
This paper is included in the Proceedings of the

25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the

25th USENIX Security Symposium

is sponsored by USENIX

Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing

Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,

Linus Gasser, and Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias

USENIX Association 25th USENIX Security Symposium 279

Enhancing Bitcoin Security and Performance with

Strong Consistency via Collective Signing

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,

Ismail Khoffi, Linus Gasser, and Bryan Ford

EPFL

Abstract

While showing great promise, Bitcoin requires users to

wait tens of minutes for transactions to commit, and

even then, offering only probabilistic guarantees. This

paper introduces ByzCoin, a novel Byzantine consen-

sus protocol that leverages scalable collective signing to

commit Bitcoin transactions irreversibly within seconds.

ByzCoin achieves Byzantine consensus while preserv-

ing Bitcoin’s open membership by dynamically form-

ing hash power-proportionate consensus groups that rep-

resent recently-successful block miners. ByzCoin em-

ploys communication trees to optimize transaction com-

mitment and verification under normal operation while

guaranteeing safety and liveness under Byzantine faults,

up to a near-optimal tolerance of f faulty group members

among 3 f + 2 total. ByzCoin mitigates double spend-

ing and selfish mining attacks by producing collectively

signed transaction blocks within one minute of trans-

action submission. Tree-structured communication fur-

ther reduces this latency to less than 30 seconds. Due

to these optimizations, ByzCoin achieves a throughput

higher than Paypal currently handles, with a confirma-

tion latency of 15-20 seconds.

1 Introduction

Bitcoin [47] is a decentralized cryptocurrency providing

an open, self-regulating alternative to classic currencies

managed by central authorities such as banks. Bitcoin

builds on a peer-to-peer network where users can sub-

mit transactions without intermediaries. Special nodes,

called miners, collect transactions, solve computational

puzzles (proof-of-work) to reach consensus, and add the

transactions in form of blocks to a distributed public

ledger known as the blockchain.

The original Bitcoin paper argues that transaction pro-

cessing is secure and irreversible, as long as the largest

colluding group of miners represents less than 50% of

total computing capacity and at least about one hour has

elapsed. This high transaction-confirmation latency lim-

its Bitcoin’s suitability for real-time transactions. Later

work revealed additional vulnerabilities to transaction

reversibility, double-spending, and strategic mining at-

tacks [25, 31, 34, 35, 48, 3].

The key problem is that Bitcoin’s consensus algo-

rithm provides only probabilistic consistency guarantees.

Strong consistency could offer cryptocurrencies three

important benefits. First, all miners instantly agree on

the validity of blocks, without wasting computational

power resolving inconsistencies (forks). Second, clients

need not wait for extended periods to be certain that a

submitted transaction is committed; as soon as it ap-

pears in the blockchain, the transaction can be consid-

ered confirmed. Third, strong consistency provides for-

ward security: as soon as a block has been appended

to the blockchain, it stays there forever. Although in-

creasing the consistency of cryptocurrencies has been

suggested before [17, 19, 43, 52, 56], existing propos-

als give up Bitcoin’s decentralization, and/or introduce

new and non-intuitive security assumptions, and/or lack

experimental evidence of performance and scalability.

This work introduces ByzCoin, a Bitcoin-like cryp-

tocurrency enhanced with strong consistency, based on

the principles of the well-studied Practical Byzantine

Fault Tolerance (PBFT) [14] algorithm. ByzCoin ad-

dresses four key challenges in bringing PBFT’s strong

consistency to cryptocurrencies: (1) open membership,

(2) scalability to hundreds of replicas, (3) proof-of-work

block conflicts, and (4) transaction commitment rate.

PBFT was not designed for scalability to large consen-

sus groups: deployments and experiments often employ

the minimum of four replicas [38], and generally have

not explored scalability levels beyond 7 [14] or 16 repli-

cas [16, 32, 1]. ByzCoin builds PBFT atop CoSi [54],

a collective signing protocol that efficiently aggregates

hundreds or thousands of signatures. Collective sign-

ing reduces both the costs of PBFT rounds and the costs

280 25th USENIX Security Symposium USENIX Association

for “light” clients to verify transaction commitment. Al-

though CoSi is not a consensus protocol, ByzCoin imple-

ments Byzantine consensus using CoSi signing rounds to

make PBFT’s prepare and commit phases scalable.

PBFT normally assumes a well-defined, closed group

of replicas, conflicting with Bitcoin’s open membership

and use of proof-of-work to resist Sybil attacks [23].

ByzCoin addresses this conflict by forming consensus

groups dynamically from windows of recently mined

blocks, giving recent miners shares or voting power

proportional to their recent commitment of hash power.

Lastly, to reduce transaction processing latency we adopt

the idea from Bitcoin-NG [24] to decouple transaction

verification from block mining.

Experiments with a prototype implementation of Byz-

Coin show that a consensus group formed from approxi-

mately the past 24 hours of successful miners (144 min-

ers) can reach consensus in less than 20 seconds, on

blocks of Bitcoin’s current maximum size (1MB). A

larger consensus group formed from one week of suc-

cessful miners (1008) reached consensus on an 8MB

block in 90 seconds, showing that the systems scales

both with the number of participants and with the block

size. For the 144-participant consensus group, with a

block size of 32MB, the system handles 974 transac-

tions per second (TPS) with a 68-second confirmation la-

tency. These experiments suggest that ByzCoin can han-

dle loads higher than PayPal and comparable with Visa.

ByzCoin is still a proof-of-concept with several lim-

itations. First, ByzCoin does not improve on Bitcoin’s

proof-of-work mechanism; finding a suitable replace-

ment [4, 28, 37, 58] is an important but orthogonal area

for future work. Like many BFT protocols in prac-

tice [15, 32], ByzCoin is vulnerable to slowdown or tem-

porary DoS attacks that Byzantine nodes can trigger. Al-

though a malicious leader cannot violate or permanently

block consensus, he might temporarily exclude minority

sets (< 1
3
) of victims from the consensus process, depriv-

ing them of rewards, and/or attempt to censor transac-

tions. ByzCoin guarantees security only against attack-

ers who consistently control less than a third (not 50%)

of consensus group shares – though Bitcoin has analo-

gous weaknesses accounting for selfish mining [25].

In this paper we make the following key contributions:

• We use collective signing [54] to scale BFT protocols

to large consensus groups and enable clients to verify

operation commitments efficiently.

• We present (§3) the first demonstrably practical

Byzantine consensus protocol supporting not only

static consensus groups but also dynamic membership

proportional to proof-of-work as in Bitcoin.

• We demonstrate experimentally (§4) that a strongly-

consistent cryptocurrency can increase Bitcoin’s

throughput by two orders of magnitude, with a trans-

action confirmation latency under one minute.

• We find through security analysis (§5) that ByzCoin

can mitigate several known attacks on Bitcoin pro-

vided no attacker controls more than 1
4

of hash power.

2 Background and Motivation

This section first outlines the three most relevant areas

of prior work that ByzCoin builds on: cryptocurrencies

such as Bitcoin and Bitcoin-NG, Byzantine fault toler-

ance (BFT) principles, and collective signing techniques.

2.1 Bitcoin and Variations

Bitcoin. At the core of Bitcoin [47] rests the so-called

blockchain, a public, append-only database maintained

by miners and serving as a global ledger of all transac-

tions ever issued. Transactions are bundled into blocks

and validated by a proof-of-work. A block is valid if its

cryptographic hash has d leading zero bits, where the dif-

ficulty parameter d is adjusted periodically such that new

blocks are mined about every ten minutes on average.

