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Abstract: Enhancer RNAs (eRNAs), a class of non-coding RNAs (ncRNAs) transcribed from enhancer
regions, serve as a type of critical regulatory element in gene expression. There is increasing evidence
demonstrating that the aberrant expression of eRNAs can be broadly detected in various human
diseases. Some studies also revealed the potential clinical utility of eRNAs in these diseases. In
this review, we summarized the recent studies regarding the pathological mechanisms of eRNAs as
well as their potential utility across human diseases, including cancers, neurodegenerative disorders,
cardiovascular diseases and metabolic diseases. It could help us to understand how eRNAs are
engaged in the processes of diseases and to obtain better insight of eRNAs in diagnosis, prognosis or
therapy. The studies we reviewed here indicate the enormous therapeutic potency of eRNAs across
human diseases.
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1. Introduction

The human genome has ~98% non-coding regions, which used to be considered “junk
DNA” [1,2]. Using high-throughput sequencing methods, a huge number of RNA tran-
scripts from non-coding regions have been identified and defined as non-coding RNA
(ncRNA) [3]. More and more studies have characterized the functional role of ncRNAs in
diverse biological processes, suggesting that investigating ncRNA may aid us in compre-
hensively understanding the human transcriptome.

Non-coding RNA species, including transfer RNAs (tRNAs), small nuclear RNAs
(snRNAs) and small nucleolar RNAs (snoRNAs), play constitutive roles in biological pro-
cesses [4]. For example, tRNAs, typically 70–90 nucleotides (nt) in length, are essential
in translation processes, mainly through transferring charged amino acids to initiate or
elongate peptides [5]; snRNAs, approximately 150 nt in length, are assembled with many
associated proteins to form small nuclear ribonucleoproteins (snRNPs), which dominate
pre-mRNA splicing [6]; and snoRNAs, which range in length from 60 to 300 nt, guide
the chemical modifications (e.g., pseudo-uridylation and methylation) of different types
of RNA, including ribosomal RNAs (rRNAs), snRNAs and mRNAs [7–10]. Apart from
the constitutive ncRNAs, there are other groups of ncRNAs, such as microRNAs (miR-
NAs), circular RNAs (circRNAs) and long intergenic non-coding RNAs (lincRNAs), which
play a regulatory role in gene expression [4]. There are emerging studies revealing the
relevance of miRNAs in gene regulation, mostly through their interaction with the 3′

untranslated region (3′ UTR) of target mRNAs, which can trigger mRNA degradation or
translational repression [11–13]. Circular RNAs can be detected in eukaryotic cells with
cell- or tissue-specific expression patterns. They are named after the covalently closed
continuous loops which make them much more stable than linear RNAs in cells [14–16].
Due to the miRNA response elements they have, circRNAs are able to compete for miRNA
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binding sites [17]. Therefore, they act as miRNA sponges to induce continuous function
loss for miRNAs [17,18]. Long intergenic non-coding RNAs also play pivotal roles in regu-
latory processes [19,20]. At the transcriptional level, lincRNAs can target transcriptional
modulators and DNA duplex [21–23]. For example, X-inactive specific transcript (Xist), the
key effector in X-chromosome inactivation, is a typical lincRNA. Through transcriptional
repression, Xist can inactivate one of the two X-chromosomes entirely in somatic cells of
female mammals [24,25]. At the post-transcriptional level, lincRNAs are involved in mRNA
splicing, miRNA-mediated suppression and cell signaling-related translation [26–29]. One
lincRNA called Plasmacytoma Variant Translocation-1 (PVT-1) has various impacts on tu-
morigenesis by downregulating tumor suppressor genes through encoding miRNAs [30,31].
At the epigenetic level, lincRNAs can participate both in covalent modifications through
direct interactions with histone- and DNA-modifying factors and in ATP-dependent remod-
eling processes [20,32,33]. Taking HOTAIR as an example, it promotes tumor cell invasion
by altering histone (H3K27) methylation patterns and increasing cancer metastasis in a
manner dependent on PRC2 [31,34]. Overall, regulatory ncRNAs are involved in miscel-
laneous biological processes, varying from cell proliferation to pluripotency, showing a
big potential in understanding and diagnosing cancers, inflammation responses and other
diseases [17,35].

Non-coding RNAs play critical roles in the gene regulatory network (GRN), which
is a term for dynamic interactions contributing to multiple biological processes. In the
GRN, ncRNAs, together with proteins, mediate the accessibility and activation of DNA to
increase or decrease the expression levels of target genes [36,37]. The ncRNA-mediated
alteration of the GRN is associated with different biological processes, such as cell growth,
cell differentiation and signaling responses, and thus contributes to human disease de-
velopment [36,38]. For example, the lncRNA H19 regulates the expression of a cluster of
genes in the imprinted genes, including insulin-like growth factor 2 (Igf2), solute carrier
family 38 member 4 (Slc38a4) and paternally expressed gene 1 (Peg1), suggesting that the
H19-mediated GRN is crucial in regulating the embryo’s development and imprinting
pathologies [39–41].

