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Abstract

Gene enhancer elements are noncoding segments of
DNA that play a central role in regulating transcriptional
programs that control development, cell identity, and
evolutionary processes. Recent studies have shown that
noncoding single nucleotide polymorphisms (SNPs) that
have been associated with risk for numerous common
diseases through genome-wide association studies
frequently lie in cell-type-specific enhancer elements.
These enhancer variants probably influence transcriptional
output, thereby offering a mechanistic basis to explain
their association with risk for many common diseases. This
review focuses on the identification and interpretation of
disease-susceptibility variants that influence enhancer
function. We discuss strategies for prioritizing the study of
functional enhancer SNPs over those likely to be benign,
review experimental and computational approaches to
identifying the gene targets of enhancer variants, and
highlight efforts to quantify the impact of enhancer
variants on target transcript levels and cellular phenotypes.
These studies are beginning to provide insights into the
mechanistic basis of many common diseases, as well as
into how we might translate this knowledge for improved
disease diagnosis, prevention and treatments. Finally, we
highlight five major challenges often associated with
interpreting enhancer variants, and discuss recent technical
advances that may help to surmount these challenges.

Introduction
Transcriptional enhancer elements are noncoding stretches

of DNA that have a central role in controlling gene expres-

sion programs in cells. Rather than on-off switches, en-

hancers are hypothesized to function as transcriptional

rheostats to fine-tune target transcript levels. Higher-order
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three-dimensional organization of chromatin facilitates

physical interactions between enhancers and their target

promoters. Interactions between enhancers and their tar-

gets may occur on the same chromosome (in cis) or on

different chromosomes (in trans) (Figure 1) [1-3]. In any

given mammalian cell type, the number of putative enhan-

cer elements ranges from 50,000 to 100,000, and therefore

far exceeds the number of protein-coding genes.

In the last decade, more than 1,900 genome-wide associ-

ation studies (GWASs) have been published, identifying

loci associated with susceptibility to over 1,000 unique

traits and common diseases [4]. With the eventual goal of

finding new therapies and preventative measures for com-

mon diseases, efforts are now focused on determining the

functional underpinnings of these associations. Several

groups have associated GWAS risk variants, mostly SNPs,

with newly annotated cell-type-specific gene enhancer ele-

ments identified through epigenomic profiling studies.

These enhancer variants probably play an important part

in common disease susceptibility by influencing transcrip-

tional output. Of all the genetic risk variants discovered to

date, the number that impact enhancer function is esti-

mated to far exceed the number that affect protein-coding

genes or disrupt promoter function (Figure 2). Additionally,

disease-associated variants in noncoding regions, particu-

larly those that lie in cell-type-specific enhancer elements,

have been estimated to explain a greater proportion of the

heritability for some disorders than variants in coding

regions [5]. This review focuses on the identification and

interpretation of disease-associated variants that affect en-

hancer function. We consider the latest approaches for

evaluating enhancer variants and identifying their gene tar-

gets, and highlight successful cases in which risk variants

have been shown to alter gene expression by disrupting

enhancer function. In addition, we discuss the remaining

challenges to delineating the impact of noncoding variants,

such as the identification of enhancer activity, validation of

causal variants and identification of responsible genes.

Future efforts to surmount these challenges should help

to remove the barrier between the discovery of disease
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associations and the translation of this knowledge for

improved diagnosis and treatment of many common

diseases.

Genetic risk variants are enriched in cell-type-
specific enhancer elements defined by signature
chromatin features
The locations of enhancer elements coincide with DNase I

hypersensitive regions of open chromatin flanked by nu-

cleosomes marked with the mono- and/or di-methylated

forms of lysine 4 at histone H3 (H3K4me1/2) [9,10]. En-

hancers can be active or repressed, and each state generally

correlates with the presence of additional histone marks,

such as H3K27ac and H4K16ac which are associated with

active chromatin, or H3K27me3 and H3K9me3 which are

associated with repressed chromatin [11-14]. Active en-

hancers are bi-directionally transcribed and capped at their

5′ end [15,16]. Most enhancer elements are located in in-

trons and intergenic regions, although some are exonic

[17-19]. Relative to promoters, the distribution of en-

hancers across the epigenome is highly cell-type specific.

Some of the first studies to associate GWAS variants with

enhancer elements integrated genetic risk variants with

regulatory element maps generated through epigenomic

profiling (using chromatin immunoprecipitation com-

bined with massively parallel DNA sequencing (ChIP-seq)

and the profiling of DNase I hypersensitive sites (DHSs))

[20-22]. Two major themes emerged from these studies.

First, loci with signature enhancer features (DHSs,

H3K4me1, H3K27ac) are highly enriched for genetic risk

variants relative to other chromatin-defined elements such

as promoters and insulators [21]. Second, risk variants

preferentially map to enhancers specific to disease-relevant

cell types in both cancer and other common diseases [21].

