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Abstract. High harmonic generation (HHG) provides a flexible framework for the development of coherent
light sources in the extreme-ultraviolet and soft X-ray regimes. However it suffers from low conversion
efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron
trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively
enhance specific quantum paths leading to HHG. A few important fundamental questions remain open,
among those how much of the enhancement can be achieved by the single-emitter and what is the role of
correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address
those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated
hydrogen and helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser
pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing
the time-dependent dipole moment of the systems using a time-dependent density-functional approach
(or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The
sought optimization corresponds to the selective enhancement of single harmonics, which we find to be
significant. This selectivity is entirely due to the single atom response, and not to any propagation or
phase-matching effect. Moreover, we see that the electronic correlation plays a role in the determining the
degree of optimization that can be obtained.

1 Introduction

At sufficiently high intensities, matter no longer reacts
linearly to light, and may re-emit at integer multiples
(harmonics) of the frequency of the incoming source [1].
According to perturbation theory, the intensity of the har-
monics decreases exponentially with their order. However,
the spectrum of atoms and molecules exposed to very in-
tense, typically infrared, laser pulses was found to present
unexpectedly high harmonics [2,3], and its shape was ob-
served to have a plateau extending non-perturbatively
over many orders of magnitude – a process known as high
harmonic generation (HHG) [4,5]. The light emitted in
this manner is coherent and may reach the extreme ultra-
violet and soft X-ray frequency regime. These properties
can be of paramount importance for many technological
and scientific purposes in ultrafast science – most notably,
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the generation of attosecond pulse trains or single isolated
attosecond pulses, or the external seeding of free-electron
lasers [6–8]. These advances open the path towards the co-
herent manipulation and control of matter at its natural
time scale, since it becomes possible to follow the electron
dynamics [9].

Unsurprisingly, a big effort has been devoted to first
understanding the underlying physics, and then to con-
trolling and fine-tuning the efficiency and spectral char-
acteristics of the harmonic radiation. The latter can be
done by modifying the non-linear medium, or by post-
processing the signal with filters, gratings, etc. However,
one advantageous alternative is to modify the character-
istics of the parent pulse, which obviously will modify the
spectral outcome. The most obvious manner of doing this
is by systematically varying the defining parameters of this
parent pulse [10–12]. However, the current availability of
advanced pulse shaping tools [13], together with the de-
velopment of closed-loop quantum control techniques [14],
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provides a superior optimization alternative [15]. In this
manner, the successful selective enhancement of harmonic
orders could be achieved when using a hollow fiber con-
tainer for the generating medium [16–18]. Gas jet (free
focusing) geometries were also employed [19–21], but al-
though some degree of control could be achieved (for ex-
ample, the extension of the cut-off frequency), the very
selective order enhancement or depletion obtained with
the hollow fibers was not observed. This fact seems to
imply that this type of selective enhancement cannot be
explained from the single-atom response only; instead,
the propagation effects present in the capillary set-up
apparently play a fundamental role.

A full interpretation of the optimisation mechanisms
can only be achieved with theoretical input, for which
purpose one may utilise quantum simulations in com-
bination with the theoretical branch of quantum op-
timal control [14,22] (QOCT). Recently, Schaefer and
Kosloff [23,24] have addressed this task, showing the possi-
bility of enhancing the emission at desired frequencies for
simple few level systems and a 1D one electron system.
Here we address, by simulations based on time-dependent
density functional theory (TDDFT) [25,26] and 1D mod-
els of hydrogen and helium, the role of many electron in-
teractions in the high harmonic generation, and provide
compelling evidence that a single-atom HHG emission can
be enhanced by few orders of magnitude in a controlled
manner, with standard laser shaping techniques available
in many experimental labs.

