstream of the TSS (Fig. 6e). The ability to resolve enhancer connectomes of the risk 

and reference alleles in the same nucleus demonstrates that the mutated base in the risk 

allele suffices to alter enhancer looping in cis in disease-relevant primary cells.

DISCUSSION

Here we developed an approach to define the high-resolution landscape of enhancer–

promoter regulation in primary human cells. We find that enhancer–promoter contacts are 

highly dynamic in related cell types and often involve genomic elements with shared 

accessibility. Accordingly, many complex features of the 3D enhancer connectome cannot 

simply be predicted from 1D data, demonstrating that mapping conformation in primary 

cells can identify new regulatory connections underlying gene function in human disease. 

We take advantage of this principle to chart the connectivity of autoimmune and 

cardiovascular disease genome-wide association study (GWAS)-identified SNPs and link 

SNPs to hundreds of potential target genes. Although non-genic SNPs have previously been 

paired with their closest neighboring gene, we find that the majority of these variants can 

engage in long-distance interactions, including skipping several promoters to predicted 

target genes, connecting to multiple genes, or acting in concert with enhancer cliques to 

contact a single gene. Further use of this approach will help to clarify hidden mechanisms of 

human disease that are driven by genetic perturbations in non-protein-coding DNA elements, 

which can now be linked to their cognate gene targets in primary cells.

ONLINE METHODS

Human subjects

This study was approved by the Stanford University Administrative Panels on Human 

Subjects in Medical Research, and written informed consent was obtained from all 

participants.

Cell culture and primary T cell isolation

Mouse ES cells (v6.5, Novus Biologicals, NBP1-41162) were cultured in Knockout DMEM 

(Gibco) supplemented with 15% FBS and leukemia inhibitory factor (LIF; Millipore) to 

80% confluence. GM12878 (Coriell), Jurkat, and My-La (CD4+) cells (ATCC) were grown 

in RPMI 1640 (Gibco) supplemented with 15% FBS to a concentration of 500,000 to 1 

million cells/ml. Normal donor human peripheral blood cells were obtained fresh from 

AllCells. CD4+ T cells were enriched from peripheral blood using RosetteSep Human CD4+ 

T Cell Enrichment Cocktail (StemCell Technology). For CD4+ T helper cell subtypes, naive 

T cells were sorted as CD4+CD25−CD45RA+ cells, TH17 cells were sorted as CD4+CD25-

CD45RA−CCR6+CXCR5− cells, and Treg cells were sorted as CD4+CD25+CD127lo cells. 

Antibodies used for FACS included the following: PerCP/Cy5.5 anti-CD45RA (BioLegend, 

304122), Brilliant Violet 510 anti-CD127 (BioLegend, 351331), APC/Cy7 anti-CD4 

(BioLegend, 344616), PE anti-CCR6 (BioLegend, 353410), FITC anti-CD25 (BioLegend, 

Mumbach et al. Page 10

Nat Genet. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



302603), Brilliant Violet 421 anti-CXCR3 (BioLegend, 353715), and BB515 anti-CXCR5 

(BD Biosciences, 564625). For HiChIP experiments, 500,000 to 1 million cells were sorted 

into RPMI medium supplemented with 10% FCS. For ATAC–seq experiments, 55,000 cells 

were sorted into RPMI medium supplemented with 10% FCS. Post-sort purities of >95% 

were confirmed by flow cytometry for each sample.

A primary HCASMC line derived from a normal human donor heart was purchased from 

Cell Applications (350-05A) and cultured in smooth muscle growth medium (Lonza, 

CC-3182) supplemented with hEGF, insulin, hFGF-b, and 5% FBS. Cells were grown 

according to Lonza’s instructions.

Cell fixation

Detached cell lines or sorted CD4+ T cells were pelleted and resus-pended in fresh 1% 

formaldehyde (Thermo Fisher) at a volume of 1 ml of formaldehyde per 1 million cells. 

Cells were incubated at room temperature for 10 min with rotation. Glycine was added at a 

final concentration of 125 mM to quench the formaldehyde, and cells were incubated at 

room temperature for 5 min with rotation. Finally, cells were pelleted and washed with PBS, 

pelleted again, and stored at −80 °C or immediately taken into the HiChIP protocol.