For example, type 2 diabetes-associated variants preferen-

tially map to pancreatic islet enhancers [22-25], and SNPs

predisposing to colon cancer are enriched in enhancer ele-

ments in colon cancer cells and colon crypts, from which

colon cancer is derived [26]. Further assessment of the

effects of enhancer risk variants has shown that they can

alter transcription-factor-binding sites (TFBSs) and impact

the affinity of transcription factors for chromatin, and/or

induce allele-specific effects on target gene expression

[6,27-40]. These studies illustrate the utility of epigenomic

profiling for identifying risk variants that lie in putative en-

hancer elements and for identifying disease-relevant cell

types in which the enhancer variants could exert their

regulatory effects.

Super-enhancers, stretch enhancers, and enhancer
clusters: hotspots for genetic risk variants
Four studies recently demonstrated correlations between

genetic risk variants and large clusters of active enhancers,

similar to locus control regions. These features have been

called ‘super-enhancers’ [41,42], ‘stretch enhancers’ [24],

‘multiple enhancers’ [7] and ‘enhancer clusters’ [23], and

are similar but not identical between studies, although

many of these features overlap. The methods used to

identify these clusters are distinct. Super-enhancers, for

example, are defined by identifying the top-ranking en-

hancers on the basis of the levels of associated transcrip-

tion factors or chromatin marks identified through ChIP

studies. Stretch enhancers are defined by stretches of open

chromatin more densely and more broadly marked with

enhancer-histone modifications than typical enhancers.

Despite these differences, many of the defined features

overlap. These enhancer clusters are highly cell-type spe-

cific and have been proposed to play a predominant role

in regulating the cell-type-specific processes that define

the biology of a given cell type. Moreover, they are dispro-

portionally enriched for genetic risk variants compared to

typical enhancers, and the enrichment is biased toward

disease-relevant cell types. These results further support

the notion that variants that influence cell-type-specific

gene regulation are major contributors to common disease

risk, and extend this concept to demonstrate that altering

the expression of genes under exquisite regulation can

frequently lead to increased risk. Enhancer cluster

H3K27ac

H3K4me1

H3K27ac

H3K4me1

DNase I hypersensitivity
Gene

Figure 1 Model of enhancer function. Transcriptional enhancer elements are noncoding stretches of DNA that regulate gene expression levels,
most often in cis. Active enhancer elements are located in open chromatin sensitive to DNase I digestion and flanked by histones marked with
H3K4me1 and H3K27ac. Enhancers are often bound by a number of transcription factors (TF), such as p300 (blue). Mediator and cohesin are part
of a complex (orange, green and purple) that mediates physical contacts between enhancers and their target promoters.
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identification provides a means of detecting highly regu-

lated genes and may help to prioritize noncoding variants

that are likely to be functional.

A typical locus identified through a GWAS contains

dozens to thousands of SNPs in linkage disequilibrium

(LD) with the ‘lead’ SNP that is reported to be associated

with the disease in question. Any SNP in LD with the lead

SNP may be causal, and the prevailing assumption is that

only one is causal. Indeed, this scenario has been reported

to be the case for some risk loci involving enhancers

[34,43], and there are several examples of Mendelian dis-

orders in which a single enhancer variant causes congeni-

tal disease [44-50]. However, it is equally plausible that

more than one SNP is causal, particularly at GWAS loci

harboring enhancer clusters. In these instances, several

variants distributed among multiple enhancers throughout

the locus, rather than a single SNP, may combine to affect

expression of their gene targets and confer susceptibility

(a) (b)

Figure 2 Enrichment of genome-wide association study variants in putative enhancer elements. (a) Number of disease-associated variants
(identified in the National Human Genome Resource Institute’s genome-wide association study (GWAS) catalog) that lie in protein-coding regions
(red), promoters (blue), noncoding intragenic regions (light purple) and noncoding intergenic regions (dark purple). (b) Examples of four different
common diseases, showing the number of associated single nucleotide polymorphisms (SNPs) that lie in putative enhancers, promoters and
exons [6-8]. Putative enhancer elements were defined by chromatin features in each of the four indicated cell types.
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to common traits. This has been called the ‘multiple en-

hancer variant’ (MEV) hypothesis. Corradin and col-

leagues provided support for the MEV hypothesis for

six common autoimmune disorders, including rheuma-

toid arthritis, Crohn’s disease, celiac disease, multiple

sclerosis, systemic lupus erythematosus and ulcerative

colitis. The extent of MEVs across additional common

diseases is not yet known [7,28,37].