The three-step model successfully describes the key fea-
tures of HHG [27–29], at least qualitatively. It combines a
quantum description of the ionisation and recombination
of the electrons, with a classical description of the inter-
mediate electronic propagation. Lewenstein et al. [30] de-
veloped an approximate, mostly analytical, quantum de-
scription based on the strong field approximation (SFA):
it neglects the contribution of excited bound states, the
depletion of the ground state, and considers the contin-
uum electrons to be free of the influence of the parent
ion. This approach still makes use of the classical con-
cept of “trajectory”, which can be extracted from the
phase of the wave function. A number of schemes for high-
intensity laser-atom interaction develop on this concept
of trajectory or “quantum orbit” [31]; some examples are
the Volkov-eikonal approximation [32,33], the Coulomb-
corrected SFA [34,35], the the Herman-Kluk propaga-
tor [36,37], or, very recently, Bohmian trajectories [38].
Finally, the most precise approach consists of propagat-
ing Schrödinger’s equation [39–41], an expensive method
that quickly becomes prohibitive as we increase the num-
ber of electrons. For one-electron problems the approach is
perfectly feasible, and this fact has encouraged the use of
the single active electron approximation (SAE), which as-
sumes that only one electron is significantly disturbed by
the field, and its evolution may be computed on the com-
bination of the laser field and the potential originating by
the parent ion.

This single electron picture is commonly used to de-
scribe recollision processes and HHG in atoms and relies

on the fact that under HHG conditions there is one elec-
tron being emitted. However this does not imply the other
electrons do not play a role. There is indeed no formal jus-
tification for the use of the SAE and in fact, many-body
effects have been shown recently to play an important role
in HHG providing an explanation of why heavier atoms
emit stronger HHG than lighter ones [42] and the giant
enhancement of He HHG at 100 eV [43]. However, the
SAE has been successful in explaining a few features of the
HHG spectra such as the spectral cutoff, the phase struc-
ture of the spectrum, and the generation of attosecond
pulses.

In spite of all those experimental and theoretical ef-
forts, it is clear that the topic of selective HHG generation
deserves further microscopical analysis, and in this work,
we explore the optimisation possibilities of one and two
electron systems (the hydrogen and the helium atoms),
isolating the single atom response, so that we can learn
how much selectivity in the HHG spectrum can be ob-
tained from isolated atoms. For this purpose, we employ
a global optimisation scheme that acts on the envelope
of the generating pulse, maintaining the fundamental fre-
quency. For the case of helium, we report results ob-
tained both with the single active electron approximation,
and with TDDFT, in order to assess the influence of the
electron-electron interaction in the optimisation process.
As many-electron effects may be relevant, TDDFT ap-
pears as the ideal framework to capture them in the HHG
spectra (see for example Ref. [44]) as it combines a very
good compromise between accuracy and computational ef-
ficiency. The present optimisation scheme has been imple-
mented in the first-principles code octopus [45,46], that
allows the treatment of more complex molecular and ex-
tended systems. However for the purposes of the present
work, it is better to stay at the simplest level of one and
two electron systems. Larger electronic systems would of-
fer a wider range of possibilities for HHG enhancement.

2 Theory

2.1 The HHG spectrum

Within the dipole approximation and in the length gauge,
the experimentally measured harmonic spectrum can
be theoretically approximated by the following formula
(atomic units will be used hereafter):

H(ω) =

∣

∣

∣

∣

∣

∫ T

0

dt
d2

dt2

〈

�̂µ
〉

(t)e−iωt
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i.e. the power spectrum of the second derivative of the ex-

pectaction value of the dipole moment �̂µ = −
∑N

i=1 �̂ri (see
Ref. [47] for a discussion on the pertinence of using, alter-
natively, the first derivative or the dipole moment itself).
This object is given by:

d2

dt2

〈

�̂µ
〉

(t) =
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∇v(�̂ri)

〉

+ Nε(t)�π, (2)
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where v is the (static) ionic potential, N is the number of
electrons, ε(t) is the laser pulse electric field amplitude,
and �π is the polarization vector. Note that this expres-
sion can be read as both the acceleration of the electronic
system, and as the corresponding back-reaction of the nu-
cleus (or nuclear center of mass, if we are dealing with a
molecule). This is not surprising since the electromagnetic
emission must be related with a charge acceleration. The
expression corresponds, except for the mass factor, with
the classical force acting on the nucleus, considered as a
point particle. We will therefore rewrite equation (1) as:

