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Abstract

Motivation: Multiple high-throughput approaches have recently been developed and allowed the

discovery of enhancers on a genome scale in a single experiment. However, the datasets gener-

ated from these approaches are not fully utilized by the research community due to technical chal-

lenges such as lack of consensus enhancer annotation and integrative analytic tools.

Results: We developed an interactive database, EnhancerAtlas, which contains an atlas of

2,534,123 enhancers for 105 cell/tissue types. A consensus enhancer annotation was obtained for

each cell by summation of independent experimental datasets with the relative weights derived

from a cross-validation approach. Moreover, EnhancerAtlas provides a set of useful analytic tools

that allow users to query and compare enhancers in a particular genomic region or associated with

a gene of interest, and assign enhancers and their target genes from a custom dataset.

Availability and Implementation: The database with analytic tools is available at http://www.enhan

ceratlas.org/.

Contact: jiang.qian@jhmi.edu or tank1@email.chop.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Enhancers are distal regulatory DNA elements that regulate tran-

scription levels of target genes. They play an important role in devel-

opment and diseases (Ghavi-Helm et al., 2014; Hnisz et al., 2013).

Unlike promoters, enhancers often regulate expression of their target

genes independent of their relative location, distance or even the

gene orientation (Ong and Corces, 2011). Furthermore, enhancers

are often tissue- or cell type-specific (Heinz et al., 2015; Pennacchio

et al., 2013). Due to the relative location and tissue specificity, it is

challenging to identify enhancers.

Recently, many technologies were developed to map the enhan-

cers on a genome scale. (i) Clusters of transcription factor (TF)
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binding sites often represent regulatory elements (Spitz and Furlong,

2012), and chromatin immunoprecipitation followed by sequencing

(ChIP-seq) or ChIP-chip can be used to identify the binding sites of

various TFs or other regulatory factors; (ii) A few enhancer-specific

factors have been used to identify enhancers. For example, EP300, a

histone acetyltransferase, activates transcription via acetylating the

histones. Therefore, the binding sites of EP300 were often used to

predict enhancers (Visel et al., 2009); (iii) It was reported that RNA

polymerase II (RNAPII) binds to thousands of enhancers (Kim et al.,

2010). Therefore, binding sites of POLR2A, the largest subunit of

RNAPII, are considered to be the active regulatory regions; (iv)

DNase I hypersensitivity sites (DHS) represent the open chromatin

regions, many of which cover the enhancers (Thurman et al., 2012);

(v) Formaldehyde Assisted Isolation of Regulatory Elements

(FAIRE) coupled with sequencing is another method to identify

large numbers of active regulatory elements including enhancers

(Gaulton et al., 2010); (vi) Some histone modification patterns re-

flect different chromatin states. For example, the combination of

H3K4me1 and H3K27ac is a widely used mark for enhancers

(Cotney et al., 2012; Heintzman et al., 2009); (vii) The DNA se-

quences of enhancers could also be transcribed and these transcribed

enhancer RNAs (eRNAs) are an indicator of active enhancers

(Andersson et al., 2014); (viii) Approaches to determine the three-

dimensional conformation of chromosomes (e.g. 5C and ChIA-PET,

Capture-C) are able to provide enhancer-promoter interactions

(Fullwood et al., 2009; Jin et al., 2013).

These above approaches have been demonstrated as powerful

tools to detect enhancers on a genome-wide scale, and they have

been applied to many cell types or tissues. However, the datasets

generated by these approaches are not fully utilized by the research

community due to several technical challenges. First, these datasets

are often disseminated in different databases. A centralized data por-

tal is still lacking that is specially designed for enhancer analysis.

Second, enhancer annotations based on different technologies

showed large discrepancies. A consensus of enhancers will provide

more reliable annotation of enhancers. Third, although several gen-

ome annotation databases (e.g. UCSC Genome Browser) are cur-

rently available to visualize various datasets, they do not provide

useful tools for enhancer analysis, such as comparing enhancers

across different cell types, generating network views for enhancer-

target interactions, and predict enhancers for a custom dataset.