Interpreting enhancer variants
Given that risk variants lie in cell-type-specific enhancer

elements, it is critical to utilize a disease-relevant cell type

to identify potential enhancer variants. SNPs associated

with a particular disease can be compared to enhancer ele-

ments to identify cell types whose active enhancers are

disproportionately enriched for disease variants. Variant

set enrichment is a permutation-based method that com-

pares the enrichment of genetic risk-variant sets within

any functional element (such as H3K4me1-marked puta-

tive enhancers) to randomly generated matched genetic

risk-variant sets [26,38]. This type of analysis provides an

unbiased way of evaluating the utility of a cell type for

studying the impact of variants on enhancer elements.

Several computational programs are currently available

to integrate chromatin landscapes with GWAS risk vari-

ants to identify candidate regulatory SNPs and evaluate

their disease-causing potential. These include IGR [38],

RegulomeDB [51], HaploReg [52], FunciSNP [53] and

FunSeq [54]. These programs are particularly useful for

prioritizing SNPs for functional analyses, which may in-

clude transcription factor ChIP or electrophoretic mobil-

ity shift assays to test whether a given SNP influences a

transcription factor’s ability to bind to the enhancer, and

in vitro and in vivo gene reporter assays to test the SNP’s

effect on enhancer activity. Additionally, allele-specific

expression can be utilized to quantify the impact of en-

hancer variants within a specific cell type. Finally, DNA

editing strategies involving CRISPR/Cas9-based methods

can be employed to evaluate the effect of a variant. Fol-

lowing the identification of a functional enhancer vari-

ant, the next major challenge is to identify its target and

to test the effect of the SNP(s) on target transcript levels.

Many enhancer elements are located within 100 kilobases

(kb) of the genes that they regulate, but can also be located

more than a megabase away, or even on separate chromo-

somes. Enhancers can regulate genes or long noncoding

RNAs. Most genes are regulated by more than one enhan-

cer, and many enhancers regulate more than one target

gene [55,56]. The problem is further complicated by our

limited knowledge of barrier elements, which block

enhancer-gene interactions. The most common method of

assigning an enhancer to its nearest gene is inaccurate,

with false discovery rate (FDR) estimates ranging from

40% to 73% [55,57]. Refining methods for identifying the

nearest gene to looking for the ‘nearest expressed gene’

still results in a high FDR, with 53% to 77% [55,58] of dis-

tal elements bypassing the nearest active transcription

start site to interact with a distant gene. Clearly, proximity

alone cannot be used to accurately identify the target of an

enhancer SNP.

Methods of identifying gene targets of enhancer
variants
To identity enhancer targets, DNA fluorescence in situ

hybridization (FISH) [59,60], as well as chromatin associ-

ation methods (chromosome conformation capture (3C))

[61], can be employed. These are powerful approaches for

evaluating whether a region of interest interacts with a

specific genomic target, but they suffer from the limitation

that the regions of interest must be pre-specified, that is,

they are ‘one-by-one’ approaches. 4C (circular chromo-

some conformation capture), an extension of 3C, can cap-

ture all regions that physically contact a site of interest,

without prior knowledge of the regions that contact that

site being necessary [62] (that is, a ‘one-to-all’ approach).

Higher-throughput methods include carbon-copy chro-

mosome conformation capture (5C, many-to-many), a

high-throughput expansion of 3C, Hi-C (all-to-all) and

chromatin interaction analysis by paired-end tag se-

quencing (ChIA-PET) (for detailed comparison of these

methods, see reviews [63,64]). These global approaches

can enable the identification of loci that directly and indir-

ectly contact enhancers of interest, and can reveal com-

plex interactions in which dozens to hundreds of loci

aggregate, so-called transcriptional hubs or enhanceo-

somes [65]. These types of high-order interactions have

been recently described by several studies [55,56,58]. The

extent by which they overlap risk loci remains unexplored.

Unfortunately, these approaches tend to be expensive and

difficult for most labs to execute, and their resolution

often prohibits their use for interrogating GWAS loci.

Until recently, for example, the resolution of Hi-C was

limited to capturing interactions separated by more than

one megabase; 5 to 10 times greater than the distance by

which most enhancer-gene interactions occur. Despite the

limitations, ‘C’-based methods have been implemented to

successfully identify targets of enhancer-risk variants and

to quantify their functional effects. For example, Cowper-

Sal lari and colleagues utilized 3C and allele-specific ex-

pression to demonstrate the impact of the breast cancer

risk SNP rs4784227 on expression of TOX3, thought to

have a role in chromatin regulation [38]. Bauer and co-

workers utilized 3C to identify BCL11A as the gene target

of an erythroid enhancer, and then further demonstrated

the impact of enhancer variants on transcription factor

binding and expression. Gene editing strategies have also

been employed to demonstrate that this enhancer is essen-

tial for erythroid gene expression [28]. Finally, we highlight
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a study by Smemo and colleagues in which 4C-seq was used

to identify IRX3 as the target of an enhancer SNP located in

intron 1 of the FTO gene, which was originally thought to

be the target and therefore the causal gene for increased risk

of obesity. Functional studies in mice were used to verify

that IRX3 is the most likely causal gene, not FTO [30].