Recent research found that one group of ncRNAs, named enhancer RNAs (eRNAs),
are transcribed from enhancer regions and highly associated with epigenetic modifications
of active enhancers, such as high H3K27ac and H3K27me1 [42,43]. Active enhancers
recruit coactivators and transcription factors (TFs) to produce eRNAs [44], which, together
with TFs and RNA-binding proteins (RBPs), can mediate gene expression [45,46]. The
binding strength of RNA polymerase II also determines the transcriptional levels of their
eRNAs [27,47]. For example, P300 binding to enhancers is crucial for the transcription
of eRNAs [48]. CBP/P300 inhibitors leads to H3K27Ac reduction at enhancers and thus
suppresses eRNA expression and downregulates eRNA target genes [43]. Chromatin loop
formation is also vital for adequate eRNA expression. Direct RNA–protein interactions
between eRNAs and boundary proteins such as CTCF may help to block loop-extrusion
factors such as cohesin [49]. In addition, some tissue- or disease-specific TFs also regulate
eRNAs to mediate the GRN. For example, breast cancer cells specifically express TF ESR1,
together with its cooperating TF GATA3, inducing global transcriptional network changes
by mediating enhancer accessibility as well as eRNA expression in breast cancer cells to
promote tumorigenesis [50,51]. In humans, eRNA expression is tightly correlated with
the expression of target genes. eRNAs are the markers for active enhancers in the local
enhancer-promoter loop and long-range chromatin interactions [49]. Additionally, eRNAs
can also serve as scaffolds to stabilize transcriptional complexes by directly mediating
target genes [52]. Due to the high-affinity binding sites of eRNA and the potential for
cooperative spreading of binding partners in the nucleus, they also perform as the key
components in liquid–liquid phase separation [42,53]. Taken together, regulators of eRNAs,
through general or specific manners, contribute to the alternation of the GRN by mediating
expression in eRNA and eRNA target genes [48,54–58].
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Increasing studies have begun to investigate eRNAs in diverse human diseases, such
as breast cancers, gastric cancer and pancreatic cancer. The functional roles and clinical
liability of eRNA are still continuously being explored in many diseases, particularly in
some rare diseases. Herein, we summarized the molecular mechanisms and functional
consequences of eRNAs across cancer types, neurodegenerative disorders, cardiovascular
diseases and metabolic diseases and discussed the potential clinical utility of eRNAs as
biomarkers in a range of diseases.

2. Role of eRNAs in Cancers

Cancers are associated with multiple aberrant biological processes, including sustained
proliferation, immune escape and apoptosis prevention [59,60]. The aberrant expression of
eRNA dysregulates cancer-related genes to promote cancer signaling pathways and results
in abnormal cellular responses in tumorigenesis [45,61,62]. In this section, we summarize
the contribution and mechanisms of eRNAs in different cancer types, as well as their
potential clinical utility for cancer diagnosis and therapies.

2.1. The Contribution and Mechanisms of eRNAs in Cancer

According to recent studies, eRNAs are highly engaged in oncogene activation and
aberrant signaling pathways, which contribute to tumorigenesis [45]. The eRNAs tran-
scribed from the super-enhancer regions on 8q24 serve as a good example of how this
works [30,63–66]. Using the chromosome conformation capture (3C) technique, researchers
have found long-range physical interactions between eRNAs from 8q24 and MYC, whose
dysregulation is a significant symbol of multiple cancer types [63,67–71]. For example, colon
cancer-associated transcript 1 (CCAT1), one well-studied eRNA transcribed from the 8q24
locus, can be activated through long-range interaction with MYC in many cancers, such
as colorectal cancer (CRC), prostate adenocarcinoma (PRAD), breast invasive carcinoma
(BRCA) and esophageal carcinoma (ESCA) [63,72–74]. The evidence has shown that CCAT1
plays its role through different molecular mechanisms in the nucleus and cytoplasm [72].
In the nucleus, CCAT1 directly binds to Asp-Glu-Ala-Asp (DEAD) box helicase 5 (DDX5),
which acts as a coactivator involved in MYC gene transcriptional activation and is also
able to promote tumor growth [72,75–77]. In the cytoplasm, CCAT1, acting as a miRNA
sponge, competes with MIR-28-5P for miRNA binding sites to promote prostate cancerous
processes (Figure 1B) [72]. Furthermore, in human CRC cells, a long isoform of CCAT1
called CCAT1-L has been observed to upregulate MYC and thus promote tumorigenesis.
CCAT1-L achieves such functions by interacting with CTCF and modulating chromatin
conformation (Figure 1B) [78]. As for the contribution of eRNAs in aberrant signaling
responses, take the variant rs72725854 in a prostate cancer-specific enhancer at the 8q24
locus as an example. The eRNA expression level is significantly affected by this variant
and can thus regulate neighboring lncRNAs such as PVT1 [66]. Bioinformatics analysis in
human CRC has shown that its expression level is statistically associated with most of the
genes within the TGFβ/SMAD and Wnt/β-Catenin pathways (Figure 1B) [66,79]. These
pathways are vital to tumorigenesis by contributing to proliferation, differentiation and
anti-apoptosis [80,81]. Taken as a whole, the variants, modifications or abnormal activation
of 8q24 regions can induce overexpression of its transcribed eRNAs, which then trigger
the pathogenesis of multiple human cancers, including CRC, PRAD, BRCA, ESCA and
hematological malignancies [65,66,69–71,82].
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cated. BET proteins (e.g., BRD4) can maintain eRNA over-synthesis and the continuous 
activation of NF-κB as well as the subsequent aberrant inflammatory responses or cell 
proliferation [84–88]. Recent studies have investigated the direct interplay between BRD4 
and certain eRNAs, including eRNAs of MMP9 and CCL2. The tandem bromodomains of 
BRD4 were found to facilitate the BRD4–eRNA interactions. Conversely, these eRNAs also 
promote the functions of BRD4 by increasing its binding towards acetylated histone pep-
tides and modulating the occupancy of the BRD4 enhancer to keep the gene active [89].  