The goal of our work is of two-fold. First, we combined a large

number of available datasets in each cell/tissue type to produce a

‘consensus’ of enhancers that represent the most reliable prediction

of enhancers. For this purpose, we develop an unsupervised learning

approach to evaluate the quality of each dataset in one cell type and

generate a consensus for more reliable enhancer identification.

Using this method, we produced enhancer predictions for 76 cell

lines and 29 tissues. These enhancer predictions have high quality

compared with single dataset. Second, we constructed a user-

friendly, interactive online database, EnhancerAtlas.org, to facilitate

the analysis of enhancers for different cell types. A series of analytic

tools were developed to extract, compare and visualize the enhan-

cers in different cell types.

2 Materials and methods

2.1 Data sources
We used a total of eight types of experimental approaches (i.e.

tracks) to identify enhancers. They include DHS, FAIRE, eRNA,

P300 binding sites, POL2 binding sites, histone modifications, TF

binding sites and CHIA-PET. These tracks represent distinct experi-

mental approaches to detect enhancers. Note that some tracks could

contain multiple datasets. For example, replicates sometimes exist

for the same experiments that were performed by different labs. The

‘TF-Binding’ track includes all ChIP-Seq datasets for different TFs in

a given cell type. The ‘histone’ track includes the datasets for

H3K4me1 and H3K27ac. To make a reliable enhancer annotation,

we only used cell lines and tissues with at least three tracks. In total,

76 cell lines and 29 tissues were included. We processed and inte-

grated 3785 high throughput datasets (Table 1). All sequencing data

were mapped to the hg19 genome assembly. Since some approaches

(e.g. DHS) detect all active regulatory regions, promoter and exon

regions were removed in our analysis. Here promoters were defined

as the region 5 kb upstream of the transcription start sites based on a

location analysis of known promoters (Supplementary Figure S1). In

addition, matched RNA-seq data were used for predicting enhancer

target genes, which were collected from UCSC genome browser,

GEO database and Epigenome Roadmap data portal. In total, 48

cell lines and 22 tissues have available RNA-seq data.

2.2 Track normalization
There are a few steps to normalize the datasets. First, to make data-

sets comparable, we take fold enrichment of each region as the sig-

nal intensity and normalize it in each dataset. For each genomic

window of 10 bp, the normalization for each data set is defined as:

s0i ¼
si

Pn
1

ðsiliÞ=
Pn
1

li

Where si and li are the score and length of peak i (1 � i � n),

respectively. Second, many tracks, including DHS, EP300, POL2,

FAIRE, may have two or more replicates. We summed the signal

intensities in normalized files into one file using bedtools (Quinlan

and Hall, 2010) and normalized the merged file again. Furthermore,

the ‘TF-binding’ track may contain many ChIP-seq datasets from

different TFs, and ‘histone modification’ track contains two differ-

ent modifications (H3K4me1 and H3K27ac). We also merged dif-

ferent TFs or modifications into one track.

2.3 Generation of consensus tracks
A basic assumption of our approach is that if two datasets are of

good quality, they should have a good correlation of the predicted

enhancers. On the other hand, if one dataset is of low quality, it will

have low correlation with other datasets. By comparing the correl-

ations between different datasets, we obtain the relative quality for

each dataset. For two given tracks A1 and A2, the voting score of A2

on A1 was defined as the Pearson Correlation Coefficient (PCC) be-

tween A1 and A2:

rA1A2
¼

Pn
1ðScoreA1

ðiÞ � ScoreA1
ÞðScoreA2

ðiÞ � ScoreA2
ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðScoreA1
ðiÞ � ScoreA1

Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðScoreA2
ðiÞ � ScoreA2

Þ2
q

Where ScoreA1
ðiÞ and ScoreA1

represent the score at genomic

position i and the mean of all position scores in track A1, respect-

ively. Then a PCC matrix can be obtained from a cell line or tissue

with m tracks:
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..

. ..
. ..