H(ω) = |�f(ω)|2, (3)

where �f(ω) is the Fourier transform of:

�f(t) =

〈

N
∑

i=1

∇v(�̂ri)

〉

+ Nε(t)�π. (4)

From a TDDFT perspective, the use of this force expres-
sion is convenient since it can be explicitly written as a
density functional:

�f(t) =

∫

d3r n(�r, t)∇v(�r) + Nε(t)�π, (5)

where n(�r, t) is the time-dependent electron density. This
object can be obtained with TDDFT.

2.2 The density obtained from TDDFT calculations

The important point to notice is that the HHG spectrum
may be explicitly computed solely in terms of this sys-
tem electronic density. For systems with more than one
electron, this fact is convenient since TDDFT allows to
compute the density substituting the propagation of the
real interacting system by the propagation of a system of
fictitious non-interacting electrons, easier to handle: the
“Kohn-Sham” (KS) system. It can be modeled with a
set of single-particle orbitals forming the Slater determi-
nant, whose equations of motion are usually called “time-
dependent Kohn-Sham” (TDKS) equations:

i
∂

∂t
ϕi(�r, t) = −

1

2
∇2ϕi(�r, t) + vKS[n](�r, t)ϕi(�r, t), (6)

ϕi(�r, 0) = ϕgs
i (�r). (7)

The initial values specified by equation (7) are given by the
ground-state KS orbitals, computed with static DFT. The
time-dependent density of the system may be retrieved
from the KS orbitals with the simple formula:

n(�r, t) =

N/2
∑

i=1

µi|ϕi(�r, t)|
2, (8)

where µi is the occupation of each orbital, which is equal
to two if we consider a spin-compensated system of N
electrons, doubly occupying a set of N/2 spatial orbitals
ϕi (i = 1, . . . , N/2).

The potential that appears in those equations, vKS (the
“Kohn-Sham (KS) potential”) is a functional of this den-
sity, and is defined as:

vKS[n](�r, t) = v(�r) + ε(t)�π · �r + vH[n](�r, t) + vxc[n](�r, t),
(9)

where the Hartree potential vH is given by:

vH[n](�r, t) =

∫

d3r′
n(�r′, t)

|�r′ − �r|
, (10)

and v(�r) is the static external potential. The time-
dependent external potential for these one-electron
equations is given by ε(t)�π · �r.

Regarding the last term in the definition of the KS
potential (Eq. (9)), the so-called “exchange and correla-
tion potential”: hereafter, we will restrict the discussion
to one and two-electron systems, the extension to systems
with larger number of electrons is straightforward in the
TDDFT framework. The one-electron case obviously does
not need a TDDFT treatment, although it may be treated
as such by considering one single occupied orbital. For
such one-orbital problem, the exchange and correlation
potential must cancel the Hartree term:

vxc[n](�r, t) = −vH[n](�r, t), (11)

so that the resulting equation reduces to the initial
Schrödinger equation. For two-electron systems, we use
the exact-exchange approximation (EXX) to the xc term,
which for this two-electron case amounts to setting:

vxc[n](�r, t) = −
1

2
vH[n](�r, t). (12)

Note that in this form TDDFT is identical to time-
dependent Hartree-Fock that provides a good description
of the non-linear properties of two-electron systems except
for the description of charge-transfer excitations (see for
example Ref. [48]). In any case, since we assume a spin-
singlet configuration, only one orbital is necessary in the
two electron case, too.

We have studied the two simplest atoms, hydrogen and
helium. For the helium atom, we have used TDDFT with
the exact-exchange functional (EXX). In order to assess
the possible relevance of the electron-electron interaction,
we have repeated the helium atom calculations employing
the single active electron (SAE) approximation, which in
this case amounts to freezing the Hartree, exchange and
correlation functional to its ground-state value during the
propagations. In this manner, we are effectively ignoring
the electron-electron interaction during the propagation,
and may gauge the relevance that it may have on the
possibility of changing HHG spectra via smooth variations
of the envelope function.