Another example is FOXP4-AS1, whose upregulation has been identified in different 
cancers, including hepatocellular carcinoma (HCC), CRC, PRAD and ovarian serous 
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late its target gene FOXP4 by acting as a miRNA sponge and sequestering miR-3184-5p. 
Researchers further determined that the FOXP4-AS1/FOXP4 axis can promote PRAD tu-
morigenesis [92]. In HCC, FOXP4-AS1 can recruit enhancers of zeste homolog 2 (EZH2) 
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being detected and studied in different cancer types. By inducing cIAP2 expression, BIR3C 
eRNA can affect H. pylori infection, which is one of leading causes of gastric cancer [94]. 

Figure 1. The mechanisms of eRNAs transcribed from chr8q24.21. (A) Utilizing CCAT1 as a diagnostic
biomarker to distinguish CRC stages (III and IV). (B) The different mechanisms of CCAT1 and
CCAT1L in the nucleus and the cytoplasm, as well as the impact on eRNA and follow-up pathways
by a variant inside the PVT1 region.

The interaction of eRNAs with Bromodomain and Extraterminal (BET) proteins
also showed some insights into cancer development. BET, a protein family containing
BRD2, BRD3, BRD4 and BRDT, is regarded as an epigenetic regulator of transcription
in carcinogenesis-related biological processes, including cell growth, differentiation and
inflammation [83]. In different tissues or pathways, their mechanisms are varied and com-
plicated. BET proteins (e.g., BRD4) can maintain eRNA over-synthesis and the continuous
activation of NF-κB as well as the subsequent aberrant inflammatory responses or cell
proliferation [84–88]. Recent studies have investigated the direct interplay between BRD4
and certain eRNAs, including eRNAs of MMP9 and CCL2. The tandem bromodomains
of BRD4 were found to facilitate the BRD4–eRNA interactions. Conversely, these eRNAs
also promote the functions of BRD4 by increasing its binding towards acetylated histone
peptides and modulating the occupancy of the BRD4 enhancer to keep the gene active [89].

Another example is FOXP4-AS1, whose upregulation has been identified in differ-
ent cancers, including hepatocellular carcinoma (HCC), CRC, PRAD and ovarian serous
cystadenocarcinoma (OV) [90–93]. The mechanisms of FOXP4-AS1 in these cancers have
also been well studied. For example, in PRAD, the expression of FOXP4-AS1 can upregu-
late its target gene FOXP4 by acting as a miRNA sponge and sequestering miR-3184-5p.
Researchers further determined that the FOXP4-AS1/FOXP4 axis can promote PRAD
tumorigenesis [92]. In HCC, FOXP4-AS1 can recruit enhancers of zeste homolog 2 (EZH2)
on H3K27me to downregulate the expression of zinc finger CCCH-type containing 12D
(ZC3H12D), thus facilitating HCC growth [91]. Such cancer-specific mechanisms indicate a
detailed and comprehensive perspective in further research.

Apart from the detailed mechanisms of eRNAs mentioned above, more eRNAs are
being detected and studied in different cancer types. By inducing cIAP2 expression, BIR3C
eRNA can affect H. pylori infection, which is one of leading causes of gastric cancer [94].
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An immune-related eRNA called WAKMAR2 can regulate several downstream target
genes in BRCA [95]. In non-small lung cancer cells, the eRNA TBX5-AS1 has been found
to regulate the tumor progression through the PI3K/AKT pathway [96,97]. KLK3e, in-
volved in androgen receptor-driven looping, has been discovered to selectively trigger gene
activation in PRAD [98]. An important eRNA called NET1e has been observed to have
overexpression patterns in PRAD, stomach adenocarcinoma (STAD), liver hepatocellular
carcinoma (LIHC), kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell
carcinoma (KIRP) [99,100]. All these examples, even not covering every pattern in eRNA
regulation, are fulfilling the understanding of eRNAs in carcinogenesis and cancer growth,
which may also shed light on more cancer treatment methods.

2.2. The Potential Clinical Utility of eRNAs in Cancer

Increasing evidence has also shown the significant roles of eRNAs in clinical applica-
tions, including acting as biomarkers and therapeutic targets. First, eRNAs can serve as
potential biomarkers in diagnosis. For example, in CRC cells, the expression of the eRNA
CCAT1 is correlated with differential grades, non-mucinous histology and tumor stages (III
and IV) (Figure 1A) [101]. Researchers have also found analogous patterns in other cancer
types such as BRCA, in which a correlation has been identified of high CCAT1 expression
with lymph node metastases as well as all the diagnostic aspects mentioned above in CRC
(Figure 1A) [73]. It should be noted that CCAT1 may provide a limited contribution in
detecting CRC at an early stage [102]. In a more recent study, researchers discovered the
association between the overexpression of MYC and CCAT1 upregulation before prostate
tumor formation, signifying a novel tool for early PC identification [72]. This evidence
suggests that eRNAs could be employed as biomarkers in cancer diagnosis. In addition,
more studies have focused on the possible utility of eRNAs in cancer prognosis. CCAT1
has also shown its potential to be an independent indicator in CRC and PC to predict poor
survival both in recurrence-free survival (RFS) and overall survival (OS) [72,101]. In addi-
tion, high expression of FOXP4-AS1 has also been reported to contribute to worse survival
and a higher recurrence rate in HCC and CRC patients [91,93]. Bioinformatics methods
applied to analyze the TCGA database have also revealed some promising biomarkers for
further experiments. For instance, a pan-cancer analysis has displayed that the expression
of eRNA SPRY4-AS1 in surgical specimens is associated with survivability in patients with
HCC, glioblastoma multiforme (GBM), adrenocortical carcinoma (ACC), brain lower grade
glioma (LGG) or mesothelioma (MESO) [103]. Such analysis of the association between
eRNA expression levels and survival or relapse rate suggests that eRNAs can be good
prognostic biomarkers.