Each block includes a Merkle tree [44] of new transac-

tions to be committed, and a cryptographic hash chaining

to the last valid block, thereby forming the blockchain.

Upon successfully forming a new block with a valid

proof-of-work, a miner broadcasts the new block to the

rest of the miners, who (when behaving properly) accept

the new block, if it extends a valid chain strictly longer

than any they have already seen.

Bitcoin’s decentralized consensus and security derive

from an assumption that a majority of the miners, mea-

sured in terms of hash power or ability to solve hash-

based proof-of-work puzzles, follows these rules and al-

ways attempts to extend the longest existing chain. As

soon as a quorum of miners with the majority of the

network’s hash power approves a given block by min-

ing on top of it, the block remains embedded in any fu-

ture chain [29]. Bitcoin’s security is guaranteed by the

fact that this majority will be extending the legitimate

chain faster than any corrupt minority that might try to

rewrite history or double-spend currency. However, Bit-

coin’s consistency guarantee is only probabilistic, which

leads to two fundamental problems.

First, multiple miners might find distinct blocks with

the same parent before the network has reached consen-

sus. Such a conflict is called a fork, an inconsistency that

is temporarily allowed until one of the chains is extended

yet again. Subsequently, all well-behaved miners on the

shorter chain(s) switch to the new longest one. All trans-

actions appearing only in the rejected block(s) are invalid

and must be resubmitted for inclusion into the winning

blockchain. This means that Bitcoin clients who want

high certainty that a transaction is complete (e.g., that

USENIX Association 25th USENIX Security Symposium 281

they have irrevocably received a payment) must wait not

only for the next block but for several blocks thereafter,

thus increasing the time interval until a transaction can

be considered complete. As a rule of thumb [47], a block

is considered as permanently added to the blockchain af-

ter about 6 new blocks have been mined on top of it, for

a confirmation latency of 60 minutes on average.

Second, the Bitcoin block size is currently limited to

1 MB. This limitation in turn results in an upper bound

on the number of transactions per second (TPS) the Bit-

coin network can handle, estimated to be an average

of 7 TPS. For comparison, Paypal handles 500 TPS and

VISA even 4000 TPS. An obvious solution to enlarge

Bitcoin’s throughput is to increase the size of its blocks.

Unfortunately, this solution also increases the probability

of forks due to higher propagation delays and the risk of

double-spending attacks [53, 30, 36]. Bitcoin’s liveness

and security properties depend on forks being relatively

rare. Otherwise, the miners would spend much of their

effort trying to resolve multiple forks [31, 17], or in the

extreme case, completely centralize Bitcoin [24]

Bitcoin-NG. Bitcoin-NG [24] makes the important ob-

servation that Bitcoin blocks serve two different pur-

poses: (1) election of a leader who decides how to re-

solve potential inconsistencies, and (2) verification of

transactions. Due to this observation, Bitcoin-NG pro-

poses two different block types: Keyblocks are generated

through mining with proof-of-work and are used to se-

curely elect leaders, at a moderate frequency, such as ev-

ery 10 minutes as in Bitcoin. Microblocks contain trans-

actions, require no proof-of-work, and are generated and

signed by the elected leader. This separation enables

Bitcoin-NG to process many microblocks between the

mining of two keyblocks, enabling transaction through-

put to increase.

Bitcoin-NG, however, retains many drawbacks of Bit-

coin’s consistency model. Temporary forks due to near-

simultaneous keyblock mining, or deliberately intro-

duced by selfish or malicious miners, can still throw the

system into an inconsistent state for 10 minutes or more.

Further, within any 10-minute window the current leader

could still intentionally fork or rewrite history and inval-

idate transactions. If a client does not wait several tens

of minutes (as in Bitcoin) for transaction confirmation,

he is vulnerable to double-spend attacks by the current

leader or by another miner who forks the blockchain.

Although Bitcoin-NG includes disincentives for such be-

havior, these disincentives amount at most to the “mining

value” of the keyblock (coinbase rewards and transaction

fees): Thus, leaders are both able and have incentives to

double-spend on higher-value transactions.

Consequently, although Bitcoin-NG permits higher

transaction throughput, it does not solve Bitcoin’s con-

sistency weaknesses. Nevertheless, Bitcoin-NG’s decou-

pling of keyblocks from microblocks is an important

idea that we build on in Section 3.6 to support high-

throughput and low-latency transactions in ByzCoin.

2.2 Byzantine Fault Tolerance

The Byzantine Generals’ Problem [39, 49] refers to the

situation where the malfunctioning of one or several

components of a distributed system prevents the latter

from reaching an agreement. Pease et al. [49] show that

3 f +1 participants are necessary to be able to tolerate f

faults and still reach consensus. The Practical Byzantine

Fault Tolerance (PBFT) algorithm [14] was the first ef-

ficient solution to the Byzantine Generals’ Problem that

works in weakly synchronous environments such as the

Internet. PBFT offers both safety and liveness provided

that the above bound applies, i.e., that at most f faults

among 3 f +1 participants occur. PBFT triggered a surge

of research on Byzantine replication algorithms with var-

ious optimizations and trade-offs [1, 16, 38, 32].

Every round of PBFT has three distinct phases. In

the first, pre-prepare phase, the current primary node or

leader announces the next record that the system should

agree upon. On receiving this pre-prepare, every node

validates the correctness of the proposal and multicasts

a prepare message to the group. The nodes wait until

they collect a quorum of (2 f + 1) prepare messages and

publish this observation with a commit message. Finally,

they wait for a quorum of (2 f + 1) commit messages to

make sure that enough nodes have recorded the decision.

PBFT relies upon a correct leader to begin each

round and proceeds if a two-thirds quorum exists; con-

sequently, the leader is an attack target. For this reason

PBFT has a view-change protocol that ensures liveness

in the face of a faulty leader. All nodes monitor the

leader’s actions and if they detect either malicious be-

havior or a lack of progress, initiate a view-change. Each

node independently announces its desire to change lead-

ers and stops validating the leader’s actions. If a quorum

of (2 f + 1) nodes decides that the leader is faulty, then

the next leader in a well-known schedule takes over.

PBFT has its limitations. First, it assumes a fixed,

well-defined group of replicas, thus contradicting Bit-

coin’s basic principle of being decentralized and open

for anyone to participate. Second, each PBFT replica

normally communicates directly with every other replica

during each consensus round, resulting in O(n2) com-

munication complexity: This is acceptable when n is

typically 4 or not much more, but becomes impractical

if n represents hundreds or thousands of Bitcoin nodes.

Third, after submitting a transaction to a PBFT service,

a client must communicate with a super-majority of the

replicas in order to confirm the transaction has been com-

282 25th USENIX Security Symposium USENIX Association

1 record 2 record 3 record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

Figure 1: CoSi protocol architecture

mitted and to learn its outcome, making secure transac-

tion verification unscalable.

2.3 Scalable Collective Signing

CoSi [54] is a protocol for scalable collective signing,

which enables an authority or leader to request that state-

ments be publicly validated and (co-)signed by a decen-

tralized group of witnesses. Each protocol run yields

a collective signature having size and verification cost

comparable to an individual signature, but which com-

pactly attests that both the leader and its (perhaps many)

witnesses observed and agreed to sign the statement.

To achieve scalability, CoSi combines Schnorr multi-

signatures [51] with communication trees that are long

used in multicast protocols [13, 21, 55]. Initially, the

protocol assumes that signature verifiers know the public

keys of the leader and those of its witnesses, all of which

combine to form a well-known aggregate public key. For

each message to be collectively signed, the leader then

initiates a CoSi four-phase protocol round that require

two round-trips over the communication tree between the

leader and its witnesses:

1. Announcement: The leader broadcasts an announce-

ment of a new round down the communication tree.