.
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2
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3
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Based on the matrix, the weight of track At (t 2 ½1;m�) was set

as:

wt ¼
Pm

j¼1 rAtAjPm
j¼1;k¼1 rAkAj

ðj; k 2 ½1;m�; j 6¼ t; j 6¼ kÞ

Note that the relative weights are not sensitive to the correlation

metrics we used. For example, rank-based Spearman yielded almost

identical relative weights as Pearson correlation (Supplementary

Table 1. Summary of the numbers for collected tracks, datasets and enhancers in 105 cell/tissues

Sample Track Dataset Enhancer Sample Track Dataset Enhancer

A549 7 87 49760 Heart 4 8 2134

Astrocyte 5 14 44489 HEK293 4 61 13167

BJ 3 16 13275 HEK293T 5 62 13426

Bronchia_Epithelial 4 6 8776 Hela 3 47 13557

Caco-2 3 11 22358 Hela-S3 6 226 56247

CD133þ 3 16 1812 HepG2 7 207 50160

CD14þ 4 37 45973 HL-60 4 15 9867

CD19þ 3 16 30240 HMEC 4 25 21659

CD20þ 3 8 16914 HSMM 3 23 60216

CD34þ 3 51 47306 HUES64 3 117 22368

CD36þ 4 9 836 HUVEC 5 40 63977

CD4þ 6 50 14465 IMR90 5 87 85732

CD8þ 3 17 35882 Jurkat 4 16 8487

CMK 3 7 4731 K562 8 282 43148

CUTLL1 3 19 18569 Kasumi-1 4 15 769

ECC-1 4 52 16612 Left_Ventricle 3 4 36128

Esophagus 3 4 36217 liver 4 6 2329

Fetal_Brain 3 9 37655 LNCaP 5 87 32404

Fetal_heart 5 8 2693 LoVo 3 416 15336

Fetal_kidney 3 5 8087 LS174T 4 15 3404

Fetal_lung 3 5 30805 lung 3 4 45399

Fetal_Muscle_Leg 3 20 39372 Macrophage 3 8 34490

Fetal_Placenta 3 6 35878 MCF10A 3 37 2528

Fetal_Small_lntestine 3 6 39113 MCF-7 8 193 23858

Fetal_Spinal_Cord 3 5 7951 ME-1 3 17 11334

Fetal_Stomach 3 6 36485 MM1S 3 25 2414

Fetal_Thymus 3 6 28757 myotube 3 10 59800

Fibroblast_foreskin 3 16 40449 NB4 5 29 24982

Foreskin_Keratinocyte 3 24 42297 NH-A 3 6 12609

GM10847 3 19 13935 NHDF 3 6 15730

GM12878 7 165 49672 NHEK 6 24 40361

GM12891 5 40 41435 NHLF 3 14 34281

GM12892 5 40 34086 NT2-D1 3 12 3875

GM18486 3 9 16988 OCI-Ly1 4 26 12850

GM18505 4 22 17577 Osteoblast 5 6 23195

GM18507 4 9 5987 Ovary 3 6 14836

GM18508 3 6 5214 P493-6 3 24 12555

GM18516 3 6 5531 PANC-1 4 11 5615

GM18522 3 6 7254 Pancreas 4 7 3876

GM18526 3 18 7078 Pancreatic_Islet 3 4 5723

GM18951 3 20 8895 Raji 3 9 3182

GM19099 4 19 9278 Skeletal_Muscle 3 6 24396

GM19141 3 6 5444 SK-N-MC 4 10 4727

GM19193 4 20 15604 SK-N-SH 5 59 38571

GM19238 3 18 30016 Small_Intestine 3 7 29562

GM19239 5 19 37581 Spleen 3 4 39744

GM19240 3 12 21087 T47D 3 19 32456

H1 6 216 58821 th1 3 19 26137

H128 3 6 11982 Thymus 3 4 31232

H2171 3 14 3828 U20S 3 30 84127

H54 4 8 4711 U87 3 15 23820

H9 4 33 69481 VCaP 3 42 7683

HCT116 5 66 4418
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Figure S2). To combine all tracks, we defined the score of combined

track at genomic position i as:

Scorei ¼
Xm
t¼1

wtScoreAt
ðiÞ

By doing so, the score at each genomic positon in the consensus

track came from reasonable weight assignments of all tracks.