The inhibition of oncogenic eRNA has potential utility in cancer therapy. Studies have
found that FOXP4-AS1 knockdown by its targeted shRNA can inhibit CRC cell prolifer-
ation and induce apoptosis both in vitro and in vivo [93]. A similar study of eRNAs in
BRCA revealed substantial and strong cell growth inhibition in the presence of NET1e
knockdown [100]. Apart from eRNA depletion, the analysis of eRNA expression level
and drug sensitivity also displayed therapeutic usage. For example, from a TCGA cohort,
researchers have observed a strong connection between the response of anti-cancer drugs
and eRNA expression through within pathways or cross-pathways, which indicates that
changes in eRNA expression may work as a compliment in anti-cancer drug therapies [100].
Furthermore, it has been found that even more hopeful therapeutic potentials are related
to BET proteins. In recent years, several BET inhibitors have been developed and tested
in clinical trials [104]. These inhibitors all aim in targeting the BRD-acetyl binding pocket
to prevent BRD4 from binding to enhancers or super-enhancers [85,104]. According to
the discoveries in the direct interaction between certain eRNAs (i.e., MMP9 and CCL2)
and BRD4, eRNAs could also be potent therapeutic targets for repressing carcinogene-
sis [89]. The novel clinical tool targeting eRNAs in this process, together with the inhibitors
that have already been put into clinical trials, may shed light on the effect of eRNAs in
cancer treatment.
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Although researchers have identified the potential clinical utility of eRNAs as biomark-
ers and therapeutic targets across different cancer types, more comprehensive trials are
required [105]. As discoveries of eRNAs are centered in cancer-related studies, the sig-
nificance of eRNAs in carcinogenesis and their cancer-related clinical relevance would
be understood.

3. Role of eRNAs in Neurodegenerative Disorders

Neurodegenerative disorders are caused by the progressive loss of select vulnerable
populations of neurons and result in a debilitating loss of sensory, motor and cognitive
functions [106,107]. The disorders also share fundamental biological processes related to
progressive neuronal dysfunction and death, abnormalities of autophagy and neuroin-
flammation [106]. Aberrant expression genes involved in those biological processes are
vital for interested researchers. Being a critical regulatory element in gene regulation, the
eRNAs that respond to neuronal depolarization are worth studying. Among the various
neurodegenerative disorders, Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Huntington’s disease (HD) have been recently linked to eRNA dysregulation, which may
provide a better knowledge of the disease processes and novel possibilities of utilizing
eRNAs in clinical usage [108–110].

3.1. The Contribution and Mechanisms of eRNAs in Neurodegenerative Disorders

The role of eRNAs in neurodegenerative disorders has recently been observed through
various bioinformatic and experiential methods. Several eRNAs are involved in neurode-
generative pathogenesis or regulating the expression of certain genes that have vital roles in
these diseases. In addition, bioinformatics investigations have revealed broader expression
patterns or enrichment of eRNAs in neurodegenerative disorders, extending the bounds of
regulatory elements in neurodegenerative disorders.

It is known that brain-derived neurotrophic factor (BDNF) signaling is impaired in
AD brains, while increasing BDNF levels can improve learning and memory [111]. In the
intergenic region interacting with BDNF, two putative eRNAs—designated Bdnf-Enhg1 and
Bdnf-Enhg2—have been found to regulate BDNF expression by their transcribed eRNAs.
More specifically, the expression levels of these putative eRNAs have been observed to have
a dramatic increase in tandem with BDNF expression, especially in post-mitotic neuron
cells. Further experiments have validated their role in mediating BDNF expression that
contributes to dendritic growth [112]. The onset of neurodegenerative diseases has been
linked to abnormal BDNF expression regulated by Bdnf-Enhg1 and Bdnf-Enhg2 [111–113].
Another study has shown the intermediary but important involvement of eRNAs in patho-
genesis by observing the subsequent impact of DNA sequence variants in the enhancer
region ANNCR. This change is associated with Apolipoprotein E (APOE), whose ε4 allelic
form is a major risk factor for AD. AANCR is folded into an m6A R-loop and partially tran-
scribed into a certain eRNA, which then effectively silences APOE expression and changes
the susceptibility to AD [114]. An expression profile study has also revealed a significant
enrichment of differentially expressed eRNAs at AD-associated enhancer regions [115].