The announcement can optionally include the message

M to be signed, otherwise M is sent in phase three.

2. Commitment: Each node picks a random secret

and uses it to compute a Schnorr commitment. In

a bottom-up process, each node obtains an aggre-

gate Schnorr commitment from its immediate chil-

dren, combines those with its own commitment, and

passes a further-aggregated commitment up the tree.

3. Challenge: The leader computes a collective Schnorr

challenge using a cryptographic hash function and

broadcasts it down the communication tree, along with

the message M to sign, if the latter has not already

been sent in phase one.

4. Response: Using the collective challenge, all nodes

compute an aggregate response in a bottom-up fashion

that mirrors the commitment phase.

The result of this four-phase protocol is the production

of a standard Schnorr signature that requires about 64

bytes, using the Ed25519 elliptic curve [6], and that any-

one can verify against the aggregate public key nearly as

efficiently as the verification of an individual signature.

Practical caveats apply if some witnesses are offline dur-

ing the collective signing process: in this case the CoSi

protocol can proceed, but the resulting signature grows

to include metadata verifiably documenting which wit-

nesses did and did not co-sign. We refer to the CoSi pa-

per for details [54].

3 ByzCoin Design

This section presents ByzCoin with a step-by-step ap-

proach, starting from a simple “strawman” combination

of PBFT and Bitcoin. From this strawman, we progres-

sively address the challenges of determining consensus

group membership, adapting Bitcoin incentives and min-

ing rewards, making the PBFT protocol scale to large

groups and handling block conflicts and selfish mining.

3.1 System Model

ByzCoin is designed for untrustworthy networks that can

arbitrarily delay, drop, re-order or duplicate messages.

To avoid the FLP impossibility [27], we assume the net-

work has a weak synchrony property [14]. The Byz-

Coin system is comprised of a set of N block miners

that can generate key-pairs, but there is no trusted public-

key infrastructure. Each node i has a limited amount of

hash power that corresponds to the maximum number of

block-header hashes the node can perform per second.

At any time t a subset of miners M (t) is controlled by

a malicious attacker and are considered faulty. Byzantine

miners can behave arbitrarily, diverting from the protocol

and colluding to attack the system. The remaining hon-

est miners follow the prescribed protocol. We assume

that the total hash power of all Byzantine nodes is less

than 1
4

of the system’s total hash power at any time, since

proof-of-work-based cryptocurrencies become vulnera-

ble to selfish mining attacks by stronger adversaries [25].

3.2 Strawman Design: PBFTCoin

For simplicity, we begin with PBFTCoin, an unrealisti-

cally simple protocol that naively combines PBFT with

Bitcoin, then gradually refine it into ByzCoin.

For now, we simply assume that a group of n = 3 f +1

PBFT replicas, which we call trustees, has been fixed and

USENIX Association 25th USENIX Security Symposium 283

globally agreed upon upfront, and that at most f of these

trustees are faulty. As in PBFT, at any given time, one of

these trustees is the leader, who proposes transactions

and drives the consensus process. These trustees col-

lectively maintain a Bitcoin-like blockchain, collecting

transactions from clients and appending them via new

blocks, while guaranteeing that only one blockchain his-

tory ever exists and that it can never be rolled back or

rewritten. Prior work has suggested essentially such a

design [17, 19], though without addressing the scalabil-

ity challenges it creates.

Under these simplifying assumptions, PBFTCoin

guarantees safety and liveness, as at most f nodes are

faulty and thus the usual BFT security bounds apply.

However, the assumption of a fixed group of trustees

is unrealistic for Bitcoin-like decentralized cryptocurren-

cies that permit open membership. Moreover, as PBFT

trustees authenticate each other via non-transferable

symmetric-key MACs, each trustee must communicate

directly with most other trustees in every round, thus

yielding O(n2) communication complexity.

Subsequent sections address these restrictions, trans-

forming PBFTCoin into ByzCoin in four main steps:

1. We use Bitcoin’s proof-of-work mechanism to deter-

mine consensus groups dynamically while preserving

Bitcoin’s defense against Sybil attacks.

2. We replace MAC-authenticated direct communica-

tion with digital signatures to make authentication

transferable and thereby enabling sparser communica-

tion patterns that can reduce the normal case commu-

nication latency from O(n2) to O(n).
3. We employ scalable collective signing to reduce per-

round communication complexity further to O(logn)
and reduce typical signature verification complexity

from O(n) to O(1).
4. We decouple transaction verification from leader elec-

tion to achieve a higher transaction throughput.

3.3 Opening the Consensus Group

Removing PBFTCoin’s assumption of a closed consen-

sus group of trustees presents two conflicting challenges.

On the one hand, conventional BFT schemes rely on a

well-defined consensus group to guarantee safety and

liveness. On the other hand, Sybil attacks [23] can triv-

ially break any open-membership protocol involving se-

curity thresholds, such as PBFT’s assumption that at

most f out of 3 f +1 members are honest.

Bitcoin and many of its variations employ a mecha-

nism already suited to this problem: proof-of-work min-

ing. Only miners who have dedicated resources are al-

lowed to become a member of the consensus group. In

refining PBFTCoin, we adapt Bitcoin’s proof-of-work

mining into a proof-of-membership mechanism. This

L

blockchain

share window of size w

trustees

L

block

share

miner

leader

Figure 2: Valid shares for mined blocks in the blockchain

are credited to miners

mechanism maintains the “balance of power” within the

BFT consensus group over a given fixed-size sliding

share window. Each time a miner finds a new block, it re-

ceives a consensus group share, which proves the miner’s

membership in the group of trustees and moves the share

window one step forward. Old shares beyond the cur-

rent window expire and become useless for purposes of

consensus group membership. Miners holding no more

valid shares in the current window lose their membership

in the consensus group, hence they are no longer allowed

to participate in the decision-making.

At a given moment in time, each miner wields “vot-

ing power” of a number of shares equal to the number

of blocks the miner has successfully mined within the

current window. Assuming collective hash power is rel-

atively stable, this implies that within a window, each

active miner wields a number of shares statistically pro-

portionate to the amount of hash power that the miner

has contributed during this time period.

The size w of the share window is defined by the av-

erage block-mining rate over a given time frame and in-

fluences certain properties such as the resilience of the

protocol to faults. For example, if we assume an average

block-mining rate of 10 minutes and set the duration of

the time frame to one day (or one week), then w = 144

(w = 1008). This mechanism limits the membership of

miners to recently active ones, which prevents the sys-

tem from becoming unavailable due to too many trustees

becoming inactive over time, or from miners aggregat-

ing many shares over an extended period and threatening

the balance in the consensus group. The relationship be-

tween blocks, miners and shares is illustrated in Fig. 2.

Mining Rewards and Transaction Fees. As we can

no longer assume voluntary participation as in PBFT-

Coin’s closed group of trustees, we need an incentive

for nodes to obtain shares in the consensus group and to

remain active. For this purpose, we adopt Bitcoin’s ex-

284 25th USENIX Security Symposium USENIX Association

isting incentives of mining rewards and transaction fees.

But instead of these rewards all going to the miner of

the most recent block we split a new block’s rewards and

fees across all members of the current consensus group,

in proportion to the number of shares each miner holds.

As a consequence, the more hash power a miner has de-

voted within the current window, hence the more shares

the miner holds, the more revenue the miner receives dur-

ing payouts in the current window. This division of re-

wards also creates incentives for consensus group mem-

bers to remain live and participate, because they receive

their share of the rewards for new blocks only if they con-

tinually participate, in particular contributing to the pre-

pare and commit phases of each BFT consensus round.

