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THESIS ABSTRACT

Enhancing Automotive Embedded Systems with FPGAs

by

Shreejith Shanker
Doctor of Philosophy

School of Computer Science and Engineering

Nanyang Technological University, Singapore

Modern vehicles represent a complex distributed cyber-physical system that simul-

taneously handles critical functions like drive-by-wire systems, non-critical func-

tions like window/door control, and compute intensive multimedia functions. Dis-

tributed electronic control units (ECUs), which integrate processing elements and

supporting peripherals (network interfaces, memory), implement a variety of func-

tions in software, and information is exchanged between ECUs and sensors/actua-

tors over in-vehicle networks. As the complexity of applications rises with increas-

ing automation, extensive hardware support is required in the form of multicore

processors or special purpose hardware accelerators to offer required levels of per-

formance. Additional features also drive an increase in the number of ECUs since

new functions are rarely consolidated on existing ECUs. Furthermore, network

interfaces implemented as ASICs or dedicated logic must be adapted to handle in-

creased communication loads, consuming power and requiring more infrastructure

support in terms of cabling and weight. The increasing number of safety-critical

functions further impacts complexity if existing one-to-one redundancy schemes

are applied. Rising automation also poses news challenges like security, with re-

searchers showing that internal networks are easily manipulated with catastrophic

effects and total loss of control. Our research aims to address these challenges

using architectural enhancements that are transparent at the computational and

network levels, leveraging the capabilities of reconfigurable hardware. We present

advanced ECU architectures with extended network capabilities, apply these in

the context of safety critical systems, explore ways of extending these schemes

to offer advanced security features, and show how such advanced systems can be

validated in hardware. Our work represents an advancement in the state of the

art with regard to applying FPGAs in vehicular systems.
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1
Introduction

Three decades ago, a car was a highly mechanical piece of equipment that incorpo-

rated an engine, drive mechanism, and wheels, with a battery, alternator system

and some controls for the lights as the only electrical parts. The first computing

device to be used in a vehicle was a tiny micro-controller for handling the timing of

spark plugs, with a modest control function implemented in a few lines of code [1].

Improving electronics allowed this functionality to be extended to engine timing

control, control of the fuel injection system, and diesel engine control, using more

powerful micro-controllers which executed code that monitored a set of sensors

and controlled a sequence of actuators. The extensive use of micro-controllers for

engine related control or management resulted in these small computing devices

being called engine control units or engine management units (EMU).

1
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The ability to control functionality through software was appealing and numer-

ous vehicular applications exploited micro-controllers in safety-related systems

like Anti-lock Braking Systems (ABS) and airbag control, as well as in comfort

functions like window controls, radio/cassette players and others towards the late

1980s. While complex computation was typically not required, reliability became

an important factor. When connectivity was required, these embedded units were

wired up using point-to-point links.

A modern vehicle today, by comparison, incorporates much more complex compu-

tation and dedicated network-based connectivity to handle the complex exchange

of information. A high-end vehicle today can execute over 20 million lines of

code in real-time, over a distributed array of embedded processing units (called

electronic compute units or ECUs), that together control and coordinate both

critical and comfort functions [2]. The number of computing units in a vehicle has

thus risen across all ranges of cars, with low-end vehicles incorporating 30 to 50

ECUs, while the top of the line models can incorporate over 100 ECUs. These are

supported by multiple in-vehicle networking standards that have also evolved to

accommodate the reliability and bandwidth requirements of these functions.

The complexity of applications on modern vehicles is significantly higher; many

mechanical functions like hydraulic power steering and drive controls (like acceler-

ation and braking) are being replaced by their electronic versions (called x -by-wire

systems), which require hard real-time performance. On the other hand, advanced

assistance systems makes use of a variety of sensors to present the driver with infor-

mation about the vehicle and its surroundings, and may even be able to physically

assist the driver (like automatic parking). These applications can also be adaptive

to conditions, as in the case of adaptive terrain response systems, which can detect

the road surface and adapt vehicle settings automatically, increasing their com-

plexity. Such complex applications require major and minor adjustments in near

real-time, based on intensive computations performed on data collected from a

multitude of sensors. Software offers the benefits of flexibility, easier development

cycle, and field upgradability but more advanced special purpose architectures

and/or multi-core processor systems are needed to meet requirements. Even with
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these enhanced compute platforms, the scalability of systems is bounded by the

limited parallelism on offer. Multi-core and application specific platforms can also

consume higher power, degrading the energy efficiency of the system.

Another challenge is the integration model followed in vehicular embedded sys-

tems that treats each new function as a new ECU. This lack of consolidation

depends on multiple factors, but is largely influenced by the capabilities of the

computational platforms (or lack thereof). For these new functions to be consol-

idated onto existing ECUs, the architectures must provide support for isolating

different applications to ensure that both of them can operate reliably and are not

affected by the presence (or actuation) of other applications. On processor-based

architectures, this level of isolation is a non-trivial problem since the processor

hardware will be shared by the functions that are being executed on the compute

core, resulting in contention that has to be explicitly handled, creating further

complexity. This generally results in the use of the “new compute unit for each

new function” integration model, along with its associated packaging and network

connectivity complexity. It is estimated that a mid-sized vehicle incorporates over

6 km of interconnect cabling contributing over 70 kg to the weight, largely due to

this integration model [3].

The increasing proliferation of mobile technology is also pushing newer features

into vehicular systems like inter-vehicle communication and connected services.

The vehicle-to-vehicle (V2V) communication concept enables vehicles to exchange

information about themselves and surroundings, and aims to achieve better road

systems in a co-operative manner. The increasing connectivity and automation in

vehicles brings with it new challenges like security; a connected vehicle controlled

by software provides huge opportunities for a hacker. Computational systems

and networks in modern and future vehicles will have to integrate mechanisms to

combat security threats at the application layer or at the platform level, further

adding to their complexity.

For a mass production industry like automotive, application specific integrated

circuits (ASICs) would provide the most cost effective solution. Applications that
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demand large scale deployment across ranges of vehicles like ABS can benefit from

the highly energy efficient, dedicated approach. However, their complete lack

of flexibility to adapt to changing standards and requirements can prevent their

widespread adoption in some vehicular systems. For example, automotive manu-

facturers like Tesla Inc. often provide software-based updates to the electronically

controlled functions in their electric vehicles, aiming to improve performance and

efficiency. Furthermore, the development cycle for software-based functionality is

much smaller compared to the development flow of ASICs.

Reconfigurable computing platforms like Field Programmable Gate Arrays (FP-

GAs) provide an alternative. The configurability of the platform allows designers

to build customised circuits which provide many of the performance and energy

benefits of ASICs, while retaining the flexibility of software systems. Beyond the

obvious performance boost, such systems provide a powerful platform for imple-

menting multiple functions on the same hardware with complete isolation, using

hard partitioning, and partial or complete reconfiguration. This further improves

cost benefits and power consumption, along with savings in other factors such as

size and weight. Moreover, FPGAs enable systems to be built with guaranteed

deterministic results. This is particularly important for safety-critical in-vehicle

systems, where reliability is of paramount importance.

New generation hybrid reconfigurable platforms further extend the appeal by en-

abling tight integration of software based control flow with hardware processing,

allowing both components to be upgraded after deployment, similar to existing

software-based functionality while benefiting from higher performance, lower en-

ergy consumption and massive scalability. This would enable a single ECU-on-chip

architecture possible, where the computational function is closely integrated with

accelerators, sensor/actuator interfaces and network communication interfaces.

Despite these advantages, reconfigurable hardware is not widely used in ECUs.

The main hurdle is the difficulty associated with designing and evaluating ECU

architectures and the expertise required to design, manage and execute runtime

reconfiguration. In the following sections, we discuss the general architecture of
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ECUs and in-vehicle networks in modern vehicles and the challenges in adopting

new architectures for the in-vehicle infrastructure. This thesis contributes en-

hanced network architectures, compute systems, and security infrastructure for

next generation vehicular computing systems on reconfigurable platforms. It pro-

poses techniques to incorporate such features in a manner that is transparent to

the application and develops mechanisms to automatically validate such features.

1.1 Automotive ECUs and In-Vehicle Networks

Early vehicular electronics consisted of simple devices like 8-bit micro-controllers

with simple I/O support to connect to sensors [4]. With the introduction of more

demanding applications, more powerful 16 and 32-bit processors and domain spe-

cific controllers were used to provide improved computational capabilities. Special

purpose hardware like Digital Signal Processors (DSPs) are used in modern ve-

hicles to accelerate computations for signal processing applications. The primary

advantage of using software-programmable processors is portability and indepen-

dence from underlying hardware due to abstractions supported by high level lan-

guages. This trend was encouraged by standardisation of the requirements and

capabilities of underlying operating systems, which enable application developers

to design their product independent of the hardware target. These standards,

OSEK [5] and its evolution AUTOSAR [6], are widely adhered to in the automo-

tive industry, and determine a standardised platform for automotive applications.

Early automotive systems used simple switches and actuators, and their function-

ality was achieved using point-to-point wiring. As more complex systems were

introduced, point-to-point connections became infeasible due to the complexity of

the wiring harness and the resulting additional weight and volume [7]. The early

1980s marked the introduction of vehicle networking as a step to reduce the wiring

costs and complexity. Bosch introduced the Controller Area Network (CAN) in the

mid-1980s, which gained widespread acceptance in the automotive industry and

later became the most widely used networking backbone for in-vehicle systems.
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CAN provides flexibility to the user, since it can operated at multiple speeds and

thus at varied costs. For instance, low-speed CAN can run at 125 kbps and can

cater to all the user oriented electronics in a car, like power windows, electric seats

and air conditioning, while high-speed CAN could run at up to 1Mbps, serving

real-time and safety-critical applications like engine management, ABS and others.

Depending on the performance and/or safety requirements, an application in a

modern vehicle can be classified into one of the following domains:

1. The Body Domain incorporates user comfort features that are not safety-

critical and have low quality of service (QoS) requirements.

2. The Powertrain handles engine management, power delivery and transmis-

sion and has hard real-time requirements.

3. The Chassis Domain includes systems which affect vehicle dynamics and

controllability like steering, brakes, and suspension. These are safety-critical

functions since they affect the behaviour of the vehicle and its response to

user inputs.

4. Telematics and In-Vehicle Infotainment (IVI) Systems integrate high speed

multimedia, driver assistance systems, and the human-machine interface

(HMI). This domain typically has relaxed real-time constraints.

5. Occupant Safety is primarily concerned with active protection systems for

passenger safety and thus has strict real-time requirements.

Each domain requires different levels of service, such as response time, bandwidth,

redundancy, and error detection, among others, often referred to as Quality of

Service (QoS) levels [8]. These also feature different real-time and performance

capabilities at the software level and the associated hardware level.

ECU Architectures

Typically, an ECU is composed of a processing element, a network interface and

associated storage, as shown in Figure 1.1. The processing element may be an auto-

motive grade micro-controller, general purpose processor or an application-specific
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Figure 1.1: Typical ECU architecture.

controller. These execute the software tasks required for the ECU’s functional-

ity. The processing element usually integrates common peripherals like timers,

I2C/SPI interfaces that may be utilised by the application code. Most applica-

tions are executed on top of a standard real-time capable operating system like

µC-OS, QNX Automotive, or Windows Embedded (Automotive), which provide

the required abstraction for the application tasks. Operating systems may also

need to support the abstractions defined by OSEK or AUTOSAR (either on their

own or using middleware), which use a set of libraries to provide a standardised

interface to the application developer.

The placement constraints for many ECUs that requires their compute blocks

and/or sensor/actuator units to be positioned in certain parts of the vehicle led to

a distributed computing architecture. To support this distributed model, ECUs

integrate automotive standard network interface(s), either as dedicated ASICs, or

as co-processing logic integrated into the same die. Multiple network protocol im-

plementations may also be integrated in the case of ECUs which require interfaces

to different physical networks. ECUs that handle an extensive amount of data and

computation may also incorporate dedicated accelerators (hardware) and memory

systems like DRAM. Off-the-shelf components from automotive vendors also incor-

porate additional features like security extensions, hardware cryptographic blocks,

or others.

Depending on the domain the ECU is intended for, vendors also provide customised

architectures that are best suited for functionality in that domain. For example, a

body domain controller might integrate different network protocols and offer little

or no hardware acceleration support, while a telematics controller would integrate

high speed interconnect and dedicated accelerator blocks for video processing or
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Table 1.1: SAE in-vehicle network classification.

Class Throughput Domain Leading Protocol

Class A below 10 kbps Body Domain: Low end LIN

Class B 10 to 125 kbps
Body Domain: Non-critical

and non-diagnostic

Single-wire CAN

(SWC) & CAN 2.0

Class C
125 kbps

to 1Mbps

Powertrain: Real-time

critical parameters

High speed

CAN (HSCAN)

Class D above 1Mbps

Powertrain, Chassis:

Hard Real-time & Reliable
FlexRay

Occupant Safety:

Real-time & Reliable

Safe-by-wire

& Byteflight

Streaming Media and

Entertainment
MOST

radar interfaces. This “right-sizing” enables manufactures to control the cost

(development and parts) as well as standardise the software framework for each

domain.

In-Vehicle Networks

A variety of in-vehicle networks evolved, driven primarily by cost and performance

requirements. CAN proved too expensive and complicated for simple functions like

power windows or boot release. Simpler protocols like the Local Interconnect Net-

work (LIN) could offer similar functionality at lower cost per module and power

consumption, and thus found widespread adoption for non-critical functions. CAN

also proved too slow for high bandwidth applications like multimedia in higher end

vehicles resulting in the development of high bandwidth protocols like Media Ori-

ented Systems Transport (MOST) for such applications. Time-triggered CAN

(TTCAN) is an evolution of standard CAN, which addresses the lack of determin-

ism by introducing a time-triggered mechanism above the CAN framework. The

FlexRay protocol, developed by the FlexRay consortium, offers a combination of

time-triggered and event-triggered communication for in-vehicle applications to

enhance reliability with higher bandwidth. Time-triggered Ethernet, an exten-

sion of standard Ethernet, is also gaining traction as the backbone network for

future vehicles. The Society for Automotive Engineers (SAE) classifies in-vehicle



1 Introduction 9

networks based on throughput and domain of operation [7, 8, 9], as shown in

Table 1.1

As the number of communicating nodes in a network has increased, CAN has

proven incapable of consistently providing deterministic data transfer rates, pri-

marily due to its event-triggered architecture. Emerging safety-critical applica-

tions demand higher levels of determinism, which cannot be consistently ensured

by event-triggered networks. Future functions like drive-by-wire and brake-by-wire

will make time-triggered schemes the de-facto standard in critical domains. How-

ever, more widespread adoption of FlexRay or similar time-triggered architectures

will be limited by the higher cost per node.

ECU Consolidation

The “new function as a new ECU” integration model allows integration into exist-

ing and proven in-vehicle infrastructure with minimal time and cost. However, this

approach increases the weight and power consumed by electronic modules in the

vehicle and reduces the communication bandwidth. For future electric vehicles,

the powertrain, battery management, and control interfaces will be fully comput-

erised, requiring more computational power. The total weight of the on-board

computing systems and their power consumption become more critical considera-

tions to maximise performance and range for electric vehicles.

Consolidating multiple functions onto fewer ECUs is important to counter this

problem. Traditional approaches using processors running real-time operating sys-

tems do not allow for reliable isolated sharing since processor hardware resources

are shared by the two (or more) functions. Even in the case of multi-core processor

architectures shared caches or registers represent a point of contention. Determin-

ism in such an environment would require more complex real-time support and

explicit management in software.

Enhanced Capabilities

Currently, any enhancement to the communication network or computational sys-

tem are enabled due to software flexibility. For instance, integrating security using
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upcoming standards like secure hardware extensions (SHE) requires the applica-

tion to leverage enhancements to underlying libraries. This creates additional over-

heads in software execution to utilise these extensions and requires extensive data

re-routing which must be handled in software. Furthermore, additional latency

is incurred for each data/message, which must be factored into the task/message

schedule and re-evaluated to ensure real-time deadlines are not violated. Abstract-

ing such operational details and latencies from the application provides a better

mechanism. However, this is not possible with off-the-shelf components and re-

quires extensible, configurable datapath features to be integrated in the hardware

architecture.

Evolving automotive systems are adaptive in nature, meaning such systems make

intelligent choices to react to operating conditions. Systems like adaptive cruise

control and driver assistance systems provide better performance than their corre-

sponding static implementations [10]. On a conventional ECU architecture, adap-

tation is achieved through sophisticated software routines running on general pur-

pose platforms. More advanced adaptive applications are more computationally

complex, often requiring special purpose hardware support and accelerators. Like-

wise, security policies and algorithms need to adapted during the lifetime of an

ECU, which can be 20 years. These trends suggest that flexible hardware will play

a key part in next generation ECU architectures, offering benefits like accelerated

computation, lower latency, security, and deterministic execution.

FPGAs for Automotive Applications

Reconfigurable hardware platforms like Field Programmable Gate Arrays (FP-

GAs) offer an alternative for implementing such systems. FPGAs started as simple

programmable chips for glue logic at the board level. Modern FPGAs from Xilinx

and Altera are capable of implementing large and complex systems [11], and offer

a wide range of built in hard macro blocks, such as processors, DSP blocks and

block memories (RAMs). FPGAs can allow aggregation of multiple functions and

execution in complete functional isolation. They also allow integration of network

controllers and ECU functions (either as software running on embedded proces-

sors or as custom logic) in a compact footprint. Deterministic behaviour is also
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easily factored into systems implemented on reconfigurable hardware. Techniques

like dynamic or partial reconfiguration (PR) allow hardware-level adaptation to

enable more adaptive next generation automotive applications. PR also provides

alternative ways of handling redundancy for advanced safety-critical systems, as

well as mechanisms to adapt only segments of the architecture (like cryptographic

blocks), without requiring extensive redesign of the entire ECU architecture.

1.2 Motivation

FPGAs are not widely used in the automotive industry partly because they are

expensive and also because they require substantial hardware expertise. Exploit-

ing the potential of reconfigurable hardware for automotive applications requires

development of architectures which are compact and power-efficient. Validation

and certification concerns have also held back adoption, as many of the method-

ologies applied to software systems do not map well to these architectures. Many

vendors provide IP cores for automotive applications but these are mostly generic

and platform agnostic, and hence often inefficient. Furthermore, advanced features

like partial reconfiguration are rarely exploited. We believe that efficient compute

architectures that conform to automotive standards (like AUTOSAR), can offer

an abstracted view to the system designer, making reconfigurable hardware more

appealing.

Hardware-level adaptation using dynamic reconfiguration currently requires man-

agement through low-level hardware access. This is contradictory to the AU-

TOSAR implementations which require hardware details to be abstracted from

application designers. The design process is also extremely complex with sig-

nificant low-level architecture steps required. This makes integration and man-

agement of run-time hardware adaptation an expert feature, further reducing its

attractiveness for automotive system and application designers. By providing a

standard architecture that integrates run-time reconfigurability and abstracting its
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management, we believe that next generation ECU architectures can benefit from

hardware-level adaptation that is integrated as a standard feature of the platform.

For enhancing the electrics/electronics (E/E) architectures for next generation

vehicular computing systems, enhanced mechanisms are required at the communi-

cation/network layer for improving reliability and determinism with high perfor-

mance and energy efficiency. While current research aims to achieve this through

dedicated communication channels (bandwidth or slots) for communicating system

status, this requires extensive rescheduling and revalidation of communication and

computation each time a new feature is integrated. Such information must also be

passed up to the software application layer for processing, which further increases

latency. We believe that integrating intelligence into the network layer provides

a better alternative, and would help to abstract such low level details from the

application designer. This is especially true for applications like in-vehicle net-

work security, which is closely tied to the network properties and can benefit

from tight integration with the communication protocol. However, such exten-

sions must be adaptable and configurable so that these can be updated in-field, as

with ECU software updates, making reconfigurable hardware the ideal platform

for such intelligent network systems. Our research aims to develop architectures

for next generation time-triggered network systems that provide extended security

and reliability features without affecting the determinism of the protocol, while

abstracting such details from the (software) application layer.

Another challenge associated with architecture evaluation for future automotive

E/E systems is the difficulty associated with validating the functionality of appli-

cations. Presently, a complex hardware-in-the-loop test setup that replicates the

E/E architecture in a vehicle is recreated in a laboratory environment, on which

the changes to architecture and/or functionality of ECUs are evaluated. A more

scalable approach is to use a reconfigurable validation testbed platform that can

be easily configured with the required architecture and evaluated in real-time, with

bit-level precision.
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In the past decade, research on next generation vehicular systems has mainly con-

centrated on application level enhancements: novel functionality and application-

level mechanisms for reliability and security. Most of this work presents approaches

from the application designers’ perspective, relying on standard ECU architectures

and communication systems. Little research work has aimed at improving the un-

derlying hardware architecture and/or evaluating enhancements to the network

layer. Though many applications include the use of FPGAs for their performance

benefits, they did not consider ECU architectures that exploit the full capabilities

of FPGAs across the layers of the hierarchy. While we do acknowledge the hard-

ware expertise required for efficient designs and effective use of reconfigurability,

we believe that such details can be abstracted from the application designers and

can be embedded within the architecture as a feature. The techniques we propose

integrate these extensions at the lower layers of the architecture and the network,

over which existing research and applications can be directly ported without any

loss in performance or determinism. In this research, we concentrate on ECU

systems that rely on FlexRay as the network interface, as time-triggered networks

like FlexRay have been established as the architecture of choice for safety-critical

applications for future vehicles. The proposed methods can be equally adapted

to ECU systems that integrate emerging time-triggered standards like Automo-

tive Ethernet. We validate our approaches on Xilinx devices because of their

established dynamic reconfiguration flow, though the same can be ported to the

emerging Altera devices and tool flow.

1.3 Objectives

The main objectives of the research in this thesis are to:

1. Demonstrate how extended communication can be integrated into existing

infrastructure without sacrificing reliability of the protocol and in a trans-

parent manner.
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2. Propose ECU architectures that provide advanced functionality like fault-

tolerance and consolidation, leveraging enhanced communication and ab-

stracted from the application layer.

3. Develop techniques to integrate configurable security extensions into the

architecture that provide network and application security.

4. Develop a real-time functional validation platform that enables hardware

validation of ECU functionality with bit-level accuracy and real-time perfor-

mance.

1.4 Contributions

The main contributions of this thesis are the architectures and techniques devel-

oped for enhancing E/E architectures and communication infrastructure for next

generation vehicular systems. The architectures and techniques are designed in

a transparent manner such that system designers can port existing automotive

functions to the enhanced E/E architecture with minimal modification.

1. We have performed a comprehensive study of in-vehicle networks and archi-

tectures with a focus on time-triggered networks like FlexRay. We have also

identified features which can be enhanced through extended communication

on existing infrastructure.

2. An optimised FlexRay communication controller for reconfigurable archi-

tectures has been developed that has configurable extensions that integrate

features like timestamps, message identifiers, and reordering logic. The opti-

mised controller offers tight integration with the functional logic on the ECU,

while the extensions abstract network-level operations from the application

for better system performance and efficiency.

3. An efficient scheme for implementing functional consolidation for non-critical

ECUs and hardware-level fault-tolerance for safety-critical ECUs on recon-

figurable hardware has been developed. The scheme extends the FlexRay
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protocol framework to support system state messages that are handled at

the network layer. The network layer also manages the self-healing capabil-

ity by integrating intelligence (and reconfiguration logic), abstracting such

details from the application layer.

4. An efficient Gateway ECU architecture based on a hybrid FPGA platform

has been developed that provides deterministic switching performance in a

compact and energy efficient footprint. The gateway ECU is developed to

support future vehicular systems that utilise Automotive Ethernet as the

backbone network, respecting priorities imposed by automotive functions

on certain messages while providing gigabit interconnect between different

branches.

5. A scheme for integrating zero-latency message encryption is developed as a

configurable extension to our enhanced FlexRay interface. This is further

extended to provide a network access prevention scheme and cross-layer se-

curity for improved entropy of the ciphertext. This enhanced scheme also

integrates tamper protection for the software application and hardware bit-

stream, preventing compromised ECUs from accessing a secure network.

The scheme is integrated transparently to the application, allowing stan-

dard FlexRay applications to be directly ported to the secure domain.

6. A super-real-time bit-precise hardware evaluation platform has been devel-

oped to functionally evaluate an ECU within its network cluster by recreating

the cluster on a large FPGA chip. The platform provides numerous capa-

bilities to inject common errors and faults into the system, while a real-time

monitor enables the cluster behaviour and network communication to be

observed on a standard PC. Furthermore, the entire platform can be auto-

mated using simple scripts for long duration and complex test cases. Finally,

the entire platform can be accelerated without loss in precision, lowering the

validation time.
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1.5 Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 presents a de-

tailed literature survey on the evolution of embedded systems and networks cov-

ering state of the art systems like CAN, FlexRay and Time-triggered Ethernet.

We look at other aspects of in-vehicle communication like scheduling, reliability

analysis, and extensions like switched FlexRay. We also look at the evolution

of reconfigurable hardware, its applicability in ECUs and advanced techniques

like PR in this chapter. Chapter 3 describes the implementation of our exten-

sible FlexRay communication controller, the optimisations we have achieved for

reconfigurable hardware and the datapath enhancements that allow extended com-

munication using existing messages. The chapter also presents a comparison of

our implementation against existing platform agnostic implementations, and the

potential of the extensions. In Chapter 4, we describe the enhanced architecture

for ECUs on reconfigurable hardware that integrates capabilities of consolidation

and fault-tolerance. We also present an architecture for high-performance gateway

ECUs for the proposed Ethernet-backbone in-vehicle infrastructure on hybrid re-

configurable platforms. Chapter 5 presents our scheme for integrating transparent

network level security and comprehensive system-level security offering system and

network level protection without incurring additional latency. Chapter 6 describes

the functional validation platform and its extensions for improved observability.

Finally, Chapter 7 concludes the work presented in this thesis and outlines future

research directions.

1.6 Publications

Most of the work presented in this thesis has been included in a number of pub-

lished and submitted papers.
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The introduction of electronics for vehicular computation began in the early 1980s

with lightweight micro-controllers and point-to-point wired connections for control

tasks like fuel injection control, anti-lock braking systems (ABS), and other control

functions. The addition of more functions resulted in a large number of point-to-

point links, which became complicated and difficult to manage. Moreover, the

amount of wiring began contributing noticeably to the overall weight of the car.

Network-based connectivity and advanced compute units progressively made their

way into vehicles to offer new applications and improve cost, efficiency, and per-

formance. In this chapter, we review the architecture of existing state-of-the-art

vehicular networks like CAN, FlexRay and Time-triggered Ethernet (TTE) and

proposed extensions for these networks. We review the evolution of ECU archi-

tectures and analyse the potential of FPGA-based computing infrastructure for

19
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in-vehicle systems. We also discuss evolution of FPGA architectures and advanced

capabilities like partial reconfiguration offered on state-of-the-art FPGAs.

2.1 In Vehicle Computing Systems

The first reported use of an electronic safety-critical control function in vehicles

was in 1981. General Motors adopted micro-computer based engine control for

their gasoline powered cars which greatly improved efficiency and performance [1].

With the introduction of laws regulating emission control, the use of electronic

engine control was required to meet the legal requirements as well as to maintain

acceptable efficiency and performance. The ease of implementation and the cost/-

efficiency benefits motivated manufacturers to adopt electronic control for engine

management and this later spread to other domains.

Modern vehicles incorporate upwards of 30–50 ECUs across all segments. These

ECUs employ automotive grade micro-controllers and/or general purpose proces-

sors which execute software implementations of control and comfort applications.

The number of ECUs in vehicles has been rising at the rate of approximately 1.45×

a year, while the application software has been growing at a rate of 4.5MB per

year [20].

Embedded computing in modern vehicles is segmented into different domains

mainly differentiated by the criticality of the function executed. In general, each

ECU integrates a processing element (single or multi-core processor), memory sub-

systems (including volatile and non-volatile), optional dedicated accelerators like

cryptographic or image processing engines, power supply elements, and the inter-

faces to the different sensors, actuators, and network. Specific combinations are

chosen depending on requirements for each application. For example, in the body

electronics domain that handles simple comfort functions like doors, access con-

trol, lighting systems, and climate control, an ECU architecture may be composed

of an 8- to 32-bit micro-controller, non-volatile code memory, and network inter-

faces like CAN and LIN. Further, the ECU may have features like ultra-low power
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operation to enable it to be constantly active (as in the case of access control sys-

tems) [21, 22, 23]. However, in the driver information and multimedia domain, an

ECU might integrate a GPS interface for navigation, a display driver interface(s),

a 32-bit single or multi-core processor, and a video accelerator, along with an op-

tical network interface like MOST, offering higher compute and communication

performance at higher power consumption [24].

Most current generation compute units use CISC/RISC core(s) as the central pro-

cessing element [21, 22, 23, 24]. These can be custom designed cores or flavours

of generic 16/32-bit cores available from multiple vendors. Supporting periph-

erals interface to the processing element over standard interfaces like Advanced

Micro-controller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI)

or similar high-speed on-chip interconnect. Commonly integrated peripherals in-

clude hardened network controllers (CAN, LIN, FlexRay or others), timers, clock

generators, sensor interfaces (analog/digital), PWM modules, and others. The

choice of peripherals is determined by the application domain and these are often

integrated on the same die as the processing element.

Beyond the functional requirements of dependability and reliability, other factors

like maintainability, safety and security are important [4]. Compute units are

expected to offer a very high mean time between failures (MTBF), ease of fault

diagnosis, and ease of maintenance. Also, since drivers are not trained like pilots

to use the systems properly, the electronics must be capable of handling varying

driver input patterns without degrading safety. Such complex requirements along

with the rising computational requirements and economic constraints make the

design of automotive embedded systems challenging.

With features becoming more sophisticated and diverse manufacturers have had

to address the the rising complexity in design, development, and management of

these systems, giving rise to multiple standards: OSEK/VDX, AUTOSAR, and

the ISO 26262. These define the way systems are developed, both at the hardware

and software levels. The ‘Open Systems and their Interfaces for the Electronics in
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Motor Vehicles’ (OSEK) was founded by a consortium of German automotive com-

panies to standardise the software architecture for different embedded platforms

and promote software reuse. It includes specifications for the operating systems,

interfaces to the underlying platform, communication, network management, and

fault-tolerance mechanisms [5]. This was superseded by the Automotive Open

Systems Architecture (AUTOSAR) specification, jointly developed by automo-

tive manufacturers in 2003 [6]. The ‘Road Vehicles – Functional Safety’ standard

(ISO 26262) describes standard procedures for fault detection, fault handling, and

fault avoidance in automotive systems to prevent violation of system safety re-

quirements [25, 26]. The entire ECU architecture and software development for

automotive applications is governed by these standards.

The main advantage of AUTOSAR compliant system architecture is the decoupling

of software and hardware. This enables high-level integration of software functions

through abstracted hardware definitions via an API. Thus, a software function that

is compliant with AUTOSAR can be executed on any vendor’s micro-controller,

as long as the device supports the AUTOSAR run-time environment (RTE). The

AUTOSAR abstraction model is shown in Figure 2.1 [6].

The bottom layer in Figure 2.1 is the hardware element – the processing system

(GPP or MCU) with its peripherals, network interfaces, and memory structure.

Above this is the micro-controller abstraction layer (MCAL) which integrates the
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basic platform-level drivers for configuring and using the hardware elements. This

includes micro-controller drivers, communication and I/O drivers, and memory

abstractions, providing a hardware-independent API to the upper layers (or appli-

cation). The ECU abstraction layer (ECUAL) further abstracts platform details

by providing a standardised interface for accessing MCAL features from the op-

erating system. This layer includes complex drivers for specific features of the

platform (like accelerators or configurable features of the network interface) as

well as abstractions for platform-level drivers. Further, a service layer (SRV) may

be added on top for handling system-level and/or device-specific services for the

operating system, like network management or watchdog timers. These three lay-

ers form the basic software layer (BSW) that is required to support AUTOSAR

compliance for the hardware platform. With the BSW in place, AUTOSAR is able

to define a collection of software functions for accessing features/capabilities of the

hardware platform from an application without explicit use of low-level details.

The AUTOSAR run-time environment (RTE) interfaces the BSW to the applica-

tion software by enabling communication using a set of signals (sender/receiver)

and services (server/client model). The RTE abstracts the basic software com-

ponents from the application code, allowing generic and portable code devel-

opment for software-based automotive applications. Further, the RTE enables

a component-based structure for application code and handles inter-component

communication, promoting scalability and portability of applications across hard-

ware/software platforms. AUTOSAR compliance allows architecture designers

and automotive suppliers to deliver scalable software functionality and optimised

ECU architectures for the different functional domains.

2.2 In Vehicle Networks

Modern vehicles use different network protocols in different domains, the choice

determined by factors such as the functional requirements of the domain, critical-

ity, cost, and others. Among the many protocols, Local Interconnect Networks
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(LIN), Controller Area Networks (CAN), FlexRay, and Media Oriented Systems

Transport (MOST) are the most widely used protocols by the different manufac-

turers today [9, 27, 28]. Special networks like safe-by-wire may be employed for

passenger safety systems like airbags and other active protection systems. A sim-

plified scheme of typical in-vehicle network architecture in a modern vehicle is as

shown in Figure 2.2.

As already mentioned, the in-vehicle network is partitioned into different func-

tional domains. A backbone network is used to interconnect the different domains

and to transfer data between them. High Speed CAN (HS-CAN) or FlexRay (for

newer premium vehicles) are usually chosen as the network backbone because of

their higher bandwidth. The different domains connect to the backbone through

gateways. A gateway may provide interfaces to multiple networks like Low Speed

CAN (LS-CAN or plain CAN), HS-CAN, FlexRay, LIN and MOST depending

on the the functional requirements of the domain (and the network protocols

used to implement them), in addition to interfacing with the backbone network.

Gateways use a store-and-forward scheme, where data from one domain is stored,

transformed to the new interface format (if necessary), and transmitted over the

backbone to the destination domain at appropriate times. The architecture using

a gateway as a central active unit also helps provide fault isolation preventing fault

propagation across domains.
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2.2.1 Controller Area Networks

Despite being three decades old, the CAN protocol is still widely used in produc-

tion vehicles. The CAN specification was developed by Bosch in the mid-1980s

with the aim of reducing the number of point-to-point links used for communica-

tion between ECUs. While the introduction of networking resulted in a reduction

in the complexity of the wiring harness, it also enabled newer approaches to com-

puting like the use of shared sensors between different functions or applications [8].

CAN gained widespread adoption and soon became the de-facto communication

protocol for in-vehicle networks. Features that make CAN attractive for auto-

motive applications are its widespread adoption, its lower cost and complexity

(compared to networks like FlexRay or TTE), its robustness, and its bounded

delays. CAN is widely used in powertrain communication, the chassis domain

(HS-CAN at 500 kb/s) and the body domain (low-speed CAN at 125 kb/s) [27].

CAN for automotive networks became an ISO standard in 1994 [29, 30].

2.2.1.1 Protocol Specification and Scheduling

CAN defines a bus topology using a shared physical medium to which multiple

nodes are connected. The number of supported nodes is limited by the electrical

properties of the channel. At the physical layer, CAN uses a non-return-to-zero

(NRZ) encoding scheme, and transmits/receives data over unshielded twisted pair

cables. The physical layer implements logical AND functionality i.e., if any node

transmits a logical ‘0’, then the bus will remain a state ‘0’ even if other nodes have

transmitted logical ‘1’. This mechanism is also the key to the CAN arbitration

scheme for channel access.

The CAN standard uses an event-triggered communication scheme that requires

participating nodes to synchronise the start of communication. This is achieved

by tracking edges during any transmission. To ensure that there are enough tran-

sitions on the bus even when transmitting a continuous pattern of zeros (or ones),

CAN uses bit stuffing with the stuffing length fixed at 5 bits.
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Messages are exchanged between the different nodes by encapsulating them in

CAN frames, which can be transmitted periodically or otherwise. The frame

format used for Automotive CAN networks (CAN 2.0A) is as shown in Figure 2.3.

The frame has the following sections:

1. The Start of Frame is a single dominant bit (logical ‘0’), which marks the

start of a Data Frame or Remote Frame. A node can only start transmission

when it detects that the bus is idle. It is required that all nodes synchronise

to the leading edge of the Start of Frame bit.

2. The Arbitration field consists of an 11-bit node Identifier (which also defines

its priority) and a remote transmission request (RTR) bit (dominant for Data

Frame and recessive for Remote Frame).

3. The Control field consists of 4-bit Data Length and 2 reserved bits.

4. The Data field can contain up to 8 bytes of information (including the option

for zero byte data).

5. The CRC field contains a 15-bit cyclic redundancy check (CRC) code fol-

lowed by a single recessive bit as the CRC delimiter.

6. The Acknowledgement field has a 1-bit Ack slot followed by a 1-bit Ack

delimiter. Any node that validates the transmitted data will override the

recessive bit sent in the Ack Slot by the transmitter to indicate that the

frame has been transmitted correctly. However, since CAN is a broadcast

network, the node which acknowledges the receipt of data may not be the

intended recipient.

7. The End-of-Frame field (EOF) is a sequence of seven recessive bits followed

by an inter-frame space.

The CAN specification also describes special frame formats like the Error Frame

and Overload Frame. The Error frame is composed of two fields, an error flag field

and a delimiter field. When any listening node detects a transmission error in the
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current frame, it immediately transmits the error frame containing six consecutive

dominant (active error flag) or recessive (passive error flag) bits. These violate

the bit stuffing scheme of normal frames, thus indicating the error condition to all

nodes listening to the bus. The actual frame in transmission is thus corrupted,

and may be retransmitted at a later stage. Overload frames are used for flow

control by the receiver, and have six consecutive dominant bits (overload flag)

transmitted during the inter frame space or at the start of frame.

Any node may start a transmission if it determines that the bus is idle (recessive

or logical high). If two nodes begin to transmit at the same time, the access

conflict is resolved using a non-destructive priority based arbitration scheme. The

priority is determined by the arbitration field within the frame structure. Since

the physical layer performs a logical AND, if one node transmits a recessive bit

while another transmits a dominant bit, the resultant state of the bus is dominant.