Computational approaches to identify gene
targets of enhancer elements
As alternatives to experimental approaches, several groups

have developed computational techniques for determining

the targets of enhancers [7,16,21,66-70]. These methods

are similar in that they compare patterns of regulatory ac-

tivity across multiple cell types to predict interactions

between enhancers and genes. However, they vary signifi-

cantly in the type of data required to generate enhancer-

gene predictions, the specific approaches used to generate

and validate the predictions, and their availability (Table 1).

The method described by Ernst and colleagues identifies

H3K4me1/2 and H3K27ac sites that co-vary with expressed

genes within 125 kb of the gene locus, and uses this to pre-

dict enhancer-gene interactions [21]. Thurman and co-

workers utilized DHS exclusively to predict interactions.

Enhancers were assigned to genes by correlating the cross-

cell-type DNase I signal at each DHS site with all pro-

moters located within 500 kb [66]. The method developed

by Sheffield and colleagues also uses DHS profiles, but add-

itionally incorporates genome-wide expression data [70].

Rather than employing a fixed distance-based model, Shen

and colleagues apply chromatin conformation data from

Hi-C experiments to guide the association of enhancers to

genes marked by H3K4me1, H3K27ac and RNA Pol II

[67]. As an alternative to methods based on chromatin

structure, Andersson and colleagues leverage cap analysis

of gene expression (CAGE) data to correlate transcription

at enhancers with gene expression [16]. There are two

computational approaches that are publicly available and

executable through website or command-line programs:

predicting specific tissue interactions of genes and en-

hancers (PreSTIGE) [7] and integrated methods for predict-

ing enhancer targets (IM-PET) [69]. PreSTIGE identifies

enhancers and genes that demonstrate quantitative cell-

type specificity based on H3K4me1 and RNA sequencing

(RNA-seq), and can process data from human and mouse

cell types [68]. IM-PET, like previously discussed methods,

considers the proximity of an enhancer to potential gene

targets and the correlation of enhancer and promoter activ-

ity, along with measures of transcription factor activity and

evolutionary conservation.

When the appropriate datasets are available, compu-

tational approaches can offer a relatively fast and cost-

effective way of identifying putative enhancer-gene

interactions in a given cell type. However, they are gener-

ally limited to detecting a subset of enhancer-promoter

interactions within a given cell type, and none are capable

of identifying trans interactions. Methods that rely on cell-

type specificity or concordant changes in enhancers and

genes across cell types may lack the sensitivity to predict

interactions for ubiquitously expressed genes or to delin-

eate interactions in domains with a high density of cell-

type-specific genes. There is no standard or ‘reference’

dataset to validate the accuracy of gene-enhancer predic-

tions. Thus, each study utilizes a different approach to

evaluate accuracy, which makes it difficult to determine

which method is most accurate. This necessitates experi-

mental validation of enhancer-gene interactions deter-

mined using prediction-based methods. Despite these

limitations, computational approaches can help to identify

the targets of enhancer-risk variants. The method devel-

oped by Thurman and colleagues was applied to all

GWAS loci and predicted gene targets of 419 disease-

associated risk variants [20], most of which were located

more than 100 kb from the risk SNP. PreSTIGE was

utilized to predict gene targets of 122 noncoding loci as-

sociated with six immune disorders: rheumatoid arthritis,

Crohn’s disease, celiac disease, multiple sclerosis, lupus

and ulcerative colitis. Furthermore, at several of the

autoimmune-disease-associated loci, the effect of the risk

allele on target gene expression was quantified.

Utilizing expression quantitative trait loci studies
to evaluate the impact of enhancer variants
Expression quantitative trait loci (eQTL) studies enable

the identification of genetic variants that influence gene

expression. eQTL studies involve stratifying a panel of in-

dividuals based on their particular SNP genotypes and

then determining whether transcript levels differ between

individuals based on the specific SNP genotypes. Genome-

wide eQTL studies have identified transcripts that differ in

expression on the basis of the genotype of the risk allele at

GWAS loci. Alternatively, eQTL-based analyses can be

applied to candidate interactions between SNPs and gene

targets identified through the experimental or computa-

tional approaches described above. In both instances, gen-

etic variation inherent in the human population is utilized

to reveal the quantitative and directional effect of SNPs on

gene expression (that is, the degree to which expression is

upregulated or downregulated).