For the purpose of studying the HHG of atoms in lin-
early polarized pulses, one-dimensional (1D) models have
been routinely employed in the past, and we have adhered
to this practice, since it provides a good qualitative pic-
ture, while substantially reduces the computational cost.
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The nucleus-electron interaction has the soft-Coulomb
form:

v(x) = −
Z

√

a2 + (x − x0)2
, (13)

for an electron placed at x and a nucleus of charge Z
placed at x0. The constant a may be tuned to repro-
duce some atomic property (e.g. ionization potential), al-
though in this case we have simply fixed it to one for both
hydrogen and helium. Likewise, the Hartree term given in
equation (10) has to be softened in 1D, in our case using
the same value for a:

vH[n](x, t) =

∫

dx′ n(x′, t)
√

a2 + (x′ − x)2
. (14)

The use of 1D representationss and modified interactions
necessarily implies a loss of quantitative agreement with
respect to the exact models. For example, the ionization
potentials of helium and hydrogen are 0.90 and 0.50, re-
spectively, whereas the ones that we get with this model
are 0.75 and 0.67. These values could be matched by ad-
justing the softening parameter a; however we have pre-
ferred to set it to a common value.

Everything has been implemented in the octopus

code [45,46]. The wavefunctions, potential, densities, etc.
are represented in this code by the values they take at
points of a real space grid. The Laplacian operator, needed
to compute the kinetic part of the Hamiltonian, is com-
puted using a 9-point finite difference formula. The prop-
agations are performed by dividing the full time inter-
val into short time steps [t0, t1 = t0 + ∆t, t2 = t0 +
2∆t, . . . , T ], and approximating the short-time evolution

operator Û(ti+1, ti) with the exponential mid-point rule:

Û(ti+1, ti) ≈ exp

{

−i∆tĤ

(

ti +
1

2
∆t

)}

. (15)

The action of the exponential on a state vector is com-
puted by making use of the Lanczos polynomial expan-
sion (see Ref. [49] for a discussion of the propagation
schemes used in octopus). The full details about the
combination of TDDFT and QOCT were explained in
references [50,51].

2.3 The optimization

Usually, the electric field ε(t) is factorised into a sinusoidal
function determining the fundamental frequency ω0, and
an envelope function f that determines the overall laser-
pulse shape:

ε(t) = f(t) sin(ω0t). (16)

This factorisation – and the concept of a fundamental fre-
quency – is meaningful for long and quasi-monochromatic
pulses, but as the technology has reached the optical pe-
riod limit, it has started to lose its relevance. Nevertheless,
the existence of a fundamental frequency is implicit when
speaking of harmonics, which are defined as radiation at
integer multiples of precisely that frequency. These will

only be well defined if the envelope function is smooth
compared to the sinusoidal term, i.e. its frequencies are
much lower than ω0.

Therefore, in this work, we investigate the possibility
of manipulating the envelope function f , leaving the sinu-
soidal factor sin(ω0t) unchanged, in order to influence the
shape of the HHG spectrum. This manipulation cannot be
unconstrained, as the envelope must be composed of fre-
quencies much lower than ω0. Moreover, we have searched
for solutions that preserve the fluence or total integrated
energy of the pulse:

I =

∫

dt ε2(t). (17)

This type of requirement of a specific structure for the
solution field (in terms of frequencies, fluence, etc.) can
be respected following essentially two routes: by impos-
ing penalties on undesired features of the pulses in the
definition of the optimising function, or by constraining
from the beginning the search space. This latter option
can be achieved by establishing a parametrisation of the
control field (in this case, the envelope) that enforces the
required condition, and is the route that we have cho-
sen for this work. The search for the optimum is in this
manner performed in the space of parameters that deter-
mine the control field; the remaining necessary ingredi-
ent is the definition of a merit function that encodes the
physical requirements. Moreover, the assumption of low
frequencies for f implies that the spectrum of ε is con-
centrated around ω0. Therefore, the Nε(t)�π term in equa-
tions (2), (4), and (5) does not contribute to the HHG
spectrum in the region we are interested in and in the
following we will safely ignore it.