During arbitration, the transmitting node monitors the bus state and compares

it to the logical value transmitted by it. If the node observes a dominant state

on the bus when it had transmitted a recessive bit, the node should immediately

halt transmission, since another node with higher priority is trying to access the

bus. So the node with the lowest numerical value for its identifier has the highest

priority. Since it is required that the farthest node must see the state on the bus

before deciding to proceed, the bit time must be at least twice as long as the

propagation delay. This factor limits the maximum bandwidth of CAN networks

as a function of the bus length.

The CAN protocol also specifies mechanisms to detect continuous or permanent

failures at any node due to internal (hardware or software) errors and to perma-

nently disable these nodes. The scheme relies on transmit and receive error coun-

ters that are incremented and decremented when specific events are detected [31].
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However, the drawback of the scheme is that it depends on self-diagnosis performed

by the node. An example case where such a scheme would fail is the “babbling

idiot” fault: a faulty clock at the node causing it to continuously transmit dom-

inant state on the bus [32, 33]. The CAN specification provides clear definitions

for the physical layer, transfer layer, and object layer (together referred to as the

data link layer). The physical layer specifications deal with the signal levels and

bit representations on the transmission medium. The data link layer specifies

the procedures for message handling, error detection and handling, arbitration,

and timing. The application layer can decide on the schemes for start-up, peri-

odic transmissions, and data segmentation procedures depending on the specific

requirements of an application.

To establish reliable communication between ECUs, they must be integrated using

a suitable topology based on the communication requirements. Then a schedule

and routing scheme must be determined for each message, ensuring that the end-

to-end latencies demanded by the application are met. These design choices are

typically made manually by designers in incremental steps resulting in sub-optimal

solutions. An approach to automating topology determination and message rout-

ing for CAN networks was presented in [34]. The authors formulate the topology

selection problem as an Integer Linear Program (ILP), which is solved using a

SAT (Satisfiability) solver combining the benefits of a pseudo-Boolean (PB) opti-

misation and evolutionary algorithms.

Several schemes have been described in the literature for scheduling communica-

tion on CAN networks. These include preemptive, non-preemptive, fault tolerant,

and real-time schemes. Many existing optimisation strategies use Integer Linear

Programming (ILP) or Evolutionary Algorithms (EAs) that have been adapted for

the bus (or other) topology used in a particular setup. Given a set of nodes and

their communication specifications, these algorithms try to assign priorities to the

different communication nodes by framing the communication requirements and

the network constraints as a programming problem, and use the above optimisa-

tion algorithm(s) to determine the set of feasible solutions. Most approaches follow

scheduling based on deadline specification - either a fixed priority approach or a
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dynamic priority scheme (using more ID bits). While fixed priority schemes re-

sult in lower schedulability, dynamic priority is inefficient since it requires more ID

bits (and thus higher overheads) [35]. A non-preemptive scheme provides real-time

communication, and uses a mixed traffic scheduler to achieve the best compromise

between a fixed priority approach (determinism) and dynamic priority scheme

(higher schedulability) [35, 36]. In [37], the authors evaluate a dynamic priority

scheme on top of standard CAN networks to overcome the limitations of single pri-

ority assignment, by generalising a multi-priority window per message approach,

while maintaining backward compatibility with legacy CAN. A similar scheme is

discussed in [38] for improved determinism of critical messages, where the win-

dows are defined as the fault-tolerant feasibility windows for transmitting critical

messages whose priorities are determined offline. The scheme aims to overcome

the weaknesses in native fault-tolerance supported by CAN which treats all mes-

sages with equal criticality, resulting in its inability to meet reliability deadlines

for critical messages.

2.2.1.2 Implementations and Extensions

CAN has been widely implemented, including standalone controllers and synthe-

sizable IP cores by different automotive vendors. Among many other IP imple-

mentations that can be directly used for reconfigurable hardware, FPGA vendors

Xilinx and Altera provide optimised CAN controller IP cores for their respective

families of devices [39, 40]. Despite the wide popularity and availability of CAN

controllers and IP, the bandwidth limitation and reliability of CAN has been a

constant challenge, especially for emerging safety-critical functions like drive-by-

wire which demand high levels of determinism, real-time support, and increased

bandwidth.

An interesting approach to extend the bandwidth of CAN networks is that of

CAN+, a backward-compatible CAN protocol that offers 16× higher bandwidth

than plain CAN. This is achieved by over-clocking data transmission on the bus

during phases where it is certain that only a single device is transmitting. In
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instances where multiple devices may transmit, or if a conflict is identified, the

CAN+ node defaults to standard CAN to ensure collision free access to the bus.

The protocol modifications in CAN+, backwards compatibility, and implementa-

tion on FPGAs are discussed in [41]. Similar concepts for improving the bandwidth

of CAN using overclocking [42] and a dual-speed approach [43] were attempted,

though these suffered from compatibility issues with standard CAN communica-

tion on the same network. Flexible Data Rate over CAN (CAN-FD) is a recent

enhancement that extends this concept using an enhanced data-link layer proto-

col [44]. This allows a CAN-FD node to communicate on a standard CAN data bus

and utilise its flexible data rate capabilities to exchange larger payloads at higher

speeds with other CAN-FD capable nodes on the same network. Extensions to the

reserved bits in the CAN frame format are used to distinguish between standard

CAN and CAN-FD messages.

Another extension to improve the available bandwidth is to transmit CAN packets

encapsulated into an Ethernet frame [45]. The work, CANoverIP, discusses the

message data and schedule migration from traditional CAN networks, the asso-

ciated protocol overheads in Ethernet, and advantages of the scheme. However,

traditional CAN networks (including CANoverIP) suffer from a lack of predictabil-

ity (or upper bounds on communication latency) under high communication load.

Time-triggered CAN (TTCAN) aims to address this by adapting the CAN stan-

dard to the time-triggered domain, enabling simpler scheduling of messages with

an upper bound on transmission latency. TTCAN was developed by Bosch as

an extension to the existing CAN protocol [46]. TTCAN nodes are backward-

compatible with standard CAN nodes, but have the provision to disable the auto-

matic retransmission feature in case of errors. By ensuring that both modes can

work with the same controller, they envision the development of a communication

system which can support both time-triggered and event-triggered communication.

TTCAN communication is defined by a basic cycle which is a concatenation of one

or more time-triggered slots (called exclusive windows) and one event-triggered

slot (called the arbitrating window). Exclusive windows use predefined communi-

cation schedules while the arbitrating window uses the standard CAN arbitration
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scheme (dynamically allocated based on priority). Unlike other similar protocols

(like FlexRay), it is not mandatory that the basic cycle be one and the same. It

is possible to configure different basic cycles with different combinations of exclu-

sive and arbitrating windows, ordered in some form and executed as a loop. The

ordered list of basic cycles is called a system matrix. At the start of each basic cy-

cle, the master node (which maintains timing information) can cause the network

to switch to standard CAN (stop functioning in TTCAN mode) and to resume

functioning in TTCAN mode by transmitting commands over special slots called

reference messages. However, TTCAN still suffers from the dependability issues

suffered by the underlying CAN framework and thus has not found widespread ac-

ceptance like standard CAN [8]. The TTCAN framework and message scheduling

schemes for TTCAN are also discussed in [47], among others.

2.2.2 FlexRay

The FlexRay communication protocol was developed by the the consortium of

automotive manufacturers and suppliers (later called the FlexRay consortium)

that was formed to define the requirements for a future in-vehicle communication

system. The main task was to develop a protocol specification that can provide

higher communication bandwidth with high accuracy, determinism, and native

support for fault-tolerance, specifically for emerging applications like drive-by-wire

(or generally x -by-wire). Specific requirements were outlined by the consortium

to attain the global requirements for a high bandwidth deterministic protocol: [48]

1. The global goal: The protocol must provide deterministic communication

with bounded latency and small latency jitter.

2. The protocol must also support event-triggered (or on-demand) communi-

cation at runtime, the bandwidth of which must be configurable (including

the option for zero bandwidth).

3. Event-triggered communication must not affect deterministic data transfer.
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4. Support for multiple levels of fault-tolerance, with optional non-fault-tolerant

modes.

5. Support for multiple transmission rates, with a maximum of 10Mbps.

6. Host operations for network management, message filtering, interrupts, and

monitoring services.

7. The behaviour of the nodes (ECUs) and the network must be predictable in

the presence and absence of errors.

8. The communication system should ensure a cluster-wide consistent view of

time (called Global time) with known accuracy at all nodes.

The different aspects of the protocol were developed based on these requirements

and the set of constraints associated with in-vehicle networks. The consortium

resulted in development of FlexRay specification version 2.1 and later version 3.0.

The protocol was introduced into production vehicles at the end of 2006 with

the BMW X5, enabling the use of an advanced adaptive damping system [49,

50, 51]. By 2008–2009, high-end models from Audi and BMW featured several

ECUs interconnected through FlexRay networks, for both critical and non-critical

functions [52]. The consortium was disbanded in 2009 after concluding their work

on the protocol.

2.2.2.1 Protocol Specification

The FlexRay specification defines a communication scheme that is flexible/config-

urable with regard to topology and redundancy [8, 53]. A FlexRay network can

be configured as a bus network, star network, a multi-star network or as a hybrid

combination. The protocol also defines use of an independent physical medium as

well as encoding-decoding modules for the two channels, which can be configured

independently by the host.
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The fundamental element of the media access scheme in the FlexRay protocol is

the communication cycle, which repeats itself over time, as shown in Figure 2.4.

Each cycle is comprised of four segments:

1. Static Segment which uses a static slot-based access mechanism for critical

data transmission in a deterministic manner. Any ECU can send a frame

of data in the one (or more) slots that are assigned to it. The slot width is

fixed across the whole network.

2. Dynamic Segment which uses a dynamic slot-based access scheme enabling

communication of event triggered data of arbitrary length. The slot width

is dynamic, depending on the amount of data that needs to be transmitted

and access to the medium is controlled by priorities assigned to the ECUs.

3. Symbol Window which is used to transmit special commands like wake-up

which will send a pattern on the bus to wake-up ‘sleeping’ nodes to initiate

communication.

4. Network Idle Time (NIT) which is the period when the bus is idle. This

period is used by participating nodes to make clock adjustments and to

align and correct the global view of time at the individual nodes so they

stay synchronous.

At the medium access level, any communication cycle can thus be visualised as

a concatenation of a static window (comprising static slots), a dynamic window

(comprising the dynamic slots), the symbol window, and network idle time. The
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size of each window can be configured at design time (statically). The dynamic

window and symbol window can also have a zero size in some configurations.

Two distinct protocols govern the medium access schemes used in the static and dy-

namic windows. The static window uses a time-triggered slot-based access scheme

based on the TDMA medium access protocol. A single node may be configured to

have access to several slots in the same cycle, in the same or different segments.

Any node having access to the slot must transmit data on that slot, which can be

either valid data, or null data (all zeros). If the data to be transmitted is less than

the slot-size, it must be zero-padded to the payload size of the slot. If the data to

be transmitted cannot fit in one slot, it must be segmented across multiple slots.

The dynamic window uses an event-triggered dynamic slot-based access mecha-

nism based on the Flexible TDMA access scheme. The window time is divided

into minislots. Each node may have access to a configured number of minislots,

which may or may not be contiguous. Each node can start the transmission of a

frame within its allocated minislot. Once a transmission has started, the minislot

counter is not incremented until the transmission has been completed by the node.

Thus, each minislot may have a different size depending on data availability at the

node. On the contrary, if the node has no data to be transmitted, the slot remains

idle and the minislot counter is incremented at the slot boundary.

In the case of dual-channel configurations, the slot counters for the two channels

are incremented simultaneously in the static segment, but may be incremented

independently according to the data transmission within the dynamic segment.

This is because media access on the two communication channels may not neces-

sarily occur simultaneously in the dynamic segment. However, both channels use

common grid timing based on minislots.

Any data that is transmitted over the FlexRay bus must be encapsulated into a

FlexRay frame with the structure shown in Figure 2.5. The frame comprises three

parts : the frame header, payload segment and the trailer segment. The five byte

frame header includes the frame identifier, payload length, cycle identifier, header

CRC, and flags to indicate special frame types (null, sync, startup). The payload
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Figure 2.5: FlexRay frame structure

segment can contain 0 to 254 bytes of application data. The payload is indexed

starting with 0 for the first byte after the header segment and increasing with

subsequent bytes.

For dynamic segment payloads, the first two bytes of the payload segment can be

optionally configured as a message ID field, which can be used by the receiving

nodes to filter data based on the message ID. The status flag payload preamble

indicator in the header segment indicates the presence of a message ID in the

current frame. Similarly, for frames transmitted in the static segment, the first 12

bytes of the payload may be (optionally) used as the network management vector

(NMV). As in the case with themessage ID, the presence of a network management

vector is also indicated by the status flag payload preamble indicator. The NMV

can be of configurable length (0 to 12 bytes) and is defined statically (as a global

parameter) to ensure that it stays uniform across all nodes in the network. The

controller does not process the NMV; the host is responsible for writing the NMV

like other application data. Data transmission always starts with the first byte of

data, with the most significant bit first.

The basic architecture of a FlexRay node is shown in Figure 2.6. The host

controller can be an embedded controller within an FPGA, a standalone micro-

controller, or a full-fledged processor. The host runs the application software that

implements the ECU functionality. The host is responsible for controlling and con-

figuring the FlexRay communication controller (CC), which executes the protocol

specification. The CC is connected to bus drivers (BD), which act as the physical
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Figure 2.6: A FlexRay node.

and electrical interface to the transmission medium. Independent bus drivers are

used if the CC is configured in dual-channel mode. The bus driver is controlled

and configured by the host, using a dedicated interface to exchange configuration

and status data. The protocol defines an optional hardware module called the bus

guardian (BG), which can be attached to each CC. The Bus Guardian is config-

ured with the communication schedule of the attached node and prevents it from

transmitting data in slots other than the ones assigned to it. It is not manda-

tory that each node support dual channels or have a bus guardian, though this is

recommended for critical functions such as x-by-wire.

The FlexRay protocol assumes the presence of a steady physical medium for data

transfer, with negligible bit-error rates [54]. Hence the standard does not provide

a mechanism for retransmission or error correction. The protocol employs bit-

level redundancy at the physical layer and majority voting at the receiver for

reliable message exchange. Bit errors in the received frame (after majority voting)

will result in the frame being discarded, usually resulting in loss of information.

Data loss must be managed through the redundancy provided by a dual channel

implementation or using higher layer services.
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2.2.2.2 Communication, Scheduling, and Implementations

For a time-triggered system to work, every node in the cluster must have approx-

imately the same view of global time. The FlexRay protocol uses a distributed

synchronisation scheme whereby each node adjusts its own clock view by observing

the timing of synchronisation frames transmitted by the timing sources. To com-

pute the deviation and to apply the correction factor, a fault-tolerant algorithm

is described by the protocol.

To initialise communication, all nodes must be awakened and synchronised. The

FlexRay protocol requires at least 2 nodes per cluster to act as the timing sources.

Special patterns called Wakeup Patterns (WUP) are transmitted on the idle bus

to wake up nodes and to initialise communication. Prior to transmission of the

WUP, a collision avoidance symbol (CAS) is transmitted to ensure transmission

proceeds without collision. For clock startup by a coldstart node (which is a timing

source), the preconfigured values are used to start the local clock and transmit

the synchronisation frames. The non-coldstart nodes use the initialisation values

computed from the received synchronisation frames to start a synchronised clock

at the node.

FlexRay uses a set of parameters to configure the behaviour of a node on the

network. These parameters can be categorised into three different categories

1. Node Parameters - these parameters are defined locally for each node. Ex-

amples are the keyslot ID (pKeySlotId), clock correction limits (pOffsetCor-

rectionOut,pRateCorrectionOut), and duration of node local clock (pdMi-

crotick).

2. Network Parameters - these parameters configure the protocol behaviour and

must have the same value at all nodes within the network. Examples are

duration of the static slot (gdStaticSlot), the payload length of a static seg-

ment frame (gPayloadLengthStatic), and the maximum number of minislots

in the dynamic segment (gNumberOfMinislots).
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3. Protocol Constants - these are constant values defined by the protocol and

are hard-coded with the same value at all nodes. These include the CRC

initialisation polynomial for computing Frame CRC (cCrcPolynomial), the

maximum payload length in a frame (cPayloadLengthMax ), and the number

of samples taken in determination of a bit value (cSamplesPerBit).

The Field Bus Exchange Format (FIBEX) is the most widely adopted standard for

representing FlexRay configuration for nodes and clusters [55], as well as for other

protocols like CAN and MOST. FIBEX uses an XML file to specify nodes, networks

(or clusters), and their associated configurations. FIBEX is standardised by the

Association for Standardisation of Automation and Measuring Systems (ASAM)

consortium.

To ensure that the connected ECUs can communicate over the bus, messages

from all ECUs must be routed through the bus satisfying the maximum latency

requirements of the respective applications. Periodic messages with fixed size can

be allocated to the static segment, while burst mode data is generally handled

by the dynamic segment to ensure network efficiency. FlexRay 2.1 does not allow

slot-multiplexing in the static segment, and hence the static slot(s) assigned to a

node are valid for all cycles. On the contrary, in the dynamic segment, nodes may

be assigned slots on a per-cycle basis and hence scheduling communication is more

difficult in the dynamic segment.

Much work has been done by the research community on efficient scheduling for

FlexRay networks. In the static segment where the slot size is fixed by design,

scheduling is usually done by formulation as an integer linear programming prob-

lem, which can be solved using ILP solvers. However, in the dynamic segment,

scheduling communication is a non-trivial problem. Optimisation of the static and

dynamic segment of the FlexRay protocol has been widely addressed in [56, 57]

and [58, 59, 60], among many others. [61] is a detailed survey of scheduling algo-

rithms and provides a comparison between optimisation strategies like simulated

annealing, genetic, hybrid-genetic, and probabilistic approaches. In the static seg-

ment, the aim of scheduling is to efficiently allocate slots to the different nodes in



2 Literature Survey 39

a cluster, consuming the minimum number of static slots and cycles, in such a way

that all the communication requirements at each node are met. The key criterion

here is the periodicity of the messages at each node, and the bandwidth require-

ments of each message. In the dynamic segment, the aim is slightly different.

Although the global aim is to provide communication slots (dynamic) to all mes-

sages, consuming the minimum number of slots, the optimisation arguments (or

requirements) are based on priorities and deadlines associated with each message,

along with periodicity and bandwidth requirements. In other words, scheduling

for the dynamic segment aims to prioritise messages and assign slots to them based

on the criticality of the message, bandwidth, and requirements of other nodes.

Platform agnostic implementations of the FlexRay communication controller and

bus guardian modules are available from a number of vendors. The most prominent

of them is the Bosch E-Ray [62] IP module, which can be targeted at ASIC as

well as FPGA platforms. The E-Ray module is widely used in integrated and

standalone FlexRay solutions from vendors such as Infineon and NXP. Freescale

Semiconductor uses a proprietary IP module FRCC2100, which is also used in

many ASIC solutions, either integrated with an MCU or as discrete standalone

units, from Freescale, Philips, and Decomsys [63]

Attempts to develop and demonstrate FlexRay communication controller func-

tionality on reconfigurable hardware are also described in the literature. In [64],

the authors highlight challenges like physical-layer design, cycle and schedule de-

sign, and selection of termination, sync, and startup nodes which were all simpler

design considerations in the case of CAN. They also discuss design considerations

for building an SoC-based architecture for reliability and safety-critical networks

like FlexRay. In [65], the authors present an implementation of the FlexRay com-

munication controller on a reconfigurable platform. The approach however, only

discusses the protocol operations control module, which controls the actions of the

core modules of the communication controller. The work does not describe any

effort undertaken to efficiently utilise the FPGA fabric or heterogeneous resources.

[66, 67] describe implementation of the FlexRay Communication Controller using
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the specification and description language (SDL) as the platform and later trans-

lation to hardware using Verilog. Their work approaches the protocol from a high

level of abstraction and hence does not discuss hardware design details or architec-

tural optimisations. Work has also been done on implementing the FlexRay Bus

Guardian module on reconfigurable fabric. A comprehensive outline of the Bus

Guardian specification and approaches to implementing it on FPGAs are discussed

in [68, 69].

The work in [70] discusses an approach to improve the energy efficiency of a

FlexRay controller by allowing it to be controlled by an intelligent communication

controller (ICC). The ICC, which takes over the bus from the ECU when the lat-

ter goes to sleep, prevents the ECU from being woken by erroneous transmissions

allowing the node to achieve higher power efficiency. The concept validation on

FPGA and the proposed architecture are also discussed in the paper. However,

they use a proprietary implementation of the FlexRay communication controller,

which is not available to the research community.

The interface specification described by AUTOSAR, called the FlexRay AUTOSAR

Interface Specification Standard [71], is the industry standard for the software

specification of the FlexRay nodes, and all implementations must comply with

this standard.

Switched FlexRay

In [72], the authors introduced the FlexRay switch concept, an architecture sim-

ilar to the Ethernet switch, which can exploit branch parallelism to improve the

effective bandwidth of FlexRay networks. In standard FlexRay, any node can

communicate over the bus by transmitting framed data in the slot(s) assigned to

it in the static or dynamic segment. Exploiting cycle-level multiplexing of slots

in static and dynamic segments, multiple nodes can share the same slot in differ-

ent cycles, as in the case of odd/even cycle multiplexing where one set of nodes

is assigned slots in all odd cycles whereas another set of nodes (which may in-

clude some from the first set) is assigned slots in all even cycles. This scheme of

cycle-level slot multiplexing leads to higher utilisation of system bandwidth. In a
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Figure 2.7: A standard FlexRay network topology (a) and a switched
network (b)

standard FlexRay configuration, as in Figure 2.7(a), this would mean that node

B2 can send data to node A1 in slot 1 of cycle 1 while node A1 can reply in slot 1

of cycle 2. The active star is an active repeater that passes information from one

branch to all the other branches.

With switched FlexRay, the central switch architecture allows us to exploit branch

parallelism whereby, the switch will repeat frames only on branches which contain

the intended recipient. This allows the same slots to be used simultaneously by

nodes in distinct segments and the intelligent FlexRay switch schedules the branch

to which information must be relayed [72, 73, 74]. Thus, as shown in Figure 2.7(b),

while node B2 can send data to node A1 in slot 1 of cycle 1, node D1 can simulta-

neously send data to node C2 and the switch, knowing the schedule, connects the

corresponding nodes through the switch fabric. The authors demonstrate a switch

architecture developed as an extension of an ECU on reconfigurable hardware,

which can then utilise intelligent scheduling to improve bandwidth. With slot

multiplexing and branch parallelism, each slot within a cycle may have multiple

destinations and thus different switch configurations are selected at run-time.

[73, 74] discuss scheduling for FlexRay switches. As opposed to traditional schemes

with an active star gateway, where the communication schedule is a static assign-

ment of data to be repeated across all branches of the active star, the scheduling of

switched FlexRay nodes is more complex because of the dynamic nature of message

crossovers at the FlexRay switch. Though initial work in this area used genetic

algorithms, ILP, and mixed ILP methodologies, they were primarily concerned
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with optimising the communication schedule for a cluster, as opposed to a group

of networked clusters, which is the case presented by the FlexRay switch. [73]

provides a complete problem formulation and detailed solution using polynomial-

time decreasing first fit algorithm to generate an initial schedule and a branch and

price algorithm (using Dantzig-Wolfe decomposition of the full ILP) to optimise

the schedule. [74] provides an ILP formulation to the problem and a simplified

heuristic for the solution, which performs as well as the exact ILP solution for

realistic cases.

2.2.2.3 Performance, Applications, and Limitations

[75] presents a formal analysis of the timing specifications of distributed systems

interconnected by a FlexRay network. The model has a real-time kernel running

on each ECU that uses a fixed priority scheduler (FPS) and static cyclic scheduler

for scheduling multiple tasks within the ECU. The FPS emulates sensor data pro-

cessing, while the cyclic scheduler schedules data for transmission, as is the case in

most common ECU nodes. The model also uses different approaches for transmit-

ting messages on the static and dynamic segments allocated to the node. Schedu-

lability analysis is performed as a simplified bin-packing problem to demonstrate

the overall response times in static and dynamic segments (worst case analysis)

for distributed systems. [76] presents a similar analysis of distributed comput-

ing units interconnected by FlexRay networks. [77] analyses the performance of

a complete ECU on a FlexRay network to determine parameters like end-to-end

delays for different message types, buffer space requirements, and bus utilisation.

Their work analyses the FlexRay bus in a compositional manner, contrary to the

isolated technique used in [75].

[78] demonstrates a protocol analyser that can extract FlexRay bus parameters

from the network. The aim is to enable an FPGA based test system for analysing

and testing FlexRay based systems for rapid system prototyping. [79] is a measure

of the robustness of a FlexRay system by considering the uncertainties encoun-

tered within the automotive architectures. The work describes a scheme based
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on info-gap decision theory to compute the largest point of uncertainty within

the performance limits specified for the system. The work also demonstrates a

case-study for x-by-wire applications and models different uncertainties (uncertain

future bus-loads and overlooked communication) to show the application of robust-

ness analysis and the extensibility of schedules for future applications. In [80], the

authors improve on these schemes and present a novel configuration method by

considering both the network utilization (bandwidth and end-to-end delays) and

the utilisation of the static segment.

In [81], the authors present a constraint-driven design approach for the synthesis

of controller parameters and the associated the control-related task and message

schedules for a FlexRay-based implementation platform. To achieve this, the

problem is formulated as a constraint satisfaction problem (CSP) to synthesise

feasible platform parameters for a specific platform (operating system, hardware,

and FlexRay communication system). For systems dealing with dynamic real-

time conditions and constraints, [82, 83] describe techniques to generate optimum

FlexRay parameters for static and dynamic segment communication. [84] discusses

new FlexRay-specific metrics that can quantify the extensibility and sustainability

(specifically with respect to the protocol) of existing schedules for future applica-

tion.

Though the FlexRay protocol provides error detection schemes, the error correc-

tion is generally handled by dropping the corrupt frame, which usually results

in lost data. [85] proposes a scheme to handle this at the application layer, us-

ing an acknowledgement-retransmission scheme, where the retransmission slot is

allocated on top of the existing schedule. The problem is formulated as a MILP

problem, which optimises the fault tolerance metric and subsequently improves the

existing schedule by reducing the acknowledgement and retransmission latencies.

A scheme to automate verification of complex FlexRay clusters for network incon-

sistencies is discussed in [86]. In this work, an FPGA based active star node is

used to detect the presence of inconsistent conditions (referred to as Slightly-Off-

Specification failure modes) in actual systems. The hardware was used to inject
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delays (slot-boundary violations) and corrupt frames on the network to observe

responses of the attached nodes. [87] follows a similar approach integrating a host

PC with an FPGA based active star node that can monitor the bus and inject

faults. It features a few additional schemes like replaying bus data (in-order or

out-of-order) and can trigger startup or re-integration of cluster nodes. [88] de-

scribes a verification flow to measure and quantify the effectiveness of fault-tolerant

mechanisms (FTM) built into the FlexRay protocol. The verification flow helps

designers quantify the effectiveness of FTMs and the associated costs in design-

ing a fault tolerant communication scheme (with the required safety and integrity

levels) in terms of hardware costs and performance degradation.

[89] describes an analysis of the issues associated with communication of nodes

belonging to different clusters, referred to as Clique problem. In the analysis,

the nodes in one cluster are free to communicate among other members, but

not to members of another cluster (such groups are called cliques). The com-

munication breakdown is common with time-triggered systems, usually caused

by local faults resulting in loss of synchronisation between the different clusters.

The work describes the lack of explicit support within the protocol, studies real

FlexRay clusters, and provides useful directions for implementing clique detection

and avoidance mechanisms.

As discussed, fault-tolerance within a FlexRay network is not built-into the pro-

tocol definitions and depends on application level schemes. A scheme that enables

automatic migration of a critical task from a faulty ECU is described in [90], us-

ing redundant communication slots in the schedule. The FlexRay bus schedule is

extended by adding redundant slots to permit changes in the slot assignment and

solutions to migrate tasks using static and/or dynamic segments are presented.

However, the scheme uses a dedicated coordinator node to manage the migra-

tion, resulting in additional hardware and a possible single point of failure at the

coordinator. An improved version of this work was presented in [91], where a

distributed coordination scheme is used for task migration, improving the safety

and reliability of the solution. The approach also reduces the communication over-

head, compared to their initial work. [92] improves further, using a self-organising
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distributed coordinator, which uses predetermined information about communi-

cation dependencies to determine valid (re)configurations for nodes on a FlexRay

network. Here, reconfiguration refers to the tasks assigned to each of the static

modules defined within the hardware setup. On the other hand, [93] uses dynamic

partial reconfiguration (PR) supported on newer FPGAs to reconfigure faulty com-

munication modules, ensuring reliable communication. The work also describes

a scheme to integrate a fault-tolerant communication network scheme within an

AUTOSAR-compliant environment.

[54] describes the limitations of the FlexRay networks for establishing reliable

communication over long distances, like in the case of an aeronautic applications.

The work analyses the suitability of different topologies and the signal integrity

criteria for FlexRay communication systems when applied to that domain. The

work highlights that reliable communication can only be conditionally possible

over longer distances with sufficient signal integrity, at rates below 5Mbps.

[94, 95] evaluate the application of FlexRay networks for a steer-by-wire applica-

tion. The system description, protocol configuration for the sensors and actuators,

and support for redundancy are described in [94]. A comparison of similar imple-

mentations using other time-triggered schemes (TTCAN) is reviewed in [95], which

clearly shows the improved determinism and reliability achieved using FlexRay.

2.2.3 Other Protocols

2.2.3.1 Time-Triggered Ethernet

Time-Triggered Ethernet is an extension of classical Ethernet [96] with additional

services for supporting real-time and safety-critical applications. TT Ethernet

can support a range of applications, from data acquisition machines to intensive

multimedia and demanding hard real-time and fault-tolerant systems [97, 98, 99].

TTE distinguishes two types of traffic :
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1. Standard Ethernet packets (ET messages) – stochastic event triggered sys-

tems

2. Time Triggered Ethernet packets (TT messages) – special packets with guar-

anteed deadlines.

TT messages are periodically transmitted with predefined schedules that ensure

conflict free transmission. Standard Ethernet packets (ET messages) can be trans-

mitted over the same physical medium without affecting the deterministic prop-

erties of TT messages. This makes TTE an attractive scheme for automotive

backbone networks, allowing highly stochastic data (like media) to be interspersed

with highly temporal data (like x-by-wire) without affecting system reliability or

determinism. Moreover, TTE supports data throughputs of over 100Mbps, much

higher those offered by FlexRay.

TTE was designed as a unified communication architecture that can cater to mul-

tiple domains of distributed computing, with mechanisms built in to handle the

following requirements [100]:

1. Certification – This stringent process requires that it must be possible to

define correct operating procedures under all fault and load conditions. This

is a mandatory requirement for extending services to safety-critical applica-

tions.

2. Compatibility – The determinism (or real-time capabilities) must be built

into the system within the framework of the classical Ethernet standard.

This allows interoperability between ET messages and TT messages on the

same physical layer.

3. Determinism and Predictability for TT messages – quantifiable delays and

jitter, within the limits of real-time systems.

4. Global Time View – fault-tolerant scheme to ensure a global view of time.

5. Isolation of faulty systems – schemes to eliminate fault and error propagation

caused by one faulty node.
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Figure 2.8: 64-bit time format used in TTE.

6. Scalability – no parameter should prevent scalability of the system in terms

of bandwidth or number of participating nodes.

To ensure synchronisation among nodes, a common 8 byte time word format is

used, with a granularity of 60 nanoseconds and a horizon of 30,000 years, as shown

in Figure 2.8. This specification is standardised in the small transducer interface

standard, and is closely related to the GPS (Global Positioning System) timing

standard, though with a much longer horizon. In the reference implementation

in [100], a two byte format is used to configure the periodicity of TT messages,

though the full 8 byte format is recommended by the standard.

Two distinct configurations are described in the reference implementation: the

first for standard applications using standard Ethernet controllers, TT controllers,

and a single switch, and the second for safety-critical application with redundant

ports and independent switches [100]. Detailed schemes and arrangements for

multi-modular redundancy schemes are discussed in [99]. The key idea of TT

Ethernet is pre-emptive scheduling at the switch interface. When a run-time

conflict between two messages is observed, the ET message is pre-empted by the

switch while TT messages are transmitted with a predefined delay. The pre-

empted message is retransmitted once the TT message has been transmitted. The

type field for protocol identification is 0x88d7 for TT messages, as defined by the

IEEE Ethernet standards authority [101]. The TT message also has an additional

header (TT-header) in the payload section of the IEEE Ethernet standard.

The TTE communication controller also handles TT messages differently from

the regular ET messages. For each new TT message received (whose period ID is

not recorded at the controller), a new buffer space is allocated, which stores the

latest version of the message with this period ID. An outgoing message is stored
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at the controller until the phase bits of the global time match the phase bits in the

period ID. When a match occurs, the controller posts this message on the bus. All

messages in the buffer (either received from bus or host) are updated only using

write operations.

A subset of nodes act as global time-keepers (up to 5 nodes) for the cluster, ini-

tiating start-up and maintaining global time. In addition to the regular TT and

ET messages, additional message categories are defined for performing synchroni-

sation, start-up, and fault-tolerant transmission. For non-safety-critical applica-

tions, clock synchronisation is performed by the central master algorithm. After

power up, the timekeeper node(s) send start-up and synchronisation messages, and

enter normal mode, where they transmit periodic resynchronisation messages in

addition to ECU data. For a complex setup involving safety-critical nodes, clock

synchronisation is achieved through a fault-tolerant distributed clock synchroni-

sation algorithm, with clock deviations and corrections applied using a centralised

rate correction scheme [97, 99, 102]. TTE uses a fault-tolerant start-up scheme

which has been analysed in great detail in [103]. Following start-up, the time-

keeper sends a signed start-up message that includes the start-up information for

the guardian. After synchronisation, the guardian checks conformance of the pre-

defined schedule with the transmitted schedule and rejects it if discrepancies are

found, disabling switch outputs. [104] describes the architecture requirements of a

TTE switch, and compares the performance of commercial off the shelf Ethernet

switches for TTE applications. While they note that performance is satisfactory

for nodes exchanging only TT messages, in the case of mixed-mode transmission,

jitter performance was well below the acceptable thresholds for TTE controllers.

In [105], the authors attempt to apply the IEEE 1588 clock synchronisation scheme

to standard Ethernet controllers to establish and maintain a global reference time.

They also show that the same scheme can be used for TTE controllers that require

tight synchronisation.

A comparison between the performance of time-triggered Ethernet and FlexRay

is presented in [106]. The work shows that the switched architecture of TTE

provides advantages like multicast group communication and destination specific
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communication, inherited from the Ethernet standard, while FlexRay provides

only broadcast. The comparison also shows that the usable bandwidth (for de-

terministic communication) of TTE is not affected by end-to-end latency, unlike

in the case of FlexRay (when configured using static segments alone). However,

the latency of TTE networks, although predictable, is highly dependent on the

path from sender to receiver, the switching technology used, and the precision of

the clock synchronisation techniques used. Also, at the maximum payload size of

FlexRay (254 bytes), the TTE frame is highly under-utilised (only 11%) resulting

in larger protocol overhead. Moreover, TTE running at a 10Mbps traffic rate can

only keep up with FlexRay’s network utilisation when traffic can be transmitted

in parallel (multicast group mode).

Despite the high bandwidth and other potential offered by TTE, it has not found

widespread acceptance in the automotive industry. This is primarily because of

the expensive physical medium and non-automotive standard interconnect used by

Ethernet. While CAN and FlexRay can run efficiently on unshielded twisted pair

cables (which are cheap and used heavily in automotive interconnect), the per-

formance of Ethernet over such a physical medium was poor. Broadcom recently

announced an Ethernet physical layer (called BroadR-Reach) [107], which demon-

strated sustained throughputs of 100Mbps on unshielded twisted pair cable. It is

widely predicted that availability of Broadcom’s technology will revive interest in

TTE or similar synchronous Ethernet standards (like the upcoming Automotive

Ethernet standard) for in-vehicle applications.

2.2.3.2 Media Oriented Systems Transport

Media Oriented Systems Transport (MOST) is currently the de-facto standard for

streaming media, infotainment, and multimedia applications in the automotive

industry. The technology was designed and developed by the MOST Cooperation

for the automotive industry, with the aim of providing a transport mechanism for

exchanging audio and video data along with associated control. The advantage

of MOST is the simple synchronous nature of the protocol which provides quality
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Figure 2.9: MOST Device Model

of service (QoS) guarantees for high bandwidth applications like streaming me-

dia. Though originally developed for the automotive industry, the protocol finds

applications in many media oriented systems.

A MOST system can contain up to 64 nodes interconnected by electrical (ePhy)

or optical (oPhy) physical layers [108]. MOST also supports different speed grades

from 25Mbps to 150Mbps. Since MOST is a synchronous network, at least one

of the MOST network interfaces must be configured as the master node for time

synchronisation. All other nodes in the cluster act as timing slaves and derive

their slave clocks from bus transactions. The timing master node is responsible

for generation and transportation of the system clock, data frames, and blocks.

Any device that can be connected to a MOST network follows the general model

described in Figure 2.9. A MOST device may contain multiple functional units,

referred to as function blocks (F-Blocks). As an example, a media player incor-

porating multiple functions like CD playback, radio tuner, and signal processing

will have multiple F-Blocks within a single device. In addition to feature specific

F-Blocks, a special F-Block called the NetBlock implements the network related

functions for the entire device. The MOST Network Interface acts as an inter-

mediate layer between the different F-Blocks and provides an API to simplify
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interaction with the hardware.

MOST supports transmission of streaming data and packet data, along with sup-

port for dedicated control and synchronisation channels over the same physical

layer. The contents of multiple streaming connections and control are interleaved

into a basic synchronous data structure for transmission over the network. The

Control Channel is used for event-oriented transmissions at low bandwidth and

shorter packet lengths, while Data Channels are used for volume data transfer. The

data (and control) messages are always addressed to a specific recipient. CRC is

used to detect bit errors while an ACK/NACK mechanism with automatic retry

(in case of NACK) is supported for fault-tolerance.