2.4 Validation of enhancer predictions using the VISTA

enhancer database
To evaluate our consensus track using experimentally validated

enhancer documented in the VISTA database (Visel et al.,

2007), we first grouped enhancers according to their tissue

types. We selected two tissues (i.e. brain and heart) with the

largest number of enhancers. The brain and heart have 809 and

96 validated enhancers, respectively. Our evaluation is at base

pair level. The Sensitivity Sn and Specificity Sp were defined as

below:

Sn ¼
TP

TPþ FN
and Sp ¼

TN

FPþ TN

2.5 Enhancer-target gene prediction
We used a recent developed algorithm Integrated Method for

Predicting Enhancer Targets (IM-PET) to predict enhancer targets

(He et al., 2014). IM-PET predicts enhancer-promoter by inte-

grating four features using a Random Forest classifier. Features

are derived from transcriptomic, epigenomic and genome se-

quence data, including enhancer and promoter activity correl-

ation, TF and promoter activity correlation, enhancer and

promoter sequence co-evolution and enhancer-to-promoter dis-

tance. We showed that IM-PET achieved significant improvement

over other state-of-the-art methods. Further, based on our valid-

ation experiment using 3C-qPCR we showed that IM-PET has a

comparable accuracy to that of the experimental 5C technology.

Here, the input data for IM-PET included the genomic positions

of predicted enhancers, RNA-Seq data and H3K4me1, H3K4me3,

and H3K27Ac ChIP-Seq data for 48 cell lines and 22 tissues.

Enhancer targets were predicted using a false discovery rate cutoff

of 0.01.

2.6 Implementation of the tools
The visualization tools in EnhancerAtlas were implemented by using

html5 canvas element and PHP. The online service of EnhancerAtlas

was implemented with Linux-Apache-MySQL-PHP-HTML-

JavaScript-Perl and could be run on most PCs (Windows, Mac OSX

or Linux). The <canvas> element of HTML was employed to draw

the genomic graph and display the datasets for different approaches

or cell/tissue types. In the graphic display, a jQuery UI slider widget

with two handles was used to zoom in or out on the genome region.

We used the plug-in, cytoscape.js, for analysis and visualization of

enhancer-gene network in a given cell/tissue type. Links in the

graphic presentation or tables were implemented by JavaScript or

php functions.

3 Results

3.1 Selection of available datasets
Many approaches have been developed to map enhancers in cells.

Although enhancers identified by different approaches have an

overall agreement on the enhancer annotation, they showed dis-

crepancies in many genomic regions (Fig. 1A). A consensus of en-

hancers based on multiple experimental evidences will provide a

more reliable enhancer annotation. In this work, we collected

eight types of genome-wide experimental datasets (i.e. tracks) to

identify the enhancers (Fig. 1B). To obtain reliable enhancer an-

notation, we only focused on the cell/tissue types with at least

three independent experimental tracks for enhancer identification

(Fig. 1C). A total of 105 cell/tissue types were collected for the

enhancer annotation in the study. Note that some tracks could

contain multiple datasets (e.g. replicates, multiple histone modifi-

cations for ‘Histone’ track or multiple TF binding datasets for

‘TF-Binding’ track). On the other hand, we kept the tracks for

EP300 and POLR2A binding sites separated from the ‘TF-binding’

track, because these two proteins are important indicators for

enhancers.

We manually collected and integrated 3785 high throughput ex-

perimental datasets (Table 1) mainly from six resources including

UCSC genome browser (Kent et al., 2002), NCBI GEO (Barrett

et al., 2013), Cistrome database (Qin et al., 2012), ENCODE pro-

ject data portal (Consortium, 2012), Epigenome Roadmap data por-

tal (Roadmap Epigenomics et al., 2015) and eRNA (Andersson

et al., 2014). These datasets will be used to generate consensus en-

hancers for 105 cell/tissue types.