HiChIP

The HiChIP protocol was performed as previously described, using antibody to H3K27ac 

(Abcam, ab4729) or CTCF (Abcam, ab70303)16 with the following modifications. For 

primary T cells, we performed HiChIP on as many cells as we could obtain from a blood 

donation—approximately 500,000 to 1 million cells per T cell subtype per replicate. We 

performed 2 min of sonication, did not carry out Protein A bead preclearing, used 4 μg of 

antibody to H3K27ac (Abcam, ab4729), and captured the chromatin–antibody complex with 

34 μl of Protein A beads (Thermo Fisher). Qubit quantification following ChIP ranged from 

5–25 ng depending on the cell type and amount of starting material. The amount of Tn5 used 

and number of PCR cycles performed were based on the post-ChIP Qubit amounts, as 

previously described16.

Twenty-five million cell line libraries were generated as previously described16. For mouse 

ES cell samples with low cell numbers, we performed 2 min of sonication and did not carry 

out Protein A bead preclearing. Either 4 μg or 2 μg of antibody to H3K27ac (Abcam, 

ab4729) was used for ChIP in 500,000 or 100,000/50,000 cells, respectively, and the 

chromatin–antibody complex was captured with 34 (500,000 cells) or 20 (100,000/50,000 

cells) μl of Protein A beads. Post-ChIP Qubit quantification for the 25 million cell samples 

was approximately 1.5 μg. For lower cell numbers, quantification was 30, 10, and 5 ng for 

500,000, 100,000, and 50,000 cells, respectively. The amount of Tn5 used and the number of 

PCR cycles performed were based on the post-ChIP Qubit amounts, as previously described.

HiChIP samples were size selected by PAGE purification (300–700 bp) for effective paired-

end tag mapping and were therefore removed of all primer contamination that would 

contribute to recently reported ‘index switching’ on the Illumina HiSeq 4000 sequencer50. 

All libraries were sequenced on the Illumina HiSeq 4000 instrument to an average depth of 

500–600 million total reads.
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HiChIP data processing

HiChIP paired-end reads were aligned to the hg19 or mm9 genome using the HiC-Pro 

pipeline51. Default settings were used to remove duplicate reads, assign reads to MboI 

restriction fragments, filter for valid interactions, and generate binned interaction matrices. 

HiC-Pro filtered reads were then processed into a .hic file using the hicpro2juicebox 

function. The Juicer pipeline HiCCUPS tool was used to identify high-confidence loops4 

using the same parameters as for the GM12878 in situ Hi-C map: hiccups -m 500 -r 

5000,10000 -f 0.1,0.1 -p 4,2 -i 7,5 -d 20000,20000 .hic_input HiCCUPS_output. For T cell 

Juicer loops, performing the default Juicer calls resulted in a high rate of false positives upon 

visual inspection of the interaction matrix. We therefore called loops with the same 

HiCCUPS parameters in two biological replicates for each T cell subtype and then filtered 

loops for those that were reproducibly called in both replicates. In addition, we removed all 

loops greater than 1 Mb in length.

1D signal enrichment and peak calling were generated from the HiC-Pro filtered contacts 

file. Intrachromosomal contacts were filtered, and both anchors were extended by 75 bp. The 

combined bed file containing both anchors was then used to generate bigwigs for 

visualization in the WashU Epigenome Browser or call peaks using MACS2.

Allele-specific HiChIP data processing was achieved using HiC-Pro’s allele-specific 

analysis features51. First, HCASMC phasing data41 were used to mask the hg19 genome and 

make indexes. HiC-Pro settings were similar to those described above, with the exception 

that reads were aligned to the masked genome and then assigned to a specific allele on the 

basis of phasing data.