The electric field amplitude will be determined by the
specification of a set of M parameters u1, . . . , uM ≡ u :
ε(t) = ε[u](t). The evolution of the TDKS system is in
consequence also governed by the choice of parameters u,
i.e. the orbitals and density are functionals of the param-
eters: u → ϕ[u], u → n[u]. We may then use the tools
of QOCT to find the set u that maximizes a given target
function G, defined in terms of a functional of the density
of the system, i.e.:

G[u] = F̃ [n[u]]. (18)

This functional F̃ is designed to favour the desired be-
haviour of the system (in this case, a certain form of the
HHG spectrum, to be detailed below). Note that it is de-
fined in terms of the system density, and not in terms of
the full many-body wave function. This definition ensures
that the substitution of the real by the KS system in the
optimization entails no further approximation. The the-
ory must however be developed in terms of a functional of
the KS orbitals, which can be easily defined as:

F [ϕ] = F̃ [µϕ∗ϕ] , (19)

where µ is the occupation of the orbital ϕ, i.e. one or two
for one- or two-electron calculations, respectively – since
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we consider only one or two electron systems, there is only
one KS involved.

We must now choose a form for F in such a way that
its maximization leads to the desired HHG optimization,
namely the selective increase of one harmonic peak – that
should leave the neighboring ones as low as possible. There
is substantial liberty to design F , and it is not evident
what functional form should lead to better results. One
possible choice is:

F [ϕ] =
∑

k

αkH [ϕ](kω0), (20)

where αk takes a positive value for the harmonic to be
enhanced, and negative values for the ones that we wish
to reduce. However, this choice proved to be problematic,
since the modulation of the source signal with the envelope
function leads to displacements, sometimes substantial, of
the harmonic peaks with respect to the precise integer
multiples kω0. A general definition that solves this prob-
lem (and that includes the previous one as a particular
case), is:

F [ϕ] =

∫

dωα(ω)H [ϕ](ω) =

∫

dωα(ω)|�f [ϕ](ω)|2, (21)

where we have made explicit the fact that both H and �f ,
defined in equations (1) and (4) are functionals of the
time-dependent evolution for the system. The function α
permits to establish some finite window around each har-
monic peak kω0, that will be positive for the harmonic
orders that we want to enhance, and negative for the ones
that we want to reduce. Finally, a third option is to seek
for the maximum of the spectrum in these frequency win-
dows around the harmonic orders, i.e.:

F [ϕ] =
∑

k

αk max
ω∈[kω0−β,kω0+β]

{log10 H [ϕ](ω)}, (22)

where the real number β determines the size of the
window.

Once the function G has been defined (through the
definition of the target functional F ), it remains to use
some optimization algorithm to find the optimal u set.
There are numerous options, and we may divide them on
two groups, depending on whether or not they require the
computation of the gradient of G – in addition of the com-
putation of the function itself. The methods that employ
the gradient are of course more efficient, as long as this
gradient can itself be computed efficiently. The simplest
scheme is steepest descents, but one can also use conjugate
gradients or, in our case, the Broyden-Fletcher-Goldfarb-
Shanno (GFBS) quasi-Newton method.

For the function G, the gradient is given by [50]:

∇G[u] = 2

∫ T

0

dt ∇ε[u](t)Im〈χ[u](t)|�̂r · π̂|ϕ[u](t)〉. (23)

This expression uses an auxiliary orbital χ[u] defined by
the following equations of motion:

i
∂

∂t
χ[u](�r, t) = −

1

2
∇2χ[u](�r, t) + v∗KS[n[u]](�r, t)χ[u](�r, t)

+ K̂[ϕ[u](t)]χ[u](�r, t)

− i
δF [ϕ[u]]

δϕ∗[u](�r, t)
, (24)

χ[u](�r, T ) = 0. (25)

The potential vKS is the KS potential and the operator
K̂[ϕ[u][t]] is defined as:

K̂[ϕ[u](t)]χ[u](�r, t) = −4iϕ[u](�r, t)