eQTL studies can locate SNPs within a given GWAS

locus that influence target transcript levels, but caution

must be taken when interpreting results. First, eQTLs, like

enhancers, are cell-type specific. Thus, the effect of a SNP

on transcription may only occur in disease-relevant cell

types [71,72]. Second, the SNP associated with transcript

levels may not be the causal SNP: SNPs in LD with the

eQTL SNP may be driving the association. Third, the re-

sults are correlative and may reflect indirect associations

Corradin and Scacheri Genome Medicine 2014, 6:85 Page 5 of 14

http://genomemedicine.com/content/6/10/85



Table 1 Computational approaches to predicting gene targets of enhancer elements

Reference or method Input data required Gene
expression

Linear model Number of genes
with predictions
(per cell line)

FDR Species Publically available

Nearest gene None Not considered Nearest gene NA ~40% to 73% Any NA

Nearest expressed gene Gene expression Considered Nearest expressed gene NA ~53% to 77% Any NA

Ernst et al. [21] H3K4me1, H3K4me2,
H3K27ac, RNA-seq

Considered Distance based (125 kb) NA Not determined Human No

Thurman et al. [66] DNase I hypersensitivity Not considered Distance based (500 kb) NA Not determined Human No

Sheffield et al. [70] DNase I hypersensitivity
and RNA-seq

Considered 100 kb NA Not determined Human Predicted interactions: [http://dnase.genome.duke.edu/]

Shen et al. [67] H3K4me1, H3K27ac, RNA
Pol II

Not considered Topological domain
based

5,000 to 8,000 Not determined Mouse No

Andersson et al. [16] CAGE Considered 500 kb NA Not determined Human No

PreSTIGE [7] H3K4me1 Considered Distance (100 kb)
and CTCF based

3,000 to 5,000 ~13% to 23% Human Predicted interactions: http://genetics.case.edu/prestige
Method application: http://prestige.case.edu

PreSTIGEouse [68] H3K4me1 Considered Distance based (100 kb) 3,000 to 5,000 Not determined Mouse Predicted interactions: http://genetics.case.edu/prestige
Method application: http://prestige.case.edu

IM-PET [69] H3K4me1, H3K27ac,
H3K4me3 and RNA-seq*

Considered Distance (2 Mb) 7,000 to 10,000 ~1% Human Method application: http://www.healthcare.uiowa.edu/
labs/tan/IM-PET.html

*Input data utilized in publication, other input options exist. CAGE, cap analysis of gene expression; CTCF, CCCTC-binding factor (zinc finger protein demonstrated to function as an insulator protein); FDR, false discovery rate;

Mb, megabases; NA, not applicable; RNA-seq, RNA sequencing.
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between SNPs and genes. Fourth, the effects on gene ex-

pression must be robust in order to be identified over the

confounding effects of the genetic background. This poses

a challenge for detecting functional variants that have

modest effects, as has been proposed for most enhancer

variants [7,33,73,74]. Fifth, eQTL analyses rarely consider

the combinatorial effects of multiple SNPs at a given

locus. Last, because eQTL studies are typically performed

on healthy individuals, the impact of the SNP on the

quantitative trait may differ in response to disease-specific

stimuli. This was observed in a survey of enhancer SNPs

associated with prostate cancer. Here, the effect of a SNP

on enhancer function was only observed in the presence

of the androgen dihydrotestosterone [6]. Additionally, a

study by Harismendy and co-workers demonstrated that

the chromatin interaction between an enhancer locus as-

sociated with coronary artery disease and the gene target

IFNA21 was significantly remodeled by treatment with

interferon-γ [31].

Transcriptional effects of enhancer variants
Studies that delineate the impact of disease-associated en-

hancer variants (Table 2) reveal the relatively modest effect

of enhancer variants on gene expression. The effect of en-

hancer variants has also been evaluated with massively

parallel reporter assays in which the impact of mutations

in enhancer sequences is determined through heterologous

barcoding and high-throughput sequencing (reviewed in

[75]). These high-throughput assays show that most vari-

ants that impact transcription induce 1.3- to 2-fold dif-

ferences in target gene expression [73,74]. These findings

align with the notion that enhancers modulate or fine-tune

gene expression, analogous to a rheostat. Despite their

modest transcriptional effects, enhancer variants can have

large effects on downstream phenotypes. As an example,

we highlight a SNP (rs12821256) associated with blond

hair color in Europeans. This SNP lies in an enhancer that

drives KITLG expression in developing hair follicles [33].

The blond-hair-associated SNP was shown to reduce en-

hancer activity by only 22% in vitro. Nonetheless, when the

blond hair and ancestral alleles were evaluated in trans-

genic mice, the reduction in enhancer activity associated

with the blond hair allele was sufficient to yield mice of

visibly lighter coat color than mice generated with the an-

cestral allele [33]. Whether or not the blond-hair-associated

SNP represents a special instance of a more general mech-

anism in which enhancer variants with modest functional

effects have robust phenotypic effects remains to be seen.