A Streaming Data channel is used to transport continuous streams which have

high QoS requirements. The Control Channel is used to initiate the streaming

data connection between sender and receiver and the connection bandwidths are

managed dynamically by the Connection Manager. The bandwidth allocated for

the streaming data connections is always available and reserved for the dedicated

stream so there are no interruptions, collisions, or delays in the transport of the

data stream.

MOST also features a dedicated Packet Data Channel for transmissions requiring

high bandwidth in bursts, as in the case of dynamic map loading for naviga-

tion. Such transmissions can be asynchronous, and may be addressed to multiple

destinations (like internet traffic updates). These are managed on top of the syn-

chronous data stream, completely isolated from the control channel and streaming

data to avoid interference. Packet transmissions also feature acknowledge and

automatic retry, as in the case of control channels.

MOST uses a ring topology and a different arbitration scheme for channel access

depending on the channel type. Packet Data access is handled by a token ring

scheme, with nodes having fair access to channel. The Control channel uses a

double arbitration scheme to ensure that nodes gain fair access to the channel

independent of the communication load of upstream devices and the priority of



2 Literature Survey 52

the node on the ring, which is determined by position. For streaming data, the

bandwidth is allocated dynamically on request by the connection manager.

During system start-up, the node configured as the Network Master initialises the

network by performing a system scan. It collects the system configuration by

requesting configuration information from all connected nodes (slaves) which is

entered into a Central Registry. Once the system states have been identified and

verified (marked as OK in the registry), devices can communicate following the

arbitration rules. The Connection Manager is a service that may be implemented

by any device in the MOST network. All requests for establishing streaming

connections are addressed to this device, which dynamically allocates bandwidth.

Timing Master functionality is built into the device positioned at the first physical

address within the network. MOST also supports a variety of addressing modes

from 16-bit direct, indirect, and logical, up to 48-bit MAC addressing. All MOST

devices are synchronised to the same sampling clock, either 44.1 kHz or 48 kHz,

derived from media sampling rates.

[109] describes the challenges involved in implementing a MOST ring network

for an audio application involving three nodes using hardware-software co-design.

The work also analyses and verifies the synchronisation and high QoS guarantees

claimed by the MOST network specification in a laboratory environment. How-

ever, since MOST is used for non-critical communication, it must be isolated from

critical communication paths within automotive systems to ensure safe operating

environments and to reduce interference. [110] describes an attempt to implement

a MOST gateway, that forms a bridge between the high speed media oriented com-

munication and the central bus backbone that runs CAN. They present a scalable

architecture with software control which can be used for evolving applications in

the human-machine-interface (HMI) domain and body domain.

As discussed, MOST is designed to be used as the communication backbone for

media-centric applications. Although error detection and retransmission schemes

are built into MOST, it is not intended to be used for critical applications, unlike
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FlexRay or TTE, primarily because of the lack of deterministic communication

support, non-real-time nature and event-driven architecture.

2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays started as simple devices for glue logic imple-

mentations, primarily used for extending interfaces of a core computing unit (a

processor or ASIC) to other supporting devices. Modern FPGAs feature diverse

computational resources such as dedicated DSP blocks (including multipliers),

block & distributed memory, and embedded processors, along with a wide range of

I/O capabilities (high speed serial I/O), making them powerful programmable de-

vices capable of implementing complex systems. The major advantage of FPGAs

over other programmable devices like processors is hardware-level programma-

bility; designers can describe custom computational architectures with tailored

wordlength datapaths, targeted at a specific application, resulting in significant

acceleration and improved computational efficiency.

FPGA resources can be categorised into two classes:

1. Logic modules, which are resources that implement the given digital function.

These include Look-up Tables (LUTs), Flip-Flops, Multiplier blocks (or DSP

blocks), and storage (memories).

2. Routing resources, which are used to pass signals between those small mod-

ules to build large and complex circuits. These include the interconnect

network, the switch boxes, and the input-output blocks.

Look-up tables are the basic building blocks of combinatorial logic. As the name

suggests, the LUT stores an output value corresponding to each possible input

combination, and output a result for any input value. Modern FPGAs from Xil-

inx offer 6-input LUTs, while Altera devices offer 8-input fracturable LUTs, sup-

porting a wide range of combinational logic implementations. LUTs are combined
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with Flip-Flops for synchronous logic. These resources are hierarchically clustered

into Slices, and Configurable Logic Blocks (CLBs). FPGAs also feature built-in

hard blocks like Block RAMs and DSP blocks that are built in silicon to offer im-

proved performance, area, and energy consumption for regularly used structures.

The flexible routing fabric provides configurable connectivity between the differ-

ent building blocks of the FPGA. Configurable input/output (I/O) blocks provide

an interface to the outside world, with built-in support for a wide range of I/O

standards.

A designer describes any digital circuit using hardware description languages like

VHDL or Verilog. Vendor tools synthesise this description to generate a circuit

netlist described in terms of low level resources interconnected to build the larger

circuit. The tools then map the function into device specific resources, assigning

these to the different locations and connecting them (placement and routing) to

generate a device specific configuration stored in a bitstream. During this process,

the designer has control over the choice of specific hardware blocks to be used, the

interconnect width and other design parameters. Modern tools like Vivado HLS

accept user designs specified in high-level languages like C, reducing design effort

for complex systems.

Custom hardware offers the opportunity to design architectures tailored towards

specific applications. FPGAs implement computation spatially offering a high

degree of parallelism that can result in significant acceleration for many algorithms.

Deep pipelining and wordlength optimisation allow various design metrics to be

traded off against each other. High performance can be offered at lower power

consumption and clock frequencies than computations implemented on general

purpose processors.

In abstract terms, FPGAs can be considered as being composed of two planes:

the configuration memory and the logic plane [111], as shown in Figure 2.10. The

configuration memory holds the description of the designer’s specification of the

system, in terms of the interconnection of the logic blocks in the logic plane,

generated by vendor tools. The logic plane contains the building blocks of the
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Figure 2.10: An abstract visualisation of FPGA Architecture

FPGAs; the LUTs, flip-flops, block memory (Block RAMs), and DSP blocks,

along with the routing resources.

The configuration plane stores the design description in binary, referred to as

the bitstream. It contains information such as the logic values stored in LUTs,

initial status of flip-flops, initialisation values for memories, standards for I/O

blocks, and routing information. For the majority of FPGAs from Xilinx and

Altera, the configuration memory is SRAM based and hence volatile. Flash-based

non-volatile configuration memory is offered in some devices produced by Actel

and others [112]. In order to change the circuitry implemented in an FPGA, the

contents of the configuration memory are modified by loading a new bitstream.

Bitstream loading can be performed externally using interfaces such as JTAG,

or SelectMap [113], or internally using specialised interfaces such as the Internal

Configuration Access Port (ICAP) [114]. FPGAs achieve their hardware-level

reconfigurability due to this architecture.

2.3.1 Reusing Resources with Dynamic Reconfiguration

Though FPGAs have grown in terms of capacity and features over time, appli-

cations and algorithms have become more complex and demanding, pushing the

need to reuse limited hardware. FPGAs are field-reconfigurable but complete re-

configuration is a time consuming process and destroys the current state of the

system, unless it is stored elsewhere. Dynamic or partial reconfiguration (PR)



2 Literature Survey 56

allows us to create virtual hardware with indefinite resources and reduce reconfig-

uration time. Here, a selected region of the FPGA is reconfigured to implement a

new circuit while other parts continue to operate, and thus can maintain the state

of the system.

Modern FPGAs use a single configuration memory organised in frames [115], a

concept first introduced by Xilinx in their Virtex-II and Virtex-II Pro series of

FPGAs [116, 117]. A frame marks the smallest unit which can be reconfigured, the

size of which is device family dependent. Generally, a frame is one bit wide, with a

depth equal to the row height of the device. For earlier devices like the Virtex-II,

this was the entire height of the device, while in Virtex 4 (and later) devices a

fixed frame size is used with a fixed row height. This organising allows a group of

frames to be modified without affecting others, resulting in only portions of the

logic being modified, while others continue to work. Frames are organised into tiles

that each correspond to a specific resource type. Figure 2.11 shows a simplified

representation of a Virtex 6 logic plane, and the relation between frames and

logic tiles [118]. This partial change to the configuration memory can be applied

externally using the SelectMap or JTAG interfaces. Xilinx introduced an internal

configuration port, the ICAP, in their Virtex series, which can be used by logic

within the design to access the configuration plane offering “self-reconfiguration”.

Presently Xilinx is the only vendor to provide extensive support for dynamic partial

reconfiguration, through their software tools PlanAhead [119] and Vivado Design

Suite [120]. The process involves manually floor planning to define the different

partially reconfigurable regions (PRRs), and assigning different designs for these

regions. The tool then generates the complete and partial bitstreams correspond-

ing to different configurations. On the hardware, different modules are activated

by loading the corresponding partial bitstream(s) though any of the configuration

interfaces. Availability of high speed dynamic (partial) reconfiguration makes FP-

GAs ideal for implementing real-time adaptive systems and safety-critical systems

with built in fault-tolerance.
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Figure 2.11: A section from Virtex-6 FPGA architecture

2.3.2 FPGAs for In-vehicle Systems

In-vehicle applications can be categorised into two distinct classes: safety-critical

functions and non safety-critical functions. Safety-critical functions control and

coordinate critical functions like engine timing, controllability (steering, brakes, ac-

celeration), and passive safety systems like airbags. In other words, these functions

directly relate to the safety of the vehicle and passengers. Hence, such systems

must provide reliable outputs at deterministic time instants. In this context, re-

liability can be related to time-invariance, meaning the system provides the same

output for the same input conditions at any instant in time, while determinism

can be related to the response time. This hard real-time nature enforces strict

requirements on the determinism and reliability of the safety-critical embedded

control units.

In most cases, implementations of safety-critical systems support fail-safe or fault-

tolerant operation. A fail-safe system ensures that a critical failure does not cause

a catastrophic failure of other systems. A fail-safe node maintains a very basic level

of functionality to ensure proper operating conditions for other compute units on
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the cluster, without requiring a halt due to fatal errors [121]. Fail-safe operation

requires simpler hardware and is hence often chosen in production for non-critical

systems.

A fault-tolerant system is more robust and can adapt and recover from faulty situ-

ations without severely degrading system performance. Fault-tolerance is achieved

by building redundancy for critical operations and intelligence to switch to redun-

dant logic, while a primary unit recovers from erroneous conditions, for exam-

ple [92]. Fault-tolerance can be achieved at the individual node level or at a global

level for the entire function. For safety-critical systems like drive-by-wire, and

occupant safety systems, fault-tolerance is often insisted at the cost of additional

hardware and complex software.

On the contrary, non-safety-critical systems are applications that augment the user

experience in the vehicle. These could be comfort-related functions like seat set-

tings, multimedia, and air conditioning, or assistance functions like cruise control

and remote diagnostics.

2.3.2.1 FPGAs as Compute Units (ECUs)

Non-safety-critical ECUs: FPGA based systems for real world in-vehicle ap-

plications are mostly limited to non-critical driver assistance and multimedia func-

tions that demand complex processing. Modern driver assistance systems utilise

multiple sensors like RADAR, LIDAR and stereo vision to enable simultaneous

detection of multiple objects of interest and to keep the driver aware of his sur-

roundings. Complex ECUs like radar signal processing for driver assistance, mo-

tion estimation algorithms for pedestrian/vehicle detection and motion characteri-

sation, or multimedia applications that require dynamic compression for streaming

audio/video content for in-vehicle entertainment systems involve processing large

volumes of data with QoS and deadline requirements. Executing such complex

processing in real-time requires efficient compute architectures that can exploit

parallelism for acceleration, an area where FPGAs excel.
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The literature describes efficient implementations of complex signal processing sys-

tems on FPGAs for the automotive domain. [122] presents an implementation of a

reactive cruise control system on a single FPGA that interfaces with radar inputs,

performs signal processing operations, and produces control outputs. The authors

use hardware software co-design and leverage pre-built IP cores for several func-

tions. Meanwhile in [123], the authors design custom hardware and apply FPGA

specific optimisations to a CFAR detection algorithm implementation on a Virtex

II device, discussing the impact of their optimisation on system performance. An

enhanced scheme for next generation driver assistance systems using vision based

techniques is described in [124]. The authors present a discussion on the state-of-

the-art and development of their proposed system using stereo vision mapped on

FPGAs.

The use of partial reconfiguration enables implementation of adaptive applications

that time multiplex mutually exclusive functions. An architecture that leverages

dynamic partial reconfiguration (PR) for a multi-target tracking scheme for ad-

vanced driver assistance is presented in [125]. Here, the model dynamically adapts

to driving conditions by using PR to alter the filter characteristics, resulting in de-

terministic performance in many different driving conditions. In [10], the authors

apply dynamic reconfiguration to time-multiplex functionality in a smart node for

driver assistance systems. In this case, PR enables the use of a smaller FPGA

with reduced power consumption for multiple functions.

In many similar applications, FPGAs have been used to enable more complex ap-

plications than would be possible using general purpose processors. FPGA vendors

Xilinx and Altera provide a host of IP blocks to support implementation of high

performance systems for in-vehicle applications. Both vendors provide platforms

for integrating extensive infotainment functionality in a low-power, small-footprint

solution, and a host of IP functions ranging from system interfaces to optimised

functional blocks.

FPGAs are also a platform of choice for evolving V2X (or C2X) systems. The
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compute complexity of the algorithms involved as well as the requirement to in-

corporate security and privacy means parallelism, isolation, and deterministic per-

formance are important. Multiple researchers have explored the possibilities for

reconfigurable hardware in V2X systems [126, 127, 128, 129]. Novel ECU archi-

tectures [126] and efficient implementations of applications like collision detec-

tion [127] that utilise V2X communication on reconfigurable hardware have been

presented. They show that FPGA-based implementation enables better compu-

tational performance as well as integration of extended features like security and

authentication, that are a key requirements in V2X systems. Researchers have

also explored efficient implementation of communication protocol PHY and MAC

layers to enable V2X communication [128, 129].

Safety-critical ECUs: FPGA-based safety-critical applications in the literature

make use of the capabilities of the architecture like partitioning, determinism, and

run-time reconfigurability to provide fail-safe or fault-tolerant features. Partition-

ing enables segments of designs to operate in complete functional isolation, as

required for redundancy schemes. Dynamic reconfigurability allows FPGA-based

designs to recover from errors at run-time by either partial or complete reconfig-

uration.

The literature describes FPGA-based designs that instantiate multiple instances

of identical ECUs within the same device to aid redundancy while providing bet-

ter determinism [121, 130]. In [130], the authors detail a flexible ECU description

on reconfigurable hardware. The authors also describe methods to achieve com-

plete compatibility with AUTOSAR standards, while taking advantage of FPGA

specific features like partial reconfiguration. Safety-critical schemes that leverage

FPGA reconfiguration are also described in the literature. An architecture for im-

plementing fail-safe safety-critical ECU systems on FPGAs, leveraging dynamic

reconfiguration (complete reconfiguration), is described in [121]. Their architec-

ture uses FPGA logic as a fail-safe back-up, which is completely reconfigured with

a back-up mode when errors are detected.
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Triple modular redundancy (TMR) is a commonly used technique to mitigate

transient and persistent errors in a design. TMR uses three independent instances

of the same function that interact with the same input parameters or signals.

The computed outputs of the three modules are majority voted to disregard any

outlier, and hence, there is no single point of failure. TMR is widely employed

in aerospace applications and space research, where SRAM based FPGAs are

prone to radiation induced single event upsets (SEU). TMR on FPGAs and voter

insertion schemes are widely researched in industry and academia, but mostly

related to space induced effects and SEUs. In [131], the authors describe tech-

niques to analyse the effectiveness of complete TMR for commercial SRAM-based

FPGAs. In [132] and other related literature, the effect of SEUs on routing re-

sources, throughput oriented circuits, state machines, and configuration memory

are analysed. The authors describe that though complete protection many not be

guaranteed, manual floor-planning that isolates the different redundant modules

improves the efficiency of function-level TMR. However, TMR at the function-

level introduces a considerable overhead in terms of area and power, since each

function is triplicated along with associated voters. Partial TMR is an alternative

approach which sacrifices some reliability for a lower area penalty [133, 134]. Here

TMR is applied to only critical parts of the design and continuous sections that

are identified by the automated tool. To improve reliability, they also apply TMR

to components (or modules) that when affected by an SEU event cause a design

failure that can be corrected only using a system reset. TMR is less suitable for

vehicular systems where cost is a more important factor.

An interesting approach is to combine partial TMR with PR to achieve a better

area trade-off [135, 136]. Here, PR is used to selectively reconfigure a region with

persistent faults, hence requiring fewer critical regions under complete TMR. PR

has been applied in conjunction with partial (fine-grained) and function-level TMR

implementations. In [137], the authors compare TMR to existing alternatives like

quad-mode redundancy, state machine encoding, and temporal redundancy. They

show that competing techniques do not outperform TMR with regard to fault-

tolerance but consume more area and resources in several cases.
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2.3.2.2 FPGAs for Prototyping and Validation

FPGAs have also been employed as a rapid prototyping and simulation platform to

verify automotive applications. FPGA based test platforms can be used to monitor

and verify the performance of ECU systems on CAN and FlexRay buses. Such

platforms offer a wide range of customisable configurations that can be employed

to test the systems in normal and edge-case scenarios.

In [78], the authors demonstrate a FlexRay protocol analyser capable of extract-

ing FlexRay bus parameters from network transactions. They aim to enable rapid

system prototyping using an FPGA based test system for analysing and testing

FlexRay based systems and automating the configuration generation using the

protocol analyser. In [86], the authors describe a scheme to automate verification

of complex FlexRay clusters for network inconsistencies. They present an FPGA

based active star node that is used to detect the presence of inconsistent condi-

tions (referred to as Slightly-Off-Specification failure modes) in actual networks.

Specialised hardware was used to create test conditions like delayed transactions

(for slot-boundary violations) and to corrupt frames on the network. Similarly, an

FPGA based star configuration for monitoring clusters is described in [87], where

the star node is connected to a host PC running debugging tools. The software

enables a few additional schemes like replaying bus data (in-order or out-of-order)

and can trigger startup or re-integration of cluster nodes.

Testbeds and prototype implementations on FPGAs are also discussed in the lit-

erature for functional validation of ECUs. In [138], the authors detail the use of

an FPGA-based hardware-in-the-loop validation framework for evaluating fault-

detection schemes in electronically controlled suspension systems. In [139], the

authors use FPGAs to prototype a traffic sign recognition system and use the

platform to evaluate their approach and algorithms. An FPGA-based prototype

is used in [140] for the validation of fuzzy-network and neural network based ap-

proaches (soft-computing) for implementing automotive control applications like

lane following and parallel parking. FPGAs have also been used for prototyping
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alternate network protocols like SpaceWire for active-safety applications in au-

tomotive systems [141]. Similar uses of FPGAs for prototyping and functional

validation are discussed in [142, 143, 144], among many others.

FPGAs have also been explored for upcoming vehicle-to-vehicle (V2V) and vehicle-

to-X (V2X) communication systems. In [145], the authors make use of a V2X

multi-antenna test bed using FPGAs for evaluating the performance of the IEEE

802.11p standard for vehicle to infrastructure communication. The test-bed en-

ables a compact implementation for real-world measurement with the bit-accurate,

real-time analysis and the modelling of complex conditions like receiver diversity.

In [146], the authors present a prototype implementation of their car-to-X (C2X)

communication infrastructure on an FPGA platform and evaluate its performance

using generated traffic. FPGAs also enable emulation of complex real-world con-

ditions around the vehicle, which can be used to evaluate the network protocols

proposed for C2X applications. One such application is described in [147], where

the authors evaluate the reliability of the 802.11p PHY layer by modelling real-

time channel behaviour using FPGAs.

2.3.2.3 FPGAs in In-vehicle Networks

Implementations of in-vehicle network protocols like CAN on FPGAs are available

commercially and in the research community. FPGA vendors Xilinx and Altera

provide optimised implementations for their respective platforms [39, 40]. Exten-

sions to CAN like CAN+ have also been implemented on FPGAs [41]. Similarly,

FlexRay implementations on FPGA have also been discussed in the literature,

though these were designed from a high level model without making optimal use of

the FPGA architecture [66, 67]. FlexRay implementations are also available com-

mercially, like the eRay IP core from Bosch [62] and the FRC2100 from Freescale

semiconductors [63]. However, these are platform agnostic, and aimed for generic

implementation, suffering from sub-optimal performance on an FPGA.

Network controllers that have enhanced capabilities have also been implemented

on reconfigurable hardware. A fault-tolerant communication controller scheme for
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safety-critical ECUs is described in [93]. Here the authors make use of partial

reconfiguration to reconfigure the faulty communication controller of the safety-

critical ECU. The authors also describe methods to integrate their approach into

the AUTOSAR run time environment for complete compliance with automotive

standards. In [70], the authors present an energy-efficient FlexRay controller im-

plemented on an FPGA, closely integrating it with a monitoring extension that

improves its energy efficiency. Similarly, in [148], the authors present a FlexRay

controller implemented on an FPGA with integrated extensions for aiding fault-

detection during a verification run.

FPGAs have also been employed for gateway ECUs in in-vehicle networks. In [149],

the authors define a modular approach for an automotive gateway architecture

implemented on an FPGA, while in [150] they describe a mechanism to achieve

accelerated routing of messages between ports using architecture-level enhance-

ments. A scalable gateway architecture based on a programmable system-on-chip

architecture in described in [151]. It closely couples the integrated Power PC

hard block on a Virtex-4 FPGA with interface logic on the fabric and an external

daughter card (featuring a Spartan-3E device). However, the switching is per-

formed in software running on the Power PC, which creates additional overheads

as the number of ports is scaled.

Despite the numerous advantages discussed, FPGAs have not found widespread

adoption in automotive computation or networking systems, for numerous rea-

sons. Cost can be a factor, though modern FPGAs are now much cheaper than in

previous decades, with their cost comparable to mid to high-end automotive grade

processors. For example, the shelf cost (per unit) of an automotive grade Xilinx

Spartan-6 device (LX45) is comparable to that of a mid-range processor used in

the power-train domain (Freescale SPC5764, both around S✩ 130), while a newer

generation Xilinx Artix-7 device (automotive grade) is 1.75× more expensive, but

offers 2.3× more resources, better energy efficiency and native support for par-

tial reconfiguration. Note that the costs at volume are subject to other factors

that are beyond the scope of this discussion. Certification is another concern as
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many established standards are defined specifically for processors that run soft-

ware. However, the pressures of next-generation applications mean that FPGAs

are under consideration once more.

2.4 System-level Challenges : Security and Func-

tional Validation

Automotive networks were originally closed, with only the mandatory on-board

diagnostics (OBD) port providing an interface to the outside world. Since these

OBD ports provide direct and/or bridged access to both critical and non-critical

networks, they represent an ideal point for a hacker to gain access via an (infected)

OBD dongle. Malicious software or hardware provides another pathway, mostly

introduced through non-approved after-market upgrades. These can be used to

launch internal attacks (observations or manipulations) on messages or other ECUs

since the network provides implicit full bus access to all components. As wireless

communication becomes increasingly common in modern vehicles, whether in wire-

less sensor systems, internet-enabled services, or (future) vehicle-to-vehicle (V2V)

communication, new pathways become available to potential attackers without

even requiring physical access. As an example, the use of short-range wireless

communication integrated into tyre pressure sensors provides access to pressure

values which would otherwise be impossible to monitor/measure during runtime,

but also offers a wireless pathway for a hacker [152].

Many high-end cars now feature remote diagnostics systems which allow the man-

ufacturer to monitor and alert users about system issues and performance. This

is achieved by monitoring the internal networks remotely, using secure links, as

in the case with GM’s proprietary diagnostic scheme called OnStar. However,

this scheme can be easily misused to collect user information and travel patterns,

breaching user privacy. Moreover, if exploited, these interfaces could proved a

way to transmit spurious and corrupt data onto internal networks, causing ECU
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systems to fail. This would be catastrophic for vehicles that depend on x-by-wire

systems.

In [152], the authors describe experiments performed to estimate the effort required

to hack into in-vehicle networks and control ECUs. They exploit the wireless in-

terface used by the tire pressure monitoring system (TPMS). In their experiments,

the IDs of TPMS transmitter(s) are captured by eavesdropping on the broadcast

transmission. These IDs are then reused to transmit spurious data using a higher

power transmitter. Since wireless receivers are sensitive to signal power, the ac-

tual data is discarded, while the tampered data is accepted by the central ECU.

By flooding the system with corrupt frames, they showed that the TPMS ECU

could be halted with very little effort. Similar efforts also show more serious ex-

ploits with hackers being able to control, corrupt and subsequently stall engine and

chassis ECUs. Such security vulnerabilities in a modern vehicle and the analysis

of the protocols from a security perspective are discussed in [153, 154, 155, 156],

among others. The literature also describes mechanisms like trusted communi-

cation groups [156], access control lists, and information tracking schemes [157],

but the scope of applying such systems is limited to certain domains and specific

applications.

V2V allows vehicles to communicate relevant data to provide advanced driver assis-

tance, collision avoidance, and remote assistance. Communication is achieved over

multi-hop self-organising wireless networks, comprising the mobile units (vehicles)

and fixed infrastructure [158]. Each vehicle broadcasts relevant information about

itself, which can be received by other vehicles (and infrastructure) in the vicinity.

Beyond the ad-hoc network nature and the requirements of authentication and

security, the scheme adds further challenges like ensuring timeliness of data, since

delayed, fraudulent or tampered data can result in misguiding commands to the

user [159, 160]. Moreover, the lack of suitable security features at gateways can be

exploited, resulting in loss of controllability and damage to property and life. This

requires novel electrics/electronics (E/E) architectures and advanced techniques

to process and forward data at gateways that can detect intrusions [161].
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Researchers have proposed the use of FPGAs for V2X communication systems,

aiming to exploit their computational capabilities and run-time reconfigurabil-

ity. The EVITA project describes the use of hardware security modules (HSMs)

that aim to provide security for vehicular on-board compute and communication

systems. The project describes multiple flavours of HSMs, ideally implemented

on FPGAs, to meet performance requirements for different contexts [162]. For

example, the EVITA HSM Full Version meets the performance and security re-

quirements for V2X communications, while the Medium Version is aimed at meet-

ing requirements for in-vehicle networks, implemented on powerful ECUs such as

gateways. The PRESERVE project also utilises FPGA implementations to ac-

celerate cryptographic primitives in their hardware security modules dedicated to

the Vehicular Communication Security Subsystem (VSS). Other projects in this

area include SeVeCom and PRECIOSA that also demand the use of reconfigurable

hardware to meet performance requirements. An architecture for implementing

an intelligent cryptographic engine without significant loss in performance for the

IEEE 1609.2 (WAVE) standard is described in great detail in [163]. The authors

highlight the computational capabilities of FPGAs and explore custom designs

with high performance, even for compute intensive algorithms like AES encryption,

SHA256 hashing, and elliptic curve cryptography for verifying digital signatures

(ECDSA). However, in all cases, the use of HSMs for in-vehicle network security

does involve some level of application awareness and execution/communication

latency.

Verification of these HSM extensions and ensuring standards compliance as well

as application deadlines for the proposed security enhancements presents a larger

challenge. Presently, verification of such complex systems is done (and proposed)

using model based simulations or with prototype implementations. However, with

safety-critical systems like x-by-wire, security extensions for in-vehicle and V2X

systems must be certified before use in commercial vehicles since a failure after the

integration stage can be very expensive. Novel techniques and associated hardware

and software for validating and certifying these systems is needed. These platforms
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should be capable of mimicking real in-vehicle environments, with real latencies

and delays, used to benchmark and verify such systems for compliance.

2.5 Summary

In-vehicle networks have significantly evolved from simple network schemes to

sophisticated time-triggered networks and other high bandwidth interconnects.

Complex intensive applications have also made their way into vehicular systems,

pushing the computational requirements of embedded computing units. As more

and more functions are introduced into newer vehicles, E/E architectures and

networks have to be enhanced to support them, while satisfying the reliability

and deterministic constraints imposed by the safety-critical applications. This is

further complicated by emerging requirements like security of embedded systems

and networks, putting additional strain on the ECUs and the network interfaces.

We believe that modern FPGAs are capable of handling such complex tasks,

through the design of custom hardware that can extend standard functionality.

However, designing efficient hardware on FPGAs and integrating advanced ca-

pabilities like dynamic reconfiguration requires high levels of expertise. Further,

custom designs should also ensure that application developers have a reliable and

standardised interface to the hardware, which ensures compatibility and simpli-

fies integration and functional validation. We believe that this can be tackled

through intelligent design of E/E architectures in a manner that offers tight in-

tegration between the network interface and the computational entity. Extended

capabilities like dynamic reconfigurability and security can be presented as fea-

tures of the platform, accessible through simple function calls. This transparent

integration offers minimal overhead and low latency, allowing designers to design

context-aware computing systems, explore deterministic consolidation and novel

fault-tolerant schemes. Such abstraction will help in widespread adoption of re-

configurable hardware for automotive applications and research.



3
Extensible Network Interfaces

3.1 Introduction

We have seen how electronically controlled/assisted safety-critical functions are in-

creasingly gaining widespread acceptance in modern vehicles. Many such functions

demand higher communication bandwidth and quality of service (reliability) which

exceeds the capabilities of the event-triggered Controller Area Network (CAN)

protocol, that has been pervasive in automotive systems until now. Furthermore,

for next generation electric vehicles with high levels of automation, the required

levels of determinism cannot be facilitated with event-triggered networks, lead-

ing to emerging widespread adoption of time-triggered communication schemes

and protocols like FlexRay and, more recently, time-triggered Automotive Eth-

ernet. FlexRay has been widely accepted as a de-facto communication standard

69
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for safety-critical functions like drive-by-wire, cruise control, and adaptive braking

systems, while also facilitating communication for non-critical ECUs.

The communication standards used in automotive systems, including FlexRay and

CAN, aim at providing a deterministic and reliable mechanism for exchanging

messages between ECUs. Any further enhancements, like a message source iden-

tification or timestamping are to be defined by the designer and must be handled

explicitly in the application layer. Neither the protocol nor its implementations

provide any hardware-level support for implementing such extensions, which the

software can rely on using function calls, analogous to dedicated hardware acceler-

ators to which computations can be offloaded by software using standard function

calls. Moreover, handling functions like timestamping is non-trivial; while the un-

derlying time-triggered networks have built-in mechanisms to ensure synchronised

operation, the software tasks themselves are often not synchronised across different

ECUs. This is because many functions are activated only by specific events which

mandate time-bound response, and such tasks cannot wait for synchronisation to

occur before producing the required response. These conflicting requirements make

straightforward implementation and management of such functionality non-trivial

at the software level.

Another aspect of managing timestamping in software is its inaccuracy. A task

in the ECU generates control data to be communicated to another ECU which

is passed to the protocol implementation for transmission over the shared bus.

However, since transmission occurs only at predefined points in time (assigned

slots in case of time-triggered schemes, non-deterministic priority in the case of

event-triggered schemes), the time at which the message is transmitted on the

bus may be different from the time it was generated. For a message timestamped

in software with the time it was generated, this delay in transmission results in

inaccuracy at the receiving ECU. The inaccuracy is further compounded when

the delay in the data fetch mechanism from the network interface at the target

ECU is also considered, as this is also typically an unsynchronised operation.

In addition, there is the overhead in adding/processing such extra information,
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which is undesirable in hard-real-time safety-critical systems that run on standard

micro-controller platforms.

Ideally, such network-level functions should be implemented close to the network

layer with support from the underlying mechanisms of the protocol. However, as

mentioned, none of the automotive standards incorporate such features as stan-

dard or provide mechanisms which can be directly leveraged in the upper layers.

Having such data-layer extensions provide unique mechanisms to reliably imple-

ment features like stale data rejection, replay attack prevention, among other

enhancements.

To explore such possibilities of enhancing automotive ECUs and to demonstrate

such extensions in a certifiable environment, a prototype implementation of an

extensible network interface is necessary, ideally in reconfigurable logic. While

implementations of protocols like FlexRay are available as IP and discrete ASICs,

they are not open to the research community. An extensible FlexRay controller

designed to take advantage of the capabilities of FPGAs opens up exciting pos-

sibilities – a closely coupled interface to the ECU and extensions to predefined

communication framework can enable advanced and intelligent ECUs with built-

in mechanisms to ensure deterministic fail-safe operation. Furthermore, the ca-

pabilities of the hardware platform can be explored to merge the controller with

multiple applications on the same device, while ensuring sufficient isolation be-

tween them, and partial reconfiguration can be exploited to further improve the

energy efficiency of non-critical non-concurrent systems. Such ideas cannot be

explored using off-the-shelf controllers or platform agnostic designs – a flexible

modular implementation of the network interface is essential, ideally on FPGAs.

To enable our further research on enhancing future automotive architectures and

networks, we have designed and developed an Extensible FlexRay communication

controller (CC) for FPGA-based ECUs. However, beyond a standard prototype

implementation, the controller features architecture-level optimisations which en-

able it to be more efficient than current implementations. Our extensible CC also

features configurable extensions like programmable width message time-stamping,
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network-level data filtering, data-layer header-insertion, and processing features

that augment the capabilities of the CC beyond those defined by the FlexRay

standard. Furthermore, the operation of these extensions is managed within the

controller, abstracting these details away from the ECU processor.

The optimisations at architecture-level along with the host of extensions makes

an energy efficient smart ECU possible, while abstracting such details from the

applications allows standard functions to be directly ported to such enhanced ar-

chitectures for improved efficiency. The extensions also enable advanced features

for functional ECUs and gateways, without affecting protocol-defined determinism

or reliability, making them ideal for compute intensive and safety-critical applica-

tions in next generation vehicular systems. Also, the proposed extensions to the

data layer are not tied to the FlexRay standard, and similar extensions can be

applied to emerging time-triggered standards such as Automotive Ethernet.

The work presented in this chapter has also been discussed in:

1. S. Shreejith and S. A. Fahmy, Extensible FlexRay Communication Con-

troller for FPGA-Based Automotive Systems, IEEE Transactions on Vehic-

ular Technology, Vol. 64, No. 2, pp. 453–465, Feb. 2015 [18].

2. S. Shreejith and S. A. Fahmy, Enhancing Communication On Automotive

Networks Using Data Layer Extensions, Demo Paper in Proceedings of the

International Conference on Field Programmable Technology (FPT), pp.

470–473, Dec. 2013 [16].

3.2 Related Work

The migration to time-triggered networking standards in vehicular systems aims

at providing required levels of determinism and bandwidth for safety-critical and

compute intensive features. Though event-triggered networks like CAN are widely

prevalent in existing vehicles, they fail to provide such determinism especially

when operating at near full capacity. Moreover, CAN networks cannot support
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increasing bandwidth requirements, and the time-triggered extensions of CAN

(TT-CAN) that enforces a slot-based structure over standard CAN to enhance

determinism have not gained widespread adoption. Hardware extensions to CAN

network controllers were also proposed by some researchers to overcome these

limitations [164].

FlexRay has emerged as the choice of network for safety-critical systems in the

automotive domain. And during work on this thesis, time-triggered Automotive

Ethernet has emerged as another possible candidate for backbone infrastructure

to address the bandwidth limitations in FlexRay, though standard communication

protocols are still under development. We now look at some of the implementation

approaches and network-level enhancements to the FlexRay protocol, that are

discussed in literature.

Implementations of the FlexRay controller that can be compiled to a wide range

of platforms are available from Bosch and Freescale [62, 63]. These are largely

platform independent, suitable for implementation on ASICs or FPGAs. However,

they are not optimal for implementation on reconfigurable hardware, since they do

not fully utilise the heterogeneous resources in the underlying fabric. For instance,

the E-Ray IP core from Bosch, which is a dual channel controller, does not directly

instantiate FPGA primitives like DSP Blocks or Block RAMs but uses general

purpose logic to implement these functions. Moreover, such implementations do

not enable research into extensibility of the communication infrastructure as they

are available only as encrypted netlists, preventing the opportunity to optimise

them or explore possibilities to enhance them.

Other implementations in the research literature include [65] that discusses im-

plementation of a FlexRay communication controller. It discusses in detail one

of the sub modules, the protocol operations control module, that coordinates the

actions of the core protocol segments. However, no details are presented about any

of these core protocol segments or their implementation aspects and architecture-

level optimisations. Also the implementation aims to purely mirror the existing

specification, with no new features. [66, 67] also describe implementation of the
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FlexRay Communication Controller using the specification and description lan-

guage (SDL) as the platform and later translation to hardware using Verilog.

Their work approaches the protocol from a high level of abstraction and hence

does not discuss hardware design details or architectural optimisations.

Beyond these generic approaches, other researchers have aimed at improving/op-

timising certain aspects of the FlexRay controller. The work in [70] discusses

an approach to improve the energy efficiency of a FlexRay controller by allowing

it to be controlled by an intelligent communication controller (ICC). The ICC,

which takes over bus operations from the ECU when the latter goes to sleep, pre-

vents the ECU from being woken by erroneous transmissions allowing the node

to achieve higher power efficiency. The concept validation on FPGA and the pro-

posed architecture are also discussed in the paper. However, they use a proprietary

implementation of the FlexRay communication controller that is not available to

the research community. Similarly, the work in [148] describes implementation of a

FlexRay controller on an FPGA with add-on features to aid functional verification.

These features are primarily to enable a verification framework and do not point

in the direction of optimisations or enhancements for improving the node/network

functionality beyond standard implementations.

3.3 Contributions

We present a resource optimised implementation of a dual-channel FlexRay com-

munication controller, that features a configurable set of data-layer extensions.

The data-layer extensions are implemented as parallel extensions to the main con-

troller datapath, thus ensuring compliance with FlexRay protocol requirements.

The design is extensively optimised by effectively utilising the hardware primi-

tives, which results in an area-efficient implementation that leaves aside a con-

siderable portion of FPGA logic for implementing functional components of the

ECU. Though this approach results in limited portability between platforms, it

provides superior utilisation and power efficiency during operation, especially in
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case of FPGA-based ECUs. Also, portability between platforms is becoming a

minor problem as FPGA vendors have standardised hardware primitives across all

their device families in a given generation. Furthermore, we show that our archi-

tecture targeted for a Xilinx device can be easily ported to an Altera platform,

with similar efficiency in area and power.