3.4 Replacing MACs by Digital Signatures

In our next refinement step towards ByzCoin, we tackle

the scalability challenge resulting from PBFT’s typical

communication complexity of O(n2), where n is the

group size. PBFT’s choice of MAC-authenticated all-

to-all communication was motivated by the desire to

avoid public-key operations on the critical transaction

path. However, the cost for public-key operations has

decreased due to well-optimized asymmetric cryptosys-

tems [6], making those costs less of an issue.

By adopting digital signatures for authentication, we

are able to use sparser and more scalable communica-

tion topologies, thus enabling the current leader to col-

lect and distribute third-party verifiable evidence that cer-

tain steps in PBFT have succeeded. This removes the

necessity for all trustees to communicate directly with

each other. With this measure we can either enable the

leader to collect and distribute the digital signatures, or

let nodes communicate in a chain [32], reducing the

normal-case number of messages from O(n2) to O(n).

3.5 Scalable Collective Signing

Even with signatures providing transferable authentica-

tion, the need for the leader to collect and distribute –

and for all nodes to verify – many individual signatures

per round can still present a scalability bottleneck. Dis-

tributing and verifying tens or even a hundred individual

signatures per round might be practical. If we want con-

sensus groups with a thousand or more nodes, however

(e.g., representing all blocks successfully mined in the

past week), it is costly for the leader to distribute 1000

digital signatures and wait for everyone to verify them.

To tackle this challenge, we build on the CoSi proto-

col [54] for collective signing. CoSi does not directly im-

plement consensus or BFT, but it offers a primitive that

the leader in a BFT protocol can use to collect and aggre-

gate prepare and commit messages during PBFT rounds.

We implement a single ByzCoin round by using two

sequential CoSi rounds initiated by the current leader

(i.e., the owner of the current view). The leader’s an-

nouncement of the first CoSi round (phase 1 in Sec-

tion 2.3) implements the pre-prepare phase in the stan-

dard PBFT protocol (Section 2.2). The collective sig-

nature resulting from this first CoSi round implements

the PBFT protocol’s prepare phase, in which the leader

obtains attestations from a two-thirds super-majority

quorum of consensus group members that the leader’s

proposal is safe and consistent with all previously-

committed history.

As in PBFT, this prepare phase ensures that a proposal

can be committed consistently, but by itself it is insuffi-

cient to ensure that the proposal will be committed. The

leader and/or some number of other members could fail

before a super-majority of nodes learn about the success-

ful prepare phase. The ByzCoin leader therefore initi-

ates a second CoSi round to implement the PBFT proto-

col’s commit phase, in which the leader obtains attesta-

tions from a two-thirds super-majority that all the sign-

ing members witnessed the successful result of the pre-

pare phase and made a positive commitment to remem-

ber the decision. This collective signature, resulting from

this second CoSi round, effectively attests that a two-

thirds super-majority of members not only considers the

leader’s proposal “safe” but promises to remember it, in-

dicating that the leader’s proposal is fully committed.

In cryptocurrency terms, the collective signature re-

sulting from the prepare phase provides a proof-of-

acceptance of a proposed block of transactions. This

block is not yet committed, however, since a Byzantine

leader that does not publish the accepted block could

double-spend by proposing a conflicting block in the next

round. In the second CoSi commit round, the leader

announces the proof-of-acceptance to all members, who

then validate it and collectively sign the block’s hash to

produce a collective commit signature on the block. This

way a Byzantine leader cannot rewrite history or double-

spend, because by counting arguments at least one honest

node would have to sign the commit phase of both histo-

ries, which an honest node by definition would not do.

The use of CoSi does not affect the fundamental prin-

ciples or semantics of PBFT but improves its scalability

and efficiency in two main ways. First, during the com-

mit round where each consensus group member must

verify that a super-majority of members have signed the

prior prepare phase, each participant generally needs to

receive only an O(1)-size rather than O(n)-size message,

and to expend only O(1) rather than O(n) computation

effort by verifying a single collective signature instead

of n individual ones. This benefit directly increases the

scalability and reduces the bandwidth and computation

costs of consensus rounds themselves.

USENIX Association 25th USENIX Security Symposium 285

A second benefit is that after the final CoSi commit

round has completed, the final resulting collective com-

mit signature serves as a typically O(1)-size proof, which

anyone can verify in O(1) computation time that a given

block – hence any transaction within that block – has

been irreversibly committed. This secondary scalability-

benefit might in practice be more important than the

first, because it enables “light clients” who neither mine

blocks nor store the entire blockchain history to verify

quickly and efficiently that a transaction has committed,

without requiring active communication with or having

to trust any particular full node.

3.6 Decoupling Transaction Verification

from Leader Election

Although ByzCoin so far provides a scalable guarantee

of strong consistency, thus ensuring that clients need to

wait only for the next block rather than the next sev-

eral blocks to verify that a transaction has committed,

the time they still have to wait between blocks can, nev-

ertheless, be significant: e.g., up to 10 minutes using

Bitcoin’s difficulty tuning scheme. Whereas ByzCoin’s

strong consistency might in principle make it “safe” from

a consistency perspective to increase block mining rate,

doing so could still exacerbate liveness and other per-

formance issues, as in Bitcoin [47]. To enable lower

client-perceived transaction latency, therefore, we build

on the idea of Bitcoin-NG [24] to decouple the functions

of transaction verification from block mining for leader

election and consensus group membership.

As in Bitcoin-NG, we use two different kinds of

blocks. The first, microblocks or transaction blocks, rep-

resent transactions to be stored and committed. The cur-

rent leader creates a new microblock every few seconds,

depending on the size of the block, and uses the CoSi-

based PBFT protocol above to commit and collectively

sign it. The other type of block, keyblocks, are mined

via proof-of-work as in Bitcoin and serve to elect leaders

and create shares in ByzCoin’s group membership pro-

tocol as discussed earlier in Section 3.3. As in Bitcoin-

NG, this decoupling allows the current leader to pro-

pose and commit many microblocks that contain many

smaller batches of transactions, within one ≈ 10-minute

keyblock mining period. Unlike Bitcoin-NG, in which

a malicious leader could rewrite history or double-spend

within this period until the next keyblock, ByzCoin en-

sures that each microblock is irreversibly committed re-

gardless of the current leader’s behavior.

In Bitcoin-NG one blockchain includes both types of

blocks, which introduces a race condition for miners.

As microblocks are created, the miners have to change

the header of their keyblocks to mine on top of the lat-

est microblock. In ByzCoin, in contrast, the blockchain

1 2

1 2 3 4 5

Keyblock Microblock Collective Signature

Figure 3: ByzCoin blockchain: Two parallel chains store

information about the leaders (keyblocks) and the trans-

actions (microblocks)

becomes two separate parallel blockchains, as shown

in Fig. 3. The main blockchain is the keyblock chain,

consisting of all mined blocks. The microblock chain is

a secondary blockchain that depends on the primary to

identify the era in which every microblock belongs to,

i.e., which miners are authoritative to sign it and who is

the leader of the era.

Microblocks. A microblock is a simple block that the

current consensus group produces every few seconds

to represent newly-committed transactions. Each mi-

croblock includes a set of transactions and a collective

signature. Each microblock also includes hashes refer-

ring to the previous microblock and keyblock: the for-

mer to ensure total ordering, and the latter indicating

which consensus group window and leader created the

microblock’s signature. The microblock’s hash is collec-

tively signed by the corresponding consensus group.