3.2 Unsupervised learning approach for enhancer

identification
To build a consensus of enhancer annotations from multiple data-

sets, one obvious option is supervised learning approach, which re-

quires a set of validated enhancers as a gold standard. By comparing

each dataset to the gold standard, we are able to assess the quality

of each dataset and then assign the relative weight to each dataset.

An ideal gold standard would be a set of enhancers determined by

an in vivo activity-based approach. The VISTA database contains

1746 enhancers identified using comparative genome analysis and

validated using mouse transgenic reporter assay (Visel et al., 2007).

However, since enhancers are cell type specific, a gold standard is

needed for each cell type. In that sense, the dataset in the VISTA is

not large enough to serve as a gold standard for most of the cell

types.

To overcome this challenge, we employed an unsupervised

learning approach to derive the consensus of enhancers from mul-

tiple experimental evidences. Our approach evaluates the quality

of each dataset by cross-validation. The underlying assumption of

our approach is that if two datasets are of good quality, they

should have a good correlation among the predicted enhancers. On

the other hand, if one dataset is of low quality, it will have low cor-

relations with other datasets. By comparing the correlations

between different datasets, we will obtain the relative quality for

each dataset.

Here, we used K562 cell line as an example to elucidate our ap-

proach (Fig. 2). The K562 has eight tracks available for enhancer an-

notation, including ‘DHS’, ‘FAIRE’, ‘EP300’, ‘POL2’, ‘Histone’,

‘TF-Binding’, ‘CHIA-PET’ and ‘eRNA’. Among them, 95 TF ChIP-

seq datasets in this cell type were available and used to obtain the

‘TF-Binding’ track. First, we normalized the signal intensity in each

track to make the tracks comparable (see Section 2 for details).

Next, we calculated pairwise Pearson correlation coefficient (PCC)

of enhancer signals among the eight tracks. Some tracks have very

similar enhancer signals (e.g. locations of EP300 and DHS, with a

PCC of 0.490), while other tracks have relatively low similarity (e.g.
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signals between ChIA-PET and eRNA, with a PCC of 0.019). Next,

we summed the correlation coefficients of each track with the other

seven tracks. The sum of correlation coefficients for the eight tracks

is normalized to obtain the relative weights (Fig. 2A). Finally, we ob-

tained the consensus track based on the weighted sum of the signals

from individual tracks (Fig. 2B).

3.3 Assessment of relative weights for different tracks
As illustrated by the example of K562, we can see that some tracks

such as DHS have relatively high weights, while other tracks such

as eRNA have relatively low weights. Note that the weights ob-

tained for one particular cell type do not necessarily reflect the

quality of the experimental platform in general, because the same

experimental approach might be used to generate datasets with dif-

ferent qualities by different laboratories. We sought to assess the

quality of each dataset, rather than an experimental approach.

Therefore, the relative weights derived by our approach are spe-

cific to each cell type (Fig. 3). For instance, the relative weight for

the track of ‘TF-Binding’ varies significantly among the cell/tissue

types. In MCF-7 cell line the relative weight of ‘TF-Binding’ is

0.252, while the weight for the same track becomes 0.176 in Hela-

S3 cell line. Similarly, while eRNA has a small weight (0.03) in

K562, it has a relatively high weights in other cell types. For ex-

ample, the weights for eRNA in adult heart and bronchia epithelial

are 0.40 and 0.20, respectively. The dynamic changes of each track

among the cell/tissue types reflect the data quality of the specific

dataset and the total number of tracks in the cell/tissue type of

interest (Fig. 3).

To confirm that the relative weight indeed reflects the data qual-

ity, we performed a simulation on TF binding track in K562 (Fig. 4).

Total 95 TF ChIP-seq datasets were used for ‘TF-Binding’ track in

K562. We assumed that the quality of track increases with more TF

ChIP-seq datasets. While keeping the datasets of other tracks un-

changed, we randomly removed certain numbers of TFs in the TF

binding track and calculated the relative weight for the TF binding

track. We found that the average relative weight decreased with

fewer TFs included in the track, suggesting that relative weight of a

track indeed correlated with the quality of the track (Fig. 4A).