This work enables a number of investigations in the space of FlexRay on recon-

figurable hardware and more generally for enhanced ECUs on FPGAs. The ex-

tensions, when closely coupled with functional logic on the same hardware, offer

enhanced communication between ECUs without consuming excessive bandwidth

or power. The case studies show that such enhancements can be employed in

multiple automotive applications from individual ECUs to gateways, to improve

the overall efficiency of the system.

3.4 Architecture Design

A node on the FlexRay network consists of a Communication Controller (CC),

an application running on a host ECU, and multiple bus drivers to independently

support 2 communication channels. The Host ECU is the computational imple-

mentation of an algorithm like adaptive cruise control or engine management, and

it may communicate with other ECUs or sensor nodes over the network. The

Communication Controller ensures conformance with the FlexRay specification

when transmitting or receiving data on the communication channel. The Bus

Driver handles the bit stream at the physical level and provides the physical level

interface to the communication channel. The Host ECU monitors the status of

the Communication Controller and Bus Driver independently and configures them

appropriately during startup or runtime.
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Figure 3.1: Architecture of custom FlexRay communication controller.

3.4.1 Communication Controller

The FlexRay CC switches between different operating states, based on network

conditions and/or host commands, ensuring conditions defined by the FlexRay

protocol are met at all times. The CC architecture, as shown in Figure 3.1,

comprises the Protocol Engine (PE) which implements the protocol behaviour

and the Controller Host Interface (CHI) which interfaces to the host ECU.

The CHI module communicates with the host and handles commands and config-

uration parameters for the FlexRay node. These parameters are defined for the

particular cluster the node is operating on, and are initialised during the node’s

configuration phase. The CHI feeds the current state and operational status to the

host for corrective action if necessary. There are transmit and receive buffers and

status registers for the datapath, to isolate control and data flow. The CHI may

also incorporate clock domain crossing circuitry to enable the different interfaces

to work in distinct clock domains.

The Clock Synchronisation (CS) and Medium Interface Layers (MIL) submodules

of the Protocol Engine implement specific functions of the protocol, which are

controlled and coordinated by the Protocol Management Module (PMM). These
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sub-modules support multiple modes of operation and can alter their current op-

erating mode in response to changes in any of the parameters, error conditions, or

host commands. The PMM ensures mode changes are done in a way that complies

with the FlexRay specifications. The Medium Interface Layer handles the trans-

mission and reception of data over the shared bus. It encodes and decodes data,

controls medium access and processes decoded data to ensure adherence to pro-

tocol specifications. The CS module generates the local node-clock, synchronised

to the global view of time. It measures deviation in the node clock on a per-cycle

basis so that it stays synchronous with other nodes in the cluster.

Timing in a FlexRay node is defined in macroticks and microticks. Microticks

measure the granularity of the node’s local internal time and are derived from the

internal clock of a node. A macrotick is composed of an integer number of mi-

croticks. The duration of each local macrotick should be equal within all nodes in

the cluster. The FlexRay protocol uses a distributed clock correction mechanism,

whereby each node individually adjusts its view of time by observing the timing

information transmitted by other nodes. The adjustment value is computed using

a fault-tolerant midpoint algorithm. A combination of rate (frequency) and offset

(phase) correction mechanisms are used to synchronise the global time view of

different nodes. These corrections must be applied in the same way at all nodes

and must follow the following conditions:

1. Rate correction is continuously applied over the entire cycle

2. Offset correction is applied only during NIT in an odd cycle and must finish

before the start of the next communication cycle.

3. Rate correction is computed once per double cycle, following the static seg-

ment in an odd cycle. The calculation is based on values measured in an

even-odd double cycle.

4. Calculation of offset correction takes place every cycle, but is applied only

at the end of an odd cycle.

Rate correction indicates the number of microticks that need to be added to the

configured number of microticks per cycle and may be negative, indicating that
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the cycles should be shorter. Offset correction indicates the number of microticks

that need to be added to the offset segment of the network idle time and may also

be negative, indicating that the duration has to be shortened.

The FlexRay bus supports two independent channels for data transmission and

reception. The transmission rate can be set at 2.5Mbps, 5Mbps or 10Mbps. The

protocol also defines multiple bus access mechanisms, in the form of static slots

for synchronous time-triggered communication and dynamic slots for burst mode

event-triggered (priority-based) data transfer. Special symbols can be transmitted

within the symbol window, like wake-up during operation (WUDOP) and collision

avoidance symbols (CAS). During the network interval time, all nodes synchronise

their clock view with the global clock view so that they stay synchronous. Each

transmitted bit is represented using 8 bit-times to ensure protection from inter-

ference. At the receiving end, these are sampled and majority voted to generate

a voted bit. Transmission and reception must be confined to slot-boundaries and

transmission (or reception) across slot-boundaries is marked as a violation. The

node should transmit only on slots that are assigned to it (either in the static or

dynamic segments). Each node is assigned a keyslot, which it uses to transmit

startup or synchronisation frames (along-with data).

3.4.2 Implementation and Optimisations of Custom CC

The state of the PMM module, at any instant, reflects the current operating mode

of the CC. The PMM module triggers synchronised changes in the sub-modules

CC and MIL, and describes the different operating modes of the node, as depicted

in Figure 3.2. These mode changes can be triggered by host commands or by

internal and/or network conditions encountered by the node. Table 3.1 describes

the different commands issued by the host and how the operation of the CC is

modified in response to specific commands. As can be seen, certain commands

demand an immediate response from the controller, while others are to be applied

at specific points within the communication cycle. This distinction makes the
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Table 3.1: Commands from Host that affect CC operating modes.

Host Command Affected States Final State Processed at

ALL SLOTS Active, Passive no state change End of cycle

ALLOW

COLDSTART

All states except

Def. Config, Config and Stop
no state change Immediate

CONFIG Def. Config, Init Wait Config Immediate

CONFIG

COMPLETE
Config Init Wait Immediate

DEFAULT

CONFIG
Stop Def. Config Immediate

FREEZE All States Stop Immediate

HALT Active, Passive Stop End of cycle

READY
All states except Def. Config,

Config, Init Wait and Stop
Init Wait Immediate

RUN Init Wait Start-Up Immediate

WAKEUP Init Wait Wake-Up Immediate

control flow more complex than the case of a straight-forward finite state machine

(FSM).

The FlexRay protocol allows a cluster and its associated nodes to switch to sleep

mode to conserve power. When any node needs to start communication on the

network, a wake-up sequence is triggered by the host by putting the CC into

Wake-up state. In the Wake-up state, the node tries to awaken a sleeping net-

work by transmitting a wake-up-pattern (WUP) on one channel. Sleeping nodes

decode this pattern and trigger a node wakeup. Nodes which have dual channel

capability then trigger a wake-up on the other channel to complete a cluster-wide

wakeup. The node cannot, however, verify the wakeup trigger at all connected

nodes, since WUP has no mechanism to communicate the ID of the nodes that

have responded. The nodes then follow the startup procedure to initialise com-

munication on the cluster. The startup operation also caters for re-integration of

a node onto an active network. To do so, the node must start its local clock so

that it is synchronised with the network time.

Within the Start-up state, the clock synchronisation startup (CSS) logic in the
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Figure 3.2: FlexRay CC Modes of Operation.

Clock Sync module is initialised, which extracts timing information from a pair

of synchronisation frames received from the bus and starts the macrotick gener-

ator (MTG) in alignment with them. Over the next few cycles, it monitors the

deviation of its clock from the actual arrival time of sync frames on the bus, and

if these are within limits, the process is signalled as successful. If at any point,

the observed deviation is beyond the configured range, the integration attempt is

aborted and the node restarts the process. Once it integrates, the node moves

to Active mode, with a clock that is synchronised with the network. Once the

node successfully joins the network, the PMM normally follows a cyclic behaviour

switching between active and passive states, in response to network-node condi-

tions, causing synchronised changes in all modules.
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Figure 3.3: Protocol Management Module (PMM) architecture.

In our design, the PMM module also encapsulates Wake-Up and Start-Up. Com-

bining the operations of WUP and SUP with the operations at each state of PMM

results in a hierarchical structure, as in Figure 3.3, with the combined state encod-

ings stored in the microcoded ROM. Combining the two functions into the same

module also allow us to share resources between the two operations, which are not

required concurrently, using simplified control flow. Since the CS and MIL mod-

ules are also controlled by WUP and SUP for the associated wake-up and start-up

operations, integrating them with the PMM results in centralised control for all

operating conditions, simplifying interfaces to the submodules. The response to

different conditions or stimuli is now reduced to the process of generating ap-

propriate addresses for the ROM, similar to the program counter implementation

on a standard processor. The ROM is efficiently implemented using distributed

memory (LUTs) because of its small size.

Figure 3.4 shows a simplified architecture of the CS module in our design. The

CS module generates the clock, computes the deviations of the generated clock

from the distributed timing information and applies the corrections in the specified

manner. The CS module is comprised of 2 concurrent operations (or sub-modules):

firstly, the MTG process which controls the cycle counter and the macrotick coun-

ters and applies the rate/frequency and offset/phase correction values; and sec-

ondly, the Clock Synchronisation Process (CSP) that performs the initialisation

at cycle start, the measurement and storage of deviation values during the cycle
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Figure 3.4: Clock Sync (CS) module architecture.

and computes the offset and rate correction values. In addition, the CSS mod-

ule is responsible for starting a synchronous clock when the CC tries to integrate

into either an active network or initiate communication on an idle network. The

CSP state machine controls and co-ordinates the operations of the CS module by

interacting with the CSS and MTG sub-modules.

During Start-Up, the CSS process monitors the arrival time of the even synchro-

nisation frames and generates the global reference time by computing the initial

Macrotick value as

Macrotick = (pMacroInitialOffset + gdStaticSlot

× (ID − 1 )) mod gMacroPerCycle (3.1)

where pMacroInitialOffset, gMacroPerCycle and gdStaticSlot are FlexRay param-

eters. The expression is implemented using cascaded DSP48A1 slices, whose in-

puts are multiplexed between channels A and B to handle startup requests from

either channel. If a subsequent odd frame arrives within the predefined window,

the integration attempt is flagged as successful by the CSS module and the CSP

commands the MTG state machine to start the Macrotick clock (MTClk) using

the computed Macrotick value for this channel. The MTG then generates the
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Figure 3.6: Fault tolerant midpoint illustration for seven deviation values.

Macrotick clock from the Microtick clock (uTClk) using the configured parameter

values.

Figure 3.5 shows the clock deviation computation for each cycle, once the CC suc-

cessfully integrates onto the network. The measuring cycle refers to the duration

of the static segment, where sync-nodes transmit synchronisation frames which

are used to compute rate and offset corrections. During each measurement cycle,

the node measures the deviation of time of arrival registered at the node from the

calculated time of arrival of the synchronisation frame, which is stored in memory.

At the end of measurement phase, the node computes the offset and rate correc-

tion factors from the stored values using a fault-tolerant midpoint algorithm. The

operation is depicted in Figure 3.6, for a cycle that recorded seven deviation val-

ues. The real challenge here is that a network may be configured without dynamic

and symbol window segments. Hence the offset and rate computations have to

be completed consuming a minimum number of cycles to ensure that correction

values are available to be applied at the network interval time segment.
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Figure 3.7 shows our solution to the mid-point computation mechanism, expanded

from the slotID and deviation store in Figure 3.4, for an even cycle. The fault-

tolerant midpoint algorithm computes the rate and offset corrections that are to

be applied to the MacroTick clock. During normal operation, the CSP module

handles the computation and storage of individual deviation values and the com-

putation of mid-point correction values. As a frame is received, its ID is used to

address the slotID RAM, the output of which is used as the address for the de-

viation store, mimicking a content-addressable memory. The deviation from the

expected arrival time of sync frames to their actual arrival time is stored in the

deviation store. The upper and lower pipes perform dynamic sorting (descending

and ascending) as and when the deviation values are replayed from the store, at

the end of the cycle. Dynamic sorting is implemented using a FIFO structure and

multiple comparators. Hierarchical comparison is performed from top to bottom

(bottom to top) in the upper (lower) pipe. At any level, if the input value is

greater (less) than the existing values at that level, the input value is pushed into

the FIFO at that level.

For each ID, the multiplexer chooses the minimum deviation among the two chan-

nels, in the case of offset computation, and the difference between the correspond-

ing channels in a pair of cycles, in the case of rate computation. The mid-point

deviation is the average deviation over the corresponding stages of the upper and

lower pipes, the stage chosen depending on the number of valid deviation values
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stored. The MacroTick Generation module uses the computed mid-point devia-

tion values to make corrections to the node’s view of time. Utilising the tagging

established by the content-addressable memory and the pipelined architecture,

the mid-point computation can be efficiently implemented at system clock rate

to meet protocol requirements. A more conventional architecture would require a

higher clock rate for this computation. Architectural optimisation also enables us

to utilise fewer resources while maximizing performance.

The MIL module instantiates independent transmit and receive transit buffers to

manage temporary storage of a frame, as shown in Figure 3.8. The MIL ensures

that medium-access occurs only at slots assigned to the node. The access control

state machine handles the bus access, depending on the current slot counter value

and slot segment. The access control logic generates and maintains the slot counter

and the slot segment, which are used by other modules in the CC. Within each

slot, the logic generates control signals called action points, which mark points

at which transmission can start (in static and dynamic slots) or end (in dynamic

slots).

The signals trigger the encoding logic to start the frame transmission sequence,

provided the current slot is allocated to this node. The data to be transmitted is

moved to the transmit buffer over a 32 bit data bus. If no data is available for
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transmission, the node transmits a null frame. The module also handles encod-

ing and serial transmission of data (at the oversampled rate) in the current slot.

The decoder functionality is also integrated into this module, which performs bit-

strobing, majority-voting, byte-packing and validation of received data at the end

of the slot.

The transmit interface is implemented using shift registers with gated clocks. This

allows us to provide multiple functions with the same set of registers: encode and

transmit data bytes, control signals and symbols. The shift register reads each

byte from the transmit buffer, encodes it within the shift register and pushes it

to the transmit line at the transmit clock, along with the transmit control signals.

At the receiving interface, sampling, bit-strobing and edge synchronisation are

implemented using a sequence of shift-register modules: one set samples the data

and produces a majority voted bit every cycle, and the second set performs byte-

packing of the data. This system offers the advantage of simpler control and

higher throughput. The byte-packed data is written into the receive transit buffers.

As and when protocol errors or violations are detected (like reception crossing

boundary points), appropriate flags are set locally, which are used to validate the

data at the slot boundary. At the end of the current slot, the flags are checked to

signal valid data, which can then be written into the receive data memory in the

host-interface.

The control modules are efficiently implemented as multiple state machines at dif-

ferent levels to ensure parallel and independent operation. The transmit buffers

prefetch data from the transmit data store in the CHI at the start of each slot

to minimize latency. Similarly, the data location for each received frame is pre-

computed to enable the complete data to be written to the receive data store in

the CHI before the start of the next frame, minimising latency from the time of

frame reception to the time of intimation to the host. Also, the data available flag

and interrupts (if enabled) are set, as soon as the first D-word is written into the

receive buffer in CHI. The data store and the associated control and status store in

the datapath mimic a content-addressable architecture in Block RAMs to enable
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prefetching and addressing using the slot-cycle-channel complex, as required by

the protocol.

Two such MIL modules are instantiated within the controller to support indepen-

dent dual channel operation. These modules may transmit and receive data at the

same slots, as configured by the host. To facilitate this, we have implemented a

configurable scheduler, which can be configured for priority access (Channel A over

B or vice versa) or first-come-first-serve mode. High word-length interconnects are

used between the data store in host interface and transit buffers within the MIL

module to ensure low-latency prefetch and write-back for both channels. Using

such an architecture, the prefetching can be handled at system clock rates, without

high latency. The physical layer can be configured to support multiple bit-rates of

2.5Mbps, 5Mbps or 10Mbps. The shift register-based encoder/decoder module

simplifies the logic requirements for handling multiple bit-rates.

The interface standard to host processor is designed to be compatible with Pro-

cessor Local Bus (PLB) interface and the AMBA Advanced eXtensible Interface

4 (AMBA AXI4) standard from ARM, two of the widely used high-performance

low-latency peripheral interconnects for system-on-a-chip (SoC) designs. The host

interface supports parameterised widths and a wide range of system and interrupt

configurations to provide a rich interface to the host processor (or logic). The con-

trol path comprising the command, status and configuration registers are isolated

from the datapath and implemented as a register stack. Data corresponding to

each cycle, slot and channel is addressed using an indirect addressing technique.

The data pointer is stored at an address determined by the cycle-slot-channel

complex. This allows us to use true dual-port Block RAM modules and simpler

address generation as opposed to the complex FIFO-based schemes used by ex-

isting controllers. Another advantage is that the memory can be configured as a

cyclic buffer resulting in an indefinite memory space, as opposed to the limited

memory space available in a FIFO-based scheme. The memory space is dynami-

cally allocated at the end of each slot that is configured as a receive slot, only if

valid data has been received, thus optimising memory usage.



3 Extensible Network Interfaces 88

Asynchronous FIFOs are instantiated between the host interface and the control/-

data stores, which enables the host interface to run at a clock speed independent

of the PE. Using such a low-level design paradigm, we are able to leverage FPGA

resources within the modules of the FlexRay Controller, thereby saving the re-

maining area for system implementation.

3.4.3 Controller Datapath Extensions

Traditional controllers depend on the host processor to read the received data

and determine its usefulness. The controller issues a data interrupt, to which the

processor responds with a status register read followed by a data read request,

subsequently receiving the data. The associated overheads are wasted in the case

of frames with irrelevant data (like obsolete or un-timely data) or multi-cycle data

frames where the processor cannot process the received fragment until more data is

available. In the case of critical data frames like error state that require immediate

attention, the latency introduced by the traditional scheme limits the performance

of safety-critical systems which rely on host-triggered recovery. With custom ex-

tensions, such exceptions can be handled at the controller, which processes the

information and informs the host processor (using interrupts). The host retains

absolute control, but is not involved in the low-level processing, which is handled

instead by the configurable extensions. Figure 3.9 describes the functioning of

such extensions on the receive-path of our controller.

On the receive path, the extensions can monitor the received data for matching

FlexRay message ID, application-based custom headers or timestamp information,

contained in the data segment of the FlexRay frame. The FlexRay message ID

can be used for application/user defined communication in dynamic segment data

frames. An interesting use-case is to embed the error status of the ECU into

the message ID, which can trigger a fault-recovery procedure in safety-critical

units. Application specific headers may be embedded into the data segment in

any frame. Such headers convey information about the data contained in the

frame, like sequence number and length, and are particularly useful in the case
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Figure 3.9: Receive path extensions on custom CC versus traditional
schemes.

of large data transfers which are accomplished as multi-cycle transactions on the

FlexRay bus. Information in the headers is used by the controller to re-pack the

multi-cycle data. The header processing extensions on the receive path can look

for such information and re-organise the segmented data and present it as a single

transaction to the host.
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Similarly, the timestamp validation extension can be configured to reject frames

which are obsolete or untimely. On the transmit path, these extensions can insert

relevant headers and timestamp information, as configured. Timestamp resolution

is configurable, with a finest resolution of one macrotick and maximum length of

four bytes. The header is entirely user configurable, and can be matched at the

receiver by programming the corresponding registers.

Such extensions on the controller can help extend the functionality and overcome

the inherent limitations of the FlexRay network, and are impossible to achieve

on discrete controllers. Our pipelined architecture in the transmit and receive

paths allows us to add this functionality with no additional latency. Standardising

such extensions, automotive networks like FlexRay can be enhanced to implement

a data-layer segment that provides security against replay attacks (using times-

tamps) and a standard methodology to communicate the health state of ECUs

(using headers). Though such enhancements can be handled by the application in

software, this would incur additional processing latency and unwanted complexity

at the software level (like timing synchronisation).

3.4.4 Timestamp Synchronisation Mechanism

The timestamp synchronisation mechanism is derived from the distributed clock

synchronisation mechanism used in FlexRay networks, and its startup procedure is

integrated into the startup procedure of FlexRay communication. During startup,

the leading coldstart node initialises traffic on the network by transmitting sync

frames, which are also marked as null frames (i.e., no data content). The first

non-null frame is transmitted once a second coldstart node starts transmitting

sync frames in acknowledgement of the startup procedure. As soon as the leading

coldstart node shifts to the coldstart resolution state (waiting for acknowledgement

from other coldstart nodes after 4 cycles of sync frames), the timestamp timer is

started locally at this node. In the first non-null frame, the current value of the

timestamp of the leading coldstart node is transmitted along with the message,

which is received by other nodes on the network. The nodes lock on to the ID of
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the node (slotID) and use this later as the reference node for synchronisation. Like

in the case with clock synchronisation, the nodes compute their current value of

received timestamp by adding the known decoding delay and transmission latency

(known from bit-rate and payload length parameters of FlexRay) and initialise

their internal counters based on the computed value.

Once in operation, the nodes synchronise on every odd cycle, like the rate adap-

tation mechanism in FlexRay. The deviation of their internal timestamps, with

respect to the timestamp in the sync frame from the leading coldstart node, is

monitored in every odd-even cycle pair. At the end of the odd cycle, the clock

correction is applied based on the average deviation recorded. This allows the

timestamp timer to be synchronised at the MacroTick level. In the event of a

fault with the leading coldstart node (i.e., the leading coldstart node does not

transmit over an odd-even pair), the nodes will reset the stored ID and uses the

first sync frame in the next cycle as the reference, and saves this ID as the reference

ID for timestamp synchronisation.

3.5 Implementation Results

To validate our design and to measure actual performance on hardware, we have

implemented it in a low power Xilinx Spartan 6 XC6SLX45 FPGA with a host

module described using a state machine, modelling a complete ECU. We choose

the Spartan 6 as it is a low cost, low power device, that would be a likely choice

for an automotive implementation. To test the network aspects, we emulate a

FlexRay bus within the FPGA, using captured raw bus transactions from a real

FlexRay network (using Bosch E-Ray controllers) communicating using a pre-

defined FlexRay schedule; these are stored in on-board memory. The information

is replayed to create a cycle accurate replica of transactions on the bus. Our CC is

plugged into this FlexRay bus, and configured with the same FlexRay parameters.

Table 3.2 shows a specific set of parameters which was used for our experiment.
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Table 3.2: FlexRay node parameters.

Parameter Value

Number of Cycles 64

Cycle Duration 5ms

Number of Static Slots 62

Static Slot duration 65 (macroticks)

Payload Length (Static) 21 words

Number of Dynamic Slots 10 (max)

Symbol Window duration 139 (macroticks)

NIT duration 208 (macroticks)

Sample Clock 12.5 ns

Keyslot ID Assigned Slot 7

Transmission slots Slot 7 in cycles 32 and 62

Table 3.3 details the resource utilisation of the individual modules of the controller

and the power estimates generated by the Xilinx XPower Analyser tool, using

activity information from simulation. We have configured the core to support

all extensions on the transmit and receive path; a two-byte data header and a

four-byte timestamp. The maximum operating frequency in this configuration

was reported to be 88MHz in the balanced compilation setting on Xilinx ISE. The

core is initialised with parameters using a logic-based host-model over a PLB/AXI

interface. The actual power measured using a power supply probe during operation

in hardware is also shown.

Table 3.4 compares the resource utilisation of our implementation against the

platform agnostic E-Ray IP core on the same Altera Stratix-II device, with DSP

inference enabled and the extensions disabled. For the purpose of comparison,

the consolidated utilisation on a Xilinx Spartan 6 is also shown in the same table,

with both extensions disabled and enabled. It can be observed that the hardware

centric approach results in much better utilisation of the heterogeneous resources,

leading to a compact implementation. The design can also be easily ported to

other Xilinx and Altera devices, and to other platforms with a little more effort.

The resource utilisation and optimisations that we have achieved in comparison
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Table 3.3: CC Implementation on hardware.

Usage PM Module CS Module MIL Module

Registers 222 1864 732

LUTs 537 3579 1050

BlockRAMs 0 2 2

DSP48A1s 0 3 0

Est. Pow. (mW) 45 66 54

Actual Power 121mW (at 80MHz system frequency)

Table 3.4: Comparison of implementations.

Utilisation

E-Ray[62]
Our CC

Altera Stratix II Xilinx Spartan 6

No Extensions Extn Disabled Extn. Enabled

Registers 7754 4966 4910 5612

LUTs 12780 7856 7978 8767

BRAMs 23×M4K 33×M4K
5×9k +

12×18k

5×9k +

13×18k

DSPs - 12×9-bit 3×DSP48A1

with the platform agnostic E-Ray core is significant enough to justify the some-

what reduced portability. With the DSP inference disabled, our implementation

consumed 8282 LUTs and 5248 Registers (on the Stratix-II), which is still below

the E-Ray core. Another advantage is that the power consumption at full oper-

ation on a Spartan 6 device is below the power consumed by typical stand-alone

controller chips like the Infineon CIC-310, which uses the E-Ray IP module [165],

and consumes about 150mW in normal operating mode.

A key advantage of implementing the communication controller in the FPGA

fabric is the ability to compose more intelligent ECU nodes with enhanced com-

munication capabilities on a single device. As an example, we have integrated a

fully functional ECU node that combines this controller with a MicroBlaze softcore

processor on a Xilinx Spartan 6 XC6SLX45 device, as in Figure 3.10. The ECU

functions as a front-end processing node for radar-based cruise control and is built
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Figure 3.10: Integrated ECU function on Spartan-6 FPGA.

using Xilinx FFT IP cores and pipelined logic which performs target detection

using a constant false alarm rate (CFAR) scheme [166]. The application is based

on a frequency modulated continuous wave (FMCW) technique with a triangular

modulating wave, which can simultaneously determine distance and range-rate of

the preceding vehicle. The test data generates 1024 data points every 30ms, which

are transformed to the frequency domain by the FFT module. The CFAR module

performs detection on the frequency domain data using multi-stage pipelined logic

and writes results into the dual-port RAM. The processor is then interrupted, and

it consolidates the data over a configurable number of cycles. The controller is

configured with parameters defined in Table 3.2. Thus at cycles 32 and 62, consoli-

dated results are sent on the FlexRay bus. Table 3.5 details the resource utilisation

and power consumption measured during operation in hardware. Such an applica-

tion would otherwise require specialised DSP processors, since the latency cannot

be met by software implementation on a general purpose processor [166]. Similar

performance can be obtained by interfacing high performance DSP devices like

the Analog Devices ADSP-TS202S [167] with a standalone FlexRay controller like

the Infineon CIC-310 or Freescale S12XF [23], but the node would consume much

higher power overall than the integrated FPGA implementation. The key advan-

tage here is that integrating ECU functionality and the network interface on the

same device only increases power consumption marginally, and this interface can

be shared between multiple functions on the same FPGA.
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Table 3.5: Spartan-6 implementation of ECU on Chip.

Solution Metrics
Proposed
CC

Hardware
Accelerator

Full
ECU

Proposed

Scheme

Registers 4922 4216 11778

LUTs 7969 3221 13566

BlockRAMs 13 11 60

DSP48s 3 44 48

Power

Consumption
291mW

Discrete

Solution

ADSP TS202 596mW @ 100MHz clock

Discrete CC 150mW [165]

Total Power 746mW

MicroBlaze offers a low power, low throughput processing option for sensor ap-

plications. Alternatively, hybrid platforms like the Xilinx Zynq can be used for

more compute intensive and real-time applications since they offer a more pow-

erful ARM processor. By using AXI-4 for communication between the CC and

the host, our design can be used with the ARM in the Zynq (consuming 5612

Registers, 8685 LUTs and 2 DSP48E1s) or with a MicroBlaze soft processor, or a

custom hardware ECU.

3.6 Case Studies

We now present three distinct case studies that showcase the effectiveness of the

custom extensions in the context of existing or proposed automotive applications.

In each use case, we observe that the application can leverage the intelligence built

into the controller, leading to smarter and more efficient systems when compared

to standard implementations.
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Figure 3.11: Test setup for brake-by-wire system.

3.6.1 Deterministic Decoding of System-State Messages in

Safety-Critical ECUs

Safety-critical systems employ redundant or fall-back modes, which enable mini-

mum guaranteed functionality, even in the presence of hardware/software faults.

One of the critical parameters in such a system is the time to switch to fall-back

mode once a fault has been identified. For this experiment, we model a brake-

by-wire system comprising two MicroBlaze ECUs on the FlexRay network; the

brake sensor ECU, which interfaces to the sensor modules, and the actuator ECU,

which issues commands to the braking system. Each ECU incorporates fall-back

logic which is triggered when a fault-status message is received. These status

messages are generated by a centralised fault detection ECU that monitors bus

transactions for unsafe commands/data. The sensors and actuators are modelled

using memories: sensor data is generated from a Sensor BRAM, and commands

are pushes to the Actuator BRAM. The sensor ECU combines inputs from the

different sensor interfaces periodically and passes it over the FlexRay bus to the

processing ECU. The processing ECU uses this data to compute commands, issues

them to the actuators, and acknowledges the receipt of commands from the sensor

ECU. Both ECUs run software routines on the popular FreeRTOS platform. A

simplified model of the test setup is shown in Figure 3.11.

To mimic the behaviour of off-the-shelf controllers, we disable the custom exten-

sions on the CC. A fault-status message is triggered on the sensor ECU system
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by configuring invalid data in the Sensor BRAM, causing incorrect sensor-data to

be issued to actuator ECU over the FlexRay bus. The fault-detector logic detects

the error and transmits the error code in the next slot assigned to it. A nor-

mal controller decodes this message, passes it to the MicroBlaze processor, where

the data is processed to trigger fall-back mode. The latency from the transmis-

sion of the error message to the triggering of fall-back mode is largely determined

by the interrupt-based data passing mechanism used in off-the-shelf controllers.

Even for an RTOS-based (real-time) system, this latency can be significant, and

was measured at an average of 9.05ms for our implementation, as illustrated in

Figure 3.12.

By moving such critical data processing to the controller, it becomes possible to

significantly reduce this delay and enhance the determinism of the system. To

quantify this, a processing extension that detects packets on a user-configured slot

with a user-specified data header is enabled on the CC. On detecting this combina-

tion, the controller can either process the remaining data for specific patterns, or

trigger an interrupt. In this particular experiment, it is configured to process the

critical error flags and the consecutive error numbers to decide whether to trigger

fall-back mode. This generates a direct interrupt to the MicroBlaze processor and

enables fall-back mode, resulting in a faster and more consistent turnaround time

(average 50× faster than RTOS), as shown in Figure 3.12.

We have also repeated the experiment using the Xilinx standalone (SA) OS, the

lightweight minimalistic OS for MicroBlaze. It can be observed from Figure 3.12

that though the simplified standalone OS results in lower average interrupt laten-

cies than the RTOS, it results in a larger spread of latencies.

3.6.2 Extended Communication using Data-layer Exten-

sions

While the pattern matching extensions on the controller can be configured to de-

code selected control messages for initiating action, this requires alterations in
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the communication schedule to incorporate additional communication to handle

such changes. A smarter approach would be to integrate the health-status and

acknowledgement into the data-segment as message headers, creating a data-layer

extension to the messages that are already being exchanged, as shown in Fig-

ure 3.13. This prevents the need for regenerating the communication schedule and

to validate the performance of the system in the new setup before evaluating the

efficiency of the fault-tolerance features. The controller is also capable of handling

such scenario’s using the different configuration options available on the pattern

matching extension.

To evaluate this scheme, we use the same 3 ECU brake-by-wire system described

earlier. MicroBlaze processors form the ECU units, with applications (tasks)

loaded as software. The ECUs are networked using the FlexRay protocol.

The ECUs exchange messages similar to the earlier setup, but with the messages

incorporating additional information, as shown in Figure 3.14. The definition of

the different messages are as below:
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Figure 3.14: Messages exchanged between the ECUs

❼ ECU1 (sensor ECU) reads the sensor data and generates sensor commands

(msg1).

❼ ECU2 (actuator ECU) receives sensor commands and health messages (msg2)

from ECU3. If health status is normal, it acknowledges sensor commands

(msg3) and produces actuator commands; else it flags a fault state via (msg3).

❼ ECU3 (monitor ECU) monitors msg1 and generates health status for ECU1

(msg2).

In this test, we utilise health flags on msg3 to indicate a fault in ECU1. From a

pre-determined point, the ECU1 messages are corrupted at the bus by injecting

faults, which triggers the monitor ECU (ECU3) to generate the health message

with fault-flag’s set. This would further set the fault-flag in the acknowledgement

message from ECU2 to ECU1, forcing the fault-tolerant mode to be activated in

ECU1. Once the fault is removed (after the configured time window), the fault

injection is disabled, and the monitor indicates this using a change in health state

of ECU1. This is reciprocated in the acknowledgement message of ECU2, by

setting the flags to normal.

In the default setup, such enhancements are added into the software that inter-

faces with the communication tasks. The same functionality can be enabled in the

hardware by enabling the custom extensions in our FlexRay CC. With hardware

extensions enabled, we can observe faster and more deterministic response rates

for the above test instances, compared to the software processing of such messages.
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Table 3.6: Software and hardware performance comparison.

Enhancement Processing Software Hardware

Timestamp

accuracy (Tx)

64 ➭s

(2 slots min)
100 ns

Health monitoring
Msg processing 3550 ns 180 ns

Turnaround (standby) 3650 ns 280 ns

We also observe that the hardware-based timestamps enable much higher accu-

racy than the software-based scheme, where even the best-case scenario produces

an inaccuracy corresponding to two FlexRay slots. The key idea here is that,

such extensions can be enabled without requiring additional communication slots,

by embedding such information within the existing message exchange. The only

software overhead is to periodically report the system health state to the FlexRay

CC, which is then incorporated into the outgoing messages transparently.

3.6.3 Time-Awareness for Messages

A major security risk in time-triggered systems like FlexRay is the lack of time-

awareness for messages. By monitoring bus transactions, an external attacker can

easily employ simple replay attacks, flooding the bus with stale data, as described

in [152]. The FlexRay protocol leaves this vulnerability to the higher layer ap-

plications to tackle. In our controller, the transmit path allows messages to be

optionally time-stamped to make the message time-aware, at the cost of increased

payload size. By inserting the header and timestamp within the data segment of

the FlexRay frame, it is transparent to other FlexRay controllers present on the

network, ensuring interoperability with off-the-shelf controllers. With timestamps

enabled, the receive path can be configured to automatically drop frames which

are outside an allowed time window. This creates a basic security layer at each

ECU, which can be augmented further by incorporating encryption/decryption

logic in the datapath.
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Figure 3.15: Timestamp processing at interface.

An interesting use-case is in high-performance gateways that move data between

network clusters. With traditional interfaces, messages arriving from each inter-

face will be forwarded to the switch logic, which decides whether to forward the

data to its destination or drop it because it has expired. By building intelligence

into the controller, the validity of data can be determined before it is forwarded to

the switching logic. We modify the experimental setup in Section 3.11 to model

a gateway configured to discard untimely data, either at the processing logic (Mi-

croBlaze), mimicking off-the-shelf interfaces, or at the interface using our enhanced

controller extensions. Our tests show that the interface can process the timestamp

and discard the message within 180 ns of frame reception. A standard approach

consumes a further 3.6 and 9.1 ➭s on average, for standalone (SA) and RTOS (RT)

respectively, as shown in Figure 3.15, since the data must be processed by the host.

3.6.4 Handling Volume Data at Interfaces

Applications like radar-based cruise control utilise volume data gathered by the

radar-sensors to compute distance and relative velocity of other vehicles in the

vicinity. A complete dataset from a sweep is required by the processing logic to

determine these parameters, and this data is received over many data slots. The

processing ECU must reassemble these fragments before the data can be processed.

By moving this packing/re-packing to the controller interface, the processing logic

can overlap the computation with data reception, enabling it to run at lower

frequencies and hence consume lower power.
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Figure 3.16: Data re-packing for multi-cycle data transfers.

To demonstrate this, we use the experimental setup for the radar-based cruise

control ECU, described earlier in Section 3.5. The data from the radar sensor

is received over the FlexRay bus in bursts of 256 bytes, the maximum payload

size defined by FlexRay standard. The MicroBlaze processor runs the standalone

(SA) OS from Xilinx. In a normal design (referred to as SA Off), the processor

is interrupted each time a block of data is received. The processor responds with

the first data read request 12ms (worst-case) after receiving the interrupt, with

the burst read consuming a further 3.84ms. This is repeated over four cycles to

complete the data transfer, cumulatively consuming 63.36ms.

We then test the same application with an extension that allows the controller to

intelligently buffer the entire frame, only interrupting the processor at the end of

the transaction (referred to as SA On). This enables the processor to issue back-

to-back reads from the controller completing the entire data movement in 27.36ms

from the reception of the interrupt. To provide a balance between multi-cycle and

single-cycle data, the design has been constrained to handle up to four data cycles

at full payload size. To support larger data sizes, larger buffer memories must be

added to the controller, resulting in higher device utilisation, however, this may

be a tolerable cost for some ECUs, and the CC architecture supports it.

The experiment was also repeated using the FreeRTOS -based (RT) software (de-

noted by RT Off for normal design and RT On for CC with extensions enabled),

which provided better determinism than the standalone OS, resulting in a lower

worst-case interrupt latency, as shown in Figure 3.16.
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Figure 3.17: Overheads for including headers and timestamps.

3.7 Discussion

The FlexRay protocol does not define the usage of headers within the data seg-

ment, which is left to user implementation. While the use of headers and time-

stamps within data provides the aforementioned advantages, it does result in sig-

nificant payload overheads for small data sizes, while also limiting the payload

capacity of a FlexRay frame. Figure 3.17 compares the overheads associated with

different configurable values for the application header and timestamp, as a func-

tion of the payload size. As can be observed, at lower payload sizes, the inclusion

of a timestamp and application header results in large overheads, but for large

payload sizes, the penalty paid is very small. Beyond the maximum payload size

of 256 bytes, additional data has to be handled as multi-cycle transactions, causing

the curve to flatten out for higher payload sizes. Since the application header and

timestamp data is inserted within the data segment of the FlexRay frame, it is

transparent to other FlexRay controllers on the network, ensuring interoperability

with standard controllers.