Keyblocks. Each keyblock contains a proof-of-work,

which is used to determine consensus group membership

via the sliding-window mechanism discussed earlier, and

to pay signers their rewards. Each newly-mined key-

block defines a new consensus group, and hence a new

set of public keys with which the next era’s microblocks

will be collectively signed. Since each successive con-

sensus group differs from the last in at most one mem-

ber, PBFT ensures the microblock chain’s consistency

and continuity across this group membership change pro-

vided at most f out of 3 f +2 members are faulty.

Bitcoin-NG relies on incentives to discourage the next

leader from accidentally or maliciously “forgetting” a

prior leader’s microblocks. In contrast, the honest super-

majority in a ByzCoin consensus group will refuse to

allow a malicious or amnesiac leader to extend any but

the most recently-committed microblock, regardless of

which (current or previous) consensus group committed

it. Thus, although competing keyblock conflicts may

still appear, these “forks” cannot yield an inconsistent

microblock chain. Instead, a keyblock conflict can at

286 25th USENIX Security Symposium USENIX Association

L

share window of size w

L

keyblock (co-signed)

microblock (co-signed)

share

miner (co-signer)

leader

Figure 4: Overview of the full ByzCoin design

worst temporarily interrupt the PBFT protocol’s liveness,

until it is resolved as mentioned in Section 3.6.1.

Decoupling transacton verification from leader elec-

tion and consensus group evolution in this way brings

the overall ByzCoin architecture to completion, as illus-

trated in Fig. 4. Subsequent sections discuss further im-

plications and challenges this architecture presents.

3.6.1 Keyblock Conflicts and Selfish Mining

PBFT’s strong consistency by definition does not permit

inconsistencies such as forks in the microblock chain.

The way the miners collectively decide how to resolve

keyblock conflicts, however, can still allow selfish min-

ing [25] to occur as in Bitcoin. Worse, if the min-

ers decide randomly to follow one of the two blocks,

then keyblock forks might frequently lead to PBFT live-

ness interruptions as discussed above, by splitting min-

ers “too evenly” between competing keyblocks. Another

approach to deciding between competing keyblocks is

to impose a deterministic priority function on their hash

values, such as “smallest hash wins.” Unfortunately, this

practice can encourage selfish mining.

One way to break a tie without helping selfish miners,

is to increase the entropy of the output of the determinis-

tic prioritization function. We implement this idea using

the following algorithm. When a miner detects a key-

block fork, it places all competing blocks’ header hashes

into a sorted array, from low to high hash values. The

array itself is then hashed, and the final bit(s) of this hash

determine which keyblock wins the fork.

This solution, shown in Fig. 5, also uses the idea of a

deterministic function applied to the blocks, thus requir-

ing no voting. Its advantage is that the input of the hash

function is partially unknown before the fork occurs, thus

the entropy of the output is high and difficult for an at-

tacker to be able to optimize. Given that the search space

for a possible conflict is as big as the search space for

a new block, trying to decide if a block has better than

50% probability of winning the fork is as hard as finding

a new block.

H0 H1
... Hn−2 null

0 1 n − 2 n − 1

Hash

h

i = h mod (n − 1)

se
le
ct

it
h
en
tr
y

Figure 5: Deterministic fork resolution in ByzCoin

3.6.2 Leader Election and PBFT View Changes

Decoupling transaction verification from the block-

mining process comes at a cost. So far we have as-

sumed, as in PBFT, that the leader remains fixed unless

he fails. If we keep this assumption, then this leader

gains the power of deciding which transactions are ver-

ified, hence we forfeit the fairness-enforcing benefit of

Bitcoin’s leader election. To resolve this issue, every

time a keyblock is signed, ByzCoin forces a mandatory

PBFT view-change to the keyblock’s miner. This way

the power of verifying transactions in blocks is assigned

to the rightful miner, who has an era of microblock cre-

ation from the moment his keyblock is signed until the

next keyblock is signed.

When a keyblock conflict occurs, more than one such

“mandatory” view-change occurs, with the successful

miners trying to convince other participants to adopt their

keyblock and its associated consensus group. For exam-

ple, in a keyblock fork, one of the two competing key-

blocks wins the resolution algorithm described above.

However, if the miner of the “losing” block races to

broadcast its keyblock and more than 33% honest min-

ers have already committed to it before learning about

the competing keyblock, then the “winning” miner is too

late and the system either commits to the first block or (in

the worst case) loses liveness temporarily as discussed

above. This occurs because already-committed miners

will not accept a mandatory view-change except to a key-

block that represents their committed state and whose

microblock chain extends all previously-committed mi-

croblocks. Further analysis of how linearizability is pre-

served across view-changes may be found in the original

PBFT paper [14].

3.6.3 Tree Creation in ByzCoin

Once a miner successfully creates a new keyblock, he

needs to form a CoSi communication tree for collec-

tive signing, with himself as the leader. If all miners

individually acknowledge this keyblock to transition to

USENIX Association 25th USENIX Security Symposium 287

the next view, this coordination normally requires O(N)
messages. To avoid this overhead at the beginning of

each keyblock round, the miners autonomously create

the next round’s tree bottom-up during the previous key-

block round. This can be done in O(1) by using the

blockchain as an array that represents a full tree.

This tree-building process has three useful side-

effects. First, the previous leader is the first to get the new

block, hence he stops creating microblocks and wasting

resources by trying to sign them. Second, in the case of

a keyblock conflict, potential leaders use the same tree,

and the propagation pattern is the same; this means that

all nodes will learn and decide on the conflict quickly.

Finally, in the case of a view change, the new view will

be the last view that worked correctly. So if the leader

of the keyblock i fails, the next leader will again be the

miner of keyblock i−1.

3.7 Tolerating Churn and Byzantine Faults

In this section we discuss the challenges of fault toler-

ance in ByzCoin, particularly tree failures and maximum

tolerance for Byzantine faults.

3.7.1 Tree Fault Tolerance

In CoSi, there are multiple different mechanisms that al-

low substantial fault-tolerance. Furthermore the strict

membership requirements and the frequent tree changes

of ByzCoin increase the difficulty for a malicious at-

tacker with less than around 25% of the total hash power

to compromise the system. A security analysis, however,

must assume that a Byzantine adversary is able to get the

correct nodes of the ByzCoin signing tree so that it can

compromise the liveness of the system by a simple DoS.

To mitigate this risk, we focus on recent Byzantine

fault tolerance results [32], modifying ByzCoin so that

the tree communication pattern is a normal-case perfor-

mance optimization that can withstand most malicious

attacks. But when the liveness of the tree-based ByzCoin

is compromised, the leader can return to non-tree-based

communication until the end of his era.

The leader detects that the tree has failed with the fol-

lowing mechanism: After sending the block to his chil-

dren, the leader starts a timer that expires before the

view-change timer. Then he broadcasts the hash of the

block he proposed and waits. When the nodes receive

this message they check if they have seen the block and

either send an ACK or wait until they see the block and

then send the ACK. The leader collects and counts the

ACKs, to detect if his block is rejected simply because

it never reaches the witnesses. If the timer expires or a

block rejection arrives before he receives two-thirds of

the ACKs, the leader knows that the tree has failed and

reverts to a flat ByzCoin structure before the witnesses

assume that he is faulty.

As we show in Section 4, the flat ByzCoin structure

can still quickly sign keyblocks for the day-long window

(144 witnesses) while maintaining a throughput higher

than Bitcoin currently supports. Flat ByzCoin is more

robust to faults, but increases the communication latency

back to O(n). Furthermore, if all faults (�N
3
�) are con-

secutive leaders, this can lead back to a worst case O(n2)
communication latency.