× Im

∫

d3r′ χ∗[u](�r′, t)fHxc[n[u](t)](�r, �r′)ϕ[u](�r′, t),

(26)

where fHxc is the so-called kernel of the KS Hamiltonian,
which, for our two-electron case treated within the EXX
approximation, is given by: fHxc[n](�r, �r′) = 1

2
1

|�r−�r′| , and is

null for the one-electron case (zeroing the full K̂ operator).
The functional derivative of F , needed in equa-

tion (24), for the HHG target defined in equation (21), is:

δF

δϕ∗(�r, t)
= �g[ϕ](t) · ∇v(�r) ϕ(�r, t), (27)

where

�g[ϕ](t) = 2µ

∫

dω α(ω)Re
[

�f [ϕ](ω)e−iωt
]

. (28)

However, we cannot compute this functional derivative for
the target defined in equation (22) due to the presence
of the “max” function, at least in a simple and efficient
manner. In consequence, when using this target definition
we could not make use of any of the optimization algo-
rithms that make use of the gradient, and turned to the
gradient-free NEWUOA algorithm [52], which is a very ef-
ficient scheme for optimization problems with a moderate
number of degrees of freedom, such as the ones treated
here.

In fact, for the optimizations attempted in this work,
we observed numerically that the target of equation (22)
provided much better results than the target of equa-
tion (21), and therefore we will only show below gradient-
free optimizations; a recent publication [53], where the
objective was the HHG cut-off extension, demonstrated
gradient-based optimizations based on a target of the type
given in equation (21).

Therefore, it remains to specify the set of parameters u
that determine the envelope of the electric fields. The re-
quirements are: (i) the envelope should have a given cut-off
frequency; (ii) the field should smoothly approach zero at
the end points of the propagation time interval; (iii) the to-
tal integral of the field should be zero, and (iv) the fluence
or total integrated intensity of the pulse should have a
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constant pre-defined value. This last condition is merely a
choice, and not a physical constraint that experimentalists
face.

The first step to parametrize the applied time-
dependent electric field ε(t) in order to enforce all these
constraints is to expand the envelope in a Fourier series:

f(t) =

2L
∑

i=1

figi(t), (29)

where

gi(t) =

⎧

⎨

⎩

√

2
T cos

(

2π
T it

)

(i = 1, . . . , L)
√

2
T sin

(

2π
T (i − L)t

)

(i = L + 1, . . . , 2L).

(30)
This series fixes the maximum possible (cut-off ) frequency
to 2π

T L. Note that it explicitly omits the zero-frequency
term, which is a desired restriction, in order to fulfill:
∫ T

0 dt f(t) = 0 .
The manifold spanned by the fi coefficients is not yet,

however, our parameter space, since we still want to en-
force the conditions f(0) = f(T ) = 0, and fix the flu-
ence: I =

∫

dt ε2(t) = I0 . As discussed in reference [54],
these conditions reduce the degrees of freedom from 2L to
2L−2: the final parameters u1, . . . u2L−2 are finally the hy-
perspherical angles that characterize a sphere of constant
fluence, determining the Fourier coeffiencients: fi = fi[u].

In all the OCT calculations to be shown below we
have fixed the wavelength of the fundamental frequency ω0

to 800 nm, a very common value used in laboratories
equipped with a Ti:sapphire source. The total pulse du-
ration is fixed to 200 cycles, T = 200 2π/ω0, which cor-
responds to 533 fs approximately. The envelope function
f(t) is then restricted to have frequencies no larger than
ω0/60. The fluence (Eq. (17)) is then fixed to a value
(around 5.0 a.u.) that ensures a sufficiently non-linear re-
sponse of both the hydrogen and helium atoms, while not
causing a substantial ionization. Fixing the fluence does
not imply fixing the peak intensity; however the simulta-
neous existence of a maximum frequency puts a limit on
it; in practice, the peak intensities observed in the optimal
pulses are in the range of 5 × 1013−1014 W/cm2.