Interaction matrices and virtual 4C visualization

HiChIP interaction maps were generated with Juicebox using KR matrix balancing and 

visualized using Juicebox software at 500-kb, 25-kb, 10-kb, and 5-kb resolution as indicated 

in each analysis4. For 1-kb profiles, raw matrix counts were visualized in Java TreeView.

v4C plots were generated from dumped matrices generated with Juicebox. The Juicebox 

tools dump command was used to extract the chromosome of interest from the .hic file. The 

interaction profile of a specific 5-kb or 10-kb bin containing the anchor was then plotted in 

R. Replicate reproducibility was visualized with the mean profile shown as a line and the 

shading surrounding the mean representing the s.d. between replicates. For the HCASMC 

data, we observed low read coverage for allele-specific v4Cs at loci of interest. This is due to 

the density of SNPs for this genotype and a low number of reads containing a phased SNP. 

We thus could not observe interaction profiles when visualizing separate replicates with s.d. 

We therefore used pseudoreplicates for the HCASMC v4C visualizations52.

High-confidence Juicer loop calls were loaded into the WashU Epigenome Browser along 

with corresponding ATAC–seq profiles and publically available H3K27ac ChIP–seq data 

from the Roadmap Epigenomics Project. Browser shots from WashU track sessions were 

then included in v4C and interaction map anecdotes.
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Differential analysis of HiCCUPS loop calls

Juicer loop calls from the three T cell subtypes were initially combined into a union set of T 

cell loops. Loop signal was then obtained for the biological replicates of each T cell subtype. 

Vanilla coverage square root (VCsqrt) normalized signal for the interaction matrix of each 

biological replicate using the Juicebox tools dump command. Normalized signal was then 

assigned to the union loop set in each replicate.

VCsqrt signal per sample was quantile–quantile normalized under the assumption that 

overall signal was identically distributed across all samples. Following normalization, 

samples for naive T, TH17 and Treg cells had Pearson correlations of 0.938, 0.942, and 

0.934, respectively. Principal-component analysis (PCA) was performed using the prcomp 

function in R, which demonstrated that the first principal component, which exhibited nearly 

identical loadings across the six samples, explained 93% of the variance across the six 

samples. This was taken to represent the shared signal across cell types. Principal 

components 2–4 explained 2.2%, 2.0%, and 1.4%, respectively.

To study cell-type-specific looping, the residual signal per loop was taken after projecting 

the loop onto the unit vector along the diagonal (equal signal per cell type). Cell-type-

specific and differential looping analysis were performed with the top and bottom 5% of the 

distributions of either residual signal or differences between cell type residual signals. 

Hierarchical clustering was performed using the union of all differential loops in these 

extremes and using 1 minus the Pearson correlation as the distance metric. Quantile– 

quantile plots were generated by permuting residuals from the same cell type or individual 

and summing them and using this distribution to calculate P values for the observed sums.

In parallel, differential loops were called using edgeR for both the mouse ES and T cell data 

sets. Again, biological replicate loop signal was obtained across a union set of Juicer loops. 

We then used edgeR to identify loops with significant changes in signal among pairwise 

comparisons (FDR < 0.1, log2 (fold change) > 1). Notably, inspection of differential loops 

identified from the two methods showed high concordance.

Gene density was calculated from Ensembl gene annotations. GC content was calculated per 

10-kb bin using the BEDTools nuc function and aggregated as needed. Notably, Spearman 

correlation between the gene density of an entire chromosome and the number of differential 

loop anchors (ρ = 0.914) was much higher than the correlations between the variance in cell 

type signal per loop anchor and number of genes per 10-kb window (ρ = 0.322) and between 

differential loop anchors and gene density per 100-kb section (ρ = 0.083). Correlations 

between GC content and number of differential loops were similar at both the chromosome 

(ρ = 0.729) and 100-kb (ρ = 0.148) levels, but, while local GC content is likely to confound 

relative abundance, it is unclear how chromosome-wide GC content could have the same 

effect.

For mouse ES cell analysis of H3K27ac- and cohesin-mediated HiChIP, we performed 

edgeR to obtain the biased loops for each factor. To determine the functional bias of the top 

loops, overlap was determined between edgeR differential loop anchors and relevant ChIP–

seq peaks. SMC1A ChIP–seq peaks were obtained from a published data set53. CTCF, RNA 
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polymerase II, and H3K27ac ChIP–seq peaks were obtained from the mouse ENCODE 

repository54.