3.7.2 Membership Churn and BFT

After a new leader is elected, the system needs to en-

sure that the first microblock of the new leader points

to the last microblock of the previous leader. Having

2 f + 1 supporting votes is not enough. This occurs be-

cause there is the possibility than an honest node lost its

membership when the new era started. Now in the worst

case, the system has f Byzantine nodes, f honest nodes

that are up to date, f slow nodes that have a stale view of

the blockchain, and the new leader that might also have

a stale view. This can lead to the leader proposing a new

microblock, ignoring some signed microblocks and get-

ting 2 f +1 support (stale+Byzantine+his own). For this

reason, the first microblock of an era needs 2 f + 2 sup-

porting signatures. If the leader is unable to obtain them,

this means that he needs to synchronize with the system,

i.e., he needs to find the latest signed microblock from

the previous roster. He asks all the nodes in his roster,

plus the node that lost its membership, to sign a latest-

checkpoint message containing the hash of the last mi-

croblock. At this point in time, the system has 3 f + 2

(3 f + 1 of the previous roster plus the leader) members

and needs 2 f +1 honest nodes to verify the checkpoint,

plus an honest leader to accept it (a Byzantine leader will

be the f +1 fault and compromise liveness). Thus, Byz-

Coin can tolerate f fails in a total of 3 f +2 nodes.

4 Performance Evaluation

In this section we discuss the evaluation of the ByzCoin

prototype and our experimental setup. The main ques-

tion we want to evaluate is whether ByzCoin is usable in

practice without incurring large overheads. In particular

we focus on consensus latency and transaction through-

put for different parameter combinations.

4.1 Prototype Implementation

We implemented ByzCoin in Go1 and made it pub-

licly available on GitHub.2 ByzCoin’s consensus mecha-

1https://golang.org
2https://github.com/DeDiS/Cothority

288 25th USENIX Security Symposium USENIX Association

nism is based on the CoSi protocol with Ed25519 signa-

tures [6] and implements both flat- and tree-based collec-

tive signing layouts as described in Section 3. For com-

parison, we also implemented a conventional PBFT con-

sensus algorithm with the same communication patterns

as above and a consensus algorithm that uses individual

signatures and tree-based communication.

To simulate consensus groups of up to 1008 nodes,

we oversubscribed the available 36 physical machines

(see below) and ran up to 28 separate ByzCoin pro-

cesses on each server. Realistic wide-area network con-

ditions are mimicked by imposing a round-trip latency

of 200 ms between any two machines and a link band-

width of 35 Mbps per simulated host. Note that this sim-

ulates only the connections between miners of the con-

sensus group and not the full Bitcoin network. Full nodes

and clients are not part of the consensus process and can

retrieve signed blocks only after consensus is reached.

Since Bitcoin currently is rather centralized and has only

a few dozen mining pools [3], we assume that if/when

decentralization happens, all miners will be able to sup-

port these rather constrained network requirements.

The experimental data to form microblocks was taken

by ByzCoin clients from the actual Bitcoin blockchain.

Both micro- and keyblocks are fully transmitted and col-

lectively signed through the tree and are returned to the

clients upon request together with the proof. Verifi-

cation of block headers is implemented but transaction

verification is only emulated to avoid further measure-

ment distortion through oversubscribed servers. A sim-

ilar practice is used in Shadow Bitcoin [45]. We base

our emulation both on measurements [31] of the aver-

age block-verification delays (around 200 ms for 500 MB

blocks) and on the claims of Bitcoin developers [8] that

as far as hardware is concerned Bitcoin can easily ver-

ify 4000 TPS. We simulate a linear increase of this delay

proportional to the number of transactions included in the

block. Because of the communication pattern of Byz-

Coin, the transaction-verification cost delays only the

leaf nodes. By the time the leaf nodes finish the block

verification and send their vote back to their parents, all

other tree nodes should have already finished the verifi-

cation and can immediately proceed. For this reason the

primary delay factor is the transmission of the blocks that

needs to be done logN sequential times.

We ran all our experiments on DeterLab [22] using

36 physical machines, each having four Intel E5-2420

v2 CPUs and 24 GB RAM and being arranged in a star-

shaped virtual topology.

4.2 Consensus Latency

The first two experiments focus on how microblock com-

mitment latency scales with consensus group size and

Figure 6: Influence of the consensus group size on the

consensus latency

with number of transactions per block.

4.2.1 Consensus Group Size Comparison

This experiment focuses on the scalability of ByzCoin’s

BFT protocol in terms of the consensus group size. The

number of unique miners participating in a consensus

group is limited by the number of membership shares

in the window (Section 3.3), but can be smaller if some

miners hold multiple shares (i.e., successfully mined sev-

eral blocks) within the same window.

We ran experiments for Bitcoin’s maximum block size

(1 MB) with a variable number of participating hosts.

Every time we increased the number of hosts, we also in-

creased the servers’ bandwidth so that the available band-

width per simulated host remained constant (35 Mbps).

For the PBFT simulation, the 1 MB block was too big

to handle, thus the PBFT line corresponds to a 250 KB

block size.

As Fig. 6 shows, the simple version of ByzCoin

achieves acceptable latency, as long as the consensus

group size is less than 200. After this point the cost

for the leader to broadcast the block to everyone incurs

large overheads. On the contrary, the tree-based Byz-

Coin scales well, since the same 1 MB block for 1008

nodes suffers signing latency less than the flat approach

for 36 nodes. Adding 28 times more nodes (from 36 to

1008) causes a latency increase close to a factor 2 (from

6.5 to 14 seconds). The basic PBFT implementation is

quite fast for 2 nodes but scales poorly (40 seconds for

100 nodes), whereas the tree-based implementation with

individual signatures performs the same as ByzCoin for

up to 200 hosts. If we aim for the higher security level of

1008 nodes, however, then ByzCoin is 3 times faster.

Fig. 7 shows the performance cost of keyblock sign-

USENIX Association 25th USENIX Security Symposium 289

Figure 7: Keyblock signing latency

ing. The flat variant outperforms the tree-based version

when the number of hosts is small since the blocks have

as many transactions as there are hosts and thus are small

themselves. This leads to a fast transmission even in the

flat case and the main overhead comes from the block

propagation latency, which scales with O(logN) in the

tree-based ByzCoin variant.

4.2.2 Block Size Comparison

The next experiment analyzes how different block sizes

affect the scalability of ByzCoin. We used a constant

number of 144 hosts for all implementations. Once

again, PBFT was unable to achieve acceptable latency

with 144 nodes, thus we ran it with 100 nodes only.

Fig. 8 shows the average latency of the consensus

mechanism, determined over 10 blocks when their re-

spective sizes increase. As in the previous section we

see that the flat implementation is acceptable for a 1 MB

block, but when the block increases to 2 MB the latency

quadruples. This outcome is expected as the leader’s

link saturates when he tries to send 2 MB messages to

every participating node. In contrast ByzCoin scales

well because the leader outsources the transmission of

the blocks to other nodes and contacts only his chil-

dren. The same behavior is observed for the algorithm

that uses individual signatures and tree-based communi-

cation, which shows that the block size has no negative

effect on scalability when a tree is used. Finally, we find

that PBFT is fast for small blocks, but the latency rapidly

increases to 40 seconds for 250 KB blocks.