Some studies have observed the eRNA involvement in other neurodegenerative dis-
eases. For example, in dopamine neurons, several PD-associated variants on chromosome
17q21 have been linked to a putative eRNA expressed from intron 2 of the KANSL1
gene [116]. As KANSL1 dysregulation has been proved to disturb autophagy and thus
induce memory impairment and neurodegeneration, the regulatory mechanism of this
putative eRNA is worth investigating in PD-associated research [116,117]. Evidence in
HD-related studies also displays the importance of eRNAs. For instance, researchers have
found that decreased H3K27ac activity at super-enhancers in the R6/11 striatum is able to
alter the eRNA production in HD-affected neurons [109]. RNA pol II is then reduced along
HD downregulated genes, especially the voltage-gated potassium channels (e.g., Kcnab1,
Kcna4 and Kcnj4), causing transcriptional dysregulation of relative neuronal genes and
presumably increasing striatal vulnerability in HD [109,118].
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Other neurological pathways or circuities—capable of affecting both neurodevelop-
ment and neurodegeneration—have been demonstrated to be associated with eRNAs. For
example, a brain-specific ultraconservative eRNA called Evf2 can regulate the expression
of the homeodomain TF Dlx5/6 by recruiting DLX and MECP2 in their intergenic enhancer
regions. Evf2 mutants reduce the GABAergic interneuron numbers in both early postnatal
hippocampal and dentate gyrus and decrease synaptic inhibition in adults’ brains [119,120].
Causing an imbalance between excitatory and inhibitory signaling, GABA-regulated circuit
dysfunction is well known for its versatile contribution to neurological diseases, which
includes neurodevelopmental disorders such autism and Tourette’s syndrome, neurode-
generative disorders such as HD and epilepsy and other disorders such as dystonia and
hepatic encephalopathy [119,121–124]. Further research into the mechanisms of eRNAs in
neurodegenerative disorders is needed to provide a better understanding of these diseases
on a comprehensive and more nuanced level.

3.2. The Potential Clinical Utility of eRNAs in Neurodegenerative Disorders

Some studies have further investigated the possible clinical usage of eRNAs in neu-
rogenerative disorders. For example, eRNA impacts HD-related neuronal genes in the
striatum, as exemplified in Section 3.1., implying that targeting striatal enhancers can
improve eRNA expression levels, which is likely to prevent the repression of neuronal
genes in HD patients [118]. In PD rat models, the eRNAs transcribed from super-enhancers
(SEs) have also been examined using bioinformatics techniques. A cluster of PD-specific
SEs could upregulate SNX5 to prompt ferroptosis levels through the endosomal sorting
pathway in PD, which may serve as potential diagnostic markers and therapeutic targets
for PD [125].

A more detailed example may shed light on future research directions. An eRNA
transcribed from the enhancer region located 5.8–7.0 kb upstream of the mouse neurogenin1
(Neurog1 or Ngn1) gene, designated utNgn1, has been demonstrated to be necessary for
effective Ngn1 transcription. Additionally, researchers have identified the elements that can
control utNgn1 transcripts and hence indirectly regulate Ngn1 expression: Wnt signaling is
capable of upregulating utNgn1 expression, while PcG proteins are capable of downregu-
lating it [126]. As for the function of the Ngn1 gene, the loss of its expression can generate
the loss of deep-layer neurons according to Ngn-independent mechanism research [127].
Ngn1 overexpression, on the contrary, promotes premature differentiation and has been
considered a means of helping embryonic stem cells (ESCs) in their differentiation into
induced neurons [107,126]. The potential therapeutic utility in such a scenario is to replace
degenerative neurons with these induced neurons from ESCs [107]. A computational ap-
proach has demonstrated the possible contribution of eRNAs derived from super-enhancers
in ESC differentiation [128]. Combining the results of these studies, regulating the eRNA
utNgn1 to prompt the directional differentiation of ESCs clearly turns out to be potentially
useful in stem cell therapy for neurodegenerative disorders.

Thus far, the clinical utility of eRNAs, e.g., prognosis or target therapy, in neurode-
generative disorders is still largely unexplored. These studies have not only revealed the
mechanisms of eRNAs in different neurodegenerative disorders but also provided potential
approaches to utilizing eRNAs in these diseases.

4. Role of eRNAs in Cardiovascular Diseases

Cardiovascular diseases (CVDs) occur in the blood circulatory system, including the
heart and its associated blood vessels [129]. Some studies have revealed that TF genes such
as NKX2-5, MESP1, TBX5, MEF2c, HAND2, GATA4 and SRF play critical roles in cardiac
gene regulatory networks (GRNs) [130,131]. Most importantly, the eRNAs involved in these
cardiac GRNs can perturb them and modulate CVD development [130]. Meanwhile, eRNAs
have also shown their potential clinical utility for CVD diagnosis and treatment [132].
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4.1. The Contribution and Mechanisms of eRNAs in Cardiovascular Diseases

Transcriptional alteration can be broadly detected in cardiovascular morphogenesis.
Recent studies have revealed that various genes are regulated by eRNAs in these cardiac
processes [131]. An eRNA known as CARMEN is a typical example that sparked a flurry of
investigation. It maps to the locus proximal to an important region that harbors a cardiac
SRF/NKX2.5-bound enhancer in human cardiac precursor cells (CPCs). Computational
calculation and experimental validation have corroborated CARMEN as a crucial upregu-
lated eRNA that contributes to both CPC differentiation and cardiovascular pathologies in
human hearts. The activity of CARMEN in CPC differentiation is in its interaction with
SUZ12 and EZH2, components of polycomb repressive complex 2 (PRC2) [133,134]. In
addition, one of CARMEN’s isoforms, named CARMEN3, has been observed to show sig-
nificant upregulation in the pathologies of two different human CVDs, namely idiopathic
dilated cardiomyopathy (DCM) and aortic stenosis (AOS) [134].

Enhancer RNAs are also associated with calcium-handling physiology crucial for
maintaining a healthy cardiac rhythm and intact heart activities. In human hearts, the
eRNA RACER improves the performance of T-box transcription factor 5 (TBX5), whose
malfunction is responsible for cardiac conduction system (CCS) disease through GRN
dysregulation. As an upstream regulator of TBX5, RACER maintains normal calcium
kinetics by regulating the expression of the TBX5-dependent gene Ryr2 by recruiting Pol2
and stabilizing the structure of the Pol2-Ryr2 promoter [135,136].