RNA expression analysis

Previously generated RNA-seq data55 from naive T, TH17 and Treg cells were downloaded as 

fastq files from ArrayExpress. Illumina adaptors were trimmed using CutAdapt, and 

Ensembl cDNA transcripts were quantified using kallisto. Sleuth was used to identify 

transcripts that were differentially expressed across cell types with FDR controlled at 5%. 

The mean TPM was calculated per cell type, and TSS differential looping quantiles at genes 

with nonzero expression were correlated with differential expression quantiles of the same 

genes. Only 10-kb segments of the genome that contained a single annotated gene were 

considered to avoid errors in attribution of looping signal per 10-kb bin. For genes with 

multiple annotated TSSs, the 10-kb bin corresponding to the median TSS was used. 

Significance was assessed by the cor.test function in R.

Distance-matched eQTL SNP–TSS comparisons

We obtained three groups of eQTL SNP–TSS pairs within 1 Mb for HiChIP EIS 

comparisons. The treatment group contained CD4+ T cell eQTL–TSS targets. We had two 

distance-matched groups as controls. The first control group contained CD4+ T cell eQTL 

SNP–random TSS pairs such that the distance between the eQTL SNP and random TSS 

differed by at most 5 kb with the treatment group. The second control group contained liver 

eQTL SNP–TSS targets that were also distance matched with the treatment group. The 

random eQTL SNP–TSS pairs were generated by individual chromosome, such that the 

numbers of control pairs and treatment pairs were the same for every chromosome. In total, 

there were 158,482 distance-matched eQTL–TSS pairs. We compared the 5-kb-resolution 

EIS values among the three eQTL SNP–TSS groups for all three T cell subtypes. Results 

showed that, in all cases, the EIS values between CD4+ T cell eQTL–TSS targets were 

significantly higher than the two control groups (P < 1 × 10−16, Kolmogorov–Smirnov test).

Distance-matched fine-mapped SNP–TSS comparisons

We obtained a list of putatively causal SNPs from the PICS SNP list25 (PICS probability > 

0.5), as well as fine-mapped SNPs associated with IBD38 or T1D39. Next, we obtained all 

SNPs in LD with each putatively causal SNP using European LD blocks determined by all 

SNPs with r2 ≥ 0.8 with the SNP being considered. For the fine-mapped (T1D/IBD) sets, 

using SNPs in LD with highly significant GWAS SNPs might mean that there are several 

SNPs of equal or greater significance in the control set, but we still expect enrichment 

relative to the LD block.

We collected all the synthetic pairs between the putatively causal immune disease–related 

SNPs (IBD, T1D, and PICS) and nearby genes within 300 kb. To perform the distance-

matched EIS comparisons, for each fine-mapped SNP category, we selected the SNP–TSS 

control pairs that satisfied two constraints: (i) the selected control SNP was positioned at 

least 5 kb away from the fine-mapped SNP in the same LD block and (ii) the distance of the 

SNP–TSS control pair differed with the fine-mapped SNP and the target gene by at most 5 

kb.
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SNP–TSS loop analyses

We obtained 7,747 PICS SNPs that are associated with autoimmune disease or non-immune 

traits25. 4,331 (55.9%) were associated with autoimmune disease, and 3,416 (44.1%) were 

associated with non-immune traits. In addition, we obtained a set of SNPs associated with 

six overlapping autoimmune diseases using the GRASP catalog (genome-wide significance 

P < 1 × 10−8).

We constructed a synthetic loop set for immune and non-immune SNPs and any TSS within 

1 Mb of each SNP. We then assigned VCsqrt signal in each biological replicate of the three 

T cell subtypes to the synthetic loop set, as described above.

VCsqrt signal per sample was quantile–quantile normalized as above. In this analysis, we 

did not restrict to HiCCUPS-identified loops but instead examined all possible interactions 

between a SNP and a TSS within 1 Mb. Many of these interactions do not exist and 

therefore had little or no matrix-balanced signal supporting them. While we removed all 

SNP–TSS pairs below an average of 1 normalized read per sample from subsequent 

analyses, in general, these false interactions contributed little to the overall differential signal 

for a trait.