The optimization are started from randomly generated
sets of parameters u. Since the procedure finds local max-
ima, we have performed several searches for each case,
choosing afterwards the best among them. In order to have
some “reference” to compare the optimal run to, we define
a reference pulse as:

εref(t) = ε0 cos

(

π

2

2t − T

T

)

cos(ω0t), (31)

i.e. a cosinoidal envelope that peaks at t = T/2 with a
value of ε0, chosen to fulfill the fluence condition. The
chosen peak amplitude ε0 and frequency ω0 imply a pon-
deromotive energy Up of 0.069 a.u. This would in principle
lead to expected cut-off harmonic frequencies (3.17Up+Ip,
where Ip is the ionization potential) of 16ω0 and 17ω0,
respectively.

Fig. 1. HHG spectrum of the hydrogen (top) and He (bottom)
atoms, with the reference pulse of equation (31). For the case
of the He HHG spectra we show two results: one solving the
TDDFT equations using the EXX functional (green) and the
other solving the single-active-electron (SAE) (red) equation,
commonly used by the strong-field community. To make more
clear the comparison between EXX and SAE we shifted the
SAE spectra by 0.5ω0 in the x-axis. The shaded area contains
the harmonics of interest. This area is also displayed in the
inset, with a linear y-axis scale.

3 Results

The calculated HHG spectrum emitted by the hydrogen
and helium atoms, irradiated by the reference pulse, is de-
picted in Figure 1. Note that the harmonic plateaus start
their decline at the expected cut-off mentioned above. Also
note that there is a range of harmonics with comparable
intensities forming a plateau (9 to 19 in H and 15 to 21 in
He). Because of this, we have selected that range (shaded
in the plot) to perform the selective optimisations. The
range is displayed, this time with a linear y-axis scale, in
the inset. For the case of He we show the EXX and SAE re-
sults. As in He two electrons populate the only orbital in a
spin-compensated configuration, the SAE approximation,
in this case, consists in neglecting the interaction between
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the electrons during the action of the field, freezing the
potential to its ground state shape. In this adiabatic-DFT
context, it amounts to ignoring the time-evolution of the
Hartree, exchange and correlation potentials, and is useful
to gauge the relevance that correlations may have on the
HHG optimisation.

Let us discuss first the case of optimising the HHG
spectra of H. We used the target given by equation (22)
to optimise the odd orders from the 9th to 19th. To en-
hance the 9th harmonic, for example, we set α9 = 5, and
α11 = α13 = α15 = α17 = α19 = −1 (all other αk are
zero). In this manner, the sum of all coefficients is zero,
avoiding any improvement of the merit function due to a
mere overall reduction or increase of the spectrum. The
results are displayed in Figure 2. From top to bottom, in
the left panels, the spectra produced by the optimal fields
for the 19th, 17th, . . . , 9th harmonic. In the right panels,
the optimal fields themselves; their envelopes in real time,
as well as their power spectrum.

The resulting fields produce considerably higher har-
monic outputs than the unshaped, reference field. To
quantify this point we introduced an enhancement factor
that is displayed in each plot, defined as:

κj =
maxω∈[kω0−β,kω0+β]{H [ϕ](ω)}

Href(jω0)
, (32)

where Href is the spectrum obtained with the reference
field, and H the one obtained with the optimal field (the
computation of the max function is not needed for the for-
mer, because due to the regularity of its envelope function,
Href always peaks at the precise integer multiples jω0).
This enhancement factor greatly varies from case to case
(i.e. it is 8 for j = 13, and 1006 for j = 11). Note that
the plots do not share the same y-scale; they are scaled in
each case to the value of the maximum of the plot.

We turn now our attention to the case of the helium
atom, that contains two electrons. The interaction be-
tween these is treated here with TDDFT, within the EXX
approximation. As in the previous case we performed op-
timisations based on the target given by equation (22),
now for the orders 15th to 21st, fixing the coefficients αk

in an analogous manner. The results are displayed in Fig-
ure 3. From top to bottom, in the left panels, the spectra
produced by the optimal fields for the 21st, 19th, 17th,
and 15th harmonic. In the right panels, the optimal fields
themselves.

