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ABSTRACT

Research into the improvement of the Aircraft Conceptual Design process by the
application of Multidisciplinary Optimization (MDO) is presented. Aircraft conceptual
design analysis codes were incorporated into a variety of optimization methods including
Orthogonal Steepest Descent (full-factorial stepping search), Monte Carlo, a mutation-
based Evolutionary Algorithm, and three variants of the Genetic Algorithm with
numerous options. These were compared in the optimization of four notional aircraft
concepts, namely an advanced multirole export fighter, a commercial airliner, a flying-
wing UAV, and a general aviation twin of novel asymmetric configuration. To better
stress the methods, the commercial airliner design was deliberately modified for certain
case runs to reflect a very poor initial choice of design parameters including wing
loading, sweep, and aspect ratio.

MDO methods were evaluated in terms of their ability to find the optimal aircraft, as well
as total execution time, convergence history, tendencies to get caught in a local optimum,
sensitivity to the actual problem posed, and overall ease of programming and operation.
In all, more than a million parametric variations of these aircraft designs were defined
and analyzed in the course of this research.

Following this assessment of the optimization methods, they were used to study the issue
of how the computer optimization routine modifies the aircraft geometric inputs to the
analysis modules as the design is parametrically changed. Since this will ultimately drive
the final result obtained, this subject deserves serious attention. To investigate this
subject, procedures for automated redesign which are suitable for aircraft conceptual
design MDO were postulated, programmed, and evaluated as to their impact on
optimization results for the sample aircraft and on the realism of the computer-defined
“optimum” aircraft. (These are sometimes called vehicle scaling laws, but should not be
confused with aircraft sizing, also called scaling in some circles.)

This study produced several key results with application to both Aircraft Conceptual
Design and Multidisciplinary Optimization, namely:

•  MDO techniques truly can improve the weight and cost of an aircraft design concept
in the conceptual design phase. This is accomplished by a relatively small “tweaking”
of the key design variables, and with no additional downstream costs. In effect, we get

a better airplane for free.

•  For a smaller number of variables (<6-8), a deterministic searching method (here
represented by the full-factorial Orthogonal Steepest Descent) provides a slightly
better final result  with about the same number of case evaluations

•  For more variables, evolutionary/genetic methods get close to the best final result
with far-fewer case evaluations. The eight variables studied herein probably represent
the practical upper limit on deterministic searching methods with today’s computer
speeds.
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•  Of the evolutionary methods studied herein, the Breeder Pool approach (which was
devised during this research and appears to be new) seems to provide convergence in
the fewest number of case evaluations, and yields results very close to the
deterministic best result. However, all of the methods studied produced similar results
and any of them is a suitable candidate for use.

•  Hybrid methods, with a stochastic initial optimization followed by a deterministic
final “fine tuning”, proved less desirable than anticipated.

•  Not a single case was observed, in over a hundred case runs totaling over a million
parametric design evaluations, of a method returning a local rather than global
optimum. Even the modified commercial airliner, with poorly selected initial design
variables far away from the global solution, was easily “fixed” by all the MDO
methods studied.

•  The postulated set of automated redesign procedures and geometric constraints
provide a more-realistic final result, preventing attainment of an unrealistic “better”
final result. Especially useful is a new approach defined herein, Net Design Volume,
which can prevent unrealistically high design densities with relatively little setup and
computational overhead. Further work in this area is suggested, especially in the
unexplored area of automated redesign procedures for discrete variables.

Note – this on-line summary version of the full thesis has much of the

background and explanatory material removed. The code-snippets seen in

the full thesis are deleted, as are the full aircraft design descriptions and the

appendices which include the test case run matrix, analysis methods

employed, descriptions of conceptual design computer codes, and a

complete test case printout. Many text sections are also abridged or edited,

and many illustrations are removed. The author apologizes for any places

where the abridgement is incomplete or confusing, and refers the reader to

the full 160-page thesis for the complete and connected version. The

author’s copyright as detailed on the first page remains in force, and the

appearance of this material on-line does NOT imply permission to print

multiple copies for any sort of mass distribution including inclusion in class

lecture notes. For such permission contact the author.
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1 INTRODUCTION 

1.1 Overview

Aircraft designers have always tried to make their newest design the “best ever”, and
have eagerly used the latest tools at their disposal to determine the combination of design
features and characteristics that will produce that “best.” The Wright Brothers performed
parametric wind tunnel trade studies of wing aspect ratio and camber, and part of their
eventual success was due to this early form of optimization1. Subsequent generations of
aircraft designers have learned how to make “carpet plots” for two-variable
optimizations, and have laboriously extended that to a dozen or so variables by repetition
and cross-plot. When electronic computers became available, aircraft designers gladly
accepted their help in the repetitive calculations required for aircraft design optimization
(see Ashley2 for a definitive survey of aerospace optimization as of the late 1970’s).

Today improved techniques for the optimization of complicated engineering problems are
emerging from universities and research laboratories. These are being applied to the
aircraft design process as soon as the designers perceive that the methods have become
mature and practical enough to help to find a better “best”, in a reasonable amount of
time.

These new techniques usually go by the generic title “Multidisciplinary Optimization”, or
MDO. They are suitable for optimization of entire systems including aircraft vehicle
configurations. As defined by a leading MDO researcher and proponent, MDO is “A
methodology for design of complex engineering systems that are governed by mutually
interacting physical phenomena and made up of distinct interacting subsystems (suitable
for systems for which) in their design, everything influences everything else” (Sobieski3).

MDO permits optimization of a number of design variables affecting disparate functional
disciplines, using system-level measures of merit, and in the presence of multiple system
design constraints. As applied to aircraft, this should result in reduced acquisition and
operating costs and/or better system performance..

There are a wide variety of MDO methods in development, and the current debate is quite
heated as to which ones are best for various applications. Even within a general form of
MDO, different researchers prefer different combinations of specific features. It remains
difficult or impossible to draw general conclusions from the literature as to which
methods one should use for a particular application. One thing seems clear – the “best”
MDO method depends on the problem being solved.

MDO methods fall into several categories. Many of them are based on classical
mathematical optimization involving definition of governing equations of an objective
function, and calculation of derivatives to find the optimum. Other methods do not – they
rely solely on calculation of actual values of objective functions and use some form of
direct comparisons to find an optimum.
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This research concentrates exclusively on the latter types of MDO, called zero
th

-order or
non-gradient methods because they do not involve determinations of derivatives or
slopes. Such methods permit optimization using existing aircraft analysis software, and
furthermore, such methods permit extreme complexity in the aircraft analysis.