H3K27ac data were downloaded from the WashU Roadmap repository. PICS SNPs were 

taken from Farh et al.25. Rather than requiring strict membership within H3K27ac peaks, 

PICS SNPs were labeled as active if they were within 8 kb of a peak, increasing the number 

of nominally functional SNPs from ~700 to ~3,200 per cell type, out of 7,735 total candidate 

SNPs.

Differential looping across cell types was assessed by one-sided t test per trait and activity 

partition if there were at least eight PICS SNP–TSS pairs in the partition. TH17 bias was 

defined as TH17 total loop signal minus naive T cell total loop signal; Treg bias was defined 

as Treg total loop signal minus naive T cell total loop signal; and naive T cell bias was 

defined as naive T cell total loop signal minus one-half times the TH17 and Treg total loop 

signals. For Supplementary Figure 12a,b,d, naive T cell bias was assessed only using SNPs 

that were active in naive T cells, TH17 bias from SNPs active in TH17 and not naive T cells, 

and Treg bias from SNPs active in Treg and not naive T cells. P values were corrected for 

multiple-hypothesis testing by the Holm method using the p.adjust function in R. Bias 

assessed from SNPs with the opposing cell type specificities (for example, naive T cell bias 

using SNPs active in TH17 and Treg cells but not naive T cells) yielded no significant hits 

after correction.

ATAC–seq

Cells were isolated and subjected to ATAC–seq as previously described16. Briefly, 55,000 

cells were pelleted, resuspended in 50 μl of lysis buffer (10 mM Tris-HCl, pH 7.4, 3 mM 

MgCl2, 10 mM NaCl, 0.1% NP-40 (Igepal CA-630)), and immediately centrifuged at 500 

r.c.f. for 10 min at 4 °C. The nuclei pellets were resuspended in 50 μl of transposition buffer 

(25 μl of 2× TD buffer, 22.5 μl of distilled water, 2.5 μl of Illumina Tn5 transposase) and 

incubated at 37 °C for 30 min. Transposed DNA was purified with the MinElute PCR 

Purification kit (Qiagen), and eluted in 10 μl of EB buffer.
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ATAC–seq data processing

Adaptor sequence trimming using SeqPurge and mapping to hg19 using Bowtie2 were 

performed. The reads were then filtered for mitochondrial reads, low-quality reads, and PCR 

duplicates. The filtered reads for each sample were merged, and peak calling was performed 

by MACS2. The reads in peaks for each individual sample were quantified using BEDTools 

intersect with the MACS2 narrow peaks. Peak counts were then combined into an N × M 

matrix where N represents called peaks, M represents the samples, and each value Di,j 

represents the peak intensity for respective peak i in sample j. This matrix was then 

normalized using the ‘CQN’ package in R to minimize bias in GC content and length.

CRISPRi validation of HiChIP targets

For virus production, 5 × 106 HEK293T cells were plated per 10-cm plate. The following 

day, plasmid encoding lentivirus was cotransfected with pMD2.G and psPAX2 into the cells 

using Lipofectamine 3000 (Thermo Fisher, L3000) according to the manufacturer’s 

instructions. Supernatant containing viral particles was collected 48 h after transfection and 

filtered. For lentivirus encoding individual sgRNAs, virus was concentrated tenfold using 

Lenti-X concentrator (Clontech, 631232) and stored at −80 °C.

To generate a My-La cell line expressing CRISPRi, 2 × 106 My-La cells were plated per T75 

flask. A dCas9-BFP-KRAB-2A-Blast construct was generated by inserting a 2A-Blast 

cassette into dCas9-BFP-KRAB (Addgene, 46911). 24 h after plating, lentivirus harboring 

the dCas9-KRAB construct was added with polybrene (4 μg/ml). The medium was changed 

24 h after infection and then again 48 h after infection with blasticidin (Thermo Fisher, 

A1113903) at a 4 μg/ml concentration. Blasticidin-resistant cells were selected for 8 d with 

the medium changed every other day.