Interestingly, we found that both repressors and activators contrib-

uted to the enhancer prediction. If we separated the TFs into activa-

tors and repressors based on their known function, we obtained 33

activators and 37 repressors with ChIP-seq data in K562. We found

that the weights for both sets increased with increasing number of

TFs, although the repressors’ contribution was less significant than

activators (Fig. 4B).

3.4 Enhancer calling based on weighted

consensus track
To determine enhancers in the consensus track, we first performed

simulation to determine the cutoff for enhancer signal intensity. For

a given cell/tissue type, we shuffled each track by generating random

starting positions within the same chromosome. Using the same rela-

tive weights determined as described above, a combined track based

on the shuffled tracks was generated and the scores of all positions

in this track were sorted. The score at the top 99.5% was selected as

the cutoff. Only the peaks in the consensus track with score higher

than the cutoff were called as enhancers.

In addition, we had three extra criteria to determine the enhan-

cers in the consensus track. (i) Peaks within 5 kb upstream of the

transcription start sites of protein coding genes were removed

Fig. 1. Enhancer annotation and datasets available for enhancer identification. (A) Consistence and discrepancies in enhancer annotation. In the region

(chr1:27,515,285-27,848,296 in K562), the enhancers supported by many tracks are highlighted by vertical bars. It is clear that many potential regions are only sup-

ported by one or a few tracks. (B) Number of cell/types that contain a certain dataset types. Some technologies were more widely used than others for enhancer

identification. (C) Number of cell/tissue types in function of number of independent tracks. Many cell/tissue types include a few tracks (e.g. 3 or 4), while a few

cell/tissue types have many tracks (e.g. 7 or 8) (Color version of this figure is available at Bioinformatics online.)
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because they are more likely to be promoters; (ii) We required that

more than half of the tracks have non-zero values to call an enhan-

cer. This filtering removed the enhancers that were only supported

by one or very few experimental evidence. In other words, this cri-

terion ensured that there were multiple independent lines of experi-

mental evidence to support the annotation of an enhancer. (iii) We

removed the enhancers smaller than 50 bp. Using the above

approaches, we identified an atlas of 2 534 123 enhancers for 105

cell/tissue types (Table 1).

3.5 Validation using VISTA enhancer database
We next evaluated the performance of our approach. We extracted

tissue-specific enhancers from the VISTA database. For example,

809 and 96 validated enhancers were found for fetal brain and

heart. The other tissue types have very small number of enhancers

available and are not suitable for the validation. The enhancers

annotated in VISTA are grouped as a positive set. The union of the

peaks in all tracks is the entire prediction space and the regions not

overlapping with the positive set are considered as the negative set.

We calculated the sensitivity and specificity of the consensus enhan-

cers in the unit of base pair. For heart enhancers, the area under the

receiver operating characteristic (AROC) for the consensus is 0.89,

while the AROC for individual tracks are all under 0.84, suggesting

that the consensus have the better enhancer annotation than any in-

dividual track. Because only binary data are available for the tracks

of ‘EP300’, ‘eRNA’ and ‘POL2’ in heart (Andersson et al., 2014;

Barrett et al., 2013), they do not have an ROC curve. They showed

quite good specificity (>0.95) relatively low sensitivity (<0.01) (Fig.

5A). Similar results were observed for brain enhancers (Fig. 5B). We

also compared the performance using voting approach in which

each track was assigned with uniform weight. The AROC for the

fetal brain and heart were 0.70 and 0.86 using uniform weight, re-

spectively, which were lower than the performance using our cross-

validation derived weights.

3.6 Enhancer-target gene relationships
We predicted the target genes of enhancers using a recent developed

algorithm, namely Integrated Method for Predicting Enhancer

Targets (IM-PET) (He et al., 2014). IM-PET predicts enhancer-

promoter by integrating four features using a Random Forest classi-

fier. Features are derived from transcriptomic, epigenomic and gen-

ome sequence data, including enhancer and promoter activity

correlation, TF and promoter activity correlation, enhancer and pro-

moter sequence co-evolution and enhancer-to-promoter distance.