The present research focuses solely on the earliest phase of aircraft design, namely
conceptual design, in which the broadest design features are being determined such as
number and size of engines, wing area and planform shape, and fuselage length and
arrangement.

A suite of time-tested, conceptual-level analysis tools is employed in this research, and
the MDO methods employed are restricted to those zeroth-order methods that can be
implemented with virtually no additional set up beyond the input data already required
for aircraft design analysis.

Another issue of importance to the use of MDO for aircraft conceptual design
optimization is the actual selection of variables, constraints, and measures of merit. In the
literature of aircraft MDO, these key parameters are often selected with little formal
consideration, and sometimes bear little resemblance to the design parameters commonly
used in industry design offices. An attempt is made herein to address these issues,
offering a framework for selection and a suggested suite of variables, constraints, and
measures of merit for various types of aircraft.

In addition to a study of which MDO methods seem best for aircraft conceptual design,
this research addresses the manner in which the computer routine changes the
representation of the aircraft design as a result of changes in the design variables. For
example, an increase in fuselage length usually requires an increase in landing gear
length to allow the same tail-down angle for takeoff.

For MDO results to have meaning and utility in the real world of aircraft conceptual
design, procedures for automated redesign must be defined and employed that
approximate to a reasonable degree the changes that an experienced human designer
would make to an existing layout were the variables in question revised. Research
reported herein addresses this issue with a postulated set of automatic redesign
procedures.

1.2 Objectives and Unique Aspects of this Research

Objectives:

•  Development and implementation of Aircraft Conceptual Design principles and
methods in a PC-based system, incorporating vehicle analysis and system-level
multivariable optimization.

•  Development and implementation of advanced Multidisciplinary Optimization
(MDO) routines including Evolutionary, Genetic, and Monte Carlo algorithms.

•  Comparative assessment of optimization methods during aircraft conceptual design.
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•  Definition and assessment of procedures for geometrical constraints and automated
air vehicle redesign to enhance optimization realism.

•  Application of methods and optimization techniques to four notional aircraft design
concepts, and use of them for comparative studies of MDO methods and options.

Unique Aspects of this Research and Contributions to the Field:

•  Development and test of MDO routines based on the design variables, constraints,
measures of merit, and analysis methods typically used by aircraft designers in
industry.

•  Development of a tool permitting study of MDO methodologies using exactly the
same aircraft inputs and analysis methods, thus removing those potential sources of
“noise” from comparative studies.

•  Definition and validation of Net Design Volume, a measure of the packaging density
of an aircraft design layout and a geometric constraint for MDO routines that avoids
unrealistic configurations being defined by the optimizer.

•  Definition and study of Bit-String Affinity, a measure of MDO convergence that is
simple to implement and gives a useful and clear indication of convergence even for
MDO routines that do not follow a mathematically pristine convergence rate.

•  Definition and study of the Breeder Pool Genetic Algorithm, an apparently novel
variant of the basic GA method.

1.3 Summary of Major Results and Conclusions

Probably the most important conclusion of this study is that the aircraft conceptual design
process can be improved by the proper application of Multidisciplinary Optimization
methods. Such MDO techniques can reduce the weight and cost of an aircraft design
concept in the conceptual design phase by fairly minor changes to the key design
variables, and with no additional downstream costs.

In effect, we get a better airplane for free.

These methods are shown to be superior to traditional carpet plots as used in the aircraft
conceptual design process for many decades, and can become a normal and integral part
of the definition of a new aircraft design.

The realism of MDO methods is shown to improve by the use of the geometric
constraints and automated aircraft redesign procedures defined in this research and added
to the MDO routine. A new geometric constraint approach defined herein, Net Design

Volume, proved to credibly adjust the design to ensure sufficient volume for fuel and
internal equipment.

Comparisons between the different MDO methods studied found that all of the methods
produce reasonable results. For a smaller number of variables the deterministic full-
factorial Orthogonal Steepest Descent searching method provides a slightly better final
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result with about the same number of case evaluations. For more variables,
evolutionary/genetic methods get nearly the same final result with fewer case evaluations.

Of the evolutionary methods studied herein, the Breeder Pool approach devised during
this research seems to provide convergence on a good solution in the fewest number of
case evaluations.

Hybrid methods combining a stochastic initial optimization with a deterministic final
optimization proved to work no better than either alone.

2 BACKGROUND (removed – see full thesis)

2.1  Aircraft Design Optimization – Purpose and Importance

2.2 Outline of Aircraft Design Process

2.3 Classical Aircraft Optimization Methods

2.4 Historical Review of Engineering Optimization

2.5 Overview of Multidisciplinary Optimization (MDO)

2.6 The MDO Realism Problem – Automating Aircraft Redesign

2.7 Observations Concerning Variables, Constraints, & MOMs
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3 OBJECTIVES AND SCOPE OF RESEARCH

3.1  MDO Methodologies for Aircraft Conceptual Design

The overriding objective of this research is to offer improvements to the aircraft design
process through the application of Multidisciplinary Optimization methods. This research
focuses exclusively on the conceptual design process where new aircraft concepts are
being developed, assessed, and selected for further design effort.

A deliberate decision was made to focus on zeroth-order optimization methods that iterate
to a solution based solely on parametric evaluations of the measure of merit and design
constraints. Such methods seem most capable of dealing with discontinuous and highly
irregular objective and constraint functions, and also appear most suitable for
incorporation into existing aircraft analysis codes such as this author’s RDS-
Professional4.

A key objective is the ability to make direct comparisons between and among the various
MDO methods programmed, using the same sample aircraft and the exact same analysis
methods and executable code. In this manner some attempt at identifying a “best” method
could be made, at least for the classes of aircraft studied and the optimization variables
chosen.

In addition to the step searching method already programmed into RDS, a decision was
made to focus on MDO methods in which the parametric variations to the aircraft design
are all done with a chromosome-based scheme. This led to the selection of Monte Carlo,
Evolutionary, and Genetic Algorithms. These could all be programmed as a related
family of methods.

Another objective is the investigation of the relative importance of design variables and
constraints common to aircraft conceptual design projects, including performance
constraints and geometric constraints such as wingspan. To improve acceptance by
practicing aircraft designers, this research is based on the design variables, constraints,
measures of merit, and analysis methods typically used in industry.

3.2 Procedures for Automated Aircraft Redesign

This research actually started from a personal interest in this particular topic – how to
have a computer program automatically redesign the aircraft during an optimization as
design variables are parametrically changed, such that the resulting optimum aircraft is
closer to being feasible when a human aircraft designer turns a computational optimum to
a real configuration layout. This author previously developed a simple set of such
techniques for the RDS-Professional program optimizer, but clearly more work was
called for.