3.8 Summary

In this chapter, we have given an overview of the FlexRay protocol and the generic

architecture of the communication controller, as defined by the specification. By
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identifying and extracting operations which are mutually exclusive or natively

parallel, we have designed a custom controller which takes advantage of the het-

erogeneous resources on modern FPGAs, resulting in reduced logic footprint, and

low power consumption, while providing a host of features beyond those described

by the standard. A flexible implementation of the network interface opens up re-

search opportunities to enhance automotive communication and systems architec-

ture. This architecture-driven design approach also improves power consumption

compared to the use of discrete controllers. The datapath extensions enable capa-

bilities like deterministic communication of system state, enhanced data movement

for multi-cycle data and synchronised timestamps for messages, without affecting

the reliability of the protocol. We later see how these can be leveraged to help

secure FlexRay networks in Chapter 5. Such extensions can also enable advanced

computational capabilities like fault-tolerance and function consolidation to be

built into nodes that integrate complex ECU functions with advanced communi-

cation controllers. We explore these approaches in Chapter 4. The availability of a

protocol compliant interface provides an opportunity to explore such architecture-

level enhancements and to demonstrate the concepts within a realistic, certifiable

environment.



4
Enhanced ECU Architectures

4.1 Introduction

We have seen that the more complex applications in modern vehicles are leading

to a rapid rise in the number of ECUs, resulting increased complexity and added

weight for the computational infrastructure in vehicles. A key challenge in future

vehicles is consolidation of multiple functions onto fewer ECUs with fault-tolerant

behaviour to ensure reliability.

However, traditional ECU architectures based on automotive grade general pur-

pose processors or micro-controllers (MCUs) do not support aggregation in a way

that ensures isolation between tasks. The different functions running on an MCU

must share its resources, resulting in unwanted contention unless specific steps

105



4 Enhanced ECU Architectures 106

are taken to manage it. Such a shared architecture also suffers from a lack of

determinism which can be problematic in safety-critical systems.

One alternative being explored is the use of multi-core MCUs with isolated pro-

cessing units for safety-critical applications like drive-by-wire. However, multi-core

platforms are expensive and require complex software to manage interactions and

ensure necessary isolation to provide contention-free access to resources. And

though multi-core operation can offer some scalability due to an increase in raw

compute power, performance is still limited by the sequential software execution

paradigm and the limitations like task switching latency.

We have seen that reconfigurable hardware offers a promising platform for smart

nodes that closely integrate the communication interface and functional logic.

Multiple functions can be aggregated onto a single FPGA with complete func-

tional isolation, as different hardware regions can be used. Advanced techniques

like partial reconfiguration (PR) can provide extensive functionality and run-time

hardware level adaptability to implement complex functionality. Leveraging PR,

such smart nodes can also be adaptive and self-healing. We consider their suitabil-

ity as an alternative to expensive multi-core platforms for next generation safety

critical systems. Furthermore, the natively parallel nature of hardware architec-

tures allows for accelerated computations that are isolated in such a way that they

do not violate the deadlines of other aggregated tasks.

In chap. 3, we saw that integrating the extensible network interface with the CC

on a single chip provides advantages in power consumption and performance. We

now look at some of the architecture level enhancements that benefit from tight

integration of the CC and computational units on reconfigurable hardware. We

show that the extended communication framework, combined with the capabilities

of FPGAs opens up opportunities for architecturally superior ECUs with built-in

support for consolidation, isolation, determinism, and scalability, while including

the benefits of superior performance and energy efficiency.

The work presented in this chapter has also been discussed in:
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1. S. Shreejith, K. Vipin, S. A. Fahmy, M. Lukasiewycz An Approach for Re-

dundancy in FlexRay Networks Using FPGA Partial Reconfiguration, in Pro-

ceedings of the Design Automation and Test in Europe (DATE) Conference,

Grenoble, France, March 2013, pp. 721–724 [12].

2. S. Shreejith, S. A. Fahmy, M. Lukasiewycz Reconfigurable Computing in Next

Generation Automotive Networks, IEEE Embedded Systems Letters, vol.5,

no. 1, pp. 12–15, March 2013 [13].

3. S. Shreejith, P. Mundhenk, A. Ettner, S. A. Fahmy, M. Lukasiewycz, S.

Chakraborty AEG: An FPGA-based Gateway Architecture for Ethernet back-

bone In-vehicle Networks, Transactions on Very Large Scale Integration (VLSI)

Systems (prepared for submission).

4.2 Related Work

FPGAs have been proven in a wide range of domains to offer significant benefits

in accelerating algorithms and offering high computational efficiency. Advanced

techniques like dynamic partial reconfiguration (PR), allow parts of the FPGA

to be used differently at different times, enabling non-concurrent functions to use

the same hardware. PR is supported in most recent FPGAs; selective alteration

of portions of the FPGA configuration memory mean parts of the circuit can be

changed while other parts continue to function.

FPGA-based ECUs have been proposed in the automotive domain for compute

intensive non-critical functions like driver assistance. One of the mechanisms to

ensure AUTOSAR compliance for FPGA-based ECUs is discussed in [130], us-

ing soft-core processors as an MCU replacement. Here, the AUTOSAR run-time

environment is mapped to a register interface on the FPGA, providing the same

functionality as standard AUTOSAR compliant MCUs. The combination of re-

configurable extensions and customisations allow such ECUs to provide superior

computational throughput over off-the-shelf systems. Furthermore, the hardware
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execution enables their performance to be predictable, making them suitable even

for safety-critical applications.

FPGA-based ECU architectures that exploit reconfigurability and parallelism have

also been explored by researchers. In [121], the authors describe an architecture

for implementing fail-safe safety critical ECU systems on FPGAs leveraging dy-

namic reconfiguration (complete reconfiguration). The described architecture uses

FPGA logic as a fail-safe back-up, which is completely reconfigured with one of the

back-up modes when errors are detected. Partial reconfiguration has been used in

non-safety-critical automotive applications such as driver assistance systems [10].

In such cases, using PR can allow a reduction in the required target FPGA size

by time-multiplexing different functionality. An ECU with fault-tolerant commu-

nication controller was also demonstrated using PR to dynamically reconfigure a

faulty controller [93]. The authors propose the use of partial reconfiguration to

swap in a new communication interface (different protocol) in case of a fault with

the current communication controller, ensuring a minimal operative mode can be

supported over a secondary network.

Partial reconfiguration is usually performed using a special built-in hardware

macro called the internal configuration access port (ICAP). Traditionally, the re-

configuration operation is controlled by a processor, through a vendor-provided

controller such as the HWICAP (AXI or OPB), connected as a slave device to the

processor bus [168]. Using these vendor-provided controllers gives low throughput

in the region of 4.66–10.1MB/s [169, 170]. This should not be the case, as the

ICAP hard macro itself supports much higher speeds of 400MB/s. Low speed

ICAP controllers are not suitable for time-critical systems, where slow reconfig-

uration may lead to system failure. To overcome this, we make use of a custom

ICAP controller that is capable of performing reliable reconfiguration at nearly

the theoretical maximum limit of the ICAP macro [171].

More complex adaptive systems are now being integrated into vehicles, as in the

case of Adaptive Cruise Control (ACC) systems. Simpler implementations of

such time- and safety-critical applications have been part of vehicles for more
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than a decade [172, 173]. With increasing complexity, software implementations

on processor-based platforms are insufficient to satisfy timing criticality and new

approaches have to be explored. This provides a promising approach for FP-

GAs, which have been widely employed in several time-critical applications in

aerospace [174, 175], telecommunications [176], and the medical domain [177].

FPGAs have also been widely employed in line-rate switching systems for more

general high performance networks like Ethernet [178, 179, 180], offering low la-

tency switching. Different switching modes can also be supported as described

in [178], where high performance and low power modes are supported with vary-

ing latency. Customisable datapaths allow FPGA-based switches to analyse traffic

during switching [181], and this can be extended to incorporate security features

like intrusion detection [182, 183]. For vehicular systems that integrate multiple

networking protocols, message exchange between the different segments is enabled

by such switching mechanisms, commonly referred to as gateways. FPGAs are

ideally suited for such mixed criticality data exchange where custom designs can

analyse traffic criticality and prioritise switching operations in real-time. FPGA-

based network gateways have been proposed in the literature [149, 150, 151], pro-

viding deterministic message routing between current automotive networks like

LIN, CAN and FlexRay. We explore the possibilities of utilising FPGAs for mixed

criticality message exchange in Ethernet backbone networks in future vehicles.

4.3 Contributions

We present a system-on-chip ECU architecture for safety-critical and non-safety

critical ECUs that benefits from the underlying parallelism and reconfigurability

of FPGAs. The architecture extends the communication framework to integrate

mode-switch commands or fault-diagnosis messages which are then handled by

extensions on the network interface for deterministic decoding and predictable be-

haviour. We demonstrate that vendor provided mechanisms for partial reconfigu-

ration offer sub-optimal performance that impacts turn-around time constraints for
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critical systems, limiting the use of such approaches for non-safety-critical ECUs.

Using PR in this manner also requires ECU software to manage the low level op-

erations, requiring knowledge of FPGA features. We overcome these limitations

by extending the functionality of the network interface further by integrating a

custom reconfiguration controller. This allows the entire functional module to

be reconfigured without the application being aware of or managing the process.

Our approach also enables low-latency activation for the secondary logic, and high

speed recovery of the faulty functions, even from a hardware-level fault.

Finally, we evaluate the case for using hybrid platforms as the core element for next

generation vehicular gateway systems, by providing a deterministic and scalable

interconnection scheme between existing networks like FlexRay and CAN, with

future networks like Automotive Ethernet.

The work in this chapter consists of novel architectures and methods that have

been implemented and validated in FPGA hardware with realistic experiments.

4.4 Consolidation Methods using PR

Non-safety-critical systems include user-oriented features like multimedia, telem-

atics, remote diagnostics, and future systems like Vehicle-to-Vehicle (V2V) com-

munication. Such systems are characterised by the high volume of data handled,

high throughput requirements and complex computation, an area where FPGAs

represent an ideal implementation platform. Indeed the computational power of

custom hardware on FPGAs enables applications that would otherwise be infea-

sible on low-power processors. Since FPGAs implement computation spatially,

we can split the available resources among multiple functions, maintaining the

predictability of each while ensuring complete isolation between them.

Furthermore, we can time multiplex applications that are not needed concurrently

by using dynamic Partial Reconfiguration (PR) [130]; mutually exclusive functions

are mapped to the same dynamic region on the device, which can be reconfigured
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Figure 4.1: Visualisation of adaptive ECUs on an FPGA using PR.

at run time. Primary ECU functionality can be defined in the static, non-changing

region of the device, while each dynamic region would have specific functions or

accelerators for the current operating mode, as illustrated in Figure 4.1. The illus-

tration described in Table 4.1 shows the different functions that can be integrated

on a smart-node and the distinct interfaces or modules required to implement

them. The FPGA design is partitioned to incorporate concurrent modules in

different dynamic regions, considering the computational and bandwidth require-

ments of each. The dynamic regions can then be reconfigured, when needed, to

integrate multiple non-concurrent functions on the same node. This architecture

can be extended to integrate complex adaptive systems for current and future

in-vehicle applications, on a much smaller device.

Future automotive systems significantly increase the amount of data that is gath-

ered for processing and use algorithms that are significantly more complex. Ex-

amples are driver assistance systems like pedestrian detection or blind spot warn-

ing. Software implementations of such algorithms require specialised processors or

multicore systems while hardware implementations can provide more performance

at lower power. The computational capabilities of FPGAs can be exploited to

provide an efficient and flexible solution that also integrates the communication

Table 4.1: Modes of Operation for Consolidated ECUs.

Functionality Modules in
Dynamic Region 1

Modules in
Dynamic Region 2

Park Assist Custom Logic Sensor Interfaces
Application
Acceleration Softcore Processor Custom Logic

Interfaces
Cruise Control Adaptive Logic Sensor Interfaces
Safety-critical ECU ECU Function Redundant ECU
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interfaces to the various sensors and in-vehicle networks on the same hardware,

saving significantly on infrastructure. Furthermore, PR can be employed to re-use

the dynamic areas of an FPGA to offload computations from another ECU, while

these resources are not being used by the initial application.

4.4.1 Evaluating Consolidation using Vendor-based PR

Consolidating multiple non-concurrent ECUs on a single device reduces the num-

ber of ECU modules, bus drivers and the associated wiring, all contributing to-

wards a better in-vehicle ecosystem. Traditionally, each ECU uses discrete (or

integrated) controllers to access the bus. In an FPGA-based node, PR can be

utilised to consolidate multiple functions at much lower power consumption, while

sharing the interface between multiple functions can be managed in hardware in

a predictable, fair manner.

To demonstrate the efficiency of this approach, we integrate multiple non-concurrent

functions on the same hardware and show that reliable activation can be achieved

when the respective modes are triggered. For this, we reuse the radar-based cruise

control ECU described in Chapter 3 with an intelligent parking solution [184] on

the same hardware platform. We make use of a Xilinx ML605 development board

containing a Virtex-6 FPGA (XC6VLX240T), since it natively supports PR. The

parking algorithm design uses fuzzy logic to evaluate the present conditions based

on sensor inputs and generates appropriate control signals for the steering system.

Since these applications are mutually exclusive, we can utilise PR to create an

adaptive node, which modifies its functionality based on current requirements.

To manage PR operations, we make use of the PR framework provided by Xilinx

through their software package, PlanAhead [119]. This is achieved by instantiat-

ing a separate MicroBlaze processor to which the Xilinx hardware ICAP module

(XPS HW ICAP) is integrated to manage reconfiguration when a mode change
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Figure 4.2: Consolidating non-concurrent ECUs on FPGA.

is required. This controller function is completely isolated from the system func-

tionality (Park assist, cruise control), allowing the two different modules to be

incorporated when required.

Both applications make use of software running on a MicroBlaze soft core processor

along with dedicated hardware implementations for accelerating the computations.

The system functions are implemented within the region on the FPGA that has

been marked as partial reconfiguration enabled during design time, referred to

as a partially reconfigurable region (PRR). Each ECU, when active, interfaces

with the shared network bus over our extended FlexRay CC, that is implemented

in the static region along with the reconfiguration controller logic. The various

components are connected using a Processor Local Bus (PLB) interface, as shown

in Figure 4.2.

One of the interesting things about PR is that when no modes are required to be

active (e.g., when the driver is using the vehicle normally), power savings can be

achieved by disabling the PRR. For this, the PRR is filled with a blank bitstream,

constituting the IDLE mode. When a mode switch is required, which is usually

triggered by a driver action (like enabling cruise control or switching on park

assist), a mode switch command is generated by the driver interface ECU and

transmitted over the FlexRay bus. The pattern detection extension within the
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custom FlexRay CC processes the command and issues a high priority interrupt

to the MicroBlaze processor that is responsible for reconfiguration management,

triggering the PR operation. The interrupt service routine (ISR) corresponding to

this interrupt reads the partial bitstream from the flash interface and sends it to

the internal configuration access port (ICAP) to load the requested module.

Since both functional ECUs make use of software control, the MicroBlaze proces-

sor used for handling the reconfiguration control may be assigned as the functional

controller for both the ECUs. This approach requires only the hardware accelera-

tion logic to be reconfigured, reducing the reconfiguration overhead. However, this

approach does not provide clear isolation between the functions, since the code/-

data memory of the processor is shared between the two applications. Further-

more, the software would also have to handle the reconfiguration request, which

may offset its time-bound execution, since it requires the processor to explicitly

handle the operation. We also evaluate this case to show the potential benefit of

sharing the processor.

Table 4.2 shows the implementation metrics for this design, including resources

consumed by these modules (in the partial region), and the dynamic power con-

sumption while operating in these modes. Since for each scenario (completely

isolated functions with independent MicroBlaze or shared MicroBlaze), the PRR

that implements the two functions (park assist or cruise control) is of the same

size, the partial bitstream size for each case is the same, resulting in identical

time to switch between the two in any scenario. The results also show that the

Table 4.2: Virtex-6 Implementation of Adaptive Smart ECU.

Mode Utilisation Switching
Time

Dynamic
Power

Design Operation Registers LUTs

PR

Idle 12223 13695 - 240mW
Isolated
Functions

6699 5490 2336.4ms 365mW

Shared
MicroBlaze

4215 2130 936.4ms 340mW

Static All Modes 32484 31558 NA 640mW
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adaptive node has a definite advantage in terms of power consumption and util-

isation compared to a purely static implementation, integrated as two isolated

functions on the same device. However, the reconfiguration speed is low since the

maximum throughput obtained using the vendor provided PR management sys-

tem is around 10MB/s. This results in an activation time of 2.3 seconds for the

completely isolated implementation and 936ms for the the shared system.

The use of custom high speed reconfiguration controllers [171] enables a much

faster turnaround time, making FPGA-based fault-tolerant nodes more viable for

safety-critical applications. The custom reconfiguration controller also does away

with the additional processing system that is integrated purely for management

of PR, which results in higher power consumption in static mode. We explore

the possibilities of tightly coupling a custom reconfiguration controller with the

network interface to make effective use of the datapath extensions discussed in

Chapter 3.

4.5 Redundancy for Safety-Critical ECUs

Safety-critical systems like drive-by-wire, ABS, or occupant safety systems are

hard real-time systems requiring high levels of determinism and isolation. They

may have to interface with multiple in-vehicle networks to control and coordinate

operations of critical systems like the drive-train. Safety-critical systems are of-

ten implemented to support fail-safe or fault-tolerant operation. As discussed in

Section 2.3, a fail-safe system maintains a basic set of tasks even in presence of

fatal errors, while fault-tolerant systems can adapt and recover from critical errors

without severely degrading system performance, often achieved by redundancy.

FPGA-based designs can instantiate multiple instances of identical ECUs within

the same device to aid redundancy while providing better determinism [130, 121].

FPGA-based designs that incorporate PR provide alternative solutions for re-

dundancy since PR allows us to reconfigure only necessary logic rather than the

whole FPGA. In a fault-tolerant scheme, an error causes the logic to switch to
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a redundant mode which operates with lower specifications. PR enables us to

reconfigure the faulty region alone, without affecting current operations, resulting

in faster turnaround times. The fault detection logic on the FPGA triggers the

switch to the redundant mode of operation and the subsequent reconfiguration of

appropriate dynamic region(s), when a critical error is detected. Also, multiple

implementations of an application with differing levels of error tolerance can be

swapped in on the fly to deal with changing conditions. In addition, a single re-

gion of programmable fabric can be assigned as the redundant region for multiple

functions, rather than the need for distinct circuitry for all systems to be present

at the same time.

Deterministic behaviour is easily factored into systems implemented on reconfig-

urable hardware. FPGA-based designs are synchronous, event-triggered systems

and hence respond to events in a deterministic manner. Hardware-level paral-

lelism can be exploited by designs to ensure that multiple simultaneous events can

be handled independently without contention. Specific events like Single Event

Upsets (SEUs) can be mitigated in logic, using either fail-safe or fault-tolerant

design methods. Incorporating PR, the erroneous ECU (or function) alone can be

reconfigured without affecting other regions, providing higher determinism.

4.5.1 Extending FlexRay Communication Cycle

As we have mentioned, the fundamental element of the FlexRay protocol is the

cycle that is composed of the static and dynamic communication segments, as

illustrated in Figure 4.3. Though the Static segment can ensure guaranteed deter-

minism for our purpose, it is heavily used for high priority real-time communication

in most real implementations. Our focus is on extending the flexible dynamic seg-

ment, which is mainly used for event-triggered communication on a priority basis.

Dynamic segments can have dynamic slot-width, depending on the amount of data

that needs to be transferred, which is of interest in our case. Our choice of using

the dynamic segment also allows us to build extended communication infrastruc-

ture, without disturbing current systems. The scheduling of such communication
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Figure 4.3: Specification of the FlexRay cycle.
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Figure 4.4: Dynamic segment payload with Message ID.

on the dynamic segment for deterministic communication can be solved by using

standard scheduling algorithms. Here we explore a simple mechanism, which in-

corporates the two possible extreme cases – use the first n slots in each cycle or

use one slot in every cycle, which is reused for n nodes across different cycles. In

either case, the slot in the dynamic segment communicates a fixed length system

status messages for safety-critical nodes, at varying periodicity depending on the

scheme chosen. These messages are used to trigger recovery in case of errors.

For this application, we propose to make use of an optional message ID feature

that is described by the protocol specification [53]. Message ID’s are used in the

dynamic segment as an optional two-byte data element, whose use is not restricted

by the protocol. Using this inbuilt mechanism allows us to make use of the existing

protocol filtering scheme, allowing this approach to be applied even with standard

off-the-shelf controllers. Alternatively, the datapath extensions on our custom CC

can be configured to achieve the same functionality with lower latency, since our

extensions process the messages closer to the lower protocol layers compared to

the upper layer operation defined in the protocol.

We propose to utilise bits of the message ID to indicate the critical status of the

device, and whether its functions need to be taken over by a redundant unit. The
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proposed frame structure for communicating this status is shown in Figure 4.4.

Node-ID defines the unique ID assigned to the different safety-critical nodes within

the network. The critical error status flag describes a critical error condition,

and demands immediate attention. The error status flag indicate the consecutive

number of non-critical errors encountered by the node, which are tolerated up to

a predefined threshold. The prime/redundant flag is used to distinguish the prime

unit and the redundant unit, which use the same node-ID. Within our architecture,

each system may have localised fault detection logic or depend on distributed fault

detection modules or on a combination of the two.

In each cycle, the nodes fill their dynamic slot with current status (encoded into

the message ID) from internal fault-detection logic or received fault status from

centralised fault-detection logic. The node indicates (or receives) critical condi-

tions or reports of high error rate using these flags. Since each node transmits only

a fixed amount of payload data (2 bytes) in the highest priority slots, determinism

in data transfer (or reception, as the case may be) is ensured by this scheme. The

lower priority dynamic slots may still be used by other nodes for volume data

transfer.

4.5.2 Proposed Approach to Reconfiguration

Figure 4.5 is a high level block diagram of an ECU system on reconfigurable hard-

ware. The primary function is the computational implementation of the safety-

critical function, which uses custom hardware accelerators for compute-intensive

calculations. The ECU may also communicate with other ECUs or sensors over

the FlexRay bus through the FlexRay communication controller (CC), which is

an instantiation of our enhanced CC described in Chapter 3. The functional unit,

comprising the primary function (MicroBlaze soft processor), accelerator(s), and

associated memory are implemented in a partially reconfigurable region (PRR), so

that the functionality can be switched or reconfigured in case of an error. There

can be multiple PRRs in a single FPGA. We designate this one PRR-1. The

FlexRay CC and the PR controller are implemented in the static region SR-1.
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Figure 4.5: Fail-safe ECU architecture on FPGA.

The second static region is designated to implement redundant logic. Under nor-

mal operation, the node is healthy and SR-2 is configured with the redundant

logic, but is clock-gated to conserve power. If a local fault is detected, the status

is indicated to other nodes over the FlexRay bus by setting the critical error flag in

the status data and the redundant logic is enabled. If the node depends on remote

fault-detection, a FlexRay frame with the critical error detected flag set in the

status data triggers the switch to redundant mode. Disabling clock-gating takes

only one clock cycle, resulting in fast turnaround to the redundant mode. Subse-

quently the partial reconfiguration controller is triggered to reconfigure PRR-1, to

enable recovery from the error. PRR-1 is isolated from the system bus by the PR

controller, and hence the reconfiguration proceeds without disturbing the func-

tionality of the node. Once PRR-1 is reconfigured, it is enabled and the FlexRay

CC can be optionally brought to the reset state and re-initialised with the net-

work parameters, so that the node can perform a complete restart. After the node

integrates onto the network, SR-2 is disabled to conserve power.

As mentioned, use of message ID allows the standard filtering scheme with off-the-

shelf CCs to use this scheme; however, they may not be able to match the pattern

of the content to figure out if a reconfiguration is required or not. This would

have to be added to the application and processed in software. With the datapath

extensions on the custom CC, we can configure the extensions to filter dynamic
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segment messages with a message ID matching its own ID (in case of remote

fault detection) and to transmit messages with its own message ID and status,

in the priority slot assigned to it (in case of local fault detection). This approach

incurs lower latency, and is transparent to the software application. Hence we only

explore this scheme, for which we tightly integrate the configuration management

circuitry with our extended datapath on the network interface.

Whenever an error state is received or transmitted, the trigger is passed to the

partial reconfiguration controller by the pattern matching extension on the CC.

This allows reconfiguration commands to be acted on immediately by the PR en-

gine, instead of routing them through the normal data path via the Host processor

and application software. In a normal design, using a fixed standard controller,

the FlexRay messages, or local error state would need to be processed by the pro-

cessor, resulting in noticeable latency before the redundant logic is activated. In

our approach, the turn-around time from the point of receiving a reconfiguration

command to switching to the back-up mode can be made negligibly small.

4.5.3 High-Speed Reconfiguration Management

Though traditional FPGAs like the Xilinx Virtex-6 support PR out of the box,

we have already seen that the vendor provided PR management incurs the ad-

ditional overhead of adding a processing system to manage reconfiguration (see

Section 4.4). The reconfiguration latency of such schemes is also high, making

them unusable for critical systems.

To overcome these limitations, we make use of a custom designed ICAP interface

and integrate it closely to the FlexRay CC. The custom ICAP that we are using

accelerates reconfiguration by operating close to the theoretical maximum perfor-

mance of ICAP [171]. Figure 4.6 shows the design of the partial reconfiguration

controller, expanded from the PR Controller block in Figure 4.5. The FPGA is

connected to an external non-volatile memory, which stores the partial bitstreams.
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Figure 4.6: DMA based PR controller.

During system initialisation, these partial bitstreams are cached into the DRAM

memory using block write operations issued by the DMA controller.

The higher reconfiguration throughput is achieved by the combination of a DMA

controller and high-speed DRAM interface. Once a reconfiguration operation

is triggered, the DMA controller configures the memory controller to buffer the

partial-bitstream from the cached location, using back-to-back requests. The con-

figuration pointer holds the size of partial bitstream and its physical address, which

is used by the control state machine to configure the DMA engine. The DRAM

controller logic interfaces with the external DRAM generating the required control

signals for the interface.

The custom ICAP controller also instantiates an asynchronous FIFO for buffering,

the ICAP clock generator, ICAP control state machine, and the ICAP hard-macro.

The asynchronous FIFO allows the logic to operate at a different clock speed to

achieve maximum throughput (read port to DRAM clock and write port to ICAP

clock). The ICAP control state machine handles the ICAP hard-macro and is

responsible for feeding required control information to the macro for enabling

reconfiguration.

4.5.4 Distributed Redundancy

While highly critical nodes demand point-wise redundancy, a distributed architec-

ture may be employed for other nodes which are less prone to errors and failures.
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Figure 4.7: A Distributed redundancy scheme for non-critical ECUs.

In such an environment, we can assign a single backup region as the redundant unit

for multiple nodes. Each node in the subset has a virtual redundant unit, which is

enabled only when the original node is disabled by errors. The architecture of the

redundant node is the same as in Figure 4.5, where virtualisation is enabled by

multiple bitstreams that emulate the behaviour of the subset nodes. SR-2 in Fig-

ure 4.5 of the adaptive node can be programmed as centralised fault-monitoring

logic, which monitors the fault status of each of the subset nodes in the respective

slots. On detecting (or receiving) a fault condition, the active node forces itself to

turn off, while the redundant unit assumes its position and identity on the bus.

Such a virtual redundant scheme is more efficient in terms of power, space and

weight, than a point-wise discrete redundancy scheme. PRR-1 in Figure 4.5 of

the adaptive node is initially blank, consuming zero dynamic power. The region

is programmed with the functionality of the erroneous ECU as soon as the fault is

identified and takes over the function, including the bus identity and configuration

of the failed ECU, as shown in the transition from Figure 4.7 (a) to Figure 4.7 (b).

It is also possible to integrate multiple redundant units onto a large enough FPGA,

which can operate in complete isolation. Resources can be effectively partitioned

into two or more distinct regions, which are large enough to incorporate the func-

tional units, running in parallel with complete isolation. Such redundant units

can be distributed throughout the network or associated with clusters of critical

ECUs. This improves the number of simultaneous failures that can be handled by

the system at the expense of slightly higher cost and complexity. The datapath

extensions in our CC enable such functionality to be implemented in hardware,
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without the need to process these messages in application software. In this way,

PR can offer numerous possibilities for robustness and consolidation in in-car sys-

tems.

4.5.5 Validating PR-based Functional Fault Tolerance

To validate the architecture and investigate turnaround times, we have extended

our radar-based cruise control front end application, based on FMCW radar and

target detection using Constant False Alarm Rate (CFAR) algorithm. The sys-

tem was developed using Xilinx EDK 13.3 and hardware validated on a Xilinx

ML605 development board containing a Virtex-6 FPGA (XC6VLX240T). The

primary function from our node architecture is a MicroBlaze based system, as in

Figure 4.8, which executes software routines to estimate parameters from the fre-

quency domain data that is generated by the radix-2 FFT module. To make the

computation simpler, we use a 1 millisecond triangular modulator with a radar

cycle of 32 milliseconds. The estimates are then passed over the FlexRay bus

to the central node, which also serves as the monitor to identify critical or erro-

neous conditions on the node. The error logic sets the critical error flag when a

critical error is identified and increments the error status bits in the presence of

non-critical errors. The primary ECU functionality is contained within PRR-1,

while the redundant unit is contained within static region, SR-2. The FlexRay

controller, reconfiguration controller, and test logic are designated as static region

SR-1. The logic utilisation of the design is as shown in Table 4.3. PRR-1 has a

partial bitstream size of 262KB.

The FlexRay bus configuration is as shown in Table 4.4. Since we are using a

single ramp FMCW for this experiment, the node has valid data only once every

32ms, and hence, is assigned static slot 7 in cycles 32 and 64 for data transfer. The

node is configured to monitor the first dynamic slot (slot 24) which relays node

status using our proposed scheme. The node is configured as a non-cold-start

node to measure the worst case delay to integrate back on to the network, after

successful reconfiguration of the primary ECU functionality. The performance of
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Figure 4.8: Prototype for fail-safe Radar Signal Processing node.

Table 4.3: Resource Utilisation of Radar ECU.

Resources PRR-1 SR-2
SR-1

ICAP

Cntrlr

FlexRay

I/f

Test

Logics

Registers 3632 200 672 4607 268

LUTs 3473 138 586 7021 577

BRAMs 24 2 8 8 6

DSPs 6 - - 3 0

Total Power 1.8Watts

Table 4.4: FlexRay Parameters used for evaluating Radar ECU.

Number of Cycles 64

Cycle Duration 1ms

Number of Static Slots 23

Static Slot duration 35 (microticks)

Number of Dynamic Slots 35 (max)

Slot IDs Assigned Slot 7 in Cycles 32 and 64

Slot IDs Monitored Slot 24 (Dynamic)

CHANNEL ID Used 1023 (hex 3FF)

the framework in the different test cases is measured in terms of turnaround time

and node recovery time. Turnaround time defines the time to switch to redundant

logic from reception (or detection) of an error, while recovery time is the time

taken to recover from an error and resume normal operation. The turnaround

time to switch to the redundant mode of operation is shown in Table 4.5.
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Table 4.5: Turnaround time to the Redundant mode for different Fault-
Tolerant Architectures.

Interrupt Processor
Xilinx MicroBlaze

interrupt controller
Custom Logic

FlexRay CC Latency 20 ns 20 ns

Interrupt Latency 12 ➭s to 420 ➭s -

Back-up Active (turnaround) 12 ➭s to 420 ➭s 30 ns

The failure command was issued via a bus traffic generator, emulating error detec-

tion by a centralised monitor node. In our first experiment, the data interrupt is

processed by the MicroBlaze processor, which checks for the critical error flag or

a consecutive error count greater than the threshold and issues a reconfiguration

command to the ICAP controller. However, the MicroBlaze also processes FFT

data using a high priority interrupt resulting in a worst case interrupt latency of

41038 clock cycles, depending on when the error status flag was received. Thus

the turnaround time to switch to redundant mode can vary from 12 ➭s in the best

case to 420 ➭s in the worst case.

For our second experiment, the reconfiguration interrupt was instead processed

within the CC using the pattern matching extension that generates a reconfigu-

ration interrupt when it detects an error code in slot 24. This can then be routed

directly to the ICAP controller, resulting in a reduced latency of 20 ns. Hence, the

redundant logic can be enabled in a deterministic short turnaround time of 30 ns,

which is independent of the state of the functional logic in PRR-1.

To measure the overall recovery time, tests were undertaken with different PR

controllers, with the results shown in Table 4.6. To measure the worst-case recov-

ery time, we also consider the optional step of re-initialising the FlexRay interface,

which consumes 6 FlexRay cycles.

In the first experiment, the ICAP controller used is the Xilinx XPS hardware

ICAP controller. The design took 26,240 ➭s to reconfigure the functional block in

PRR-1. The node re-integration consumes further 6 FlexRay cycles, taking the

total recovery time to 32.25ms.
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Table 4.6: Recovery time for the different Fault-Tolerant Architectures.

ICAP Controller
Xilinx ICAP

controller

Custom Controller

(DMA based ICAP)

FlexRay CC Latency 20 ns 20 ns

PRR - 1 Active 26,240 ➭s 656 ➭s

Recovery time (node restart) 32.25ms 6.66ms

In the second experiment, we replace the standard controller with our custom

PR controller. Its high throughput means PRR-1 reconfiguration is completed in

just 656 ➭s, providing a 40× improvement over the Xilinx controller. Considering

the re-integration time, the node completed recovery and re-integrated onto the

network in 6.656ms.

The results show that the extensions in the CC allow us to achieve short and pre-

dictable turnaround time (to redundant logic) of 30ns, compared to a traditional

interrupt-based processing (up to 420 ➭s) that is used with discrete controllers and

processor based designs. This is because we can process the messages within the

controller hardware using datapath extensions, rather than the a long round trip

to a processor.

The use of clock gating results in a power efficient architecture, when compared

with other alternatives where redundant logic must be active constantly. It can

also be inferred that the worst case latency of a processor based architecture can

be significant and non-deterministic depending on the instructions being executed

and can be overcome by using custom logic and extensions. Using a custom ICAP

controller for PR, the recovery time of a safety-critical ECU on reconfigurable

hardware can be reduced to support higher levels of fault-tolerance. The percent-

age utilisation of the device is also less, permitting aggregation of more functions

onto the same hardware, which can run in complete isolation. Furthermore, a

single piece of hardware can be designated as a redundant unit for multiple nodes

and the framework can be extended to support multiple redundant modules on

the same device, thus saving power and space.
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PR can also be combined with other techniques like artificial neural networks to

enable fault tolerance in sensor nodes, where physical redundancy is infeasible,

like in the case of the air-flow path within combustion engines [185]. In this case,

PR is used to replace a fault-detection model with a sensor replacement model in

the cast of a fault. PR enables such dynamic adaptation at the hardware level,

resulting in predictable performance and improved energy efficiency.

4.6 Gateway ECUs for In-Vehicle Ethernet Back-

bones

For evolving applications like advanced driver assistance systems (ADAS) that

integrate a large number of sensors and actuators, existing network protocols are

making way for higher bandwidth interconnect. Recent developments point to Eth-

ernet as a likely candidate, with Broadcom’s BroadR-Reach physical layer chips

shown to support 100Mbps bandwidth reliably over unshielded cables [107]. How-

ever, vehicular systems would still depend on CAN and FlexRay for some existing

functionality. The Ethernet backbone infrastructure illustrated in Figure 4.9 has

been proposed as a viable solution to allow existing systems to operate without

modification, while providing high performance interconnect for services that rely

on information from these existing systems as well as volume data sensors, which

are connected through an Automotive Ethernet Gateway (AEG). The AEG would

be another ECU on the network, with software-based control mechanisms allowing

each branch of the network to be independently controlled and disconnected (if

needed), to meet the reliability requirements of critical systems. Moreover, the in-

terconnect must offer low-latency switching with priority-based routing to support

exchange of mixed criticality messages across domains.

Since the gateway architecture must be adapted across various vehicle models (and

ranges), an ASIC implementation would not be ideal. Performance and scalabil-

ity requirements suggest FPGAs are an ideal implementation platform. However,
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Figure 4.9: Proposed Vehicular Network Architecture using an AEG. Non-
critical functions on legacy networks use the Ethernet backbone via the
Domain Controllers (DC), while critical functions are directly interfaced
to the AEG over corresponding networks.

standard FPGA architectures offer accelerated digital computation through cus-

tom architecture implementations. Software control can be added using simple

soft processors instantiated in the logic, like the MicroBlaze we have shown in our

experiments so far. These soft processors, however, do not offer sufficient computa-

tional capability to implement complex algorithms with time-bound performance.

Alternatively, the FPGA fabric may be connected as an extension of a standard

automotive MCU as an accelerator. However, this approach only provides a loose

coupling between the function on the MCU and the accelerator, impacting overall

latency, especially when there is frequent data movement between the two process-

ing elements (MCU and accelerator). As we have shown earlier with our extensible

network interface, tightly coupling the computational logic with the network in-

terface allows us to extend the functionality of the network as well as enhancing

the application’s capabilities.

Such coupling is offered architecturally in new hybrid FPGAs recently introduced

by both Xilinx and Altera. Our AEG architecture exploits this coupling to provide

a scalable switching architecture with software control, with switching branches

designed in a modular fashion to allow adaptability to different in-vehicle network

designs.
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Figure 4.10: Zynq Architecture showing the Processor Subsystem (PS)
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4.6.1 Zynq Hybrid FPGAs

The new Zynq family from Xilinx are hybrid reconfigurable devices that offer tight

integration of a capable processing system (PS) with configurable programmable

logic (PL) on the same die, as shown in Figure 4.10 [186]. The PS is a hardened

region of the die that combines a dual-core ARM Cortex-A9 processor along with

several memory and connectivity interfaces. The Cortex-A9 along with its memory

subsystem is capable of hosting a fully-fledged operating system like Linux and can

operate as a standalone device without any support from the PL, providing a famil-

iar environment for embedded software developers. For extended functionality, the

ARM cores are connected to DRAM interfaces, Flash memory controllers, CAN,

Ethernet, USB, and UART controllers. The connectivity to these peripheral blocks

is established through ARM’s AMBA eXtensible Interface(AXI) interconnect. For

interfacing to real-world signals, Zynq devices also incorporate two multi-channel

(17-channel) high resolution (12-bit) analog-to-digital converters (ADCs). This

wide array of interfaces in the PS makes it ideally suited as a hardware platform

for a full fledged embedded system.