The input data for enhancer-target prediction included the gene ex-

pression dataset (RNA-seq) and genomic positions of predicted en-

hancers, histone modification data for 48 cell lines and 22 tissues.

Overall, we predicted 2 488 394 enhancer-target relationships for

the 70 cell/tissue types. On average, one enhancer is associated with

2.4 target genes, and each gene is associated with 4.1 enhancers in

one cell/tissue type.

Fig. 2. Overall approach to derive the consensus enhancers. (A) Calculation of relative weight for each track. The correlation coefficients of enhancer signals

among the tracks were first calculated. The summation of the correlation coefficients for each track was normalized to obtain the relative weight. (B) Based on the

weighted sum of the signals from eight individual tracks, the consensus track was created (Color version of this figure is available at Bioinformatics online.)
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3.7 Web server
EnhancerAtlas is accessible to the research community in the web

server (http://www.enhanceratlas.org/). The database has the fol-

lowing features to facilitate the usage of enhancer annotation. First,

users are allowed to select a particular genomic region and examine

the consensus enhancers within the region. In the meantime, we also

show the experimental data (individual tracks) that support the con-

sensus. Second, users can identify the enhancers that associated with

a gene of interest. Similarly, both the consensus and all the experi-

mental tracks are shown. Third, users can compare the enhancers

across different cell/tissue types. Such comparison will allow users

to identify the enhancers that are conserved or specific to cell/tissue

types. Fourth, we allow users to upload their own custom data and

annotate the potential enhancers for their datasets.

Specifically, we designed six modules to facilitate the enhancer ana-

lysis within the EnhancerAtlas (Fig. 6): (A) Search enhancers by region.

This module would graphically display enhancers of any genomic re-

gion of interest in a selected cell/tissue type. The ‘consensus’ track sum-

marizes all information, while the individual tracks are the

experimental datasets from independent high-throughput approaches

(Fig. 6A). We also provide a link to the Epigenome browser (Zhou

et al., 2011) for an alternative display. (B) Search enhancers by gene

name. This module would graphically show the enhancers that are

associated with a given gene of interest in one special cell/tissue type.

Multiple input options are provided for the gene ID, including

Ensembl, EMBL, UCSC, PDB, RefSeq and UniProt (Fig. 6B). (C)

Compare enhancers across cell/tissues. Using this module, users could

easily compare the enhancers across multiple selected cell/tissue types

Fig. 3. Heat map of relative weights for different tracks in 105 cell/tissue types. The tracks with missing data were denoted by white
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in a given genomic region and identify possible specific or conserved

enhancers. If users click on one cell/tissue type in the display, support-

ing experimental evidence will be shown for the cell/tissue type (similar

to module (A)) (Fig. 6C); (D) Compare enhancers of genes across dif-

ferent cell/tissues. In this module, a common scheme often observed

was that one gene is associated with different clusters of enhancers in

different cell/tissue types (Fig. 6D). By comparing enhancer-gene inter-

actions across 105 cell lines, conserved enhancer-gene interactions can

be identified. When clicking on individual cell/tissue type, users can

view the detailed experimental evidence in this cell/tissue type (similar

to module (B)); (E) Generate enhancer-gene network. We provide a

Cytoscape network presentation between enhancers and associated

Fig. 4. Relative weight of ‘TF-Binding’ track with varying number of TFs in K562. (A) Simulation results of relative weight of ‘TF-Binding’ track in function of number of

TFs included. The weight of track decreased with fewer number of TF ChIP-seq datasets included in the track, suggesting that the relative weight reflects the data qual-

ity. (B) Simulation results of relative weight of repressors and activators. In total, 33 activators and 37 repressors with ChIP-seq data in K562 were classified by their

known functions. Although the repressors have smaller weight than activators, the weights for both sets increased with increasing number of TFs