Thus, an objective of this research is to define and assess a set of procedures for the
automated aircraft redesign that others can incorporate into their MDO routines to
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enhance optimization realism. Hopefully this can help to make MDO more useful to
industry aircraft designers working on real aircraft design projects.

Most important, and apparently original, was the definition and validation of Net Design

Volume, a measure of the packaging density of an aircraft design layout and a geometric
constraint for MDO routines that avoids unrealistic configurations being defined by the
optimizer. This addresses the issue of maintaining a realistic internal volume with
allowance for fuel, payload, avionics, propulsion, and the numerous smaller subsystems
that are properly designed only long after conceptual design.

3.3  Validation Models and Limits of Research

Four notional aircraft design concepts were prepared during this research. These were
used as validation models to assess the MDO routines and automated aircraft redesign
procedures. These are intended to span the spectrum of current design thought, and
include a conventional jet transport, an F-16 replacement export fighter, a tactical
unmanned air vehicle, and an asymmetric general aviation twin, as shown in figure 1.

        
figure 1. Validation Models: Four Aircraft Notional Concepts
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Each was designed and analyzed using the RDS-Professional program, and the results
were compared to existing aircraft to ensure reasonableness and credibility of the data.
MDO verification tests were conducted to determine any design-specific problems with
the methods or the code.

4 APPROACH AND METHODS

4.1 Overview of Approach

The fundamental approach to the research described herein was to develop a
sophisticated aircraft conceptual design computer program featuring a wide variety of
MDO methods and options, incorporating a variety of design variables and automated
vehicle redesign procedures, and then to run comparisons for four different notional
aircraft design concepts. In all, over a million parametric aircraft designs were generated
and analyzed in this research, and well over a hundred MDO runs were conducted along
with numerous two-variable carpet plots for comparison.

In work previously reported on, this author developed the RDS computer program
including Professional and Student versions. RDS5 includes sophisticated
implementations of the classical analysis methods6 used in industry for many years, and
incorporates a CAD module for initial 3-D layout of design concepts. RDS also includes
a multidisciplinary optimizer based on the full-factorial Orthogonal Steepest Descent
method described herein. RDS-Professional is available through Conceptual Research
Corporation (PO Box 923156, Sylmar, CA, 91392, USA).

To conduct comparative optimizations using different aircraft conceptual design
optimization methods, a highly flexible optimization module was programmed into the
RDS-Professional program. This allows optimization, based on exactly the same inputs
and analysis methods, using a variety of methods. These include the Orthogonal Steepest
Descent Search, random Monte Carlo method, a collection of Genetic Algorithms, and an
Evolutionary technique, as described below.

For these MDO methods, the program allows selecting from numerous options which,
taken together, largely span the range of methods in use. These options, defined and
detailed below, include:

•  Number Of Individuals per Generation/Gang
•  Total Number Of Generations/Gangs
•  MOM Weighting Schemes:

1. Linear
2. MOM Rank Percentage-Squared
3. MOM Rank Percentage-4th Power
4. MOM Rank Percentage-Sine Wave

•  Performance Penalty Factor and Variation (allows simulated annealing)
•  Elitism (Best Survive Unchanged Into Next Generation)
•  Option To Replace Individuals In Population After Breeding
•  Breeder Pool Size (Percent Of Total Population)
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•  Mutation Probability Factor
•  Breeding Crossover Options:

1. Single-Point Crossover
2. Uniform Crossover
3. Parameter-Wise Crossover

•  Geometric constraint holds including
1. Fuselage maximum length
2. Fuselage minimum diameter
3. Wing maximum span
4. Wing Aspect Ratio vs. Sweep to avoid pitchup
5. Net Design Volume (described below)

Note that every option is not appropriate for every MDO method.

In operation, the optimizer begins by prompting the user for the analysis input files to
use. These are normally the defaults for the design being optimized, which have
previously been created by the user during the normal course of design evaluation. These
include the inputs defining the performance constraints, which can include takeoff
(ground roll, total takeoff distance, FAR 25 takeoff distance, or balanced field length),
landing  (landing ground roll, total landing distance, FAR 25 landing distance, or no-flare
landing distance), rate of climb, time to climb, Ps at a given load factor, instantaneous
turn rate, and acceleration time or distance.

The user then selects the MDO algorithm and options to employ. Next the user selects the
objective function (Measure of Merit) which can be Takeoff Gross Weight (Wo), Empty
Weight, Fuel Weight, Purchase Price, Life Cycle Cost, Net Present Value, or Internal
Rate of Return. For designs with a fixed-size engine, the objective Measure of Merit is
Range based on the user-defined mission. Also, the design space is defined by user inputs
as to the maximum and minimum values of the design variables (with defaults of plus and
minus 20%).

Following user selection of the appropriate optimization options as listed above, the
program commences with parametric or random variations about the user-defined
baseline design, depending on the MDO algorithm being employed. Each design
variation is analyzed as to aerodynamics, weights, propulsion, sizing, performance, and
cost. Sizing results (weight or range) or cost are used as the MOM, as selected by the
user. Optimization then proceeds as detailed below.

Four validation models (aircraft test cases) were developed to test these methods and
determine relative suitability for different classes of aircraft. Since the subject of this
research is aircraft conceptual design, the test cases are notional aircraft designs. These
include a jet transport, a single-engine fighter, an unmanned air vehicle, and a general
aviation twin. These are defined in detail in the full thesis.

4.2 Orthogonal Steepest Descent Search
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Orthogonal Steepest Descent, a full-factorial stepping search, has been successfully
running in RDS-Professional for a number of years and has been used on various research
projects such as that reported in Raymer and Burnside Clapp7.

The Orthogonal Steepest Descent optimizer relies upon defining ratio multipliers for each
of the design parameters, and adjusting those ratios until an optimum is found. These
ratios are used to modify the analysis input data. For example, if the baseline wing
loading is 100, the baseline design is represented by a wing loading multiplier ratio of
1.0. This is changed during the optimization until the best design is found with, say, a
wing loading multiplier ratio of 0.88 (i.e., the optimal wing loading was found to be (100
x 0.88=88).

Optimization is done using step searching by a simple comparison method. Starting from
a baseline aircraft definition, each variable is parametrically varied using these ratios by
plus and minus some selected step size, in the same exhaustive manner as a full-factorial
design of experiments. The resulting 3n aircraft (where n = number of design variables)
are all analyzed for aerodynamics, weights, sizing, cost, and performance. Propulsive
thrust is merely ratioed to the defined T/W since, as of yet, no propulsion system design
variables such as bypass ratio or propeller diameter have been included which would
substantially change thrust or fuel consumption characteristics.