Implications for disease and medicine
The strategies discussed above (summarized in Figure 3)

have been utilized to interpret the transcriptional effects

of enhancer variants associated with several traits and

common diseases. The continued application of these and

other emerging strategies will have important implications

for disease and medicine. These studies should not only

help to reveal the gene targets of noncoding risk variants,

but also provide information on whether these risk vari-

ants increase or decrease expression of the target gene.

This information will be essential for identifying appropri-

ate therapeutic targets and determining whether inhibitors

or activators of these targets would be most effective.

Knowledge of gene targets may also reveal pathways that

are commonly altered among affected individuals, which

could also guide treatment strategies and rational drug

design.

Conclusions and future challenges
We have reviewed approaches for the identification and

interpretation of common-disease-associated variants that

impact enhancer function, citing examples in which these

methods have been successfully implemented (Figure 3,

Table 2). We highlight three main conclusions. First, cell-

type-specific enhancer variants are highly prevalent among

loci associated with the majority of common diseases iden-

tified through GWASs. Second, GWAS-identified enhan-

cer variants are disproportionally enriched in enhancer

clusters, which control genes with highly specialized cell-

type-specific functions. Third, these enhancer variants can

have modest but significant effects on target gene expres-

sion, which can have robust effects on phenotype. Thus,

interpreting the functional effects of enhancer variants

requires rational experiment design that takes these char-

acteristics into account. Furthermore, although current

methods have enabled the thorough characterization of

enhancer variants at some GWAS loci, high-throughput

methods are needed, given the huge number of disease-

associated enhancer variants. Here, we discuss additional

lessons learned from these studies, and note five remaining

challenges (Figure 4).

First, chromatin landscapes vary considerably between

cell types and are highly dynamic, capable of altering in re-

sponse to internal and external environmental stimuli.

Given the spacial, temporal, environmental and epigenetic

complexity of gene regulation, it is essential that the ap-

propriate human cell type or model is utilized when trying

to draw inferences between risk alleles and enhancer ele-

ments. Integrating risk variants with the chromatin land-

scapes of cell types or conditions that are insufficient

models for a disorder will likely give misleading results.

This is highlighted by eQTL studies. Even in comparisons

of relatively similar cell types (monocytes and T cells [72]

or B cells and monocytes [71]), noncoding variants that

impact expression in one cell type often had no effect in

the other cell type. Additionally, in a study of cis-regula-

tion in colon cancer, the impact of some SNPs on expres-

sion was seen amongst colon cancer samples, but not

observed in normal colon from the same patients, implying
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Table 2 Functional enhancer studies of GWAS risk loci

Disease/trait Reference Lead SNP Proposed
functional
SNP

Gene target How gene target
was selected

Cell type Data supporting SNP enhancer function

Blond hair color Guenther et al. [33] rs12821256 rs12821256 KITLG Phenotype in mouse
model

Developing hair follicles,
HaCaT karatinocyte cell
line

Allele-specific luciferase activity, allele-specific ChIP, effect
of SNP on mouse phenotype

Breast cancer Cowper-Sal lari
et al. [38]

rs4784227 rs4784227 TOX3 3C MCF7 Binding motif disruption, allele-specific ChIP, allele-specific
3C, allele-specific expression, eQTL

Colorectal
cancer

Pomerantz et al. [34] rs6983267 rs6983267 c-MYC 3C Colo205 and LS174T Allele-specific luciferase activity, allele-specific ChIP

Colorectal
cancer

Wright et al. [39] rs6983267 rs6983267 c-MYC 3C DLD1 and HCT116 Allele-specific ChIP, allele-specific expression

Colorectal
cancer

Tuupanen et al. [36] rs67491583 rs67491583 c-MYC Nearest gene HeLa Binding motif disruption, allele-specific ChIP, allele-specific
luciferase activity

Prostate cancer Wasserman et al. [35] rs6983267 rs6983267 c-MYC Nearest gene Prostate tissue (mouse) Allele-specific activity, LacZ enhancer assay (mouse)

Coronary artery
disease

Harismendy et al. [31] rs10757278 rs10811656/
rs10757278

CDKN2B,
CDKN2BAS,
IFNA21, MTAP

3C and FISH (IFNA21) HUVEC Binding motif disruption, allele-specific ChIP

Coronary heart
disease

Miller et al. [29] rs12190287 rs12190287 TCF21 Nearest gene, eQTL
gene

HCASMC Binding motif disruption, allele-specific luciferase activity,
EMSA, allele-specific ChIP and allele-specific expression

Fetal hemoglobin
level

Bauer et al. [28] rs1427407,
rs7606173

rs1427407,
rs7606173

BCL11A 3C Primary human
erythroblasts

Binding motif disruption, allele-specific ChIP, allele-specific
expression, LacZ enhancer assay (mouse), deletion by TALEN