Fig. 5. Evaluation of the consensus enhancer annotation. We used experimentally validated enhancers from VISTA database as the gold standard. Sn is the sensi-

tivity, which represents the percentage of enhancers from VISTA recovered by different tracks. Sp is the specificity, which represents the percentage of negative

regions in the prediction space (i.e. not in VISTA enhancers) that are correctly predicted as negative by the tracks

Fig. 6. Analytic tools in EnhancerAtlas. (A) Search enhancers by region. (B) Search enhancers by gene name. (C) Compare enhancers across cells. (D) Compare

enhancers of gene across cells. (E) Generate enhancer-gene network. (F) Predict target genes for genomic regions (Color version of this figure is available at

Bioinformatics online.)
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genes in a given genomic region and a cell type. Interactions that are

specific to the cell type or conserved in other cell types are marked

with different colors (Fig. 6E); (F) Predict target genes in defined gen-

omic regions. After a user has identified a set of potential cis-

regulatory regions (e.g. peaks identified by ChIP-seq for a TF), the user

can upload the regions in bed format and select the cell types that are

most relevant to the cell type of interest. This module will compare up-

loaded regions with the enhancers in the selected cell types and obtain

the target genes of the enhancers in these cell types. If some of the up-

loaded regions are in promoters, the module will also provide the

flanking target genes of the regulatory regions (Fig. 6F).

4 Conclusions and discussions

In this work, we developed an unsupervised learning approach to

derive the consensus enhancers by integrating a variety of experi-

mental datasets. Application of the approach to 105 cell/tissue types

yielded an atlas of 2 488 394 enhancers. These consensus enhancers

were of better quality than individual dataset. To facilitate the usage

of the enhancer annotation, we developed EnhancerAtlas, an online

database, which is specifically designed for enhancer annotation and

analysis. A set of analytic tools was provided in the database.

We noticed that some tracks have relatively small weights such as

those for eRNAs and ChIA-PET. The main reasons are that eRNA sig-

nal often marks much less enhancers than other tracks and that the reso-

lution of ChIA-PET is often very low. On the other hand, it is not

completely surprising that eRNA and ChIA-PET have a much lower cor-

relation with such tracks, since eRNA and ChIA-PET capture a com-

pletely different layer of genome regulation. eRNAs typically mark

active enhancers, while other tracks might include all types of enhancers

including active and poised enhancers. In the future, we plan to classify

enhancers so that the eRNA information will be fully appreciated.

While the IM-PET method showed great performance, its effect-

iveness has not been tested across such a diverse collection of cell

types and tissues. Since it is a supervised model, the training cell

types may have a significant effect on the performance of the model

in different cell types. We used newly reported enhancer-promoter

interactions as the gold standard to assess the quality of our IM-PET

prediction (He et al., 2014). The performance of predictions in these

new cell types (AUC 0.9) are similar the predictions we evaluated in

the original IM-PET prediction (Figure S3).

Since enhancers only occupy a tiny fraction of genome, the number

of positive is much smaller than the number of negative. The imbalanced

data will yield an inflated estimation of the performance. However, we

are focusing on the relative performance by comparing the consensus

track and each individual track. Therefore, even though the absolute

AUC values might be overestimated, the relationship of relative per-

formance should still hold. An alternative measurement would be using

precision to estimate the performance. Because only a handful enhancers

were validated and vast majority of enhancers were not tested, those un-

tested enhancers are currently included in the negative set. Therefore,

many corrected predicted enhancers are called as false positive and thus

a deflated precision will be obtained. For example, the precision for the

consensus and EP300 tracks in fetal heart are 0.00093 and 0.00013, re-

spectively, which we do not believe reflect the quality of the datasets.

A comprehensive enhancer database is always a moving target.

Therefore, the database will be updated routinely as new datasets become

available. For example, recently several high-throughput enhancer screens

(e.g. STARR-seq) (Arnold et al., 2013) have been reported. Similarly,

more hi-C based datasets are also available for different cell types. We

plan to include these new data types in the next version of the database.
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