The "best" variant, that with the lowest value of the selected measure of merit that also
meets all performance requirements, is remembered and when all parametric variations
about the initial baseline are exhausted, becomes the center point baseline for the next
iteration loop.  This continues until no better variant is found, then the stepping distance
is shortened and the process repeated until some desired level of resolution is obtained.

The Orthogonal Steepest Descent method is so simple and direct that it cannot get stuck
in a loop or fail to find any solution at all unless the baseline aircraft is so poorly
designed that neither it nor any parametric variations of it can meet all performance
requirements. Also, it is deterministic, always finding the same solution to many decimal
places when starting from the same baseline design. Therefore, it makes a good
benchmark for study of other methods, especially those stochastic methods that may seem
to converge but may actually fail to find the “true” best design.

4.3 Definitions and Operations for Chromosome-based Methods

The remaining MDO methods coded for this research are all related in that they are all
stochastic in nature, and they all rely on a chromosome/gene bit-string to define the
parametric variations of the aircraft being optimized. They also share many optimization
options and parameters, as discussed below. As with the OSD optimizer, the MDO
methods below all optimize for eight variables consisting of T/W, W/S, aspect ratio, taper
ratio, sweep, thickness, fuselage fineness ratio, and wing design lift coefficient.

The following sections define this chromosome gene bit-string and the various operators
used in the chromosome-based methods developed for this research.
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4.3.1 Chromosome/Gene Bit-String Definition

In nature, the characteristics of an individual of a species are defined by Genes, which are
connected together in a specified order forming Chromosomes. A similar scheme is
employed for the Monte Carlo, Evolutionary, and Genetic algorithms as used herein.
Specific values of design variables defining an individual aircraft are based on
chromosome-like bit-strings comprised of ones (1s) and zeros (0s). Different values of
those binary digits define a variety of alternative design permutations.

The following chromosome/gene bit-string definition is used:

     T/W         W/S            A            taper       sweep         t/c       fuselage l/d    CL-design

   000000  |  000000  |  000000  |  000000  |  000000  |  000000  |  000000  |  000000

Each of the eight parameters is defined by a gene consisting of six binary digits that
represent position on a spectrum from lowest to highest permitted value of that design
variable, as input by the user. Thus, if the user allows wing loading to range from 40 to
100, the string 000000 represents 40, the string 111111 represents 100, and 001010 for
example represents {40+(100-40)(10/63)=49.52}.

This chromosome scheme relies upon a user-defined baseline aircraft design that provides
a point of departure for defining an initial population of designs. This design is created
using normal aircraft design practice, and must have previously been analyzed as to
aerodynamics, weights, propulsion, performance, sizing, range, cost, etc… The input data
files developed to do that analysis are modified by the optimizer routine to develop
different designs according to the codes in the chromosome string. If, say, the baseline
design has a wing loading of 60 but the particular “individual” being created is supposed
to have a wing loading of 90, then the aerodynamics and weights inputs for wing loading
would be multiplied by 90/60=1.5. Other effects such as a change in tail size would also
be made, again by changing the inputs to the appropriate analysis.

There is a subtle but important terminology issue for this study. The chromosome scheme
has a “baseline design” that is used to develop the analysis input data, but that design is
not a “starting design” or “basepoint”. These optimizers do not start with this initial
design and then search around for improvements – that is how the OSD method works. In
the chromosome-based schemes, the baseline is only used to generate the initial
population, which may or may not include that original baseline! It could be said that the
baseline design concept in a chromosome-based scheme is really an analysis calibration
device rather than an initial design.

In all the chromosome-based routines, an initial population of up to 500 designs is created
by using a digital random number generator to create each bit in the chromosome string.
Then, this string is used to change the input variables of the baseline design, creating a
unique “individual” for each chromosome string defined. Where the optimizers differ is
how they proceed after this initial population is created.
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4.3.2 Selection - MOM Weighting (removed-see full thesis)

4.3.3 Selection - Performance Penalty Function

An essential part of engineering optimization is the use of constraints. These are typically
“must-meet” performance requirements or real-world geometric constraints such as a
maximum permitted wingspan (if violated, the airplane won’t fit into the terminal gate).
In classical carpet plot optimization, the constraints are lines on the graph, shaded to
represent the “don’t-go” (infeasible) direction. In most cases the optimum solution is
found where two of the constraint lines intersect or where the objective function is
tangent to a constraint line.

In the first version of a Genetic Algorithm developed for this research, a similar “don’t-
go” strategy was employed. Aircraft variants that violated one or more constraints were
“killed”, with no chance of reproduction or continuation into the next generation. This
method worked, but typically led to the immediate elimination of about 65% of the
population for the first generation. Later a subtler and less brutal strategy was
incorporated as an option based on the Penalty Function Method.

In the Penalty Function Method, constraints are turned into adjustments to the measure of
merit. If a constraint is violated, some function related to the amount of constraint
violation is applied to degrade the calculated value of the objective function (measure of
merit). For example, an aircraft with a takeoff distance in excess of the required value
would have its weight (if that is the measure of merit) increased in some fashion from the
actual calculated value.

The simplest possible Penalty Function Method was tried first, namely, a scalar penalty
factor that is multiplied times the objective function (measure of merit) for each
constraint that is violated. No attempt is made to decide by how much the constraint was
missed, nor the relative importance of, say, missed takeoff distance vs. missed turn rate.
If a design misses two performance constraints, its objective function is twice multiplied
by the penalty factor in use.

Furthermore, provisions were made to allow starting this penalty factor multiplier at one
value and linearly increasing it to another value as the optimization proceeds. By starting
at 1.0 (no penalty) and increasing to a high value such as 2.0, a form of Simulated
Annealing is obtained. By starting and ending at a high value such as 2.0, the
“immediate-kill” of classical aircraft optimization is obtained.

This simple version of a Penalty Function Method proved to work well.

4.3.4 Elitism and Replacement

During the execution of Evolutionary/Genetic algorithms, a counter-convergence effect is
sometimes seen. Literally, the next generation is worse than its predecessor generation, or
at least, the best individual in the next generation is sometimes worse than the best of the
prior generation. This is to be expected due to the stochastic nature of such optimizations.
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A simple means of preventing such “backsliding” is to take the best individual of each
generation into the next generation. Then, if none of the new generation is any better, that
generation’s best is unchanged from the prior generation. This is called “Elitism”, and is
implemented herein by allowing the user to specify up to 50 top members of each
generation to be inserted into the next generation.

Another option separating various evolutionary and GA schemes is the decision as to
what to do with chosen parents after they have “bred”. Some favor discarding them,
others favor replacing them in the “pool” to be selected again (if lucky). The
implementation herein allows either option, termed With Replacement and Without

Replacement.