The enhancement factors achieved are quite large, and
as in the case of hydrogen, rather different from case to
case. This rather large enhancement of the wanted har-
monic is not accompanied by a full depletion of the neigh-
bouring ones – in fact, they are also increased. This partial
selectivity is also similar to the Hydrogen results. To quan-
tify the role of electron-electron interactions we show in
the same Figure 3 the SAE results (red curve). Qualita-
tively, the SAE results are not very different to the ones
obtained with the EXX functional, in terms of intensity
enhancements and selectivity. The fact that the calculated
optimal fields and the spectra are different for both EXX
and SAE illustrate not only the intrinsic non-linearity of

Fig. 2. Optimized HHG spectra (left panels), and correspond-
ing optimal fields (right panels), for the hydrogen atom case.
The optimal fields are plotted in the time domain (only the en-
velope function f(t) is shown), and in the frequency domain.
The HHG spectra are shown in a linear scale, normalized in
each case up the value of the maximun value. The enhancement
factor defined in equation (32) is also shown.

the optimisation algorithms and the rather large number
of possible local maxima, but also the fact that electron
interaction does play a role in the generation and optimi-
sation of harmonics. Indeed, by looking in more detail to
the results shown in Figure 3 for all cases except for the
optimisation of the 17th harmonic, we see that SAE with
respect to EXX provides a better selectivity and harmonic

http://www.epj.org
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Fig. 3. Optimized HHG spectra (left panels), and correspond-
ing optimal fields (right panels), for the helium atom case. As
in Figure 1 we show in green the results within TDDFT us-
ing the EXX functional and in red the ones using the SAE
approximation. The optimal fields are plotted in the time do-
main (only the envelope function f(t) is shown), and in the
frequency domain. The HHG spectra are shown in a linear
scale, normalized in each case up the value of the maximun
value. The enhancement factor defined in equation (32) is also
shown. As in Figure 1, we shifted the SAE spectra by half a
fundamental frequency in the x-axis.

enhancement, measured by the height of the desired har-
monic and the quenching of the neighbouring ones. There-
fore electron correlation seems to play a role in the optimi-
sation of harmonics. This fact, together with the common
knowledge that heavier noble gases emit stronger HHG
radiation that light ones (whereas the SAE that predicts
similar spectra) [55–57] support our findings about the
limitations of the SAE approximation and the role of elec-
tron interactions. In fact we can expect larger enhance-
ment factors to be reached by applying the present opti-
misation techniques to heavier atomic/molecular systems.

4 Conclusion

In conclusion, we have investigated, by theoretical means,
the possibility of tuning the shape of the HHG spectrum
of the hydrogen and helium atoms by shaping the slowly
varying envelope of a 800 nm, 200-cycles long laser pulses.
For this purpose, we have optimised a functional designed
to enhance selected harmonics. The allowed modifications
of the pulse are very constrained, since we enforce a
maximum envelope frequency no larger than 1/60 of the
fundamental frequency. This means very slowly varying
envelopes. However, the picture that emerges of our anal-
ysis is that these relatively small modifications produce
strong variations of the spectra, allowing for significative
increases of the harmonic intensities. These enhancements
are not fully selective, since the neighbouring harmonics
also increase, but to a lesser extent. The outcome depends
of the precise definition of the target functional, which is
a topic to be investigated further. There is ample free-
dom to choose this object, and a different option may
yield better selectivity – while perhaps reducing the total
enhancement, or vice-versa.

The spectra have been computed with a fully quan-
tum mechanical description, by explicitly computing the
time-dependent dipole moment of the systems. The results
presented here correspond to the single-atom response –
we have not propagated Maxwell’s equations in a atomic
gaseous medium. Therefore, this work shows to which ex-
tent this single-atom response is significantly altered by
the envelope of the laser pulse, even for the small mod-
ifications allowed in our scheme. We have shown that
few orders of magnitude HHG enhancement factor can
be reached at the single-atom level. Moreover, our results
illustrate the role of electron-electron interactions in this
optimisation and control of HHG.
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