ByzCoin’s signing latency for a 1 MB block is close

to 10 seconds, which should be small enough to make

the need for 0-confirmation transactions almost disap-

pear. Even for a 32 MB block (≈ 66000 transactions) the

delay is much lower (around 90 seconds) than the ≈ 10

Figure 8: Influence of the block size on the consensus

latency

Figure 9: Influence of the consensus group size on the

block signing latency

minutes required by Bitcoin.

Fig. 9 demonstrates the signing latency of various

blocks sizes on tree-based ByzCoin. Signing one-

transaction blocks takes only 3 seconds even when 1008

miners co-sign it. For bigger blocks, we have included

Bitcoin’s current maximum block size of 1 MB along

with the proposed limits of 2 MB in Bitcoin Classic and

8 MB in Bitcoin Unlimited [2]. As the graph shows,

1 MB and 2 MB blocks scale linearly in number of nodes

at first but after 200 nodes, the propagation latency is

higher than the transmission of the block, hence the la-

tency is close to constant. For 8 MB blocks, even with

1008 the signing latency increases only linearly.

290 25th USENIX Security Symposium USENIX Association

Figure 10: Throughput of ByzCoin

4.3 Transaction Throughput

In this experiment, we investigate the maximum through-

put in terms of transactions per second (TPS) that Byz-

Coin can achieve, and show how Bitcoin could improve

its throughput by adopting a ByzCoin-like deployment

model. We tested ByzCoin versions with consensus

group sizes of 144 and 1008 nodes, respectively. Note

that performance-wise this resembles the worst case sce-

nario since the miner-share ratio is usually not 1:1 as

miners in the consensus group are allowed to hold multi-

ple shares, as described in Section 3.3.

Analyzing Fig. 10 shows that Bitcoin can increase its

overall throughput by more than one order of magnitude

through adoption of a flat ByzCoin-like model, which

separates transaction verification and block mining and

deals with forks via strong consistency. Furthermore, the

144 node configuration can achieve close to 1000 TPS,

which is double the throughput of Paypal, and even the

1008-node roster achieves close to 700 TPS. Even when

the tree fails, the system can revert back to 1 MB mi-

croblocks on the flat and more robust variant of ByzCoin

and still have a throughput ten times higher than the cur-

rent maximum throughput of Bitcoin.

In both Figs. 8 and 10, the usual trade-off between

throughput and latency appears. The system can work

with 1–2 MB microblocks when the load is normal and

then has a latency of 10–20 seconds. If an overload oc-

curs, the system adaptively changes the block size to en-

able higher throughput. We note that this is not the case

in the simple ByzCoin where 1 MB microblocks have op-

timal throughput and acceptable latency.

5 Security Analysis

In this section, we conduct a preliminary, informal se-

curity analysis of ByzCoin, and discuss how its consen-

sus mechanism can mitigate or eliminate some known

attacks against Bitcoin.

5.1 Transaction Safety

In the original Bitcoin paper [47], Nakamoto mod-

els Bitcoin’s security against transaction double spend-

ing attacks as in a Gambler’s Ruin Problem. Further-

more, he models the progress an attacker can make as a

Poisson distribution and combines these two models to

reach Eq. (1). This equation calculates the probability of

a successful double spend after z blocks when the adver-

sary controls q computing power.

P = 1−
z

∑
k=0

λ ke−λ

k!

(

1−

(

q

p

)(z−k)
)

(1)

In Figs. 11 and 12 we compare the relative safety

of a transaction over time in Bitcoin3 versus ByzCoin.

Fig. 11 shows that ByzCoin can secure a transaction in

less than a minute, because the collective signature guar-

antees forward security. On the contrary, Bitcoin’s trans-

actions need hours to be considered fully secured from a

double-spending attempt. Fig. 12 illustrates the required

time from transaction creation to the point where a dou-

ble spending attack has less than 0.1% chance of success.

ByzCoin incurs a latency of below one minute to achieve

the above security, which boils down to the time the sys-

tems needs to produce a collectively signed microblock.

Bitcoin on the other hand needs several hours to reach

the same guarantees. Note that this graph does not con-

sider other advanced attacks, such as eclipse attacks [34],

where Bitcoin offers no security for the victim’s transac-

tions.

5.2 Proof-of-Membership Security

The security of ByzCoin’s proof-of-membership mecha-

nism can be modeled as a random sampling problem with

two possible independent outcomes (honest, Byzantine).

The probability of picking a Byzantine node (in the worst

case) is p = 0.25 and the number of tries corresponds to

the share window size w. In this setting, we are inter-

ested in the probability that the system picks less than

c = �w
3
� Byzantine nodes as consensus group members

and hence guarantees safety. To calculate this probabil-

ity, we use the cumulative binomial distribution where

X is the random variable that represents the number of

times we pick a Byzantine node:

3Based on data from https://blockchain.info.

USENIX Association 25th USENIX Security Symposium 291

Figure 11: Successful double-spending attack probabil-

ity

Figure 12: Client-perceived secure transaction latency

P [X ≤ c] =
c

∑
k=0

(

w

k

)

pk (1− p)w−k
(2)

Table 1 displays the results for the evaluation of Eq. (2)

for various window sizes w both in the common threat

model where an adversary controls up to 25% hash

power and in the situation where the system faces a

stronger adversary with up to 30% computing power.

The latter might temporarily occur due to hash power

variations and resource churn.

Table 1: Expected proof-of-membership security levels

p | w 12 100 144 288 1008 2016

0.25 0.842 0.972 0.990 0.999 0.999 1.000

0.30 0.723 0.779 0.832 0.902 0.989 0.999

At this point, recall that w specifies the number of

available shares and not necessarily the number of ac-

tual miners as each member of the consensus group is

allowed to hold multiple shares. This means that the

number of available shares gives an upper bound on the

latency of the consensus mechanism with the worst case

being that each member holds exactly one share.

In order to choose a value for w appropriately one

must take into account not only consensus latency and

the desired security level (ideally ≥ 99%) but also the in-

creased chance for resource churn when values of w be-

come large. From a security perspective the results of Ta-

ble 1 suggest that the share window size should not be set

to values lower than w = 144. Ideally, values of w = 288

and above should be chosen to obtain a reasonable secu-

rity margin and, as demonstrated in Section 4, values up

to w = 1008 provide excellent performance numbers.

Finally, care should be taken when bootstrapping the

protocol, as for small values of w there is a high proba-

bility that a malicious adversary is able to take over con-

trol. For this reason we suggest that ByzCoin starts with

vanilla Nakamoto consensus and only after w keyblocks

are mined the ByzCoin consensus is activated.

5.3 Defense Against Bitcoin Attacks

0-confirmation Double-Spend Attacks. Race [35]

and Finney [26] attacks belong to the family of 0-

confirmation double-spend attacks which might affect

traders that provide real-time services to their clients. In

such scenarios the time between exchange of currency

and goods is usually short because traders often cannot

afford to wait an extended period of time (10 or more

minutes) until a transaction they received can be consid-

ered indeed confirmed.

ByzCoin can mitigate both attacks by putting the mer-

chant’s transaction in a collectively signed microblock

whose verification latency is in the order of a few sec-

onds up to a minute. If this latency is also unacceptable,

then he can send a single transaction for signing, which

will cost more, but is secured in less than 4 seconds.

N-confirmation Double-Spend Attacks. The as-

sumption underlying this family of attacks [7] is that,

after receiving a transaction for a trade, a merchant

waits N − 1 additional blocks until he concludes the

interaction with his client. At this point, a malicious

client creates a new double-spending transaction and

tries to fork the blockchain, which has a non-negligible

success-probability if the adversary has enough hash

power. For example, if N = 3 then an adversary

holding 10% of the network’s hash power has a 5%

success-chance to mount the above attack [47].