4.3.5 Chromosome String Crossover

Essential to Genetic Algorithms is the concept of crossover, equivalent to mating in the
real world of biology. Crossover is the method of taking the chromosome/gene strings of
two parents and creating a child from them. Many options exist, allowing a nearly
limitless range of variations on GA methods. The following options were coded into the
RDS-Professional MDO module.

Single-Point Crossover: Performs the combination of genetic information from two
parents by breaking their chromosomes into two pieces, sticking the first part of one
parent’s chromosome with the second part of the other’s. The point where the
chromosome bit-strings are broken can be either the midpoint or a randomly selected
point.

Uniform Crossover: Combines genetic information from two parents by considering
every bit separately. For each bit, the values of the two parents are inspected. If they
match (both are zero or both are one), then that value is recorded for the child. If the
parents’ values differ, then a random value is selected.

Parameter-Wise Crossover: Combines parent information using entire genes defining the
design parameters such as T/W. Here, each gene is six bits. For each gene, one parent is
randomly selected to provide the entire gene for the child. Mutation (see below) is
especially important for this crossover method because otherwise, only design parameter
values found in the original population would ever be found in the final population.

4.3.6 Mutation

Mutation is applied to the offspring immediately after the crossover (mating) operation is
performed. Mutation is done by considering every bit in the new chromosome, and
multiplying a random number (0-1) times a probability factor constant. If this product is
less than one, the bit in question is “flipped” from zero to one or vice versa. Therefore,
the numerical value of this probability factor is simply the inverse of the percent
likelihood of the bit being “flipped” – a high value offers a low chance of mutation.
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4.3.7 Convergence Measure – Chromosome Bit-String Affinity

Evolutionary and Genetic algorithms are iterative in nature, with a (hopefully) better and
better result appearing as the solution progresses. This approach to the final “best”
answer is called convergence, and is both an indication as to whether a solution is
emerging, and an aid to the decision to stop the optimization and declare a solution.

In the evolutionary and genetic algorithms used in this research, convergence can be seen
on the output graphs of measure of merit vs. iteration number. The convergence ratio was
calculated for each run but was of little use because the convergence of these methods
does not tend to follow a sure and steady trend. Instead, it tends to jump around,
sometimes flattening out as several generations go by without a better solution being
found, and sometimes even reversing unless elitism is used as defined above. For this
reason, a different measure of convergence was defined and employed in this research.

As the routine goes through generation after generation, it should be expected that “good”
traits would begin to emerge. Furthermore, many individuals in the population should
start to possess those good traits and thus, should begin to resemble each other. This
should appear mathematically as an emerging similarity in chromosome bit-strings, and
should be visually observable in the bit-strings. For example, after several generations
one may note that the sixth bit positions in the individuals’ bit-strings are now mostly
ones, whereas the eighth bit positions may be mostly zeros.

When starting such an evolutionary method, the bits should initially have a random
distribution. When the bits become completely nonrandom (all individuals have identical
bits), the population is identical and the method can go no further unless mutation is
introduced. This progression from randomness to non-randomness provides a clear
indication of the progression towards convergence.

To calculate this bit-string indication of convergence, a Bit-String Affinity term is defined
in which a calculated value of zero (0) indicates a random population whereas a
calculated value of 100 indicates an identical population. This is determined from the
average distance of each of the bit positions in the entire population from either one (1) or
zero (0).

Bit-String Affinity is calculated by taking an average of the first bit position value for all
the individuals, then an average of the second bit position value for all the individuals,
and so on for all the bits in the bit-string as defined for the optimization. For each of these
resulting averages, the distance from either 1 or 0 is determined as that average itself if
less than 0.5, and as 1.0 minus that average if greater than 0.5. (obviously, the distance is
0.5 if the average is exactly 0.5). Then, these distances for each bit position are averaged
for a total averaged distance.

This calculation yields a value in a range from 0.5 if purely random to exactly zero if all
bits are identical. This is converted by a simple transformation to a more-intuitive
measure spanning a range from zero if purely random, to 100% Bit-String Affinity if all
individuals are identical.
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This Bit-String Affinity calculation is trivially simple to implement yet has been found to
be a powerful and intuitively useful measure of convergence. This concept seems to be
new to the field.

Bit-String Affinity has been run on numerous optimization cases using a variety of
Evolutionary/Genetic routines. After observing the usefulness of the Bit-String Affinity
value, it was coded as an alternative stopping criterion (stop when >98%). This has, in
some cases, terminated execution many generations before the intended stopping point
thus saving unneeded execution time. The best airplane that would be found had already
been found.

4.4 Monte Carlo Random Search

A Monte Carlo optimization method was programmed using the chromosome/gene string
definition detailed above. This works by randomly creating and analyzing thousands of
different aircraft and testing for the one with the best measure of merit that also meets all
required performance points. To simplify coding and reduce memory requirements, the
total population desired is generated and analyzed in “gangs” of 500, but there is no
evolutionary component to the optimization. Each gang is produced purely by application
of random numbers to create chromosome/gene bit-strings, and the best of all gangs is the
selected best aircraft. Typically, 20 gangs of 500 would be created yielding a total of
10,000 individuals.

4.5 Genetic Algorithms

Genetic Algorithms are stochastic Evolutionary Algorithms with a close analogy to real-
world biology. Essential to a Genetic Algorithm is the selection of the parents and the
combination of their genes to produce the next generation (crossover). Coding for
crossover as used in this research is detailed above. Methods employed for the selection
of “parents” are described below.

4.5.1 Roulette Selection

Holland popularized the use of Roulette Selection to determine the “lucky parents”. This
is like the gambling device, but the sizes of the “slots” into which the random “ball” can
fall are determined by the calculated values of the measure of merit as shown in figure 2
(based on actual data from a fighter optimization run conducted for this research).
Sizes of the slots are calculated as:

∑
=
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figure 2. Roulette Selection

If a penalty function method is in use to handle performance constraints, the slot size is
based on the performance-adjusted MOM. If performance is not met, that aircraft’s slot is
made smaller.

4.5.2 Tournament Selection (1v1)

Tournament Selection, preferred by many recent researchers, selects four individuals at
random. They “fight” one-vs.-one, with the superior of each pairing being allowed to
reproduce with the other “winner”, as shown in figure 3.

As implemented herein, each “winner” pair produces two offspring by two independent
crossover operations. This creates a new population that is as large as the previous
population.
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figure 3. Tournament Selection

4.5.3 Breeder Pool Selection

A selection scheme based on real-world biological reproduction was defined, and seems
to be original to this research. In nature, the survival process is usually decoupled from
the selection process. In many species, breeding selection is a fairly random event from
among those who have survived long enough to reach the reproductive age of the species.