The functionality of the PS can be further extended with custom logic in the PL

region. Zynq offers high bandwidth interconnect between the PS and PL. Fur-

thermore, dedicated direct memory access (DMA) blocks enable high-speed data
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movement between PL and interfaces managed by the PS, like DRAM memory

or the Ethernet interface. The PL is based on the Xilinx 7-series architecture,

combining flexibility features like partial reconfiguration, higher computational

capabilities (like advanced DSP48E1 blocks) and lower power consumption. The

hybrid architecure enables scalable and parallel implementations of complex pro-

cessing blocks in the PL, while retaining software-based control through the tightly

coupled ARM cores [187]. Our AEG further explores the case for hybrid FPGAs

in next generation vehicular networks.

4.6.2 AEG Architecture

The AEG offers multiple physical switching ports (4 in our use case, numbered

1 to 4), each capable of providing up to 1Gbps data throughput. The physical

interfaces can be Gigabit Ethernet, FlexRay, or CAN, and for our experiments

we use Gigabit Ethernet and FlexRay interfaces. The number of branches and

interface types are defined using top-level parameters, which can be altered for

different configurations. The physical interface logic is responsible for implement-

ing protocol related functions like CRC checks and header insertion/processing.

Independent transmit and receive paths handle connections from the interfaces

to the switch fabric, which implements cross-connectivity. The FIFOs embedded

within these paths helps to decouple the physical interface from the switch fabric.

These FIFOs provide a byte-wide data interface to the Medium Access Controller

(MAC) logic in the physical interface and are of sufficient depth to prevent data

loss due to overflow. All forwarding decisions are based on the Ethernet layer-

2 headers, with each non-Ethernet ECU having a virtual mapping in the MAC

address space.

4.6.2.1 Receive Path

The receive path buffers incoming frames and makes the forwarding decision based

on the Ethernet MAC header. It employs three modules that operate on-the-fly
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on received frames as they are passed up to the switching infrastructure. The

header extraction logic determines the header segment, classifies the frame and

passes the information to the lookup module which determines the output port for

the frame in the form of a binary vector (called port vector). The input queue acts

as the temporary buffer for incoming packets, before they are forwarded to the

switch logic. The operations of these modules are scheduled in such a way that

the destination port for a packet can be determined before the complete frame

has been received, even for the smallest allowed payload size. The high-level block

representation of the receive path is as shown in Figure 4.12.
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Figure 4.13: Lookup table structure in the Receive Path.

The header extraction module determines the start of each frame and extracts

the destination MAC address, VLAN tag, and frame priority from the frame header

as they are received. With the first data byte, it also records the 64-bit arrival

time stamp for the packet, with a resolution of 8 ns (125MHz). This timestamp

is used by later stages of the logic to ensure latency-based routing and also by

the management interface at higher layers to determine performance and worst

case delays. The extracted header information is passed to the lookup module to

determine the destination port mapped to the destination MAC address.

The lookup module implements a binary search on the sorted list of MAC address

values to determine the destination port for a given address. Since all possible des-

tinations are predefined in an automotive system, a sorted table structure presents

a more efficient scheme for look up than specialised associative mechanisms like a

content-addressable memory. Use of binary search allows the 1000 MAC entries

in the table to be searched within a maximum of ld(1000) ≈ 10 clock cycles. The

lookup memory contains three types of memory entries; the configuration entry,

the lookup entries, and the default entry, as shown in Figure 4.13.

The configuration entry is the first in the lookup table and is read by default

before each search is initiated. It provides information about the lookup memory

organisation; the lower field indicates the lowest MAC address, the upper field

indicates the highest address in memory and the default field specifies the default

destination port in case no entries are matched. The search enable bit indicates the

status of the lookup table and if set to zero, indicates that the lookup should not be
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performed, forcing the use of the default setting (which could be to drop the frame).

This bit can also be used to isolate a branch, in case of persistent faults, allowing

communication from other ports to be handled without introducing errors.

If enabled, the search algorithm operates on the lookup entries, the sorted array

of MAC addresses and their destinations in MAC address order. Each entry has

a 48-bit destination mac field, the associated output port vector (1-bit for each

port) and its priority. During the lookup, if a match is found between the incoming

MAC address and the location, then the corresponding port vector is used. The

priority field indicates the priority that will be allocated to the frame if it is not

VLAN-tagged, else this field is ignored. The default configuration also uses the

same structure as the lookup entries, but uses a skip frame bit, which when set,

forces the input path to drop the frame instead of forwarding it.

The input queue module temporarily buffers incoming frames until they can be

transmitted to the output port, and is composed of five sub-modules: control logic,

queue buffer, scheduler FIFO, overflow control logic and the arbitration module.

The high level organisation of the different sub-modules is shown in Figure 4.14.

The queue control module interfaces the lookup module with the Rx FIFO. It

initiates a read from the Rx FIFO as and when the a frame becomes available,

and a write into the queue buffer, saving the location of the first write saved as the

mem ptr for that frame. Locations are dynamically allocated (next free space) in

the queue buffer which is configured as a ring buffer. Further, the length of the

frame and the error indications from the MAC (mac error) are also saved when an

entire frame is received. Once the lookup information for the corresponding frame

is available, and if there are no errors (mac error and skip frame are both 0), the

mem ptr and length, along with the lookup information (port vector, prio) and

timestamp are written into one of the scheduler FIFO blocks, depending on the

frame priority (i.e., highest priority frame written to the highest priority FIFO

and so on). In the present system, we have only two possible priority settings

defined ((real-time traffic and non-real-time traffic) and thus only two scheduler

FIFOs are used.
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The queue arbitration logic forms the interface to the switch fabric and constantly

monitors the scheduler FIFOs for new entries. If an entry is available in any of

them, a read is issued to the highest priority scheduler FIFO among the ones

which have an entry. The arbitration logic requests access to the switch fabric for

the destination ports, along with the priority and timestamp information. The

switch fabric acknowledges the request allowing the data to be forwarded. In the

case of multi-port forwarding, the switch fabric can issue a partial acknowledge

for only a subset of the requested ports. For example, if the request was 0111 (i.e,

access to ports 3, 2, and 1), the switch may approve only ports 3 and 1.

If at least one port is acknowledged, and no higher-priority frames have arrived

at the scheduler FIFO, the arbiter initiates a read from the queue buffer. At

the end of transmission, the arbitration logic updates its port request vector by

setting the acknowledged port to ‘0’ (i.e., in the above case, the vector now is

reset to 0010), indicating that the frame still needs attention. If no higher priority

frames are available, the updated port vector is presented to the switch to request
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transmission to port 2. Once all ports have been acknowledged and transmission

is complete, the vector is updated to 0000 and the arbiter waits for the next frame.

However, if a higher priority frame becomes available in memory, the updated port

vector (0010) and its corresponding timestamp, prio, length, and mem ptr signals

are buffered, and the higher priority frame is serviced first. Once all higher priority

frames are served, the arbiter serves the buffered frame.

The overflow control logic monitors the scheduler FIFOs and the circular queue

buffer for overflows. Since a frame’s transmission could be deferred in case of

higher priority traffic, it is possible for incoming frames to overwrite this data.

The overflow control logic tracks such issues and drops stale frames, by removing

buffered entries in the arbitration logic (or its corresponding entries in the FIFO),

in favour of incoming data. To ensure that such cases are minimised in normal

operation, the queue buffer is designed with sufficient depth to handle multiple

outstanding frames while wider channels (4-bytes) are used at the switch interface

compared to the byte-wide interface to the Rx FIFO.

4.6.2.2 Configurable Switch Interconnect

The central element of the gateway architecture is the configurable crossbar switch-

ing interconnect, allowing multiple ports to be active simultaneously. The switch-

ing infrastructure uses multiple priority schemes to handle the requirements of

different automotive applications interconnected via the gateway. To achieve this,

fabric arbitration modules are associated with each transmit port to determine

connectivity based on the configuration and received data.

Figure 4.15 shows the architecture of our configurable switching interconnect.

Each receive interface can be connected to any transmit path except itself. As

soon as a frame is received at a receive interface, access to the corresponding

transmit path is requested and the related arbitration module determines if the

connection can be established based on the current state of the transmit path. If

the transmit path can hold another frame, and no higher priority interfaces/data

have requested access to this path, the arbitration module enables the connection
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Figure 4.15: Crossbar matrix implementation of the switch fabric.

and initiates transfer of data, along with the status information of the frame, like

priority, timestamp and length. Once the frame has been transferred, the arbitra-

tion module releases the connection and waits for the next request. To guarantee

latencies we use a strict latency arbiter that selects the next port based on the

priority value (prio) of the frame (range 0 to 7, 7 being highest) to be transmitted.

Integrating the fabric arbitration module into the switch logic, rather than the

interfaces allows the design to be scaled more easily as the necessary paths can be

scaled for any number of connections. For example, upgrading to a 6-port switch

requires minor changes to the switch fabric and replication of transmit and receive

interfaces.

4.6.2.3 Transmit Path

The transmit path receives frames from the switch fabric, buffers them and sched-

ules the output messages according to their priority. The functionality is imple-

mented in multiple sub-modules of the output queue control logic, which have

similar functions to those in the receive path. These sub-modules queue mem-

ory monitor, scheduler FIFOs, queue buffer, and queue arbitration logic and their

operations are shown in Figure 4.16

When a new frame is to be received into the transmit path from the switch logic,

the memory monitor logic examines the output queue buffer, and acknowledges

the transfer if the entire frame can be buffered. Depending on the priority of the
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Figure 4.16: Block diagram of the output queue module and its sub-
modules.

arriving frame (prio), the frame data and its control information are directed to

the appropriate priority queue buffer and scheduler FIFO. The memory pointer

corresponding to the first data word is appended to the received control infor-

mation and stored in the corresponding priority FIFO, once a complete frame is

received.

The output queue arbitration logic forms the interface to the physical transmit

path and constantly monitors the scheduler FIFOs for available frames. When the

Tx path MAC is ready to accept a frame and a frame is ready for transmission,

the arbitration logic fetches the highest priority control information and the data

corresponding to that entry from the corresponding output queue buffer. With the

last data word, the queue arbitration logic signals an end-of-frame to the MAC

using the last word signal, and starts arbitration for the next frame. The MAC

then performs the required protocol operations and pushes the data to the PHY

to drive the physical network.

The queue arbitration logic takes a timestamp corresponding to the first data write
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to the Tx FIFO (MAC), which is the egress timestamp. The difference between

this and the corresponding ingress timestamp (which is part of the frame control

information) is the path latency, which is passed to the AEG monitoring module

for software-level monitoring.

4.6.2.4 Translation for FlexRay/CAN Systems

Unlike Ethernet, which uses explicit addresses to identify destination and source

nodes, automotive networks are based on a broadcast scheme with no explicit

identification for sources/sinks. The priority of messages in CAN and assigned

transmission slots in FlexRay are statically defined parameters that can implicitly

identify a source node. Further, a translation scheme is required to determine the

destination port on the switch interface and to manage message mapping due to

different payload sizes and priorities.

The tblock handles this message translation from the switch to CAN/FlexRay

networks; it includes

❼ An address mapping scheme that relates the implicit identifiers on CAN or

FlexRay to destination ports/addresses on the AEG.

❼ A data-packing scheme that respects the deadlines and payload sizes on the

CAN/FlexRay networks for mapping messages.

❼ A stream-based data interface to the Tx/Rx path of the AEG from the

CAN/FlexRay Communication Controllers.

We present the approach for FlexRay, which can be modified for application to

CAN networks.

Mapping Logic: For the FlexRay static segment, a purely time-triggered scheme

is used where messages are assigned fixed slot(s) in every FlexRay cycle. This

means that a receiving ECU can subscribe to a set of slots on which messages are

scheduled, creating an implicit addressing scheme.
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Policy-based scheduling [188] provides a mechanism to translate this implicit ad-

dressing scheme, and is employed in our gateway. It allows packing of event-

triggered messages into time-triggered FlexRay slots, with consideration for their

real-time deadlines.

As with standard FlexRay, messages are analysed at design time when generat-

ing the message schedule for the FlexRay network. This schedule is used by all

participating nodes on the FlexRay network, including the AEG’s FlexRay inter-

face. The static schedule assigns transmission slots to all nodes but allows normal

FlexRay interfaces to subscribe to pre-determined slots to receive messages from

the network.

However, unlike standard FlexRay nodes, interfaces which rely on policy-based

scheduling subscribe to all slots assigned to the gateway. This allows priority-

based packing of messages, whereby any received message can be transmitted in

the next available transmit slot assigned to the transmitter (not limited to the

slot reserved for the message by the static schedule). Additional information like

transmitter/receiver identifiers, packet sizes, and sequence numbers are incorpo-

rated in the data-header of the message. Nodes participating in policy-based

scheduling filter received messages based on this data-header to determine if they

are the intended recipients. Since the data-header is inserted within the payload

segment and communication is performed over statically determined schedules,

policy-based nodes can coexist with conventional FlexRay nodes on the same net-

work. The policy-based schedule is enabled only at those nodes which require

communication to cross to another domain via the AEG. These nodes are as-

signed a virtual address at the AEG, allowing them to be addressed from devices

on other network domains.

The gateway’s FlexRay interface integrates onto the FlexRay network for that

branch, and is assigned transmission slots like all other interfaces. When a message

in the switch is to be transmitted to the FlexRay network, it is scheduled in the

next slot assigned to the gateway. A data-header is added to the message, allowing

it to be identified at the destination nodes, either in software or using hardware
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Figure 4.17: Architecture of tblock and its integration with the FlexRay
communication controller (CC).

extensions. The receiver identifiers in the data-header are determined at design

time and preloaded into a lookup memory in the tblock, while the packet size and

sequence numbers are generated dynamically based on message received from the

switch.

When a message from the FlexRay network is to be forwarded to a node on the

Ethernet link, the FlexRay interface of the gateway receives the message from the

slot and decodes its data-header. The tblock maps the message to an Ethernet

frame, with the source address as the virtual address of the transmitting ECU and

destination address determined by the identifier in the data-header.

Architecture of tblock : The tblock comprises of tx lookup and rx lookup lookup

memories, an rx packer module to handle FlexRay → Ethernet messages, and

a tx unpacker module to handle Ethernet → FlexRay messages, as shown in

Fig. 4.17. The virtual MAC addresses of FlexRay nodes are linked to the FlexRay

slot-cycle identifier(s), that are statically defined by the schedule. The FlexRay

parameter KeySlotID, which is a unique slot assigned to each node by the schedule,

is used as the transmit/receive identifier for the data-headers. These mappings

are preloaded into the tx and rx lookup memories of the tblock.

When a frame is received from the switch for forwarding on the FlexRay network,

the tblock buffers the frame and strips the Ethernet headers. The tblock performs

a lookup to determine the corresponding data-header and appends it to the frame

data. The list of transmit slots assigned to the AEG’s FlexRay interface is then
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sorted based on the current slot-cycle in progress on the network. The frame

along with the sorted list is forwarded to the tx unpacker module, which then

segments the data (if needed), adds FlexRay frame headers and writes to the

FlexRay interface’s frame buffers.

On the receive side, the messages received from the FlexRay network are han-

dled by the rx packer module. At every slot/cycle boundary, the tblock performs

a prefetch to determine if there are any Ethernet addresses mapped to the slot-

cycle combination that has just ended. Since the FlexRay protocol requires the

frame to be completely received before validating it, the prefetch operation en-

ables rx packer to prepare the Ethernet container before the FlexRay frame is

completely received from the network. The FlexRay payload is directly filled into

the Ethernet container and presented to the Rx Path of the port. The rx packer

also appends the receive packet with ‘0’s if the FlexRay frame does not fit the

minimum payload size for Ethernet.

We have integrated our extensible CC architecture as the FlexRay interface of

the AEG. The host interface of the FlexRay CC has been altered to a stream-

ing interface to the tblock, based on the AMBA Advanced eXtensible Interface

(AXI) streaming interface standard. FIFOs are instantiated at the interface to

decouple the tblock from the CC’s clock and data rates. The configuration of the

protocol parameters is now integrated using a state machine that interfaces over a

separate AXI bus. The isolation of the configuration and datapath interfaces en-

able a generic tblock architecture that can be directly reused for other automotive

protocols like CAN.

4.6.2.5 Run-time Management of Interface Configurations

The configuration space of the AEG is mapped as an addressable location from

the ARM core on the Zynq device. The mapping allows configuration of each

individual port to be altered in isolation or to update all tables in a single write

operation. This includes routing paths, message priorities as well as the behaviour

of the switching system. The lookup memory within the tblock is also mapped
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to the address space, allowing changes to be made in the FlexRay/CAN message

routing. In addition, the software on Zynq’s ARM core can also monitor the

latency of packets on the individual interfaces to further fine-tune the routing

performance and to isolate paths in real-time.

4.6.3 Evaluating the AEG on Zynq

To evaluate the switching performance of our AEG, we have implemented the ar-

chitecture on both the ZC702 development board and the ZC706 board featuring

two different Zynq devices. The ZC702 board features an smaller XC7020 de-

vice that incorporates an Artix-7 grade fabric, while the ZC706 board features a

XC7045 device that incorporates a superior ARM core and a Kintex-7 grade fabric.

For the evaluation, we have chosen a design that incorporates 3 Ethernet ports

and 1 FlexRay port. The I/Os of the Ethernet ports are directed to the FPGA

Mezzanine Card (FMC) interface, on which we have used two Gigabit Ethernet

FMC cards (FMCL-GLAN-B) from Inrevium Inc. to provide physical connectiv-

ity. The resource utilisation on the ZC7020 device is as shown in Table 4.7. As

can be observed, the AEG consumes 55% of the resources on a small device, and

can easily be extended to support more ports. On the larger ZC7045 device, the

maximum resources consumed were under 15% (BRAMs) for the same combina-

tion. The superior PL fabric on the ZC7045 offers higher performance and is thus

a better implementation platform for supporting more interfaces (ports).

To observe the end-to-end latencies of the AEG under cross-traffic and isolated

traffic conditions, we use a test setup with 3 Ethernet links and one FlexRay link

on the larger XC7045 device (ZC706). The Ethernet ports are connected to inde-

pendent and isolated traffic sources and sinks which are implemented on the AC701

and VC707 development boards. Each link is capable of handling traffic at 1Gbps.

For FlexRay, we have integrated a small cluster of nodes on the ZC706 board that
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Table 4.7: AEG: Resource Consumption on Zynq XC7020.

Function Submodule FFs LUTs BRAMs DSPs

FlexRay Port

CC 5572 9768 20 2

Tblock 2227 1849 13 0

Rx Path 662 492 4 0

Tx Path 160 121 5 0

Total 8576 12230 42 2

Ethernet Ports ×3

MAC 2619 1851 1 0

Rx Path 661 476 4 0

Tx Path 160 121 5 0

Total 3549 2559 10 0

Switch - 204 856 0 0

Total (%) 19585 (18.4) 21095 (39.7) 72 (54.75) 2 (0)

also includes the FlexRay interface of the AEG. This allows us to measure end-to-

end latencies in all possible combinations: Real-time network↔Non-real-time net-

work, Non-real-time↔Non-real-time and Real-time (FlexRay/Ethernet)→Real-

time (Ethernet)←Non-real-time cross traffic.

Figure 4.18 shows the average latency incurred by the AEG for different data

sizes in the absence of cross traffic for non-real time Ethernet↔Ethernet traffic

(Figure 4.18(a)) and real-time FlexRay↔Ethernet traffic (Figure 4.18(b)). The

latency is computed end-to-end; from the start of frame transmission at the trans-

mitter to the frame header reception at the receiver. For larger data sizes, we

see an increase in latency due to the increased data movement within the switch,

the transmit and receive interfaces of the gateway and at the source and sink in-

terfaces. In the absence of cross traffic, we observe that the maximum variation

in latency is about 40 ns and is insignificant compared to the end-to-end latency

values.

For Ethernet→FlexRay transfers (Figure 4.18(b)), the measurement is terminated

at the FlexRay interface, since the transmission of the message on the FlexRay

network is guaranteed by the policy-based schedule. It can be observed that
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Figure 4.18: Switching bandwidth of AEG for different data-sizes
in absence of cross traffic: Plot (a) corresponds to non-real-time
Ethernet↔Ethernet traffic, while plot (b) corresponds to real-time
Ethernet↔FlexRay traffic.
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there is no appreciable variation in latency below the 64-byte frame size, since the

tblock pads smaller frames to meet the minimal Ethernet frame size requirement.

For 128-byte data, we observe a slightly increased latency due to the larger data

size. For data packets forwarded from FlexRay to an Ethernet link, the prefetch

mechanism helps to reduce lookup latencies compared to the Ethernet→FlexRay

transfers.

Figure 4.19 shows worst case AEG latency compared with existing work in the

literature, in the absence of cross traffic. As observed, our architecture outper-

forms gateway structures based on software-based approaches (Lim et al. [189]

{simulation}, Kim et al. [190], Yang et al. [191]), and and Müller et al. [192]) and
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FPGA-based gateways for traditional networks (Sander et al. [150]). Our archi-

tecture also outperforms FPGA-based Ethernet switching infrastructure Atacama

(Carvajal et al. [180]), though the margin is small (1.3× lower latency at 128-byte

priority data).

We also evaluate the performance of the AEG in the presence of cross-traffic.

For this evaluation, priority and non-priority traffic were directed to the same

destination at an aggregate bandwidth that nearly saturates the AEG. The setup

generates non-priority traffic at 600 Mbits/s with a 1KB payload size and variable

rate priority frame (10-200 Mbits/s) with a 64-byte payload. Fig. 4.20 shows the

variation in latency in the presence of cross traffic, measured over long duration.

It can be observed that additional (and varying) latency is incurred in the case of

priority frames compared the fixed deterministic latency in the absence of cross-

traffic. This is due to the non-preemptive nature of the switch fabric that blocks

the priority frame once a non-priority frame has entered the switch, resulting in

a maximum end-to-end latency of 21.3 ➭s for priority data. In the case of non-

priority traffic, the smaller size of the priority frame causes only a minor increase

in end-to-end latency as the blocking period (due to the priority frame) is much

less than the transmission latency of the non-priority frames. When the rate of

the priority frame reaches 200Mbits/s, we observe that the non-priority frames

start accumulating within the Rx port buffers, which eventually leads to dropped

frames. However, in the same conditions, the priority frames were routed without

any data loss, ensuring that critical data is always delivered to the destination.

In comparison, the Atacama switch achieves better performance in cross-traffic

conditions due to its dedicated routing structure for priority traffic, at the expense

of increased resource consumption and poor scalability.

The AEG, with the dedicated hardware paths for switching and software-based

monitoring and control, offers the low latency message switching required for next-

generation high-performance vehicular interconnect. The modular implementation

also allows parametric modification for different network architectures, without

sacrificing performance.
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4.7 Summary

In this chapter, we have described enhanced architecture models for next-generation

in-vehicle embedded computing units based on reconfigurable hardware, which can

inherently support function-level consolidation as well as fault-tolerance mecha-

nisms. These capabilities are enabled by the tight coupling between computing

units and the extended network interface, and are enhanced with high-speed re-

configuration capabilities. Controller data-path extensions provide unique mecha-

nisms to integrate fault-monitoring and mode-switch commands in existing traffic.

Abstracting the reconfigurability and extended communication from the appli-

cation layer allows seamless consolidation of functions, and integration of fault-

tolerant modes without adding software complexity.

We have also described a gateway architecture for evolving automotive Ethernet

standards that is modular, scalable, and customisable, while providing software-

based flow control, monitoring, and priority-based message routing, all without a

significant impact on message latency. Integration of these extended functionalities

at the ECU is possible due to the capabilities of reconfigurable hardware is not

possible using existing MCU-based ECU systems. With FPGAs becoming more

popular for in-vehicle compute-intensive tasks, enhanced ECU architectures on

FPGAs will find more adoption in future in-vehicle infrastructure.



5
Securing Vehicular Networks

5.1 Introduction

Beyond the challenges posed by the increasing number of ECUs and the complex-

ity of the distributed architecture in modern vehicles, another major concern is the

potential drawbacks of increased automation. As mechanical systems are increas-

ingly being replacing by electronic equivalents, and the focus on reliability and

performance drives adoption of established standards, this leaves systems suscep-

tible to possible harm against which those networks were never protected. With

the emergence of external wireless access to vehicle systems, security is becoming

a major concern due to the potential harm that can be caused through malicious

attacks.

147
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Researchers have demonstrated the susceptibility of present automotive networks

to remote attacks [153, 193, 155, 194]. With high levels of automation in modern

vehicles, an attacker can gain control over critical systems that control vehicle dy-

namics using multiple attack vectors. These attack vectors can range from simple

techniques like network fuzzing and replay attacks to more complex ones which

could alter the software code on an ECU at run-time. Fuzzing attacks involve

injection of commands/data on the network by an attacker ECU, either with prior

knowledge of these command/data combinations or as a brute-force mechanism.

The attack aims to force one or more functional ECUs into certain vulnerable

modes (such as to enabling flashing), to produce a specific response (like activat-

ing the brakes) or in the easiest case, to cause them to halt due to unexpected

command-data combinations. A replay attack is another simple mechanism that

involves capturing network messages from an active scenario and reusing them at

a later time to spoof commands to an ECU.

Early vehicular networks were designed to be closed systems, with each ECU con-

nected to its required network through a network interface. On such vehicles,

attackers implemented compromises by tampering with an existing ECU, supply-

ing infected after-market devices, or through the on-board diagnostics (OBD) port.

OBD ports are designed to allow service personnel to debug system faults through

a single access point, and thus provide direct and/or bridged access to both critical

and non-critical networks, representing an ideal point for a hacker to gain access

via an (infected) OBD dongle. Malicious software or hardware provides another

pathway, mostly introduced through unapproved after-market upgrades, and can

be used to launch internal attacks (observations or manipulations) on messages or

other ECUs since the network provides implicit full bus access to all components.

Once access to the network is gained, it might be possible to install defective soft-

ware on safety-critical ECUs over the network, compromising their functionality,

as was demonstrated in [153, 193, 195].

An example case was demonstrated in the remote hack of the Jeep Cherokee, where

hackers used wireless access to install infected software on a non-critical ECU on

the CAN network [195]. The infected ECU enabled them to remotely control
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the braking, acceleration, steering, and engine performance while the vehicle was

being driven manually. These attacks are possible because of the lack of standard

mechanisms in current automotive network standards to verify the authenticity

and timing of a message, the broadcast bus nature, and lack of authorisation

schemes for ECUs.

Connectivity within the car and to the outside world has increased over the last

decade offering new pathways to the attacker. Wireless access for entertainment

and other core functions is common in many modern high-end vehicles. With

technologies like Vehicle to Vehicle (V2V) communication on the horizon, a single

infected vehicle might jeopardise the safety of other vehicles on the road by pre-

senting malicious information to them. Also, attackers may exploit such links to

spread compromised data/software to multiple vehicles during such data exchange.

Network standards, particularly in-vehicle standards, do not support mechanisms

for resisting these attack vectors. Though techniques have been described to limit

such attacks at the application layer, either in software or using hardware security

modules, these are still inefficient because of the of the logical separation between

computation in the ECU, and physical bus access in the network controller. Since

communication on the network is managed entirely by the network controller, it

would be beneficial to implement security measures at the network interface. This

scheme allows properties of the network protocol to be exploited in adding security

features. Building such extensions in higher layers is challenging since this involves

increased software complexity as well as the requirement for the application to be

aware of low-level network details.

We have already shown that extended communication can be made possible using

datapath extensions within a network interface. We also saw that such exten-

sions can enable unique ways to enhance the overall capabilities of an ECU, on

a supportive architecture. We now look at mechanisms to incorporate network

and system-level security within the network interface, by further extending the

datapath. This presents numerous advantages, most important of which is to ef-

fectively hide the latency incurred by the security mechanism from the network

and application, creating effectively zero-latency overhead. We further extended
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the scheme for limiting network access for authorised devices through obfuscating

network-level information in messages. Finally, we present an architecture that

prevents compromised ECUs from accessing the network.

The work presented in this chapter has also been discussed in:

1. S. Shreejith, S. A. Fahmy, Zero Latency Encryption with FPGAs for Secure

Time-Triggered Automotive Networks, in Proceedings of the International

Conference on Field Programmable Technology (FPT), Shanghai, China,

December 2014, pp. 256-259 [17].

2. S. Shreejith, S. A. Fahmy, Security Aware Network Controllers for Next Gen-

eration Automotive Embedded System, in Proceedings of the Design Automa-

tion Conference (DAC), San Francisco, USA, June 2015, pp. 39:1–39:6 [19]

5.2 Related Work

As we have seen, modern vehicles employ multiple network protocols which support

the requirements for the different functions. Vehicular networks can hence be

physically separated into high and low performance networks, based on factors

like criticality of functions, latency requirements, and communication bandwidth,

and are typically bridged via a central gateway. High performance networks link

together safety-critical ECUs and sensors, like engine control and drive-by-wire

systems, while low-performance networks connect non-critical ECUs like window

controls and door locks. Typically, protocols like high-speed CAN (HS-CAN) and

FlexRay are employed for high performance networks and low-speed CAN (LS-

CAN) and local interconnect network (LIN) are used for low performance networks,

each providing the required bandwidth and reliability guarantees necessary for the

respective applications. However, telematics and driver assistance systems often

require information from both networks, and are often connected directly to both

network classes, creating unwanted bridging [153, 193].
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The security of in-vehicle communication (IVC) has recently been subject to signif-

icant investigation. In [153, 193], the authors analyse the security of computation

and communication systems by exploring different attack vectors on production

vehicles. The authors present some of the common weaknesses in vehicular ar-

chitecture, that enable attackers to gain access into systems with relative ease.

Though automotive standards are in place that place restrictions on architecture

and software management, their analysis and experiments on vehicles show that

such restrictions are often not followed for performance and practicality reasons.

As an example, the standards forbid unwanted bridging between high and low

performance buses, and thus any ECU that requires access to both networks must

achieve this through a gateway. However, in many cases, telematics systems are

directly connected to the high and low performance networks, creating a bridge.

They show that with this bridge in place, they could alter commands on the high

performance networks using an infected device on the low performance network.

They also highlighted another issue whereby an ECU on the higher priority net-

work could be forced to accept a configuration request from an ECU on the low

priority network. This presented them with the opportunity to alter the software

on the critical ECU and to infect it (and the associated network), through an in-

fected device on the low priority network. Such security flaws enable attackers to

potentially gain access to critical functions while the vehicle is in operation, using

simple attack vectors and an infected after-market device.

While the experimental approach exposed many practical attack possibilities, an-

alytical evaluation of threats and effects has also been explored [155, 194, 196].

In [155], the authors present an analysis of the different threat models and their

criticality. They use multiple factors like severity of the threat, success probability

of the attack and others to classify threat models. Their results also show that

many threats critical to the safety of the occupants can be achieved with rela-

tively low effort and high success rate. In [194], the authors classify ECUs based

on safety effect levels, based on similar analysis of the threat models. In [196], the

authors extend threat models to incorporate wireless interfaces which are widely
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popular in modern vehicles. They show that availability of wireless interfaces fur-

ther enhances the attack planes, with potential attackers not requiring physical

access to the ECUs or networks. In [197], the authors present an approach to

analyse and detect system-level security flaws using probabilistic model checking.

The analysis is performed by evaluating confidentiality, integrity and availability

of different architecture variants to determine the least vulnerable variant.

The EVITA project focuses on evaluating the security of vehicular systems, fo-

cusing on future V2V and the enabled-vehicles concept. The security research

under EVITA evaluates techniques like formal verification for detecting and eval-

uating threat models for over-the-air services like software updates and connected

services [198]. Another research direction under the same project explores the

possibilities of utilising efficient hardware-software co-design for defending against

attacks in connected-vehicles communication systems like Car to X (C2X) [199].

Techniques have also been proposed to address these challenges to some extent.

Standard methods like cryptography and anomaly detection were proposed in [196]

to provide data security. The proposed mechanism incorporates an application

layer approach: however, this incurs considerable latency and the network is still

susceptible to replay attacks. A scheme based on trust and access control lists to

verify message authenticity on CAN-based ECU systems was proposed in [156].

This is also an application layer approach where filters enable messages to be

marked as trusted for processing by the application. This method provides a higher

level of security, but does not prevent an unauthorised device (either newly plugged

in or compromised) from accessing network traffic. Software based automotive

security solutions are also proposed in [200]. Though functional, the software-

based approach incurs a significant latency overhead for implementing even simple

cryptographic functions. Moreover, mechanisms must be in place to protect this

software against tampering and manipulation from invasive and internal attacks.

Alternatively, automotive hardware-based security modules (HSMs) and secure

hardware extensions (SHEs) have been proposed, providing high levels of tamper

protection for V2V and IVC [201]. Such HSMs are attached as co-processors to
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the standard MCUs in the ECU and since these are dedicated hardware blocks,

they do not need to be protected from manipulations. HSMs allow acceleration

of cryptographic functionality and take the computational load away from the

software and application. However, the application must still be aware of the HSM

– the datapath from the network to the application must be explicitly handled

by the software. Furthermore, since security is invoked at a higher level (i.e.,

after the messages have been received), the latency incurred in the operation is

not transparent to the application or to the network. Large latency changes can

require extensive rescheduling of the communication network and the application

tasks to ensure that the deadlines are met.

Our method aims to integrate security and network protection closer to the net-

work and in a transparent manner. Since security standards need to be adapted

multiple times over the life of an ECU (typically more than 10 years), reconfig-

urable hardware is ideally suited for the task.

5.3 Contributions

We present an approach for embedding cryptographic functions at the network

layer, in a manner that is transparent to the ECU, applications, the network.

This creates a layer of security for messages that are otherwise exchanged over

the network in plaintext. To achieve this, we extend our enhanced FlexRay CC’s

datapath further, and add a layer of cryptographic functions that is completely

managed within the CC. Integrating a cipher block within the network interface

provides an opportunity to enhance the cryptographic properties by exploiting

the time-triggered features of the network. Further, the operation of the cipher

is completely overlapped with the data movement and transmission/reception,

effectively creating a zero-latency scheme as far as the network and the appli-

cation are concerned. The difference between our proposed mechanism and the

HSMs/SHE-based schemes are the zero-latency aspect and complete transparency
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to the application. The cipher operations are self-organising and leverage existing

extensions in our CC to offer higher entropy in the ciphertext.

We further extend this message security in a system-level scheme that ensures

authenticity of the application running on the ECU before allowing network com-

munication and allows only authorised devices to integrate and communicate over

the network. These features are achieved in a manner that is transparent to the

application and software layers. The proposed method does not impact the real-

time characteristics of the network nor require re-scheduling of communication, as

in case of HSMs.

We demonstrate our security approach on a Xilinx Zynq platform, while it is also

applicable to our enhanced ECU architectures discussed earlier. The proposed

method establishes a configurable hardware security layer, which can be built

upon to provide adaptable security schemes.

5.4 Security-Enhanced Network Interfaces: En-

abling Zero Latency Message Ciphers

The key weakness of existing automotive network protocols (and hence controllers)

is that no standard mechanism is available to verify the authenticity and timing

of a message. However, as seen in Chapter 3, such functionality can be integrated

and verified at the network layer, without intervention of the processing function.

Time-triggered networks, that are standard for safety-critical systems already of-

fer a synchronised view of time at different nodes in the network, and this can be

leveraged to secure communication. If messages can be augmented with a times-

tamp that identifies when the message was sent, this could allow stale data to

be rejected. Adding cryptographic elements over this would allow an ECU to be

certain of the source of the message.
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Our approach enhances the communication controller (CC) by integrating a data

cipher into the architecture, as shown in Figure 5.1, thus altering the normal dat-

apath (marked 1), creating the enhanced datapath (marked 2). Reformatting a

data stream to include a timestamp introduces additional entropy to otherwise

static data, as proposed in [202] for TCP frames. These extensions are overlapped

with standard functions within the CC by extending the datapath using double

buffering, prefetching, pipelining, and wide interconnect. Though such extensions

could be implemented in software running on the ECU processor, this would re-

sult in significant overheads in computation and synchronisation, as well as large

variations between the actual time of transmission and the timestamp encoded in

the messages.

For the cryptographic functions, we use a low-latency PRESENT cipher [203] that

can meet the real-time and power/computational constraints imposed by automo-

tive ECUs. The PRESENT cipher offers one-round-per-clock operation and has

2.5× lower resource requirements than complex ciphers like Advanced Encryption

Standard (AES), allowing it to be efficiently implemented for each channel in isola-

tion, as required in case of dual-channel networks like FlexRay. PRESENT is also

an internationally accepted standard for lightweight cryptography by the Interna-

tional Standards Organisation and the International Electrotechnical Commission

(ISO/IEC). Though our experiments use PRESENT over a FlexRay network, the

same principles can be used with other low-latency ciphers and/or time-triggered

networks.

5.4.1 Security Extensions in the Enhanced FlexRay Com-

munication Controller

Figure 5.2 shows the datapath extensions that implement timestamping and times-

tamp synchronisation at the interface, integrated into the MIL module of our se-

cure CC. The normal dataflow path in a standard controller design is marked as

NP in Figure 5.2, where the data from the processing logic flows up/down from/to

the bitwise decoding/encoding blocks. With our integrated timestamp block, the
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communication controller establishes a common time-base using techniques de-

fined by the FlexRay protocol during the initialisation phase of the network. A

leading coldstart node initialises the start-up procedure by transmitting a start-up

frame and waiting for other coldstart nodes to join in. Once more than two cold-

start nodes integrate, non-coldstart nodes (i.e., the ones which cannot trigger the

start-up procedure) adopt this schedule and integrate onto the network complet-

ing the start-up procedure. The timestamp start-up procedure closely follows the
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FlexRay clock synchronisation scheme (see Section 3.4), thus providing a common

time-base to all participating nodes.