Notably, the eRNAs transcribed from different strands of the same enhancer may
oppositely exert their regulatory functions according to novel research on Intergenic Regu-
latory Element Nkx2-5 Enhancers (IRENEs) [137]. These two eRNAs are both transcribed
from the enhancer of Nkx2-5, whose mutation has long been viewed as the main cause of
congenital heart defects (CHDs) [138,139]. One IRENE eRNA is on the same strand (SS),
while the other is in the divergent direction (div). IRENE-SS functions as a typical eRNA to
promote Nkx2-5 transcription by enlisting NKX2-5 to its own enhancer. On the contrary,
IRENE-div silences the Nkx2-5 enhancer by recruiting the histone deacetylase sirtuin 1
(SIRT1) (Figure 2) [137]. The subcellular distribution of IRENEs exhibits specific patterns:
the localization of IRENE-div is dependent on the stage of the transcript’s biogenesis, with
the mature form previously in the cytoplasm and the immature form having a subcellular
localization similar to that of IRENE-SS. In contrast, 60% of IRENE-SS was found in the
nucleus, with 45% of it bound to chromatin [137].
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ing Nkx2-5. IRENE-SS, acting as a typical eRNA, enlists NKX2-5 and upregulates Nkx2-5 expression.
IRENE-div, on the contrary, recruits SIRT1 to Nkx2-5 enhancer and silences Nkx2-5 expression.
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4.2. The Potential Clinical Utility of eRNAs in Cardiovascular Diseases

Understanding the essential roles of eRNAs in CVDs will also pave the road for
manipulating eRNAs in related clinical studies. To be specific, eRNAs may be used as
therapeutic targets in corresponding cardiovascular pathologies and may be utilized to
control the differentiation of precursor stem cells into wanted cardiac cells in regenerative
medicine due to their critical roles in cardiac cell development.

For example, Wisper (Wisp2 super-enhancer–associated RNA) has been identified as a
cardiac fibroblast (CF)-enriched eRNA that regulates the process of cardiac fibrosis [140].
CFs’ differentiation into myofibroblasts triggered by CF proliferation at first can initiate
the pathological process of heart failure, resulting in diseases such as AOS and dilated
cardiomyocytes (CM). Additionally, their pathologies are under apoptotic resistance and
profibrotic signaling molecular influence [141]. Therapeutic depletion of Wisper in vivo
has been proven to generate a significant decrease in the proliferation of CFs and can
consequently inhibit cardiac fibrosis. The sequence of Wisper being relatively conserved
in humans suggests that it is desirable to explore the potential utility of Wisper as an
antifibrotic therapeutic target [140].

Similar clinical utility of eRNAs has also been demonstrated in stress-induced disease
development. An eRNA named HERNA1 (hypoxia-inducible enhancer RNA 1) has dis-
played a great capacity to regulate its neighboring coding genes, such as synaptotagmin
XVII and SMG1, by conferring hypoxia responsiveness towards them. Furthermore, as
HERNA1 production is robustly induced by pathological stress, antisense oligonucleotides
targeting HERNA1 can protect cells against stress-induced pathological hypertrophy and
increase overall survival rate [142]. The curative effect of HERNA1 inhibition suggests that
it could be a useful post-disease therapeutic target in pressure-overload CVDs, including
aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) [142,143].

Aside from serving as therapeutic targets, eRNAs can also be applied in cardiac re-
generative strategies to replenish lost cardiomyocytes [132]. Bvht, transcribed from an
important locus enriched with heart-specific enhancers, has been demonstrated to be a
requisite eRNA during ESC progression of nascent mesoderm toward a cardiac fate. This
decisive step in ESC differentiation occurs by regulating Mesp1, a vital transcriptional
factor marking the early cardiac precursor cells [132,144]. Meteor is another eRNA that
performs analogous functions in ESC differentiation. Genetically or epigenetically manipu-
lating Meteor has revealed its essential role in mesendoderm specification and subsequent
cardiogenic differentiation [145]. Based on these findings, eRNA manipulation shows great
promise for guiding the differentiation of precursor cells into desired cardiac cells, which
could have intriguing applications in cardiac cell regeneration, providing more chances for
cardiac cell therapies.

5. Role of eRNAs in Metabolic Diseases

Dysfunction of major metabolic tissues, e.g., liver and pancreas, could result in a series
of metabolic anomalies, which generate metabolic diseases such as obesity, type 2 diabetes
(T2D) and hepatic steatosis [146–148]. These diseases also show a tight correlation with
each other because of the whole integrity of the metabolic network, in which key regulatory
elements actively interact [148]. As evidence for the critical involvement of regulatory
elements in metabolic networks and related disorders is becoming increasingly abundant,
eRNAs—a subset of these elements—have also come to be recognized as a subject worth
investigating in metabolic diseases.

5.1. The Contribution and Mechanisms of eRNAs in Metabolic diseases

In studies investigating obesity genesis, researchers have found that an eRNA named
Lnc-leptin, transcribed from the enhancer region upstream of the leptin (Lep) gene, is
required for Lep expression. Lnc-leptin‘s regulatory effects are based on two different
mechanisms: direct interaction with the Lep promoter and acting as a bridge between
TFs and histone-modifying proteins [149]. Downregulated Lep expression, caused by Lnc-
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leptin deficiency, may incur a decrease in leptin, which controls appetite through its effect
on the hypothalamus [150,151]. Maternal obesity-associated metabolic and epigenetic
alterations can also lead to dampened responses in the offspring’s immune system by
reducing the expression of IL6 eRNA and IL10RB eRNA in monocytes [152]. This evidence
has emphasized the important engagement of eRNAs in metabolic mechanisms and obesity-
associated immune responses.