Three different U6 sequences were used for transcription of three different sgRNAs targeting 

the candidate enhancers, as previously described56. For the MYC locus CRISPRi 

experiments, each enhancer was targeted by one guide, and all MYC GM or My-La 

enhancers together were therefore targeted in one experiment. For the PICS SNP CRISPRi 

experiments, three guides were targeted to a single SNP-containing enhancer. One of three 

sgRNAs was cloned into a lentiviral vector with a human (pMJ117, Addgene, 85997), 

mouse (pMJ179, Addgene, 85996), or bovine (pMJ114, Addgene, 85995) U6 promoter. 

These U6-sgRNA constructs were then combined into a lentivirus with a Puromycin-2A-

mCherry vector, which was modified from Addgene 46914. My-La-CRISPRi cells were 

infected with lentivirus harboring three sgRNAs and selected by puromycin (Thermo Fisher, 

A11138) at a final concentration of 1 μg/ml. Previously reported sgRNAs targeting VPS54 

or SEC24C were used for validating CRISPRi functionality in the My-La cell line57.

For readout of CRISPRi validation, we performed qRT–PCR and cell growth assays on three 

biological and two technical replicates. For qRT–PCR, RNA was extracted with TRIzol 

(Thermo Fisher, 15596026) and purified using the Zymo RNA Clean and Concentrator kit 

(Zymo Research, R1016). qRT–PCR was performed with Brilliant qRT–PCR Mastermix 

(Agilent, 600825). Ct values were measured using a LightCycler 480 instrument (Roche), 

and the relative expression level was calculated by the Δ ΔΔCt method in comparison to a 
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GAPDH control. Primer sequences are listed in Supplementary Table 6. For cell growth, we 

used the CellTiter-Glo kit (Promega, G7572) according to the manufacturer’s instructions. 

Statistics for both RNA and cell growth changes were calculated using a Student’s t test 

against the non-targeting control.

CRISPRa validation of HiChIP targets

Jurkat cells were transduced with a lentiviral dCas9-VP64-2A-GFP expression vector 

(Addgene, 61422). Single GFP+ cells were sorted by FACS into the wells of a 96-well plate, 

and a clone with bright, uniform GFP expression were selected for use in future 

experiments.

sgRNAs were cloned in arrayed format for CD69 HiChIP peaks falling outside the range of 

the tiling CRISPRa screen26. sgRNAs were chosen on the basis of high predicted on-target 

activity58 and low predicted off-target activity59. sgRNAs were cloned into the lentiviral 

expression vector pCRISPRia-v2 (Addgene, 84832) as described in Horlbeck et al.60. 

Lentivirus was produced by transfecting HEK293T cells with standard packaging vectors 

using TransIT-LTI Transfection Reagent (Mirus, MIR 2306). The medium was changed 24 h 

after transfection. Viral supernatant was harvested at 48 and 72 h following transfection and 

immediately used for infection of Jurkat-dCas9-VP64 cells.

Jurkat-dCas9-VP64 cells were infected with lentiviral sgRNAs by resus-pending cells in a 

1:1 mix of fresh medium and lentiviral supernatant at a final concentration of 0.25 × 106 

cells/ml with 5 μg/ml polybrene. Cells were spinfected for 1 h at 1,000 r.c.f. at 32 °C. The 

next day, half of the medium was removed and replaced with fresh lentiviral supernatant and 

the spinfection was repeated. The next day, the cells were resuspended in fresh medium with 

1.5 μg/ml puromycin and cultured for 2 d to remove uninfected cells. For readout of 

CRISPRa validation, we performed qRT–PCR and FACS on two biological and two 

technical replicates. RNA extraction and qRT–PCR were performed as described above. 

Expression of CD69 on infected cells (GFP+BFP+) was analyzed by flow cytometry with an 

Attune NxT flow cytometer (Life Technologies). Statistics for both RNA- and protein-level 

changes were calculated with one-way ANOVA followed by a Dunnett’s multiple- 

comparisons test against the non-targeting control.

Additional methods are provided in the Supplementary Note.