To mimic this in an MDO routine, the population of aircraft is analyzed and stacked as to
fitness according to their value of the selected measure of merit (MOM). A user-specified
percentage (default 25%) of the total population is then placed into a “breeder pool”. The
smaller the percentage used, the more “elite” the optimization becomes, favoring those
with high values of the measure of merit but at the expense of reduced genetic diversity
(and vice-versa). Use of 100% selection would allow all members of the parent
generation to enter the breeder pool, essentially ignoring the MOM results and preventing
any improvement with successive generations.

Then, two individuals are randomly drawn from the breeder pool and a crossover
operation is used to create a member of the next generation. Once an individual is in the
breeder pool there is no further competition except for the “luck” of being selected. The
competition has already occurred in the selection to be included in the breeding sub-
population.  The breeder pool scheme is shown in figure 4.
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figure 4. Breeder Pool Selection

4.6 Evolutionary Algorithm – Best Self-Clones with Mutation

The final Evolutionary algorithm employed in this research can not be considered a
Genetic Algorithm because crossover is not employed. This approach, a variant of
Evolutionary Programming, is based more on the biology of ants. From an initial
population, a best individual is found by MOM ranking, including application of the
performance penalty method.

This best individual becomes the “queen” and sole parent of the next generation. This
next generation is created by making copies (clones) of the queen’s chromosome bit-
string and applying a high mutation rate to generate a diverse next generation. The
mutation rate is high enough that almost every child is mutated in some way, so the entire
design space is being reconsidered during every iteration even as the method converges.

This method can be considered the ultimate in Elitism. Since the Queen alone reproduces,
eliminating all other members of her population from reproduction, this author refers to
the method as the "Killer Queen". Similar methods have been used by other researchers,
especially in Europe.
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figure 5. “Killer Queen” – Best Self-Clones with Mutation

4.7 Hybrid Methods

The Orthogonal Steepest Descent method may find a local solution rather than a global
optimum depending upon where it is started, and may take too long in getting to that
optimum region. The other methods, all stochastic, offer a better hope of finding a global
rather than local optimum but may never actually find the true best answer, and they may
take many iterations to slightly improve the result.

A hybrid method may offer the best of both, so it was coded into the RDS-Professional
program. Any of the stochastic methods (Monte Carlo, Evolutionary, or Genetic) can be
used for a specified number of generations or gangs, followed by an Orthogonal Steepest
Descent “fine tuning” starting from the best result from the stochastic method.
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4.8 Analysis Methods Used for Optimization

The optimization methods reported herein all rely upon the well-proven RDS analysis
modules developed by this author5. These include calculation of aerodynamics, weights,
propulsion, sizing, range, performance, and cost. They represent a balanced collection of
classical methods suitable for conceptual and early preliminary design and are described
in detail in this author’s aircraft design textbook, Aircraft Design: A Conceptual

Approach.

Methods include component buildup for parasitic drag, leading edge suction and
DATCOM charts for drag-due-to-lift and maximum lift, detailed empirical equations for
weights, jet engine installation equations, propeller analysis from efficiency charts,
industry-standard empirical cost equations, and physics-based equations for performance
and sizing. These methods have been calibrated and tested in numerous studies over a
ten-year period, and have been found to be quite reliable for most types of aircraft.
Altogether, these analysis modules represent approximately 20,000 lines of source code
and are further described in the Appendices (see full thesis).

4.9 Test-Case Run Matrix

To guide in the execution of test cases, a matrix was developed defining the test-case runs
that would be conducted, including which validation model (aircraft notional concept)
would be employed, which MDO method would be used, and which combination of
options would be applied. This test-case run matrix is provided in full in the Appendices
(see full thesis). In all, over a hundred optimizations were run totally over a million
parametric aircraft design cases.
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5 DESIGN VARIABLES, AUTOMATED REDESIGN

PROCEDURES, AND GEOMETRIC CONSTRAINTS

An important issue for aircraft conceptual design MDO is the realism problem. To obtain
a realistic revised design from an optimization routine, automated redesign procedures
are required. These should approximate the changes that an experienced designer would
make to an existing layout based on particular parametric revisions to the design
variables. So, if some change to the parametric definition of the fuselage prevents the
landing gear from working properly, a human designer would fix it – and so should the
computer during MDO evaluations.

5.1  The Basic Six (or Five) Design Variables

In prior published work (see full thesis Appendices), this author identified the six most-
important variables for aircraft conceptual design optimization as:

•  T/W or P/W (i.e., engine size defined by ratio)

•  W/S (i.e., wing area defined by ratio)

•  Aspect Ratio

•  Taper Ratio

•  Sweep

•  Airfoil t/c

These six variables include the performance-driving thrust and wing area, plus the
parameters that define the basic wing geometry. These have at least 50 years of history
behind them as key optimization variables, and in this author’s opinion they should be the
foundation of any optimization method intended for aircraft conceptual design.

If designing to an existing (fixed-size) engine, then engine scaling is not possible so a
parametric variation of T/W (or P/W) is not possible, hence only five key variables
remain.

In addition to the obvious direct changes to the analysis inputs as these design variables
are changed, the aircraft analysis inputs are further modified as follows:

•  Thrust and fuel flow vary by T/W or P/W

•  Wing reference area varies based on W/S

•  Wing exposed area varies based on W/S, adjusted for fuselage width cutoff
•  Tail areas vary by the 3/2 power of wing area to hold constant tail volume coefficient
•  Maximum cross-section area for wave drag calculation varies by wing area, t/c, and

by cos(wing sweep), weighted to baseline percentage of total cross-section area
•  Nacelle wetted area varies by T/W

•  Wing fuel volume varies by 3/2 power of wing area
•  Airfoil Cl-max varies with t/c using empirical regression of NACA airfoils
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•  Airfoil leading edge sharpness parameter (∆Y) varies with t/c

5.2  Fuselage Fineness Ratio

The key top-level parameter for fuselage design is the fineness ratio (f), the fuselage
length divided by its equivalent diameter (diameter that gives the actual cross-section
area).

To find the true “best” fuselage fineness ratio, it must be included as a design variable in a
multidisciplinary optimization. This was added to the RDS MDO routines, with the
following automatic redesign procedures employed in addition to the obvious input
revisions to fuselage diameter and length:

•  To hold fuselage volume constant, diameter varies by cube root of fold/fnew

•  Tail areas vary inversely with fuselage length to maintain constant tail volume
coefficient

•  Landing gear length is scaled to maintain tail-down angle as fuselage length changes
•  Maximum cross-section area for wave drag calculation varies by fuselage diameter as

fineness ratio changes, weighted to baseline percentage of total cross-section area.