In lipid metabolism research on hepatic steatosis and non-alcoholic fatty liver disease
(NAFLD), the liver expression of an eRNA designated OLMALINC (oligodendrocyte
maturation-associated long intergenic noncoding RNA, located at human chromosome
10q24.31) has been proven to be tightly associated with statin use and serum triglycerides
(TGs). Such connection relies on OLMALINC’s ability to promote the expression of its
adjacent TG-gene recognized as stearoyl-CoA desaturase (SCD), which is known to be
up-regulated in hepatic steatosis and NAFLD [153,154]. Notably, OLMALINC has a stable
and spliced transcript with a poly-A tail, which indicates its possible secondary functions
and a broad usage in future studies [153].

The regulatory function of eRNAs in some specific metabolism-related genes related
to a broader range of metabolic diseases may provide a wider understanding of the in-
volvement and even modification of eRNAs. For example, m5C-modified eRNAs in hepatic
cells have been found to act as an intermediate substance in the peroxisome proliferator-
activated receptor γ coactivator 1 alpha (PGC-1α)-related metabolic network. The dynamic
change in the methylation and demethylation of PGC-1α, which plays vital roles in adapted
metabolic responses, is caused by methyltransferase SET7/9 and Lysine-specific demethy-
lase 1 (LSD1), corresponding with m5C eRNAs. Moreover, the eRNAs transcribed from
the enhancer regions of PGC-1α’s target genes, such as 6-phosphofructokinase (Pfkl) and
Sirtuin5 (Sirt5), have been proven to be inducible elements affecting carbamoyl-phosphate
synthetase 1 (CPS1) activity and have thus been identified as important sensors of the
metabolic state [155]. According to current knowledge on PGC-1α, it has been clearly
linked to various metabolic complications, including obesity, T2D and hepatic steato-
sis [156]. Therefore, understanding how eRNAs work in PGC-1α pathways could aid the
intervention of these disorders [155].

Studies have also explored the dysfunction of enhancers in rare diseases. For example,
lipodystrophies are referred to as lipid-partitioning disorders. Their primary defect is the
loss of functional adipocytes, resulting in ectopic steatosis, severe dyslipidemia and insulin
resistance [157,158]. The activation of enhancers regulating the genes involved in lipid
metabolic pathways can be influenced by Tmem120a, a transcription factor whose deficiency
may suppress the expression of genes associated with lipodystrophies [159]. This evidence
indicates the functional and clinical potential of eRNAs in rare diseases.

5.2. The Potential Clinical Utility of eRNAs in Metabolic diseases

Investigations of the eRNAs in metabolic diseases, particularly T2D, show that they
are involved in various metabolic pathways. In adipocytes, a well-known nuclear receptor
named peroxisome proliferator-activated receptor (PPARγ) regulates adipocyte biology by
directly binding to its target genes [160]. An anti-diabetes drug designated rosiglitazone
(rosi) can act as a high-affinity activating ligand for PPARγ to treat T2D [161,162]. By
recruiting coactivators such as MED1, p300, and CBP, rosi can upregulate certain eRNAs
and thus generate an enrichment of these eRNAs at PPARγ binding sites. For example, a
series of bidirectional eRNAs transcribed from the enhancers upstream of the Fabp4 locus
were observed to be upregulated by rosi. Additionally, 85% of these upregulated eRNAs
have PPARγ bound nearby, although there are also rosi-induced downregulated eRNAs
whose locations harbor binding sites for other TFs. A better understanding of the complex
transcriptional changes caused by rosi may provide solutions and interventions for its
severe side effects and toxicities [162].

Insulin responses are always impaired in T2D and subsequent obesity [163]. LncASIR,
an eRNA also annotated as a four-exon transcript in the RefSeq database, is transcribed
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from a super-enhancer region upstream of Lep and has been demonstrated to be a re-
quired element for normal insulin signaling pathways. By using dcas9-KRAS and guide
RNA, an LncASIR silencing experiment showed a considerable reduction in the insulin-
induced gene program in adipocytes. Overexpression of LncASIR alone is not sufficient
to increase insulin responses in T2D patients. If LncASIR is induced with its binding
protein—polycomb repressive complex (PRC)—together, it might improve the clinical
repair of insulin responses [164].