Data availability

Raw and processed data are available at the Gene Expression Omnibus (GEO) under 

accession GSE101498. T cell ATAC–seq and HiChIP data sets can be visualized in the 

WashU Epigenome Browser with the following link: 98051079. A Life Sciences Reporting 
Summary is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HiChIP identifies high-resolution chromosome conformation in primary human T cells. (a) 

Primary T cell H3K27ac HiChIP experimental outline. (b) Left, FACS strategy for naive, 

TH17, and Treg cells from total peripheral blood CD4+ T cells. Number represents the 

percentage of total CD4+ T cells within that gate. Right, Knight–Ruiz (KR) matrix–balanced 

interaction maps for naive, TH17, and Treg cells at 500-kb, 25-kb, and 5-kb resolution, and 

raw interaction maps at 1-kb resolution, centered on the KLF2, RBPJ, and LRRC32 loci. (c) 

HiChIP 1D and 3D signal enrichment at the RORC locus in TH17 over naive T cells.
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Figure 2. 
Validation of regulatory elements identified by H3K27ac HiChIP with CRISPR interference 

and activation. (a) Interaction profile of the MYC promoter in K562 H3K27ac HiChIP at 10-

kb resolution. K562 H3K27ac ChIP–seq data are from the Encyclopedia of DNA Elements 

(ENCODE). CRISPRi-validated regulatory regions in K562 cells are indicated5. (b) 

Interaction profile of the GATA1 promoter in K562 H3K27ac HiChIP at 1-kb resolution. 

CRISPRi-validated regulatory regions in K562 cells are indicated5. (c) Correlation of MYC 

K562 H3K27ac HiChIP signal with maximum CRISPRi score within the HiChIP 10-kb 

window. (d) Interaction profiles of the MYC promoter in GM and My-La H3K27ac HiChIP 
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at 10-kb resolution. T cell H3K27ac ChIP–seq and ATAC–seq data are from naive T cells. 

(e) Top, CRISPRi validation in GM cells of GM- and My-La-biased MYC enhancers. E–P, 

enhancer–promoter. Bottom, MYC RNA levels by qRT–PCR and cell growth rates in 

CRISPRi GM cells with targeting of cell-type-biased enhancers, the MYC promoter, and a 

non-targeting negative control (n = 3 biological replicates, each with 2 technical replicates). 

(f) Interaction profile of the CD69 promoter in Jurkat H3K27ac HiChIP at 5-kb and 1-kb 

resolution. The 1-kb profile is focused on the window of the CRISPRa tiling screen. 

CRISPRa-validated regulatory regions in Jurkat cells are indicated26. (g) Top, CRISPRa 

validation in Jurkat cells of CD69 distal enhancers. Bottom, CD69 RNA and protein levels 

in CRISPRa Jurkat cells with targeting of distal enhancers, the CD69 promoter, the KLRF2 

promoter as a locus negative control, and a non-targeting negative control (n = 2 biological 

replicates, each with 2 technical replicates). In the box plots, each box extends from the 25th 

to the 75th percentile with a line representing the median, and whiskers extend to the 

minimum and maximum values. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001 one-

way ANOVA followed by Dunnett’s multiple-comparisons test against the non-targeting 

control; n.s., not significant.
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Figure 3. 
Dynamic 3D enhancer landscapes in T cell differentiation. (a) Conformational features 

observed by H3K27ac HiChIP. (b) HiChIP EIS in 913 differential interactions identified in 

T cell subtypes. Interactions are clustered by cell type specificity. (c) Cell-type-specific 

motif identification from ATAC–seq peaks in biased EIS anchors. (d) EIS bias quartiles for 

naive to TH17 and naive to Treg differentiation, with corresponding differential RNA gene 

expression rankings. (e) Interaction profile of the BACH2 promoter at 5-kb resolution, 

demonstrating shared accessibility signal at naive-biased EIS. (f) Proportion of ATAC–seq 

peaks within HiChIP differential interaction anchors that are cell type specific (log2 (fold 

change) > 1) or shared across all three subtypes. (g) Global correlation of EIS and ATAC–

seq fold change in different pairwise comparisons of T cell subsets.
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Figure 4. 
HiChIP identifies cell type specificity and target genes of autoimmune disease–associated 