On the transmit path, the timestamp insertion logic appends timestamp informa-

tion into the outgoing data, just before it is encoded into the byte-packed format

for transmission, all within the CC. Alternatively, if the function is disabled, the

ECU processor would instead read the timestamp information and append it to

the sensor data before passing it on to the CC for transmission. Similarly, on the

receive path, the timestamp processing unit extracts the timestamp information

from the decoded data and can be configured to reject incoming data if the times-

tamp is not current. Alternatively, it can forward the entire packet to the ECU (as

in the normal case), where the ECU would compare its timestamp to the current

time (from the CC) and decide on its validity.

The timestamped data is encrypted by the cryptographic block using a pre-shared

key, then encoded and transmitted bit-by-bit, as per the FlexRay standard. In

the receive path, the bits from the physical medium are voted and decoded as per

the FlexRay protocol. The cryptographic block deciphers the received data and

extracts the timestamp, which is then validated, with the plain text data forwarded

upstream. This cipher enhanced datapath is shown in Figure 5.2 marked as PP.

The PRESENT module uses multiple iterations (or rounds) of substitution and

permutation operations to convert an incoming data block into ciphertext, with

each round is controlled by a round key. The cipher operates on a block of 64 bits

and can be configured to have 80 or 128 bit keys and can have up to 65536 rounds

per cycle. These options can be changed by the ECU during operation.

The PRESENT module instantiates one buffer each in the transmit and receive

direction to store the (prefetched) data from/to the upper layers. A 64-bit interface

is used to ensure that a block is transferred in every cycle. Once a block of data

is available in the buffer, it is read out in one cycle and further encrypted in n

cycles, where n is a configurable number of rounds. A key store manages the round

keys for each round, and handles the commands to alter cipher properties (no. of

rounds, keys) by regenerating the new set of keys in the background using a double
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buffer. The pipelined operation enables the encryption/decryption to overlap with

transmission/reception of previous/subsequent data blocks (or headers), effectively

hiding the latency in the buffering latency that is present even with no encryption.

5.4.2 Encryption in Software

When a powerful computational core (or co-processor) is available in the ECU,

data encryption can be carried out within the ECU instead. In such a case, the

current time value is read from the CC registers and is used to encode the data by

using round-keys generated in the same manner. In the receive path, the decoded

timestamp value from the header segment is read into the ECU to decode the

data. However, we observe that the timestamps are inaccurate as there is no

synchronisation between the communication schedule and task schedule on the

ECU.

5.4.3 Evaluation of Security-Enhanced Network Interface

Table 5.1: Comparison of CC resources on XC6VLX240T.

Function Submodule FFs LUTs BRAMs DSPs

normal CC

PMM 223 542 0 0

CS 1862 3551 2 1

MIL 1038 1610 2 0

CHI 1456 1788 10 1

Total 5617 9068 16 2

secure CC

PMM 222 515 0 0

CS 1846 3430 2 1

PRESENT 2548 2274 4 0

MIL 1275 1463 3 0

CHI 1629 2136 10 1

Total 11224 13386 26 2

Overhead (%) 5607 (99.8%) 4318 (47.62%) 10 (62.5%) 0 (0%)
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Figure 5.3: Test setup with 4 ECUs on ML-605 development board.

To evaluate the proposed scheme, we have integrated four ECUs on a single Xilinx

Virtex-6 LX240T FPGA (Xilinx ML-605 development board), connected together

using a FlexRay bus channel which is completely contained within the FPGA,

replicating an emulated cluster of ECUs. Each ECU in Figure 5.3 is served by a

local clock and comprises a MicroBlaze softcore processor (each slightly differing in

memory configuration) integrated with our secure FlexRay CC. These run a set of

tasks that generate incremental data patterns every 100milliseconds and exchange

data in every cycle of duration 10milliseconds. The enhanced CC consumes up

to 86% of the resources in each ECU, with the test setup consuming 44% of the

Virtex-6 device, and it can be clocked up to 124MHz, more than the 80MHz

required by FlexRay. Table 5.1 describes the utilisation of the secure CC in more

detail, comparing it against a standard implementation without enhancements. It

can be observed that including the PRESENT logic within the controller results

in higher resource consumption and marginally higher power consumption than

the standard core.

We also evaluate the cost of performing encryption in software as opposed to the

integrated approach within the CC. For this, a C implementation of PRESENT

is used on the MicroBlaze ECUs. We also evaluated the same on an ARM-based

ECU using the Xilinx Zynq platform. The results are shown in Table 5.2. We

observe that the integrated approach (in CC) does not incur any additional la-

tency in the transmit or receive direction for handling sensor data encryption,
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Table 5.2: Latency of operation per 64 bit data block.

Impli. (Rounds, Clock) Encryption(µs) Decryption(µs)

HW (up to 470, 80MHz) w/in Txn boundary w/in Rxn boundary

SW MB (32, 100MHz) 7204 7450

SW ARM (32, 667MHz) 40.9 42.1

since encryption/decryption are performed during buffering. Meanwhile the soft-

ware versions require 41 ➭s and 7ms on the ARM and MicroBlaze respectively for

every 64 bits of data to be encoded or decoded. This delay could be reduced by

offloading encryption to a dedicated co-processor like custom IP on the MicroB-

laze or the Neon engine on the Zynq. The software implementations also rely on

additional data exchange (timestamp) between the ECU and CC which results in

some inaccuracy, with a worst case slack of a complete network cycle.

5.5 Security-Aware Network Interfaces: Integrat-

ing System-level Security

Beyond data security, the ECU should also be protected from attacks that aim to

alter the software or application, either permanently or temporarily. Also, though

data is secured with the zero-latency approach, it doesn’t prevent an unauthorised

device from accessing the network or tampering with the messages. Prolonged

access to bus data would allow hackers to crack the encryption scheme or to

determine the cipher behaviour for employing replay attacks. Thus it is essential

to ensure that an unauthorised commercial off-the-shelf device cannot integrate

and observe the communication on a secure network.

It is also required to ensure that an ECU authorised to access the network executes

only an authentic application. The network authorisation mechanism would fail

to serve the purpose if an attacker can successfully inject malicious code into an

authorised ECU. A combined mechanism is thus required to support both network

authorisation and authentication of application code.



5 Securing Vehicular Networks 161

In present secure ECUs, an HSM unit attached to the ECU as a processor exten-

sion monitors the authenticity of the application code and network data. However,

HSMs incur some latency when handling network tasks which must be accounted

for in the message schedule. The broadcast bus structure also makes the HSMs

ineffective in handling network level access control and authorisation. Our method

proposes integration of both (application) authentication and (network) authori-

sation within the enhanced network interface (NI) that tightly integrates security

within and around the communication controller (CC).

To authenticate the application, an agent external to the ECU must be involved,

like the HSM unit which is attached as a co-processor. We integrate this function-

ality within the custom NI. It reads the contents of the boot-ROM and verifies the

authenticity of the contents using a one-way hash function whose expected value

is embedded in the hardware at production. If the authenticity is verified, the

authorisation to use this hardware by the application is verified using a unique

identifier. This hardware identifier is generated at run-time by a circuit that maps

intrinsic properties of the device to its unique identifier. Since intrinsic proper-

ties cannot be controlled during manufacturing and are difficult to predict, two

identical devices will generate different identifiers using such circuits, providing a

unique signature. Only after this combined authentication and authorisation step

will the CC (also within the NI) be enabled, thus preventing a compromised ECU

from accessing the network.

Once an ECU has been authorised by its NI, it can start normal communication

over the shared bus. However, since the bus is of a broadcast nature, malicious

hardware on the bus could still decode the communication and integrate onto the

bus. To circumvent this, we utilise synchronised timestamping and cross-layer

encryption using light weight ciphers within the CC, providing configurable data

security and obfuscating protocol header information. The timestamps prevent

replay attacks since stale data is rejected at the CCs of the receiving ECUs. The

obfuscated headers mean that an unauthorised device cannot decode the protocol

parameters by observing them. Hence, only devices authorised with a pre-shared
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key (from the OEM) can integrate and communicate over the network. We also in-

corporate a method to update the keys at run-time using symmetric cryptography,

which can be further improved using lightweight asymmetric schemes.

5.5.1 Architecture

In this section, we describe the system architecture of our case study for a FlexRay-

based ECU on the Xilinx Zynq platform. We use partial reconfiguration (PR) to

dynamically invoke the authentication and CC modules as and when required,

thus optimising area and power consumption. We integrate an SHA-1 hashing

function and the PRESENT lightweight cipher [203] for software authentication

and data ciphering respectively. The proposed concept can be used with other

time-triggered network architectures which may eventually replace FlexRay and

using other standard hashing/cipher functions.

Hardware Architecture: A high level architecture of the proposed system is

shown in Figure 5.4. The Zynq processing system (PS) integrates highly capable

ARM cores and a number of peripheral devices like the DRAM Memory Interface,
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Non-volatile memory interface (over SPI), Ethernet and others. The PS is tightly

coupled with programmable logic (PL), which can be used to implement cus-

tom functions and/or accelerators, communicating over High Performance (HP)

or General Purpose (GP) ports. The application code, boot-loader and the PL bit-

stream(s) are stored in non-volatile memory (NVM), as is common for automotive

ECUs.

Within the PL, we instantiate either the software authentication mode or the

FlexRay CC in a partially reconfigurable region (PRR). During startup, the PRR

instantiates the authentication logic by default. The authentication logic com-

prises an SHA-1 one-way hashing function and a Ring Oscillator-based Physically

Unclonable Function (RO-PUF), along with the supporting logic in the static re-

gion to support communication with the PS. The UID register is a configurable

width register (8-bit to 128-bit) that stores the unique identifier for the hardware-

software combination on this ECU and is later used by the FlexRay network as the

identifier of the specific ECU. The Status register holds the status of the software

authentication process and is used to enable the interface multiplexers that con-

nect the PRR to the FlexRay bus and to the PS (for configuring the FlexRay CC).

The control state machine (CSM ) is responsible for initialising data movement be-

tween the PS and PL (for authorisation) and for initialising reconfiguration of the

PRR to load the FlexRay interface once ECU software is authorised. The Config.

module manages reconfiguration of the PRR.

Authentication Function: During system initialisation, after the Zynq PS has

completed the boot sequence and programmed the PL with the default bitstream,

the sys init() function initialises the interfaces to the PL logic. The CSM in the

PL logic then initialises a DMA read from the non-volatile memory to compute the

hash value of the memory content, including the bootloader, the default bitstream

for the PL, and the application software (called the boot image). The DMA reads

are directed into the hashing function and are double buffered to improve the

performance. The SHA-1 core is custom designed and operates on 16 32-bit blocks

of data (the size of a DMA burst) to iteratively compute the SHA hash for the

entire boot image.



5 Securing Vehicular Networks 164

In parallel, the physically unclonable function (PUF) module generates a 128-bit

hardware identifier (HID), which is combined with the SHA hash to authorise

the software on this hardware. We use a configurable RO-PUF function with 128

instances of a configurable ring oscillator (RO), each instance contained within

a single logic block (CLB), based on the design in [204]. This design allows for

accurate reproduction of the hardware signature, since the routing within each RO

is completely constrained to the CLB and its associated switch box (interconnect).

Once the SHA-1 hash and HID are generated, the software hash is authenticated

against the hard-coded SAR register value, while the HID and software hash are

combined and hashed to determine if the software is authorised to run on this

specific ECU by matching it against the hard-coded SHAR register value. Once the

software and hardware are authenticated and authorised (as valid or invalid), the

status register is updated and a reconfiguration may be triggered depending on its

value. If authorised, the CSM triggers the Config. Controller to read the (cached)

bitstream data corresponding to the FlexRay CC and enables the interfaces to the

bus, which are otherwise disabled to prevent even a forced reconfiguration from

the PS. The architecture of the authentication function, expanded out from the

PRR block is as shown in Figure 5.5.

Once authenticated, corrupt software could still be forced onto the PS at run-time

(via JTAG for example); however, such programming triggers the PS reset, which

is also wired to the hardware logic. This run-time reset disables the interface

multiplexers (from CC to PL and CC to FlexRay bus) which stay disabled until

the hardware is power cycled, forcing the system to boot from the NVM. This

prevents invasive attacks from employing non-persistent run-time manipulation of

application code. Any persistent alteration (requiring the code to be changed in

the NVM) will be detected as a violation by the hashing function, preventing the

system from authenticating the software and loading the CC.

Enhancing the Security Extensions on the FlexRay CC: As mentioned

earlier, to provide data security for the messages exchanged on the broadcast net-

work, we have integrated a timestamp module and a lightweight PRESENT cipher

into the datapath of the encoding/decoding blocks of our enhanced FlexRay CC
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as in the previous section. Even though introduction of timestamps increases the

entropy of data being exchanged making attacks difficult, it does not prevent a

newly plugged-in (or compromised) unauthorised device from accessing communi-

cation on the network. To achieve this, we must prevent unauthorised devices from

integrating onto the network. The protocol headers encompass information about

the communication schedule and the configuration of the network in plain text,

which can be observed by an unauthorised device to recover protocol parameters.

Knowledge of protocol parameters and the communication schedule can then be

used by an unauthorised device to generate a valid configuration for itself, which

would allow it to integrate onto the network and manipulate messages to attack

other ECUs.

To circumvent this, we extend the controller so that the protocol headers are also

obfuscated by the cipher logic. The first byte of the protocol header containing the

flag bits is left untouched, but the following 4 bytes that comprise the slot number,

cycle number and payload length (along with header CRC) are combined with the

4 byte timestamp (Tx TS) to form the first 64-bit block. This is then encrypted

with the pre-shared key, over 8 cycles (configurable, up to 32), while the first 64

bits of ECU data are prefetched into the buffer. To increase entropy, the data can

be (optionally) padded with the timestamp (2 or 4-bytes), sacrificing bandwidth.

This data is encrypted with a timestamp-based key which is a combination of

the header timestamp and the pre-shared key. This approach ensures that there

is significant entropy even with identical data (and no timestamp padding) with

further increased entropy in the case of data padded with the timestamp. This is
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possible in time-triggered networks since all nodes are synchronised. The data may

be encrypted with a larger number of cycles (up to 482 cycles) without affecting the

latency of the system, since this can be hidden within the encoding/transmission

delay of the preceding 64-bits.

At the receiving end, the byte-decoded data is read directly into the PRESENT

decoding buffer. The first byte of the frame header is passed through untouched,

allowing the protocol defined startup and synchronisation logic to work without

changes. The remaining 4-bytes along with the timestamp are decrypted with the

same pre-shared key to determine the actual protocol information (slot, cycle, and

payload size), which is used by nodes to integrate onto the network. Since only

authorised devices are preconfigured with the pre-shared key, this scheme ensures

that unauthorised devices cannot integrate on to the network, since they cannot

determine network parameters from observing the bus.

The remaining received data is decrypted in a similar manner, but by using the

timestamp-based key regenerated from the decrypted timestamp (Rx TS) and the

pre-shared key to recover the original data. Since the encryption/decryption laten-

cies are deterministic, the timestamp validation system can add this deterministic

offset to time-validate the received message and discard it if older than a configured

threshold, protecting the ECU from replay attacks. The altered datapath for the

timestamp-based header obfuscation and data encryption is shown in Figure 5.6.

5.5.2 Run-time Alteration of Cipher Parameters

As mentioned, a pre-shared key and default cipher configuration is loaded into

the CC of the critical ECUs by the vendor to ensure that only authorised parts

are used. This key is used to obfuscate the schedule and data during the net-

work integration phase. To further enhance security, it should be possible modify

encryption parameters periodically at runtime. This provides an added layer of

protection, since this offers a mechanism to alter the cipher properties and con-

figuration in case a threat has been detected on the network. However, we want
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such functionality to be integrated into the existing communication mechanism

and abstracted from the application. For this, we make use of a scheme similar to

the network management feature available on FlexRay.

Once integrated, the secure gateway can trigger a new cipher configuration using

an (encrypted) security management vector (SMV) message, that is received by

all CCs. The SMV is transmitted as a network management vector (NMV) feature

that is optionally supported by FlexRay ECUs. The frame format for the SMV is

as shown in Figure 5.7 and comprises 12 bytes of cipher management data with 4

bytes of timestamp information. The H Config bits represent the round configura-

tion for the header obfuscation feature, while the D Config bits describe the round

configuration for regular ECU data. Finally, the new pre-shared key (which can

be generated using standard algorithms) is contained in the Key segment. The

Config bits help differentiate the SMV from the normal NMV that is used to adapt

parameters at the network interface and these are used by the pattern detection
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logic in the CC to detect an SMV. The Config bits indicate the validity of the

sub-segments (specific bits set to ‘1’ if valid information is present in H Config,

D Config, Key sub-segments) and may additionally be used to determine when

the adaptation should take effect (next cycle, next nth cycle).

Once the NMV is identified as an SMV, the security extensions extract the new

set of parameters for the cipher logic from the decrypted data. To ensure that all

CCs migrate to the new configuration at the same time, the adoption is synchro-

nised to the FlexRay timing cycle (either the following, or after a specific number

of cycles defined in the Config bits). We have chosen the start of cycle as the

synchronisation point, which allows the CC’s to pre-compute the round-keys for

the new configurations at the previous end-of-cycle marker. Thus all CCs in the

network simultaneously migrate to the new configuration at the start of the next

cycle. Handling the alteration of cipher properties within the CC abstracts these

details from the application and does not provide a path for software hacks to

access this information.

5.5.3 System Evaluation

The proposed system is evaluated in two steps. First the software tamper pro-

tection is evaluated on a Zedboard featuring a Xilinx Zynq XC7Z020 to measure

the boot time, determinism of the hardware identifiers, overall latency and re-

source overheads. Next, the run-time network access control, data encryption,

and enhanced frame entropy are evaluated on a Xilinx AC701 board by integrat-

ing multiple ECUs with authentic software (authentication block is removed due

to area constraints).

Table 5.3 shows a comparison of resource overheads of the proposed system, com-

pared to a standard implementation of the FlexRay NI (standard CC without

any extensions) on the Zynq. Incorporating the cipher and datapath extensions

to achieve network access control in both channels results in a 115% overhead in

flip-flops (FFs) and 59% in Logic (LUTs) at the NI alone. However, the overall
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implementation (NI including PR support) still utilises under 33% of the resources

on the low capacity XC7Z020 device with only a marginal increase in power over

the standard NI (38mW increase). PR allows the non-concurrent authorisation

and NI blocks to be located in the same physical region, reducing overall resource

requirements.

To evaluate the hardware-software authentication, the implementation was tested

on multiple Zedboards and the Xilinx ZC702 development board featuring the

same XC7Z020 device. It was observed that the HID generated by the RO-PUF

differed by 34 bits on average (16 bits minimum) between the different boards for

the same configured challenge value, whereas the generated HID had no appre-

ciable variation on the same board for over a few thousand runs at room tem-

perature. Tampered software on the other hand resulted in large variations in

the hash value, with a single line edit resulting in more than 80 bits difference.

With the boot image read directly from the NVM, the authentication function took

118.3ms to authorise the software while the reconfiguration operation took 62.5ms

to load the secure CC (once authenticated). Alternatively, the sys init() routine

can buffer the NVM contents (including CC bitstream) in DRAM memory, and

overlap data movements allowing authentication to be completed in 66.5ms, and

reconfiguration in 4.4ms (to load the secure CC). However, this could be prone to

tampering with DRAM contents (via software or otherwise). The default scheme

buffers the CC bitstream only, which provides high reconfiguration speeds (4.4ms)

with reasonable authentication latency (118ms) without compromising security.

We evaluate the network security and data encryption scheme by integrating 4

ECUs (3 authorised and one attacker, all based on MicroBlaze soft cores and a

FlexRay CC), each running tasks that trigger data exchange over the network

in every cycle, on a single FPGA device (XC7A200T on the AC701 board). For

this evaluation, we have assumed that the ECUs are running authentic software,

since the single chip does not offer sufficient resources to manage reconfiguration

for multiple ECUs. The FlexRay schedule uses a 10ms cycle at the full 10Mbps

bitrate, with the CCs operating at 80MHz and the MicroBlaze at 100MHz.
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Table 5.3: Comparison of Resources on XC7Z020.

Function Submodule FFs LUTs BRAMs DSPs

standard CC

PMM 225 550 0 0

CSS 1861 3508 2 1

MIL(x2) 851 1393 2 0

CHI 1676 2060 10 1

Total 5491 8939 16 2

secure CC

PMM 225 555 0 0

CSS 1861 3525 2 1

Cipher(x2) 2548 2379 4 0

MIL(x2) 1380 1635 3 0

CHI 1676 2086 10 1

Total 11618 14194 26 2

S/W Auth.
PUF/SHA 4665 6574 1 0

Static 3895 3619 1 0

Total 8560 10193 2 0

Overhead
CC

6127 5255 10 0

(%) 115% 58.8% 62.5% 0%
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Figure 5.8: Entropy of FlexRay frame with the obfuscation scheme 1:
Normal Header, 2-4: Header via different rounds, 5: Static Data by Static
key, 6: Timestamped Static Data (unencrypted), 7 : Static data with
time-varying key 8: Timestamped Data with time-varying key

Figure 5.8 shows the normalised entropy (correlation) of the transmitted frames

(with 1ms timestamp accuracy), when the authenticated secure CCs integrate and

start communicating over the network. The timestamped header, when encrypted

over 5,8 and 16 rounds with the same pre-shared key (cases 2 to 4) results in much

higher entropy than the standard header from the same device (single slot, all
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cycles). The frame headers appear as noise to any unauthorised device, preventing

it from integrating onto the network, since the clock synchronisation parameters

cannot be extracted from a pair of frames (adjacent cycles) without decrypting

them, as observed in our experiment with the attacker ECU. In fact, the attacker is

forced to quit the integration process after exceeding the number of failed attempts,

as required by the protocol. Figure 5.8 also shows the improvement over entropy

of static data (case 5) achieved by timestamping alone (case 6), encrypting with

time-varying key without and with timestamped data (case 7 and 8 respectively).

The non-timestamped data when encrypted with the time-varying key produces

nearly the same impact as encrypting the timestamped data, without consuming

additional bandwidth required to incorporate the timestamp in the data segment.

We observe that header obfuscation causes a delay of 125 ns (for the default 8 round

decryption of header) from the arrival of header bytes to the decoding of protocol

parameters like the slot number, cycle number, and payload length, compared to

the standard CC. However, these parameters are only used by the upper layers

of the protocol (like medium access) and need only be validated after receiving a

complete frame (including the frame CRC), unlike the flag bytes. Hence this delay

does not impact protocol behaviour.

Finally, we triggered a run-time cipher adaptation by forcing one of the ECUs to

send an SMV message changing the key and number of rounds in the next FlexRay

cycle. We observed that the SMV was decoded by the security extensions on the

CC within 5 clock cycles of reception of the entire frame. At the end of cycle

marker (which corresponds to the slot end marker of the last dynamic slot of

the cycle), the round-key generation for the new configuration was initiated, as

required by the SMV. We also observed that the round-key generation for the

new configuration could be performed even in the current cycle making use of our

double key buffering mechanism, enabling the new round keys to be generated

without affecting the current encryption parameters (at the expense of increased

utilisation). The round-key generation consumes n clock cycles (for n rounds),

and can easily be computed in the symbol duration (or network idle period). This

enabled instant migration to the new cipher parameters at the end of the current
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cycle, with all authorised ECUs moving to the new parameters synchronously at

the cycle boundary.

Stronger encryption techniques like AES could be employed in place of the light-

weight PRESENT cipher. However, the multi-layer security approach presented

here goes beyond just the message encryption to address the requirements of net-

work access control, improved entropy, zero-latency operation, and system-level se-

curity. These are important considerations since prolonged access to the broadcast

network would help an attacker to easily decipher the security scheme using ad-

vanced cryptanalysis techniques. Also, stronger encryption schemes are much more

computationally complex, and would result in increased latency, higher power, and

resource consumption.

5.6 Summary

In this chapter, we have described schemes to integrate message-level and system-

level security for in-vehicle networks by integrating them around and within the

communication interface. The schemes present unique benefits over proposed secu-

rity mechanisms for vehicular systems like HSMs or the upcoming secure hardware

extension standard. Firstly, the integration of cryptographic elements close to the

network improves the quality of the cipher by making use of cross-layer approaches

that leverage features of the communication infrastructure like the synchronised

view of time. Secondly, such integration enables complete transparency during

operation, with neither the application nor the network aware of the presence of

a data cipher. The scheme also incurs zero latency in either direction, by effi-

ciently overlapping cipher operations with transmission and data-movement. The

proposed scheme allows an existing application to be ported to the secure domain

without requiring rescheduling at the task level or network level, which are critical

adjustments required with HSM/SHE-based approaches.

We further extended this data-level security to incorporate two major aspects of

system-level security: to verify the authenticity of applications requesting access
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to the network, and to integrate a network access management scheme that al-

lows only authorised devices to integrate and communicate on the broadcast bus.

The system-level security architecture nullifies the impact of tampering with an

ECU’s boot-ROM contents or its run-time code memory by preventing such an

ECU from accessing the network. This authentication is tightly coupled with a

hardware signature generated on the device, preventing attackers from recreating

the combined software-hardware signature. For an authorised set of ECUs, the

network access is controlled using packet-level obfuscation, that prevents attackers

from deducing protocol parameters using off-the-shelf devices. Further, a mech-

anism for network-wide adaptation of cipher configuration allows the system to

react dynamically to threats. Finally, the system-level security architecture is also

abstracted from software/application layer and does not compromise the real-time

guarantees of the underlying protocol.

The proposed architecture can be further enhanced by incorporating asymmetric

ciphers for improved security. Techniques like lightweight authentication utilising

asymmetric ciphers can be employed at the gateway to trigger adaptation of the

system, offering tighter security [205].



6
Functional Validation Platform

6.1 Introduction

In Chapter 1, we discussed the increasing complexity of automotive computing as

new capabilities are integrated in vehicles. This trend is expected to continue with

the introduction of networked vehicles. This rising complexity presents a signifi-

cant challenge in validation and design iteration, as alterations to the network or

architecture should not deteriorate the performance or safety of existing systems.

This is particularly important in the case of safety-critical systems.

Traditionally, functional validation is carried out by recreating the entire network

in a laboratory environment. This test setup, called a hardware-in-the-loop (HIL)

setup, enable designers to profile system performance in the presence of actual

174
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Figure 6.1: Replicated test bed comprising 4 ECUs.

physical conditions that the system may encounter. Real world conditions are

modelled in a controlled environment, including multiple real ECUs and their

network subsystems integrated with the actual cable lengths used in the vehicle,

as shown in Fig. 6.1 for a small 4 ECU system. This is further supplemented

by sensors and actuators to interact with the physical environment, enabling the

technicians to evaluate the quality of the ECUs and to certify their performance

and safety.

New functions, which are developed as stand-alone ECU(s) and later integrated

(as new ECUs) onto the existing network, are evaluated in this HIL setup before

integration in the actual vehicle. Conducting such evaluations is also important

when critical segments of the automotive systems are tweaked, like the network pa-

rameters or safety-critical sub-systems, to ensure that the tweaks do not affect the

reliability or performance of other subsystems and network guarantees in general.

The HIL facility also enables the design team to evaluate optimisation strategies

by tuning the network structure (topology), message/task schedules, and other

parameters, while staying within the performance/safety bounds. Such extensive

test systems use real hardware since high-level simulations often trade-off precision

for simulation speed, missing low-level details and errors that could significantly

affect the overall system performance.

However, with increasing complexity, the size of the recreated cluster also rises,

in addition to the interconnect for the myriad sensors and actuators that must be

integrated. For mid-size to high-end models, the HIL environment can be very
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Figure 6.2: Hardware-in-the-loop test setup.

complex and determining the state of the system during a validation test can be

cumbersome. Also, with a large amount of safety-critical equipment, as in the case

of hybrid and fully electric vehicles (EVs), such an HIL setup does not scale well

to handle the complexity and automation of the validation process. For example,

a small modification in the network structure may require a significant amount

of rewiring, as well as reconfiguration of all nodes’ network parameters, which

must then be verified before the new function can be evaluated. Furthermore,

many of these modifications cannot be automated and require manual effort, fur-

ther limiting the scope for design space exploration, optimisation, and automated

validation.

We propose to model these ECU systems on reconfigurable hardware, with their

actual implementations, communication interfaces, interconnect topologies, along

with real-world interfaces to sensors and actuators. A schematic representation is

shown in Figure 6.2, where the actual sensors and actuators are integrated over a

generic interface to complete the HIL system. This allows multiple configurations

and subsystems to be validated using the same hardware setup, where changes can

be effected through reconfiguration of the FPGA, resulting in deterministic test

setups, and faster adaptation and turnaround times for experiments. The same

FPGA setup can be adapted to different vehicle models that could be using dif-

ferent network and/or system architectures, either via programmable interconnect

(for small topology changes) or through complete reconfiguration.
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In this chapter, we show that such a platform can integrate a sizeable automotive

cluster on a large enough FPGA, with actual implementations of the ECUs and

network interfaces. This allows functional validation to be performed at line rate

with bit-level precision. The platform can be configured and controlled remotely

from software running on a host computer via a python API. The provided API

also allow designers to remotely control debug features (like error injection) and

observation (data capture). The FPGA infrastructure and the python bindings

together comprise our validation platform, which can aid in automating validation

of complex distributed systems and can also accelerate the validation process with

super-real-time execution, without compromising bit-level precision.

The work presented in this chapter has also been discussed in:

1. S. Shreejith, S. A. Fahmy, M. Lukasiewycz, Accelerating Validation of Time-

Triggered Automotive Systems on FPGAs, in Proceedings of the Interna-

tional Conference on Field Programmable Technology (FPT), Kyoto, Japan,

December 2013, pp. 4-11 [14].

2. K. Vipin, S. Shreejith, D Gunasekera, S. A. Fahmy, N. Kapre, System-Level

FPGA Device Driver with High-Level Synthesis Support, in Proceedings of

the International Conference on Field Programmable Technology (FPT),

Kyoto, Japan, December 2013, pp. 128-135 [15].

6.2 Related Work

Software simulation and model-based verification are widely employed in validat-

ing complex systems or software using abstract models [206, 207, 208]. These

high-level models capture the generic behaviour of the system but abstract away

the finer details about the implementation platform and communication. Many

methods also concentrate on modelling the distributed systems as states and their

transitions, by assuming lower level details and communication can be considered
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deterministic [209]. Such abstractions enable software simulations to run in reason-

able time, and can also be easily adapted to different scenarios with minor changes

in code. While such abstractions are acceptable in many domains, critical applica-

tions must be validated against all possible scenarios. The lack of fine-level details

and bit-level communication mean plausible corner cases can be overlooked while

validating safety-critical systems. Hence, accurate models are required for reliable

simulation. Generating these highly accurate models is cumbersome compared to

the abstracted or partial-behavioural models [207], and the use of precise represen-

tations make them less adaptable compared to generic models. They also increase

simulation run-time even on powerful platforms. Furthermore, the assumption of

determinism in the underlying hardware and/or communication is not a guaran-

tee in harsh environments like vehicular systems, where electrical disturbances,

electromagnetic interference (EMI), and the operating environment contribute to

multiple possible errors in the network and computing infrastructure.

FPGAs have long been used for rapid prototyping and validation of complex appli-

cations. Their ability to implement models with cycle- and bit-accurate behaviour

is in addition to the possibility of running orders of magnitude faster than soft-

ware simulations. When the systems being modelled are clocked at rates within the

bounds of the selected FPGA, it is also possible to emulate the system in real-time.

This makes FPGA-based emulation an efficient method for validating complex

processor architectures, application specific integrated circuits (ASICs), systems-

on-chips (SoC), and other complex computing systems [210, 211, 212, 213]. ASIC

emulation and co-verification of embedded systems is an area which makes exten-

sive use of FPGA-based emulation, primarily because of the design costs involved

in ASIC manufacturing and the challenges involved in verifying the software and

hardware aspects in complex embedded systems. In [214, 215], the authors present

detailed architectures for efficient FPGA-based emulation systems for ASIC vali-

dation and complex embedded systems evaluation. FPGA-based emulation is also

widely employed in validation of high-throughput communication networks [141].

Here, the use of FPGAs to model the system provides near real-time performance

for the network, without sacrificing bit-level accuracy.
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While modern FPGAs provide computational capabilities for emulation, the lim-

ited number of I/O pins available for user logic can be a challenge when emulating

complex systems. This is significant in case of larger designs require partitioning

across multiple FPGAs with parallel evaluation. These interconnected FPGAs tax

the limited user I/O, further complicating the emulation setup. Early work high-

lighted this challenge and proposed a solution using a virtual wires concept [216].

While FPGA logic capacity grows at a rapid pace, the number of I/Os grows at a

much slower rate making large emulation platforms challenging to implement be-

cause of a lack of I/O bandwidth. Virtual wires time-multiplex the available I/O

that then runs at much higher speed compared to the logic emulator effectively

achieving the required interconnect bandwidth.

Modern FPGAs feature high speed serial I/O pins that can achieve sustained

throughputs of 6Gbps or more, and the virtual wires concept can be used to time-

multiplex such high speed I/O to achieve the required interconnect bandwidth.

Also, interfaces like PCIe can now be used as the backbone interconnect to provide

deterministic communication between partitions of a multi-FPGA setup.

Within the automotive context, FPGA-based validation of novel functions has

been proposed through mapping computational units and interfaces with special

test capabilities on them [148]. Here, the network interface is enhanced with

features that enable injection of errors close to the network, opening up possibilities

for extended validation. However, the test ECU with enhanced interfaces must be

integrated into an HIL setup to evaluate its performance in real world conditions.

FPGA-based prototypes have also been proposed and used to validate emerging

technologies like vehicle-to-vehicle communication [217]. Here the logic on the

FPGA can mimic the wireless communication channel and its properties such as

multipath fading, which can be used to evaluate the performance of the proposed

communication scheme and transceivers.
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6.3 Contributions

We present a framework that integrates a hardware-based functional evaluation

platform with software-based control on a host PC. The proposed functional vali-

dation infrastructure models multiple computational nodes and their interconnect

(a cluster of ECUs) on a large FPGA, mapping actual implementations of compu-

tational units (ECUs) and communication interfaces onto the FPGA. The different

clusters are mapped onto multiple FPGA boards, which can then be integrated to

replicate the entire vehicular system. Since actual implementations of the network

and communication infrastructure are utilised, the test setup can perform exten-

sive HIL validation, and alterations can be made through a fast reconfiguration

operation. In many cases, it is also possible to achieve speed-ups during functional

validation by using optimisations in the network infrastructure. Designers can also

utilise the reconfigurability of the platform to explore complex design variations

and deliver optimisations which are validated in the actual hardware.

We have developed a validation platform using a single FPGA board, that in-

tegrates up to 6 complete ECUs along with their network infrastructure on the

ML-605 development board featuring a Xilinx Virtex-6 device (10 ECUs on the

VC-707 board that uses a Xilinx Virtex-7 device). For our experiments, we have

used the FlexRay network protocol, by integrating the optimised interface de-

scribed in Chapter 3 with the computational units. We have also built a software

API that allows users to configure and control the platform over the UART, JTAG,

and Ethernet interfaces to observe ECU communication in real-time from a host

machine. An optimisation framework can then be integrated on top of this infras-

tructure to explore different design combinations and evaluate them on the actual

hardware to determine the optimal architecture and communication schedule for

a given set of functions.
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Figure 6.3: System Architecture of the Validation Platform.

6.4 Platform Architecture

The complete validation platform comprises a standard host PC connected to a

commercial FPGA board, as shown in Figure 6.3. Software on the host PC con-

trols and configures the FPGA board over standard Ethernet, JTAG, and UART

interfaces. The FPGA board integrates a cluster of isolated compute units or

ECUs connected through a dual-channel FlexRay communication network. Each

ECU may implement a specific automotive function, like park assist or adaptive

cruise control, either as a hardware implementation or as software running on a soft

processor. Interfaces within the FPGA are built using hard macros or optimised

IP to minimise overhead, and allow for complex ECUs.

6.4.1 Hardware Architecture

Figure 6.4 shows the architecture of the validation platform, with the external

interfaces and clock domains. The figure describes an example design comprising

6 independent computing units marked ECU1 to ECU6. Each ECU is fed with

independent isolated clocks, marked as HCx for ECUx generated by the hardware

clock manager. Each ICx clock is the interface clock for the FlexRay interface
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Figure 6.4: Hardware Architecture of the Validation Platform.

within ECUx, enabling the interfaces to be clocked at a different frequency from

the ECU core. The interfaces enable communication between ECUs (over the

FlexRay bus) and can be controlled by the host PC.

Host Interfaces and Global Registers: The host PC can communicate with

the ECUs over the shared UART Config/debug interface, the Xil debug JTAG

interface and the Ethernet interface, as shown in Figures 6.3 and 6.4. The host

PC controls the FPGA platform by accessing the global registers (register file) over

the Config/debug interface. The Xil debug JTAG interface enables initialisation

and debugging of MicroBlaze-based ECUs in the cluster, using the MicroBlaze

debugger module (MDM). The host PC uses the Ethernet interface as a real-time

debugger for monitoring the state of the FlexRay bus and selected control signals

from the ECUs in the cluster.

The Register File implements a set of global registers that are used to configure the

interfaces, set platform parameters, and control/configure the special test features.

The functionality of each register is described in Table 6.1. The control/configu-

ration registers are used for enabling/disabling the platform, enabling test cases

and to configure the operation modes. The Config UART is also mapped in the

memory space of each ECU, and thus doubles as a debug interface. This enables

host software to access debug data and registers using the ECU address registers

(ECU addr reg) as an indirect addressing register.



6 Functional Validation Platform 183

Primary

Function

Memory
FlexRay

Controller

Application

Accelerator

Bus

Driver

System

Interfaces

External

Interfaces
BUS A

BUS B
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ECU architecture: Compute units implement automotive functions either as

hardware functions, or as software on a soft processor. Figure 6.5 illustrates one

such model for an ECU. As would be the case in a vehicle, each ECU is completely

independent and implemented in isolation. The primary function represents the

Table 6.1: Register file description of the Validation Platform.