6. Conclusions and Perspectives

Enhancer RNAs are regulated by upstream factors and mediate the expression of
their target genes in different diseases. They often harbor similar biological functions and
molecular mechanisms. Comprehensive investigations of eRNAs could shed light on their
roles in complex GRNs in human diseases. In addition, some eRNAs have shown particular
and distinct mechanisms that may indicate new knowledge of their functions. Taking
IRENEs as examples, the eRNAs transcribed from the same locus in different strands,
designated IRENE-SS and IRENE-div, exert almost opposing functions in regulating their
target gene, Nkx2-5 (Figure 2) [137]. Nkx2-5 mutation has long been viewed as the main
cause of CHDs, and utilizing the counterbalance effect of IRENEs may be a breaking point
for CHD treatment [139]. Thus far, the role of eRNAs in human diseases is still largely
unexplored. Furthermore, some eRNAs have shown cascade amplifications in complicated
GRNs. For example, the tandem bromodomains of BRD4 can facilitate its binding to certain
eRNAs such as MMP9 eRNA. After the binding relation is formed, MMP9 eRNA starts
to increase the binding ability towards acetylated histone peptides and modulates the
occupancy of the BRD4 enhancer, which then maintains downstream genes’ activation [89].
As BRD4 is highly involved in the biological processes associated with carcinogenesis,
such as cell proliferation, differentiation and inflammation, the serial amplification of
BRD4-eRNA could provide novel insights about cancer development [86,87]. Similar to
the mutual promotion of BRD4 eRNA binding, decreased H3K27ac at super-enhancers in
the R6/11 striatum reduces the eRNA production in HD-affected neurons. Conversely, the
downregulated eRNA production results in the transcriptional dysregulation of related
neuronal genes and presumably increases striatal vulnerability in HD [109,118]. This draws
attention to eRNAs’ involvement in multiple biological processes and demonstrates their
critical roles in different human diseases.

The systematic study of the functions of eRNA could promote eRNA in potential
clinical applications (Figure 3, Table 1). The usage of eRNAs in cancer-related studies can be
divided into three potential applications: diagnostic biomarkers, prognostic biomarkers and
therapeutic targets. Thus far, these potential applications of eRNAs are still far away from
clinical trials, let alone practical clinical uses. Before being applied in clinical trials, their
medical potentials mentioned above still need more evidence based on comprehensively
investigating their potential toxicity and limitations. Furthermore, eRNAs have been
associated with clinical relevance, such as high expression of SPRY4-AS1 associated with
poorer survival rates in cancers. The mechanisms and utility of these clinical associations
also require further exploration in order to realize their potential application, which also
calls for more research focusing on the uncharted capacity of eRNAs in their biological
function exploration.
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Figure 3. Identified eRNAs in cancer, neurodegenerative disorders, cardiovascular disease and
metabolic diseases. In cancers, various eRNAs contribute to carcinogenesis, including CCAT1,
MMP9e and other eRNAs mentioned in the figure. CCAT1 and FOXP4-AS1 also show their potential
utility in cancer diagnosis, prognosis and therapy. In neurodegenerative disorders, Bdnf-Enhg1,
Bdnf-Enhg2 and Evf2 are involved in the pathologies of AD, PD and/or HD. The eRNA utNgn1 has
shown its possible medical usage. In cardiovascular diseases, CARMEN, RACER and IRENEs have
demonstrated their contribution to different cardiac-associated pathways; Wisper, HERNA1, Bvht
and Meteor may be applied in future therapies. In metabolic diseases, Lnc-leptin and OLMALINC
can regulate gene expressions related to metabolic pathologies. Overexpression of LncASIR, together
with inducing its binding protein, may be applied in T2D treatment.

Table 1. Detectable eRNAs, targets and experimental or clinical resources in different human diseases.

Identified eRNA Disease Type Target Gene Experimental or Clinical Resources Reference

CCAT1 CRC, PRAD, BRCA
and ESCA MYC Patient and/or surgical samples and

cell lines [72–74,78]

MMP9 and
CCL2 eRNA

BRCA, ESCA
and PAAD Brd4 Cell lines (SW480) [86]

FOXP4-AS1 HCC, CRC, PRAD
and OV FOXP4

Patient and/or surgical samples and
cell lines (PC-3, DU145, VCaP, LNCaP,
RWPE-1, MHCC-97H, HepG2, LM3,

SMMC-7721, DLD-1, HT-29, HCT116,
SW480, Lovo)

[91–93]

BIR3C Gastric cancer cIAP2 Cell lines (AGS, MKN28, MKN45) [94]

WAKMAR2 Breast cancer
IL27RA, RAC2,

FABP7, IGLV1-51,
IGHA1 and IGHD

Patient samples and cell lines
(MB-231, MCF7) [95]

TBX5-AS1 Lung cancer
non-small cells PI3K and AKT Patient samples and cell lines (16HBE,

A549, H1299, NCI-H520) [96,97]

KLK3e PRAD PSA Cell lines (LNCaP, VCaP, COS-7) [98]
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Table 1. Cont.

Identified eRNA Disease Type Target Gene Experimental or Clinical Resources Reference

NET1e PRAD, STAD, LIHC,
KIRC and KIRP

Downstream
miRNAs (let-7e,
miR-34, miR-98,
miR-107, etc.)

Patient samples [100]

Bdnf-Enhg1 and
Bdnf-Enhg2 AD Bdnf Mice models [112]

Evf2 HD and epilepsy Dlx5/6 Rabbit models and cell lines (mouse
EL250, PL253 and PL452) [120]

utNgn1 Neurogenesis Neurog1 Mice models and ESC lines [126]

IRENEs CHD Nkx2-5
Mice models and cell lines (human
RUES2 cells and iPSC-derived CMs,

mouse HL-1)
[137]

Wisper AOS and CM Wisp2 Patient samples and mice models [140]

HERNA1 AS and HCM synaptotagmin XVII
and SMG1

Patient samples, mice models and cell
lines (HEK-293T cells) [142]

Bvht CVD Mesp1 ESC lines [144]

Meteor CVD Eomes, T, Gsc, Gata4
and Isl1 Mice models and ESC lines [145]

Lnc-leptin Obesity Lep Mice models [149]

OLMALINC Hepatic steatosis and
NAFLD SCD Patient samples and cell lines (HepG2

and Fa2N4) [153]

LncASIR T2D PI3K, Fabp4, Glut4
and Srebp1c Mice models [164]
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