variants. (a) Generation of a loop set between all autoimmune disease SNPs and gene 

promoters within a 2-Mb region. (b) H3K27ac ChIP and HiChIP signal bias in T cell 

subtypes for SNP–TSS pairs. For each bin, PICS SNPs are tagged by H3K27ac only in the 

concordant cell type for the bias tested. SNPs are grossly divided into associations with 

autoimmune diseases or control, non-immune traits. Asterisks indicate FDR < 5%. (c) EIS 

bias of SNP–TSS loops (with nearest gene annotated) in TH17 and Treg subsets (memory T 

cells) versus naive T cells and TH17 versus Treg cells. Percentages represent the percentage 

of SNP–TSS interactions that demonstrate biased HiChIP signal in the indicated cell type 

(log2 (fold change) > 1). MS, multiple sclerosis. (d) Number of HiChIP gene targets versus 

nearest-gene predictions for all looping non-genic autoimmune disease SNPs as well as 

SNPs for specific diseases. (e) Global validation of HiChIP SNP gene targets. Synthetic 

SNP–TSS pairs were generated from each CD4+ eQTL SNP to its associated gene and 

compared to both a distance-matched shuffled SNP–TSS pair and a liver (L) eQTL SNP–

TSS pair. P values were calculated by Kolmogorov–Smirnov test. (f) HiChIP target gene 

RNA levels by qRT–PCR in CRISPRi My-La cells with targeting of SNP-containing 

enhancers of interest, as well as positive-control sgRNAs to the HiChIP target promoters and 

a non-targeting negative control (n = 3 biological replicates, each with 2 technical 
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replicates). RA, rheumatoid arthritis; PBC, primary biliary cirrhosis. *P < 0.05; **P < 0.01, 

two-tailed Student’s t test. In box plots, each box extends from the 25th to the 75th 

percentile with a line representing the median, and whiskers extend to the minimum and 

maximum values.
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Figure 5. 
Fine-mapping of GWAS-identified variants using H3K27ac HiChIP. (a) Global validation of 

HiChIP signal at putatively causal SNPs (confident) versus corresponding SNPs in LD (LD 

SNPs; r2 ≥ 0.8) for TH17 cells. SNP–TSS pairs were generated from published fine-mapping 

data sets, in comparison to a distance-matched SNP–TSS pair set in the same LD block. P 

values were calculated by Kolmogorov–Smirnov test. (b) Interaction profile of the PTGER4 

promoter and a 1-kb-resolution visualization of the SNP-containing enhancer of interest. 

SNPs in LD (r2 ≥ 0.8) correspond to GRASP SNPs (genome-wide significance P < 1 × 

10−8). The highlighted SNP was identified in both the high-confidence PICS and GRASP 

data sets. UC, ulcerative colitis. (c) Interaction profiles of the STAT1 and STAT4 promoters, 

with 1-kb-resolution visualizations of the SNP-containing enhancers of interest. 1D signal 

contributions at the STAT1 and STAT4 promoters are highlighted. Highlighted SNPs are 

PICS SNPs closest to focal EIS for STAT4.
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Figure 6. 
HiChIP identifies allelic bias to target genes for cardiovascular disease risk variants. (a) 

Interaction profile of the TCF21 gene promoter for H3K27ac HiChIP of HCASMCs and 

naive T cells. (b) EIS bias between HCASMCs and naive T cells in a union set of 

CARDIoGRAMplusC4D CAD and PICS autoimmune disease SNP–TSS loops. Percentages 

represent the percent of SNP–TSS interactions that demonstrate biased HiChIP signal in the 

indicated cell type (log2 (fold change) > 1). (c) Quantile–quantile plot of allelic EIS 

imbalance in high-confidence loops. Allelic mapping biased loops were identified through 

simulation and removed before EIS analysis. (d) EIS bias between CAD risk variants and 

their alternative alleles to eQTL-associated target genes. (e) Allele-specific HiChIP 

interaction profiles at the 9p21.3 and SMAD3 loci at 10-kb resolution to examine the 

functional consequence of a risk variant as compared to its alternative allele. ATAC–seq and 

ChIP–seq data sets shown are from ref. 41.
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