5.3 Design Lift Coefficient (Wing)

Another wing design parameter with great influence on the resulting aircraft is the wing
Design Lift Coefficient (CL-design). This is used during preliminary design as a target for
optimization of twist, camber, and airfoil shape. Selection of a high design lift coefficient
is equivalent to selection or design of an airfoil with high camber, which provides lots of
lift at lower speeds but also lots of drag in cruising flight.

CL-design was added as the eighth variable in the RDS MDO routines. In addition to simply
changing its value in the aerodynamic analysis inputs, the following effects were
included:

•  Airfoil leading edge sharpness parameter (∆Y) varies with design Cl via camber
geometric approximation

•  Airfoil Cl-max varies with design Cl using new empirical regression of data for
several NACA airfoils8 (which also includes variation with t/c)

5.4 Geometric Design Constraints

Geometric design constraints were added to the RDS MDO routines to permit searching
for an optimal design with certain real-world requirements considered. These are treated
in the optimization as additional performance constraints. Violations of them, like
missing a takeoff distance requirement, are handled by multiplication of the calculated
value of the measure of merit by the current value of the scalar penalty factor.



25

5.4.1 Fuselage Length and Diameter

Fuselage length and diameter limits can be input by the user at the initialization of the
optimization. The length limit is an upper limit, often required in the design of military
aircraft to ensure that the aircraft will fit in hardened shelters and on aircraft carriers.

The fuselage diameter limit serves as a lower limit. This prevents the optimization from
making the fuselage smaller in cross-section than necessary to hold passengers, payload,
or equipment as determined in the baseline configuration drawing.

5.4.2 Wingspan

The wingspan limit is an upper limit, based on a value input by the user, and mostly
applied to large commercial transports to ensure usability of existing airport taxiways and
gates. For military aircraft, span is constrained to allow the aircraft to fit in hardened
shelters and on aircraft carriers. During conceptual design for the project that became the
F-22, one thing that was known early was that the wingspan could not exceed that of the
F-15, for just that reason.

5.4.3 Wing Geometry for Pitchup Avoidance

For a tailless aircraft or one with a tail positioned such that its effectiveness may be
degraded at high angle of attack, it is important to avoid certain combinations of high
aspect ratio and high sweep. Otherwise, near the stall the outflow from the high sweep
will cause the tips to lose lift first. Due to the high aspect ratio this lost lift is located
behind the center of gravity causing pitchup – an uncontrollable nose-up divergence
leading to stall and spin.

A widely used pitchup avoidance criterion was detailed in NACA 1093. This gives a
chart based on extensive wind tunnel testing that provides threshold curves of acceptable
combinations of aspect ratio and sweep. Data for maximum allowed aspect ratio (A) were
curve-fit for subsonic and transonic flight based on wing quarter-chord sweep (∆QC).
These equations were added to the RDS MDO routines as an optional geometric
constraint option.

5.5  Net Design Volume

The final geometric design constraint option added to the RDS MDO routines is intended
to ensure that an optimization that makes the wing substantially smaller does not result in
an aircraft that cannot hold its required fuel and internal equipment. This is done with the
aid of a parameter called Net Design Volume (NDV).

Net Design Volume was defined by this author (Raymer9) as the internal volume of an
aircraft less the volume dedicated to fuel, propulsion, and payload (including passengers
and crew). NDV represents the volume available for everything else, including items that
are not precisely known until well into the design process such as structural components,
avionics, systems, equipment, landing gear, routing, and access provisions. Therefore,
NDV can be used to assure that a design layout has a credible geometry such that the
design, when finalized, will contain all required components without requiring
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excessively tight packaging, which can lead to fabrication and maintenance difficulties.
Furthermore, NDV assessment can be used as a constraint in MDO optimization to help
improve the design realism of the resulting optimized configuration.

5.5.1 Definition Of Net Design Volume (see full thesis)

5.5.2 Use Of Net Design Volume For MDO

NDV can be used to evaluate a just-completed aircraft configuration layout for historical
reasonableness. Another usage, and a key objective of this study, is as a constraint factor
in multidisciplinary design optimization (MDO).

NDV was applied to the RDS MDO routines to automatically "correct" the design
geometry resulting from every parametric variation of the baseline, using the following
steps:

•  Calculate NDV density target from analysis of the baseline design layout prior to
start of optimization

•  During MDO optimization, analyze each design perturbation for NDV density
•  Modify fuselage analysis inputs to photographically scale it in all directions to

restore the target NDV density
•  Scale landing gear length for new fuselage length
•  Revise tail areas for new fuselage length
•  Perform aircraft analysis and sizing
•  Check other geometric constraints for violation (such as fuselage diameter too

small)

5.6 Automated Redesign for Discrete Variables (see full thesis)

6 NOTIONAL AIRCRAFT CONCEPTS (see full thesis)

7 RESULTS
Development of the MDO modules incorporating features and options as described above
was completed according to plan. The four notional aircraft concepts were designed,
analyzed, and optimized using these routines. Numerous variations in MDO methods and
options were run along with a number of trade studies of the use of various geometric
constraints and automated aircraft redesign procedures. A test-case run matrix is
presented in the Appendices (see full thesis) which also provides a summary of the results
of the MDO analysis conducted for this research, including the final value of the selected
Measure of Merit (price for the fighter, takeoff gross weight for the others). Also
included, for the chromosome-based MDO routines, are the final value of Bit-String
Affinity and the percent of the final population meeting all performance requirements.
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7.1 Calibration Results: Orthogonal Steepest Descent Search
(see full thesis)

7.2 Stochastic MDO Results

A total of 25 MDO runs were initially conducted, encompassing all of the chromosome-
based stochastic methods developed for this research including Monte Carlo, three
Genetic Algorithms (Tournament, Roulette, and Breeder Pool), and the Evolutionary
scheme here called “Killer Queen” (runs 11-36). Altogether, this totaled about 250,000
parametric aircraft designs, each one defined by a chromosome gene bit-string and
subjected to aerodynamics and weights analysis followed by sizing, performance, and
cost calculations. All of the runs for the fighter aircraft were then completely redone to
see if the results were similar. They were, providing some confidence that these results
are repeatable in spite of the stochastic nature of these optimization methods.