Multiple
sclerosis

Alcina et al. [27] rs658115 rs10877013 FAM119B, AVIL,
TSFM, TSPAN31

eQTL LCLs and monocytes Allele-specific luciferase activity, eQTL

Obesity Smemo et al. [30] rs9930506 NA IRX3 4C-seq, 3C, ChIA-PET,
Hi-C

Whole mouse embryo
and adult mouse brain

eQTL mapping

Prostate cancer Hazelett et al. [6] rs5945619 rs4907792 NUDT1 Nearest gene, eQTL
gene

LNCaP Allele-specific luciferase activity, eQTL

Prostate cancer Hazelett et al. [6] rs10486567 rs10486567 JAZF1 Nearest gene LNCaP Allele-specific luciferase activity, binding motif disruption

QT interval Kapoor et al. [32] rs12143842 rs7539120 NOS1AP eQTL gene, genetic
association

Cardiac tissues Allele-specific luciferase activity, eQTL, enhancer assay
(zebrafish embryos)

Restless leg
syndrome

Spieler et al. [37] rs12469063 rs13469063 MEIS1 PreSTIGE prediction
method, ChIA-PET,
Hi-C

Telencephalon Allele-specific expression of reporter gene in zebrafish, Allele-
specific LacZ (mouse), EMSA, binding motif disruption, effect
of decreased gene expression on phenotype

Systemic lupus
erythematosus

Wang et al. [40] rs2230926 rs148314165,
rs200820567

TNFAIP3 3C LCLs EMSA, allele-specific luciferase activity, allele-specific 3C

Type 2 diabetes Gaulton et al. [76] rs7903146 rs7903146 TCF7L2 Nearest gene Pancreatic islet cells Allele-specific luciferase activity, allele-specific FAIRE

3C, chromosome conformation capture; 4C-seq, circular chromosome conformation capture followed by sequencing; ChIA-PET, chromatin interaction analysis by paired-end tag sequencing; ChIP, chromatin immunoprecipitation;

EMSA, electrophoretic mobility shift assay; eQTL, expression quantitative trait loci; FAIRE, formaldehyde-assisted isolation of regulatory elements; FISH, fluorescence in situ hybridization; LCLs, lymphoblastoid cell lines; NA, not

applicable; SNP, single nucleotide polymorphism.
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that the impact of the variant is dependent on disease-

specific environmental factors [80]. The effect of non-

coding variants on expression was also observed to be

strongly context dependent in a study of monocytes under

diverse types and durations of stimuli. Fairfax and col-

leagues demonstrated that 43% of identified eQTLs were

associated with an effect on expression only after treat-

ment with immune response stimuli lipopolysaccharide or

interferon-γ [81].

Second, there remains a gap between the prediction

and functional validation of putative enhancer elements.

Thus, if a risk SNP is localized to a putative enhancer

Reporter assay

Experimental approaches Computational predictions

CRISPR/Cas9 Reporter Allele-specific binding

eQTL

Chromatin looping

Minimal 

promoter

Luciferase

Region of 

interest

Massively parallel reporter assay

Locus that 

contains SNP

functions as

an enhancer

Association
of enhancers 

with gene 

targets

Investigating 

the impact of 

enhancer 

SNPs

Fluorescence

in situ 

hybridization

Chromosome 

conformation 

capture

DNA templateX
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Figure 3 Interpreting enhancer variants. Various strategies for interpreting enhancer variants. (Top) Single- or high-throughput reporter assays can
be used to test whether a putative enhancer is functional. (Middle) Gene targets of enhancers can be identified through experimental approaches such
as fluorescence in situ hybridization and chromosome conformation capture assays, or through computational methods. (Bottom) The impact of a
single nucleotide polymorphism (SNP) on enhancer function can be evaluated through CRISPR/Cas9-based DNA editing approaches, followed by
measures of enhancer activity or target gene expression. The effect of a risk SNP on transcriptional activity and chromatin architecture can be evaluated
through reporter assays and chromosome-conformation-capture-based experiments. Effects of the risk SNP on allele-specific expression and
transcription factor binding can also be studied through quantitative ChIP and expression studies. Expression quantitative trait loci (eQTL) analysis can
be performed to determine the effect of risk SNPs on gene expression levels.
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element defined through chromatin profiling, it is essen-

tial that the putative enhancer is functionally validated.

In vitro and in vivo reporter assays can help in this re-

gard. However, these assays are relatively low throughput

and usually involve the use of a general promoter such

as SV40 rather than the enhancer’s endogenous pro-

moter, which complicates the interpretation of negative

results. Additionally, most genes are regulated by more

than one enhancer, yet typically only one enhancer is

tested in a reporter assay.