Address Function Description

0x00 Version register H/W version number

0x01 Platform control Controls the interfaces and operative modes
of the H/W platform

0x02 Platform status Interface and mode status register for the
H/W platform

0x03 Debug control Operative modes & parameters for the debug
module

0x04 Error injection Enable/disable error modes - bit error, frame
error, frame delay, frame drops

0x05 Bit error config Specifies the bit/byte(s) to insert error

0x06 Error slot config Specifies the Slot-ID to insert error

0x07 Delay rate config Specifies the delay value in ticks

0x08 Frame drop config Specifies the FlexRay cycle to drop Frame

0x09 ECU addr reg [31:16] ECU debug : Indirect address register (upper
DWORD)

0x0A ECU addr reg [15:0] ECU debug : Indirect address register (lower
DWORD)

0x0B ECU access control Selects ECU and read/write for indirect ac-
cess

0x0C ECU data reg [31:16] ECU debug data (write/read)

0x0D ECU data reg [15:0] ECU debug data (write/read)

0x0E Clock jitter Select the clock offset for ICx - frequen-
cy/phase and offset value
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functional implementation of an automotive algorithm in either software or hard-

ware. The application accelerators are dedicated hardware units like FFT modules

or FIR filters that leverage FPGA specific hardware like DSP blocks, or other cus-

tom hardware designed for a specific application. The ECU memory is built using

BlockRAMs. ECUs also incorporate a dual channel FlexRay Communication Con-

troller (CC) which implements the FlexRay communication protocol. A key aspect

of this platform is that each ECU uses a fully featured communication controller

for verification, just as would be the case in the final deployment.

The ECUs may interface with subsystems like sensor modules over standard in-

terfaces like SPI, I2C, or other system interfaces. ECUs may also interface with

external storage elements like non-volatile memories or high-speed DRAMs. The

external memory controller provides multi-channel access to such storage elements,

and ECUs can connect to it over a streaming interface. It is configured to ensure

that the memory spaces are isolated between the different channels.

FlexRay Communication Controller (CC) and Debugging Extensions:

The heart of the validation platform is the FlexRay bus and our custom FlexRay

CC. The optimised implementation enables a complete network interface to be

integrated with every functional unit, replicating a full ECU. The configurable ex-

tensions in the FlexRay CC like timestamping, header insertion, and filtering are

utilised during functional evaluation. The synchronised timestamps present a com-

mon time-base for evaluating functional performance as well as to determine the

predictability of the system when validating critical features like fault-tolerance.

The FlexRay CC at each ECU also integrates a buffer layer (called the bus buffer)

to model the physical medium interface to support error injection in the messages

transmitted by the ECU. The bus buffer is composed of a delay line, bit inverter,

and a buffer with multiplexers connecting different paths, as shown in Figure 6.6.

In the normal operating mode, the multiplexers connect the output of the FlexRay

CC directly to the bus by enabling the buffer and bypassing the other elements.

The bit inverter is used to inject bit-level errors in the transmitted message, while

the memory block is used to model a configurable line delay. The different paths
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are enabled by the configuration in the register file and are triggered by a spe-

cialised ECU called the Bridge Node.

The Bridge Node implements two distinct functions; a bus replay module (BRM)

function and a bus debug module (BDM) function. The BRM allows logged data

from a real experimental setup to be stored in its CC and played back within

the FPGA network in a cycle-accurate manner. The BRM handles special test

capabilities like bit-error injection, delay and jitter adjustment, as well as precon-

figured frame drops during transmission, using the extended capabilities of the

custom FlexRay CC and bus buffers. The BRM supports specific (e.g. delay slot

x in cycle y by t units) and pseudo random specifications for the parameters.

The BRM can also inject random messages, i.e., transmission of data in slots

which are not assigned to this node but may or may not be assigned to some other

node. Since FlexRay CC implementations only allow transmissions in configured

slots, the CC of Bridge Node is extended to allow transmission in un-assigned slots.

The BRM utilises this extension to inject faults like un-synchronised transmissions,

transmissions across slot boundaries, and “babbling idiot” faults. The BRM can

also be used to inject specific commands that can trigger actions from the ECUs

under test, like triggering a computational mode switch, fault tolerance modes,

and task migration actions.

The BDM enables real-time debugging of the FlexRay bus and ECU control signals

selected at design-time. The BDM captures the selected signals with a timestamp

and encapsulates them into Ethernet frames which are transmitted over the Gi-

gabit Ethernet interface. The BDM also features a trigger mode which can be

configured to perform a trigger-based capture of selected signals. Ethernet frames
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are decoded into value change dump (VCD) format by the debug tools and can

be viewed on the host PC in real-time.

6.4.2 Management of the Platform

The initialisation and management of the verification platform is handled on the

host PC using the Python function calls listed in Table 6.2. The individual init

functions can be used to initialise the platform by configuring all the ECUs, one

specific ECU or the BRM module. The mode platform function controls the error

injection capabilities of the platform, while the mode debug function configures

and triggers the live-debugger module (BDM).

The code for an example design comprising multiple ECUs is shown in Figure 6.7.

The initialisation segment creates a merged bitstream file from the tool-generated

bit file by invoking the init platform API call. The function merges the soft-

ware (elf) for ECU1 (mb 0) into the tp top bit file, which is used in subsequent

calls that initialise the remaining ECUs. For the final ECU, the done flag is

set to 1, triggering the initialisation of the FPGA with the integrated bitstream.

Table 6.2: Software APIs for controlling/configuring the Platform.

Function Arguements Description

init platform() elf file, proces-
sor tag, bit file,
done flag

Initialises the processor processor tag with
code elf file, creates bitstream bit file, down-
loads it to FPGA

mode platform() reg file address,
reg file value

Modifies the register file content at address
reg file address with value reg file value; al-
ters the operating mode of platform

init processor() elf file, proces-
sor tag

Downloads the modified software elf file to
the processor processor tag and resets it

init BRM() brm file Initialises the BRM memory with the cap-
tured FlexRay bus data and enables the
BRM

mode debug() reg file value,
capture flag

Alters the behaviour of the Bus Debug
Module. Can choose debug signals using
reg file value and alter host data capture us-
ing capture flag
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Subsequently, tests are performed on the cluster by using the mode debug and

mode platform function calls. A change in software or communication schedule is

triggered by altering the software routine in the specific ECU, which is triggered

by the init processor API call in the example.

1 from init_platform import init_platform

2 from init_BRAM import init_BRAM

3 from mode_debug import mode_debug

4 from mode_platform import mode_platform

5 from init_processor import init_processor

6
7 # define global values

8 debug_config = #value

9 test_config0 = #value

10 . . .
11 test_confign = #value

12 . . .
13
14 # Initialisation

15 # merge ECU software with bitstream

16 # generate a merged file for first ECU

17 init_platform("ecu0.elf","mb_0","tp_top" ,0)

18 # use merged file for further ECUs

19 init_platform("ecu1.elf","mb_1","tp_top" ,0)

20 . . .
21 # set done_flag to 1 for the final ECU

22 init_platform(. . .,1)
23
24 # Run Tests

25 # write debug_configuration and start debug

26 mode_debug(debug_config ,1,1)

27 mode_platform(reg_addr , test_config0)

28 . . .
29 # stop current test

30 mode_platform(reg_addr , 0,0)

31
32 # Modify ECU S/W

33 init_processor("elf_new1.elf","mb_1")

34 # Re-run Tests

35 # write debug_configuration and start debug

36 mode_debug(debug_config ,1,1)

37 mode_platform(reg_addr , test_config1)

38 . . .
39
40

Figure 6.7: Python Software Flow.

6.4.3 Accelerated Mode

A normal FlexRay bus provides a serial datapath over an unshielded twisted pair

cable. To ensure data is protected in the harsh automotive environment, the

FlexRay protocol imposes bit-level redundancy for all transmissions. The decoder

must sample these redundant bits and majority vote over a predefined 8-bit window

to decide bit polarity. This results in an actual transmission rate of 80Mbps for
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the maximum FlexRay data rate of 10Mbps. Hence, an 80MHz sampling and

transmission clock are required for the FlexRay CC. This would limit the potential

overclocking possible on an FPGA to around 3 × (a frequency of 240MHz is

considered high for complex designs).

Since the entire FlexRay bus is contained within the FPGA, and we can be sure

of transmission robustness, we take advantage of the 8 times serial redundancy

to make the bus byte-wide. In order not to affect the protocol constraints, only

the coder-decoder module within the FlexRay PHY is altered to support byte-

wide transmission and reception. This relaxes the clock frequency required for

the interface to 10MHz. Alternatively, the modification allows data transmission

to be overclocked to 8 × or more, enabling faster progression of the emulation.

With fast mode selected, the achievable cluster acceleration is limited primarily by

the acceleration possible for the compute nodes, rather than the communication

infrastructure.

For functional validation, the FlexRay CC switches its operating mode from normal-

serial mode to fast-parallel mode when fast mode is enabled in the Platform Con-

trol register. The ECUs are issued with a reset signal and the FlexRay interface

switches to the parallel mode. The ECUs’ software reads the state change and

enables faster local clock configuration for the interface, thus accelerating the val-

idation process. However, for HIL tests which should progress at line-speeds, nor-

mal mode should be enabled. For normal mode, the FlexRay CC switches to the

normal-serial mode which offers complete compliance with the FlexRay interface

specification at all levels and is configured with the actual local clock configuration.

The verification/HIL tests then progresses at normal hardware speeds.
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6.5 Evaluating Automotive ECUs on the Plat-

form

To evaluate the capabilities of the platform we have implemented it on a Xilinx

ML605 board that incorporates a Virtex-6 LX240T device and on a Xilinx VC707

board that incorporates a Virtex-7 VX485T. This implementation incorporates

6 compute units including the bridge node. Four of them (ECU1 to ECU4) use

a MicroBlaze running various algorithms as the primary function. ECU5 is a

hardware-based ECUmimicking a dedicated ASIC, while the Bridge Node also uses

a MicroBlaze-based ECU with debugging capabilities. The resources consumed by

this setup are shown in Table 6.3. For our evaluation, we have configured the ECUs

to utilise on chip memory (BRAMs) rather than external memory, resulting in 88%

BRAM utilisation. With this exception, the overall FPGA utilisation is below 50%

of the Virtex-6 device and hence it is possible to integrate more ECU functions.

This can be relaxed by utilising the external DRAM memory over our external

memory controller interface; however this could limit the acceleration achievable

because of the limits of the underlying DRAM interface controller. On the larger

Virtex-7 device (on the VC707 board), the same setup consumes under 40% of

resources, and thus it is possible to integrate 10 or more functions.

To quantify the capabilities of the platform (error injection, acceleration and oth-

ers), we use a number of case studies that involve actual automotive applications

mapped as software tasks onto the cluster of ECUs. The park assist, cruise con-

trol, and brake-by-wire systems discussed earlier are mapped as the tasks to be

validated. Of the three applications, two non-concurrent non-safety-critical func-

tions in the form of park assist and cruise control are evaluated for the first case

study, and a highly critical brake-by-wire system is evaluated for the second case

study.

The first case study evaluates the performance of a non-critical ECU cluster. Here,

ECU1 and ECU2 form part of a park assist system with ECU1 forming the sensor

interface and ECU2 forming the compute and actuator interface. ECU3 and ECU4
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represent prime and standby logic for an adaptive cruise control system with ded-

icated hardware accelerators. ECU5 consists of a hardware implementation of a

radar interface for the adaptive cruise control system which passes sampled radar

data over the FlexRay bus for processing by the primary and standby units. The

Bridge Node mimics a centralised fault detection unit which can trigger a switch

between the primary and redundant functions. The commands to/from the brake

and throttle actuators/sensors are collected/generated by the Bridge Node. This

can be replaced by actual models in an HIL test setup, or connections to real

actuators/sensors.

For the second case study, we use the platform to determine operative bounds of a

safety-critical system. Here, the brake sensor tasks are mapped on ECU1 and brake

actuator tasks on ECU2. Each of them incorporates a fault-tolerant subset (redun-

dant tasks), which guarantees a minimum level of performance. ECU3 monitors

the FlexRay bus and detects errors in ECU1 tasks and/or communication. The

functionality, fault-tolerant behaviour, and fault-recovery actions are evaluated in

the presence of faults like bit-errors, frame-drops, and frequency drifts injected

through our validation platform. The FlexRay communication parameters used

for the two case studies are detailed in Table 6.4.

Table 6.3: Resource utilisation on XC6VLX240T and XC7VX485T.

Function Virtex - 6 Virtex - 7

LUTs FFs BRAMs DSPs LUTs FFs BRAMs DSPs

ECU1 11339 7614 77 5 11553 7548 80 7

ECU2 11334 7614 29 5 11581 7548 30 7

ECU3 13837 11766 87 47 13337 11644 90 49

ECU4 13844 11771 87 47 13322 11651 90 49

ECU5 9006 5604 13 2 9224 5496 13 2

Bridge ECU 12121 8479 79 5 13328 8421 80 7

Debug Logic 791 1010 10 0 821 970 10 0

Total 74186 56184 729 111 73166 53278 741 121

(%) 49% 18% 87.6% 14% 24.1% 8.8% 38.2% 4.3%
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6.5.1 Test Cases

To inject errors into the system, we make use of the different capabilities of the

platform. For network error injection, we inject bit-errors and frame drops mod-

elling disturbances and loss of communication on the cluster network. Another

common error condition in a distributed system is the loss of synchronisation be-

tween different nodes due to drifts in their individual clocks. Clock drift within

the system is tested by dynamically altering the ECU clock frequency and phase

using the clock generator module. For testing selectable functionality like a user

configurable drive mode select, the BRM is used to inject specific commands to

trigger a corresponding response from an ECU. The effect of a complete outage

Table 6.4: Communication schedule for the Cluster.

Parameters Assigned Values

Number of Cycles 64, 1ms per cycle

Number of Static Slots 15 at 32 macroticks each

Payload Length (Static) 2 words

Number of Dynamic Slots 71 (max)

Non-critical ECU Cluster Case Study – I

ECU1 Data Txn Cycles 0 to 31 on multiple slots

ECU2 Data Txn Cycles 32 to 63 on multiple slots

ECU3 Data Txn Cycles 0 to 15, 48 to 63 on multiple slots

ECU4 Data Txn Cycles 16 to 47 on multiple slots

ECU5 Data Txn All Cycles on Slot 16

Bridge Node Data Txn All Cycles on Slot 5

Safety-critical ECU Cluster Case Study – II

ECU1 Data Txn All Cycles Slot 3

ECU1 Fault-tolerant Odd Cycles Slot 4

ECU2 Data Txn All Cycles Slot 13

ECU2 Fault-tolerant Odd Cycles Slot 14

ECU3 Data Txn All Cycles on Slots 7

Bridge Node Brake-Input All Cycles on Slot 15
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of the network caused by a faulty node which prevents any meaningful commu-

nication on the network is also evaluated. The effects of the different errors are

validated against expected behaviours.

6.5.2 Evaluating Case Study 1: Cluster of Non-Critical

ECUs

We now evaluate the park assist and the radar front-end system that are

integrated as a cluster on the platform. Errors are injected in the network and

at ECU level during this evaluation using the capabilities of the platform. The

consolidated results for the different test cases described below are tabulated in

Table 6.5.

6.5.2.1 Network Error Injection

For the park assist system, ECU2 samples data from the sensor ECU (ECU1)

over 64ms and computes the adjustments required to the throttle, steering, and

brake controls to complete the parking operation, once the park-mode is chosen

by the user. The module should cease its operation if it receives a consistent

stream of erroneous sensor data (64 samples) or if it fails to receive valid data

over 4 consecutive communication cycles. Bit-errors are injected into the sensor

data transmitted by ECU1 by toggling a pre-configured data-bit (8 bits on the

network) in the message for 64 consecutive samples and it was observed that on

receiving the 64th consecutive sample with error, ECU2 transmits an error code

in its response message indicating a sensor malfunction, and ceases to provide

control information to the throttle and steering ECUs. ECU1 stays halted even if

it receives a stream of error free packets, and must be restarted by re-enabling the

park-mode signal, as in the specification.

When data frames from ECU1 are dropped modelling a communication break-

down between the two modules, it was observed that ECU2 issues the error code
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in its data segment as in the previous case and ceases to provide control informa-

tion. However, once the communication is re-established, ECU2 resumes normal

operation after receiving a complete set of error-free sensor data, as required by

the design.

The radar front-end system is based on a 64ms frequency modulated continuous

wave (FMCW) radar scanner. When enabled, ECU5 models the radar system and

transmits the received samples from the radar interface for processing by the target

detection ECUs (ECU3 and ECU4). These ECUs detect and estimate the distance

and velocity of targets from the sample data and issue control signals to the throttle

and brake ECUs. ECU3 and ECU4 will accept a complete dataset (1024 samples)

only if all the bytes are marked error-free. In case of an erroneous cycle, the ECUs

must not issue any control commands corresponding to the erroneous data. It was

observed that with a single error in a dataset, ECU3 and ECU4 flagged erroneous

communication in their respective messages without providing any control input

to the throttle/brake ECUs. With persistent errors, both ECUs went into fall-back

mode which provides minimal functionality based on error-free data.

6.5.2.2 Babbling Idiot Test

This test models a common fault in time-triggered system caused by an out-of-

sync node which transmits messages at arbitrary points in time, corrupting the

transmission schedule and the messages exchanged. This is modelled by forcing

the Bridge Node to transmit frames in slots not assigned to it, disrupting the com-

munication sequence. During this test, it was observed that the park assist and

radar front-end ECUs that were synchronised to the network prior to the error,

fail to stay in synchronisation due to the inconsistency of transmission introduced

by the faulty node. Further, they switch to the halt mode and flag a clock syn-

chronisation error, as required by the FlexRay standard. Once restarted under

normal conditions, the ECUs reset the FlexRay interface and re-integrate into the

cluster, resuming normal communication.
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6.5.2.3 Clock Drifts/Jitter

In our test setup, the effect of drift in ECU clocks is modelled by altering the phase

and/or frequency of the interface clocks dynamically using the dynamic reconfig-

uration port (DRP) found in Xilinx Clock Managers. When enabled, a predefined

set of test cases that perform phase drifts and frequency drifts can be performed

on the nodes. These include shifting any selected clock by 45/90/180 degrees or

altering the frequency by fixed steps. Any chosen set will cause all ECUs to be

reset and restarted with the selected clock combination.

During our experiments, we observed that phase variations and small frequency

Table 6.5: Evaluation of non-safety-critical park assist and radar system
with error injection enabled on the validation platform

Test Case Expected Observed

Bit-error

Park assist:
ECU2 fault
message

ECU2 transmits error code indicating sensor
fault

Radar system:
reject dataset

Rejects data & flags error; fall-back mode
with persistent errors

Frame drop

Park assist:
ECU2 fault
message

Transmits error code, recovers when commu-
nication re-established.

Radar system:
fall-back then
halt

Switches to fall-back mode & halts with per-
sistent errors

Special
Frames

Radar ECU: fall-
back, then re-
covery mode

Radar ECU decodes error, triggers fall-back
mode & initiates recovery

Random Txn
Synchronisation
error

All ECU’s flag sync error & halts; recovers
on reset

Clock Drift:
Phase

Phase drifts absorbed by FlexRay clock synchronisation

Clock Drift:
Frequency

For drifts > 10% interface loses synchronisation & halts,
unable to recover
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variations on the clock (less than 10%) were absorbed by the FlexRay clock cor-

rection mechanisms, with the reset triggering a re-synchronisation consuming 6

cycles (6ms). Frequency variations of more than 10% caused nodes to go out of

sync, without being able to recover from the error.

6.5.3 Evaluating Case Study 2: Cluster of Safety-Critical

ECUs

We now evaluate the critical brake-by-wire ECUs in the presence of different er-

ror combinations. The system uses a linear deceleration model with the vehicle

normally running at the top speed of 100 km/h. Under error-free conditions, the

constant velocity vehicle can be brought to a complete halt in 4.8 s, when the

brake is engaged. This is achieved by applying the braking pulse to the actuator

every 400ms periodically. When persistent faults are detected in the ECUs, the

fall-back mode takes over, which offers minimum functionality to bring the vehicle

to complete halt in double this time (minimum operating mode). The consolidated

results of the different tests can be observed in Figure 6.8.

6.5.3.1 Network Error Injection

In every cycle, the sensor ECU (ECU1) samples the brake input (message received

in previous cycle from Bridge Node and physical I/O connected to buttons) and

generates a sensor message for the actuator ECU (ECU2). The actuator ECU

receives the sensor messages, consolidates them over a 400ms period and applies

the braking pulse for 1ms, if the brakes are to be enabled. It also receives the fault-

status message from ECU3 which indicates if persistent faults have been detected

in the system or in the communication from ECU1. In the absence of faults or

with transient faults, the ECUs operate in normal mode, however, if persistent

faults are detected they switch to the minimum operative mode.

When bit-errors are injected into the system in a non-consecutive fashion (like

periodic bit-errors in messages, in every 3 block periods of 400ms), the system
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continues to operate in normal mode. However, ECU2 observes the large fraction of

errors during consolidation and does not provide actuation outputs corresponding

to the missed frame, resulting in increased response time. Similar performance was

observed when frames were dropped in a non-consecutive fashion (periodic drop of

frames, in every 5 block periods of 400ms); the system continued in normal mode,

but with reduced performance (increased response time).

When errors were made continuous in slot 3 of every cycle, the ECUs were forced

into the fall-back mode which uses a different schedule for communication. This

sets the minimum operative condition that brings the vehicle to halt from the

constant speed in 9.6 s. However, if the error is removed after, say 2 seconds,

the systems recovers to the normal operative mode to achieve a better braking

performance.

6.5.3.2 Babbling Idiot Test

With the babbling idiot enabled, we observed that the ECUs switched to the fault-

tolerant mode as the synchronisation could not be established on the FlexRay

network. However, as the fault-tolerant scheme also uses the same network, the

system was unable to provide any functionality. Once normal conditions were

restored after 4 seconds, the ECUs re-integrated and re-established synchronisation

and resumed operation in normal mode within 6 cycles (6ms).

6.5.3.3 Clock Drifts/Jitter

Here, we first halved the ECU clock frequency of sensor ECU1 by altering the

configuration of the clock generating circuit. This change in system performance

was observed by ECU3 which generates a system fault message over the network,

forcing ECUs into fault-tolerant mode, and later to halt. Further, we also observed

that frequency variations to the interface clock frequency of under 10% were ab-

sorbed by the FlexRay clock correction mechanism, with the reset causing a tem-

porary loss in functionality for 6 cycles (6ms) due to re-synchronisation. Varying
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Figure 6.8: Safety-critical brake-by-wire system’s performance when eval-
uated using the platform in presence of different errors.

interface frequency by more than 10% resulted in a complete loss of synchroni-

sation, without the ability to recover from the error (though the fault-tolerance

features were enabled).

Table 6.6: Observations during acceleration tests.

Mode Requested Observed Acceleration

Fast mode (1×) Parallel data mode enabled, normal commu-
nication

Fast mode (2×) Two times acceleration in response & com-
munication

Fast mode (4×) Four times acceleration over normal mode

Fast mode (8×) ECU1 to ECU4 fail, ECU5 operates at 8×
speed
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6.5.4 Acceleration Tests

Accelerating the emulation process is one of the key advantages of our platform.

To determine the achievable acceleration, we use a 5 ECU setup similar to the

non-safety-critical ECU scheme (4 MicroBlaze and 1 hardware logic) described

above with the same communication schedule (i.e., all nodes communicate in every

cycle). In normal mode, all ECUs are run at 40MHz (MicroBlaze clock), while

the FlexRay network runs at 10Mbps data rate (full capacity) with an 80MHz

interface clock. When fast mode is selected with default acceleration (1×) in

the platform control register, the debug waveform shows the ECUs being reset,

and clocked with the new frequencies, with the parallel communication interface

enabled. Normal communication was established over the parallel bus at 10Mbps

data rate, but with the interface now being clocked at 10MHz. By choosing an

acceleration of 2× in the platform control register, the ECUs were fed with 2×

clocks by the clock manager, while the interface is also sped up to 20MHz. Thus

the function and interfaces now run twice as fast as in the normal case. With 4×

acceleration, MicroBlaze-based ECUs, now clocked at 160MHz, were at the limits

of what is supported, while the interface was still only at 40MHz, much below

the achievable limits. At this speed, reliable and error-free communication was

established between all ECUs. MicroBlaze-based ECUs were limited from further

acceleration, and only the logic-based ECU5 was able to run at 8 ×. However, no

communication occurred at this stage, since only the logic-based ECU was able to

use the FlexRay bus. The results of acceleration tests are tabulated in Table 6.6

6.6 Host Interface over PCIe

One of the bottlenecks for integrating complex clusters with a large number of

ECUs on our validation platform was the limited bandwidth of the bus debugger

module (BDM) that uses Gigabit Ethernet connectivity to the host PC. Our plat-

form utilised nearly 92% of the Ethernet bandwidth with the 6 ECU setup in the

accelerated mode of operation. This limits the number of ECU signals that can



6 Functional Validation Platform 199

be continuously monitored in the host-PC over a single Ethernet link. It could be

possible to use multiple Ethernet links using off-the-shelf FMC Ethernet interfaces,

but this would be cumbersome.

An alternative solution is to use PCIe that offers tighter integration and higher

throughput between the host PC and board, enabling unified data and control

interfaces and a more compact test setup. Freeing up the Ethernet interface also

enables validation of future automotive functions that may use Automotive Eth-

ernet interfaces.

The PCIe interface allows use of more abstract programmed-I/O (PIO) transac-

tions with an address-data interface. For ECU initialisation and run-time software

debugging, the existing Xil debug interface is also supported. PCIe also supports

advanced techniques like multiple streams and re-ordering to achieve high through-

put to the host PC.

We have developed a high-performance accelerator framework on FPGA, which

can interface with the host PC over PCIe or Ethernet, with management bind-

ings in C that mimic the CUDA API. It utilises a custom designed PCIe interface

manager and a multi-port DRAM interface manager that ensures high throughput

connectivity from the user accelerator/design on the FPGA to the respective phys-

ical interfaces. On the Virtex-6 ML605 board we use for our validation platform,

our evaluations show that we are able to achieve 1.4GBps sustained throughput

between the host PC and the platform when buffering data via the DRAM mem-

ory and nearly 1.2GBps throughput directly from the user logic. This throughput

Table 6.7: Resources consumed by interfaces on ML605 board.

Component Area

FFs LUTs BRAMs

PCIe Manager 3902 4222 47

Multi-port DRAM 7196 7305 3

Total 11098 11327 50

(%) 3.68% 7.7% 12%
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is achieved over a PCIe Gen2×4 interface, significantly higher than the 114MBps

maximum throughput achievable over Gigabit Ethernet. The framework utilises

only 12% of the overall resources to achieve such high throughputs, as can be seen

from Table 6.7. The low resource overhead allows us to map the same number of

ECUs on the ML-605 board, with better debug capabilities.

6.7 Summary

In this chapter, we presented a platform that enables accelerated functional vali-

dation of automotive clusters using a hardware-in-the-loop setup on a commercial

FPGA. The platform provides a modular mechanism for implementing a cluster of

ECUs, and provides special test capabilities for emulating real world conditions.

The compliance with automotive specifications is ensured by replicating the actual

communication network and interfaces at each ECU. The platform also provides

the ability to introduce common network errors like clock jitter, frame drops, and

bit-errors, among other possibilities. Furthermore, the platform capabilities as

well as the individual ECUs can all be controlled, monitored and debugged from

the host PC using a software API. A proof-of-concept implementation on a Xilinx

ML605 board was presented, allowing a cluster of 6 ECUs on a FlexRay net-

work to be validated. We used automotive specific functions in our case study to

demonstrate the capabilities of the platform and show that acceleration levels of

up to 8× are achievable during the validation process. The bandwidth used by

the real-time debugging capability can be further enhanced using a PCIe interface,

providing unified communication and over 10× higher communication bandwidth

to the host machine than over Gigabit Ethernet, allowing more extensive evalua-

tion of the system.



7
Conclusions and Future Research

The complexity of vehicular computation and communication has increased dra-

matically and will continue to do so with the introduction of future technologies like

cooperative communication and driverless vehicles. This thesis has proposed ar-

chitectures and techniques for enhancing the computational capabilities and com-

munication infrastructure for next generation E/E architectures, by utilising the

capabilities of FPGAs. We have shown that enhanced communication interfaces

on customisable FPGAs offer tight integration and unique mechanisms for ex-

tending communication and management, while being more energy efficient than

fixed ASIC solutions. Such extended communication enables novel features in the

compute architecture like fault-tolerance and function consolidation for standard

ECUs, while hybrid FPGA architectures offer support for modular gateway ar-

chitectures and scalable ECUs in next generation vehicular applications. We also

201
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showed that the tight integration and flexibility of FPGAs can be leveraged for

transparent network-level and system-level security schemes that offer adaptability

and run-time configurability, with effectively no latency without affecting the pro-

tocol and/or application guarantees/deadlines. A functional validation platform

has also been presented that enables automated functional validation of clusters

of ECUs at real-time and bit-level precision in an integrated environment, which

can also be accelerated to reduce validation time. This chapter draws conclu-

sions from the different contributions described in this thesis and outlines areas

for future research.

7.1 Summary of Contributions

We have proposed enhancements to in-vehicle communication at the network level

as well as to ECUs at the architectural and system levels. An intelligent communi-

cation interface enables additional information to be integrated into the standard-

format messages to enhance communication capabilities, while managing run-time

extensions in a way that is abstracted from the application. This additional infor-

mation can be used to manage data packing/un-packing or to detect and prevent

replay attacks without software intervention. A similar approach is applied to en-

able network-level security approaches that enable enhanced cross-layer security

and network access control. On the architecture front, FPGA features like partial

reconfiguration and parallelism enable scalable compute schemes that integrate

hardware-level fault-tolerance, functional consolidation, high performance inter-

connect, and system-level security. The management of such features has been

abstracted from the application by integrating them tightly with the (intelligent)

communication interface, presenting these as an architecture feature to the ap-

plication designers. The validation platform enables such enhanced architectures

and/or applications to be validated in an integrated environment.
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7.1.1 Extensible Network Interfaces

Existing automotive protocols do not provide any mechanisms for integrating extra

features like timestamping as a transparent extension. Instead, application design-

ers mast add these at the application layer, resulting in significant overheads since

synchronisation must then be applied at this layer too, and the computations

typically entail some latency. In Chapter 3, we demonstrated that many such

features can be integrated into the network controllers as a configurable extension

at the network layer. Extensions includes timestamps, data-segment headers, as

well as data packing/re-ordering logic. These extensions are transparent to the

application layer and take advantage of the data segment of the transmission pro-

tocol, making them compatible with other standard controllers on the network.

We showed how these extensions offer a unique mechanism for adding features

by extending existing messages, which are then handled at the network inter-

face and abstracted from the application. The applicability of these extensions

in an automotive environment was demonstrated with a number of case studies.

While we have used FlexRay to demonstrate extended communication, the same

method can be applied to evolving networks standards that may replace FlexRay

for safety-critical communication.

7.1.2 Enhanced ECU architectures

We demonstrated in Chapter 4 that the extended communication offered by our

intelligent interface can be utilised for exchanging information about system state

or mode configuration without software intervention. We also showed that ad-

vanced features available on FPGAs like partial reconfiguration can enable novel

mechanisms for consolidating non-concurrent functions and hardware-level fault-

tolerance. The management of low-level operations associated with partial recon-

figuration are abstracted from the application and are managed by the extensions

on the network interface, making them appear as a feature of the platform to

the application designer. We showed how these could result in significantly lower
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turnaround and recovery times. We also showed that hybrid FPGA architectures

like the Xilinx Zynq provide an efficient platform for compute intensive ECUs and

configurable gateway architectures for future vehicular applications and intercon-

nect.

7.1.3 Network and System-level security

Security of vehicular networks has gained focused attention recently as a result

of many high profile demonstrations of current vehicles’ weaknesses. Approaches

based on software and even offloading to hardware incur considerable latency on

a per-message basis. Furthermore, these approaches are unable to prevent inte-

gration and tampering of messages on the bus by unauthorised (attacker) devices

since they function at higher layers.

In Chapter 5, we demonstrated how the extended network interface enables a high-

entropy message encryption system with lightweight symmetric ciphers without in-

curring additional latency for the encrypt/decrypt operation, forming a completely

transparent layer of security. We enhanced this approach further by adding tam-

per protection, which monitors the boot contents for tampering using a one-way

hashing function that does not allow network connectivity in the case of mod-

ified contents. Finally, by taking advantage of the extra information available

at the network layer we showed how integration of unauthorised devices could

be prevented with a header-obfuscation scheme, without affecting the reliability

and timing guarantees of the protocol. The system-level security approach was

demonstrated on a Xilinx Zynq hybrid FPGA architecture in an integrated test

setup.

7.1.4 Functional Validation Platform

Finally, in Chapter 6, we introduced a hardware validation platform that enables

functional validation of network clusters with support for these extended features.

The platform replicates the cluster of ECUs along with their network interfaces
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and connectivity on a large FPGA, emulating the cluster with bit-level precision

and real-time performance. The platform also allows injection of network-level

and system-level errors, with software bindings to control their rate and type,

and observation in real-time on a standard PC. The validation process can also

be accelerated up to 8× or more without losing precision, for super-real-time

evaluation.

7.2 Future Research

The research presented in this thesis aims at advanced architectures and networks

for next generation vehicular embedded systems. We have identified numerous

possible extensions to the different aspects of the work presented which can be

explored in future research.

7.2.1 Enhancing Evolving Time-Triggered Standards

Safety-critical and advanced adaptive vehicular functions currently use ECUs con-

nected over FlexRay due to its higher bandwidth and determinism. More recently,

Automotive Ethernet has been proposed as the replacement to FlexRay in future

vehicles. While the principles of the two standards are similar (they are both time-

triggered), there are some variations, and some features that extend FlexRay are

standard in Automotive Ethernet. The methodologies presented in this thesis can

be explored for higher bandwidth Ethernet networks that simultaneously handle

critical and non-critical communication, presenting alternative opportunities for

optimisation.

7.2.2 Distributed Fault-Tolerance

In Chapter 4, we touched upon the possibility of providing a distributed fault-

tolerance mechanism using FPGA-based ECUs where a single fault-tolerant unit
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can take over the functionality of different faulty ECUs in a pre-defined cluster.

This requires complex exchange of information and task/data migration operations

which must be handled at the application layer. The distributed architecture also

complicates the reconfiguration management at the fault-tolerant unit, which may

also have to consider criticality of ECUs in the case of multiple faulty ECUs. Facil-

itating such information exchange and managing the recovery process in a manner

that does not incur significant latency and software overhead is a non-trivial chal-

lenge. An interesting possibility would be to utilise techniques similar to dynamic

spectrum access in cognitive radios to exploit free bandwidth for such information

exchange and management. Extending communication using techniques similar to

those in Flexible Data Rate CAN (CAN-FD) is also of interest [44].

7.2.3 Higher layer security management

In Chapter 5, we presented an approach for system-level security that ensures

tamper protection and network access mitigation and a mechanism to adapt keys

at run-time. Generation and secure exchange of keys between ECUs was not

explored in detail, instead left as the function of the special central agent. Also,

since the application is tied to the hardware, any in-field updates would have

to securely update hardware functionality. Security infrastructure on a secured

central agent that handles key generation, key management, as well as a secure

pathway to exchange the keys would enable the secure ECUs to adapt to newer

threats. The possibility of utilising our central gateway architecture (AEG) as the

central agent can be evaluated, using the capabilities of TrustZone to secure the

gateway in addition to our proposed architecture. Layering security policies on

top of this infrastructure for enabling over-the-air updates can also be explored to

creating a truly dynamic security infrastructure for in-vehicle communication.
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7.2.4 Hardware in the Loop Optimisation Flow

In Chapter 6, we presented our validation platform that can evaluate a cluster

of ECUs at super-real-time rates with bit-level accuracy. We also presented a

PCIe based host interface that can enable better observability due to the higher

communication bandwidth between the platform and the host PC. Since the plat-

form models the actual communication and computation with bit-level accuracy,

it would be possible to perform design space exploration to determine the optimal

combination of architecture, features, and network schedule for a given cluster.

The iterative operation would explore different architecture combinations, net-

work interconnection schemes, and message/task schedules while evaluating the

functionality of the ECUs to determine their control quality and performance.

This requires complex management of reconfiguration as well as extension of our

software bindings to enable integration with the optimisation loop. This could

also be extended to a distributed scheme where the entire vehicular electronics

may be evaluated and combinatorially optimised, within a hardware-in-the loop

setup over multiple FPGAs. Such optimisation would be extremely useful for de-

termining optimal architectures and ECU combinations for constrained systems

like electric vehicles.

7.3 Summary

This thesis has contributed novel approaches for enhanced computation and com-

munication in vehicles using FPGAs, to enable next generation vehicular applica-

tions. The focus was on providing architecture-level and communication capabil-

ities in a manner that is abstracted from the software layer or application, with

minimal impact on latency and energy consumption, enabling existing automo-

tive applications to be directly ported to enhanced infrastructure. We believe the

presented architectures, techniques, and enhancements will be beneficial to auto-

motive embedded systems designers, as well as offering ideas in the general area of
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cyber-physical systems. We are also hopeful that this work will encourage adop-

tion of FPGAs for in-vehicle infrastructure, having demonstrated their significant

benefits.
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Features, design tools, and application domains of FPGAs. IEEE Transac-

tions on Industrial Electronics, 54(4):1810–1823, 2007.

[214] Ubaid R. Khan, Henry L. Owen, and Joseph LA Hughes. FPGA architec-

tures for ASIC hardware emulators. In Proceedings of the ASIC Conference

and Exhibit, pages 336–340, 1993.



BIBLIOGRAPHY 235

[215] Liu Jianhua, Zhu Ming, Bian Jinian, and Xue Hongxi. A debug sub-system

for embedded-system co-verification. In Proceedings of the Conference on

ASIC, pages 777–780, 2001.

[216] Jonathan Babb, Russell Tessier, and Anant Agarwal. Virtual wires: over-

coming pin limitations in FPGA-based logic emulators. In Proceedings of

the Workshop on FPGAs for Custom Computing Machines (FCCM), pages

142–151, 1993.

[217] Tiago M. Fernandez-Carames, M. Gonzalez-Lopez, and L. Castedo.

FPGA-based vehicular channel emulator for evaluation of IEEE 802.11p

transceivers. In Proceedings of the Conference on Intelligent Transport Sys-

tems Telecommunications,(ITST), pages 592–597, 2009.