Results are graphed in the following figures, showing the convergence of the Measure of
Merit. In each case, the OSD results are included for comparison. The OSD final value of
the measure of merit was superior to all of the other methods for all four aircraft, but by a
fairly small amount. And, the OSD optimization generally took two to three times as
many case evaluations to get to the optimum. However, even the long OSD optimizations
took only about 10-30 minutes each on a 1 gHz personal computer, while the other
methods averaged about 10 minutes each.

Optimization results for the Advanced Multirole Export Fighter are shown in figure 6.
Note that an OSD best solution first appears after 6561 cases are evaluated. That is one
full-factorial evaluation around the baseline design for eight variables, yielding 38 cases.
The other methods have a first result that is simply the best member of a random initial
population (default 500 in these calculations). Any differences in this starting value are
pure luck and reveal nothing about the method employed!

By the time of the first full-factorial baseline parametric results with the OSD method, all
of the stochastic methods (including Monte Carlo) have attained a result nearly as good
as the OSD final solution. In the end, though, the OSD method finds a slightly better
solution, and it gets the same result every time it is run.
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figure 6. MDO Solution Convergence: Fighter

Relative convergence rates of the stochastic methods favor the “Killer Queen”, which
creates a new generation simply by copying the best member of a generation and
applying a high mutation rate. Close behind is the Breeder Pool, where a weighted
Measure of Merit ranking is used to isolate a superior subpopulation from which
individuals are selected at random for reproduction. Roulette selection appears to be the
worst.

Bit-String Affinity was defined as an indication of the sameness of the members of a
population or generation. Bit-String Affinity equals zero for a totally random population,
and equals 100% for a completely identical population. This provides a useful and visual
convergence criteria, and was included as an alternative stopping criterion in these
routines. In at least six of the runs, Bit-String Affinity stopped the run early when all
members of the population became virtually identical.

The following figure depicts the progression of Bit-String Affinity for the fighter aircraft
using these MDO methods. Observe that the Killer Queen method begins, like the other
methods, at virtually random (near zero) but immediately jumps to a high value where it
remains for all subsequent generations. This is to be expected because after the first
generation, all populations are created from mutated copies of the single best individual
of the previous generation. The Bit-String Affinity in this case is just a reflection of the
mutation rate being used.
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figure 7. Bit-String Affinity: Fighter

This Bit-String Affinity measure indicates that the Breeder Pool is producing the
strongest convergence. As can be seen, the Roulette method seems to have a difficult
time converging.

Results of the MDO runs for the civilian airliner are shown next. The OSD method begins
with an initial value so high that it is almost off the scale. This is due to the “badness” of
the initial baseline design, which was deliberately modified to reflect poor choice of
design variables. So, the initial baseline and all variations around that baseline are poorly
designed and hence, are heavy. Then, the OSD method must step away from this “bad”
part of the design space, and that takes a large number of steps.

The same trends as to which stochastic method converge the fastest hold for this concept
as well. Apparently the Tournament method got lucky in the first population, but was
only able to slightly improve upon it afterwards. Bit-String Affinity for the transport is
shown in figure 9.
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figure 8. MDO Solution Convergence: Transport

figure 9. Bit-String Affinity: Transport
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The Asymmetric Light Twin is optimized using only seven variables since the T/W ratio
cannot be used (fixed-size engine). The OSD method is very sensitive to the total number
of variables. With fewer design variables, it managed to beat the stochastic methods to a
solution, and found a better solution as well. Of the stochastic methods, the Breeder Pool
performed the best (figure 10).

figure 10. MDO Solution Convergence: Light Twin
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figure 11. Bit-String Affinity: Light Twin

Similarly, the UAV design uses only six variables (no T/W or fuselage fineness ratio),
and the OSD method performs even better relative to the stochastic methods. This is
depicted in figure 12.

This author expects an extrapolation in the other direction to follow this same trend.
Increasing the number of variables beyond the eight used in this research would probably
bring the OSD method almost to a halt with today’s computers, while the stochastic
methods would be less affected.
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figure 12. MDO Solution Convergence: UAV

figure 13. Bit-String Affinity: UAV

To better understand the relative performance of these methods it is useful to know the
number of parametric case evaluations required to attain a certain “goodness” of result.
The deterministic OSD result can be used as a benchmark. In figure 14, the number of
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parametric evaluations required to find a result only 1% higher than the OSD solution is
graphed. This is shown in figure 15 for a result that is 2% over the OSD solution. These
charts seem to indicate that as few as four generations of 500 each will usually get to
within 1-2% of the final result for the Breeder Pool and Killer Queen methods. This is, in
some cases, a tenth of the number of case evaluations required to find (and know you
have found) the best aircraft using OSD.
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figure 14. Number of Runs Required to Come Within 1% of Best
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figure 15. Number of Runs Required to Come Within 2% of Best

8  SUMMARY AND CONCLUSIONS

Research has been conducted into the improvement of the Aircraft Conceptual Design
process by the application of Multidisciplinary Optimization (MDO). Aircraft conceptual
design analysis codes were incorporated into a variety of optimization methods including
Orthogonal Steepest Descent, Monte Carlo, a mutation-based Evolutionary Algorithm,
and three variants of the Genetic Algorithm with numerous options.

Four notional aircraft concepts were designed as test cases for evaluation of MDO
methods and options, namely an advanced fighter, a commercial airliner, an asymmetrical
light twin, and a tactical UAV. The commercial airliner design was deliberately modified
for certain case runs using poorly-chosen design parameters including wing loading,
sweep, and aspect ratio, to see if the MDO methods could “fix it.”

MDO methods and options were evaluated using these notional designs in over a hundred
case runs totally more than a million parametric variations of these designs. These
variations included application of automatic redesign procedures to improve the realism
of such computer-designed aircraft. Each design variation was completely analyzed as to
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aerodynamics, weights, performance, cost, and mission sizing, and evaluated as to
performance and geometric constraints.

The key conclusion – aircraft conceptual design can be improved by the proper
application of such Multidisciplinary Optimization methods. MDO techniques can reduce
the weight and cost of an aircraft design concept in the conceptual design phase by fairly
minor changes to the key design variables. These methods proved to be superior to the
traditional carpet plots used in the aircraft conceptual design process for many decades.

Evaluation of the different MDO methods for aircraft design optimization indicated that
all of the methods produce reasonable results. For a smaller number of variables the
deterministic Orthogonal Steepest Descent searching method provides a slightly better
final result with about the same number of case evaluations. For more variables,
evolutionary/genetic methods seem superior. The Breeder Pool approach defined herein
seems to provide the best convergence in the fewest number of case evaluations.

The Net Design Volume approach defined herein to assure sufficient volume for fuel and
internal equipment appears to work well and improves the design realism with little user
effort. Other geometric constraints such as diameter, length, and span limits were also
found to be useful for some design problems.
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