Third, at a given GWAS locus, the SNP with the most

significant association (that is, the lowest P value) with

the disease is usually reported as the ‘lead’ SNP. Except

in rare instances, such as the SNP rs6983267, which in-

fluences the MYC enhancer and confers risk for multiple

cancers [34,35], the SNP with the lowest P value is not

necessarily causal. Any SNP in LD with the lead SNP

may be causal, and there may be dozens to thousands of

candidates. Fine mapping studies can help narrow the

locus and reduce the number of candidates. Additionally,

as discussed above, identifying SNPs that co-localize

with enhancer-chromatin features or TFBSs in an appro-

priate human cell type can help prioritize candidate

functional variants [30,38]. Indeed, Claussnitzer and

colleagues developed a method, phylogenetic module

complexity analysis (PMCA), which utilizes conserved

co-occurring TFBS patterns to identify functional regu-

latory variants [82]. However, hundreds of candidate

SNPs may remain even after prioritization, especially

when the locus harbors an enhancer cluster. This was

20
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Figure 4 Future challenges for the functional evaluation of enhancer variants. The challenges described in the conclusion section are
depicted in this hypothetical enhancer locus. Chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-seq)
tracks from ENCODE [77] and linkage disequilibrium (LD) plots from HapMap [78,79] are displayed via the UCSC genome browser. Number 1
highlights the challenge of utilizing the proper cell type to assess enhancer activity. Enhancers at this locus are only active in one of the three cell
lines depicted. Challenge number 2 is the discrepancy between predicted and validated enhancer function. Shown is a putative enhancer
defined by chromatin state that requires experimental validation of its enhancer activity. Challenge number 3 illustrates the large number of
single nucleotide polymorphisms (SNPs) in LD that lie in putative enhancer elements, any of which could be functional. Number 4 is the
challenge of determining the gene impacted by the enhancer variant. Here, the target of the enhancers at this locus could be IL22RA2, IFNGR1, or
a gene distal to this locus. Number 5 is the complexity of enhancer gene regulation. Here, multiple enhancers each with several associated
variants are distributed across the locus. One or a combination of several of the enhancer variants could influence target gene expression. chr,
chromosome; GWAS, genome-wide association study; kb, kilobases.
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illustrated in a recent survey of breast cancer risk loci,

which showed that 921 SNPs co-localize with putative en-

hancers in human mammary epithelial cells across 71 risk

loci [8]. Similarly, 663 enhancer SNPs were identified for

77 prostate risk loci [6]. Furthermore, while some enhancer

variants influence transcription factor binding [6,28,29,34],

SNPs do not necessarily have to reside within a TFBS

to influence transcription factor binding or enhancer

activity [33,73,74,83]. It is clear that massively parallel

reporter assays (discussed above) will be necessary to

help distinguish functional variants from those that are

passengers.

Fourth, in order to determine the phenotypic effect of

an enhancer variant, it is essential that an enhancer vari-

ant is demonstrated to influence the levels of its target

transcript. The target may be a gene, or could alterna-

tively be a noncoding RNA. However, enhancers fre-

quently regulate multiple genes. Even if the levels of a

given transcript correlate with the genotype of an enhan-

cer risk variant, it does not necessarily mean that the

correlated gene is causal. Functional assays, and ultim-

ately in vivo models, are needed to verify that the gene is

directly involved in the development of the disease.

CRISPR/Cas9 technology would enable such studies by

altering single SNPs in the genome of a model organism

while maintaining the native genomic context of the

variant. Alternatively, single-site integration of the risk

or non-risk alleles into a model organism, as utilized for

the enhancer variant associated with blond hair color

[33], could be employed. Although CRISPR/Cas9 can be

utilized to demonstrate the functional impact of a given

variant, the complex phenotypes of many diseases are

not easily modeled in vitro and thus the determination

of causality will often not be trivial.

Lastly, genes are frequently regulated by multiple enhan-

cer elements or clusters of enhancer elements. Thus, the

independent effect of a single enhancer or variant may be

below the sensitivity threshold of standard assays. This, in

addition to the demonstration that multiple enhancer

SNPs can act in combination to impact gene expression,

suggests that epistatic effects between noncoding variants

may play a particularly important role for enhancer loci,

especially when enhancer variants of the same gene are

inherited independently. The impact of the interaction be-

tween SNPs on transcription and ultimately on clinical

risk for disease remains to be seen.

We have discussed the strategies for, and challenges as-

sociated with, the interpretation of noncoding putative en-

hancer SNPs as applied to the study of common variants

identified by GWAS studies of common diseases and

traits. As whole-genome sequencing becomes more preva-

lent, these same strategies will be necessary to elucidate

the impact of rare noncoding mutations and to distinguish

damaging from innocuous enhancer alterations.
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