In ByzCoin the merchant would simply check the

collective signature of the microblock that includes the

292 25th USENIX Security Symposium USENIX Association

transaction, which allows him to verify that it was ac-

cepted by a super-majority of the network. Afterwards

the attacker cannot succeed in forking the blockchain as

the rest of the signers will not accept his new block. Even

if the attacker is the leader, the proposed microblock will

be rejected, and a view change will occur.

Eclipse and Delivery-Tampering Attacks. In an

eclipse attack [34] it is assumed that an adversary con-

trols a sufficiently large number of connections between

the victim and the Bitcoin network. This enables the at-

tacker to mount attacks such as 0- and N-confirmation

double-spends with an ever increasing chance of suc-

cess the longer the adversary manages to keep his control

over the network. Delivery-tampering attacks [31] ex-

ploit Bitcoin’s scalability measures to delay propagation

of blocks without causing a network partition. This al-

lows an adversary to control information that the victim

receives and simplifies to mount 0- and 1-confirmation

double-spend attacks as well as selfish-mining.

While ByzCoin does not prevent an attacker from

eclipsing a victim or delaying messages in the peer-to-

peer network, its use of collective signatures in transac-

tion commitment ensure that a victim cannot be tricked

into accepting an alternate attacker-controlled transac-

tion history produced in a partitioned network fragment.

Selfish and Stubborn Mining Attacks. Selfish min-

ing [25] allows a miner to increase his profit by adding

newly mined blocks to a hidden blockchain instead of in-

stantly broadcasting them. This effect can be further am-

plified if the malicious miner has good connectivity to the

Bitcoin network. The authors of selfish mining propose

a countermeasure that thwarts the attack if a miner has

less than 25% hash power under normal circumstances or

less than 33% in case of an optimal network. Stubborn

mining [48] further generalizes the ideas behind selfish

mining and combines it with eclipse attacks in order to

increase the adversary’s revenue.

In ByzCoin, these strategies are ineffective as forks are

instantly resolved in a deterministic manner, hence build-

ing a hidden blockchain only wastes resources and min-

imizes revenue. Another approach to prevent the above

attacks would be to include bias-resistant public random-

ness [40] in every keyblock. This way even if an attacker

gains control over the consensus mechanism (e.g., by

having > 33% hash power) he would still be unable to

mine hidden blocks. We leave exploring this approach

for future research.

Transaction Censorship. In Bitcoin-NG, a malicious

leader can censor transactions for the duration of his

epoch(s). The same applies for ByzCoin. However, as

not every leader is malicious, the censored transactions

are only delayed and will be processed eventually by the

next honest leader. ByzCoin can improve on this, as the

leader’s actions are double-checked by all the other min-

ers in the consensus group. A client can announce his

censored transaction just like in classic PBFT; this will

indicate a potential leader fault and will either stop cen-

sorship efforts or lead to a view-change to remove the

malicious leader. Finally, in Bitcoin(-NG) a miner can

announce his intention to fork over a block that includes

a transaction, giving an incentive to other miners to ex-

clude this transaction. In ByzCoin using fork-based at-

tacks to censor transactions is no longer possible due to

ByzCoin’s deterministic fork resolution mechanism. An

attacker can therefore only vote down a leader’s propos-

als by refusing to co-sign. This is also a limitation, how-

ever, as an adversary who controls more than 33% of the

shares (Section 7) deny service and can censor transac-

tions for as long as he wants.

6 Related Work

ByzCoin and Bitcoin [47] share the same primary ob-

jective: implement a state machine replication (SMR)

system with open membership [9, 29]. Both therefore

differ from more classic approaches to Byzantine fault-

tolerant SMRs with static or slowly changing consensus

groups such as PBFT [14], Tendermint [10], or Hyper-

ledger [42].

Bitcoin has well-known performance shortcomings;

there are several proposals [41, 57] on how to address

these. The GHOST protocol [53] changes the chain se-

lection rule when a fork occurs. While Bitcoin declares

the fork with the most proof-of-work as the new valid

chain, GHOST instead chooses the entire subtree that

received the most computational effort. Put differently,

the subtree that was considered correct for the longest

time will have a high possibility of being selected, mak-

ing an intentional fork much harder. One limitation of

GHOST is that no node will know the full tree, as in-

valid blocks are not propagated. While all blocks could

be propagated, this makes the system vulnerable to DoS

attacks since an adversary can simply flood the network

with low-difficulty blocks.

Off-chain transactions, an idea that originated from the

two-point channel protocol [33], are another alternative

to improve latency and throughput of the Bitcoin net-

work. Other similar proposals include the Bitcoin Light-

ning Network [50] and micro-payment channels [20],

which allow transactions without a trusted middleman.

They use contracts so that any party can generate proof-

of-fraud on the main blockchain and thereby deny rev-

enue to an attacker. Although these systems enable faster

cryptocurrencies, they do not address the core problem

USENIX Association 25th USENIX Security Symposium 293

of scaling SMR systems, thus sacrificing the open and

distributed nature of Bitcoin. Finally, the idea behind

sidechains [5] is to connect multiple chains with each

other and enable the transfer of Bitcoins from one chain

to another. This enables the workload distribution to

multiple subsets of nodes that run the same protocol.

There are several proposals that, like ByzCoin, tar-

get the consensus mechanism and try to improve differ-

ent aspects. Ripple [52] implements and runs a variant

of PBFT that is low-latency and based on collectively-

trusted subnetworks with slow membership changes.

The degree of decentralization depends on the concrete

configuration of an instance. Tendermint [10] also im-

plements a PBFT-like algorithm, but evaluates it with at

most 64 “validators”. Furthermore, Tendermint does not

address important challenges such as the link-bandwidth

between validators, which we found to be a primary bot-

tleneck. PeerCensus [19] is an interesting alternative that

shares similarities with ByzCoin, but is only a prelimi-

nary theoretical analysis.

Finally, Stellar [43] proposes a novel consensus proto-

col named Federated Byzantine Agreement, which intro-

duces Quorum slices that enable a BFT protocol “open

for anyone to participate”. Its security, however, depends

on a nontrivial and unfamiliar trust model requiring cor-

rect configuration of trustees by each client.

7 Limitations and Future Work

This section briefly outlines several of ByzCoin’s impor-

tant remaining limitations, and areas for future work.

Consensus-Group Exclusion. A malicious ByzCoin

leader can potentially exclude nodes from the consen-

sus process. This is easier in the flat variant, where

the leader is responsible for contacting every participat-

ing miner, but it is also possible in the tree-based ver-

sion, if the leader “reorganizes” the tree and puts nodes

targeted for exclusion in subtrees where the roots are

colluding nodes. A malicious leader faces a dilemma,

though: excluded nodes lose their share of newly minted

coins which increases the overall value per coin and thus

the leader’s reward. The victims, however, will quickly

broadcast view-change messages in an attempt to remove

the Byzantine leader.

As an additional countermeasure to mitigate such an

attack, miners could run a peer-to-peer network on top of

the tree to communicate protocol details. Thus each node

potentially receives information from multiple sources.

If the parent of a node fails to deliver the announcement

message of a new round, this node could then choose

to attach itself (together with its entire subtree) to an-

other participating (honest) miner. This self-adapting

tree could mitigate the leader’s effort to exclude miners.

As a last resort, the malicious leader could exclude the

commitments of the victims from the aggregate commit-

ment, but as parts of the tree have witnessed these com-

mitments, the risk of triggering a view-change is high.

In summary, the above attack seems irrational as the

drawbacks of trying to exclude miners seem to outweigh

the benefits. We leave a more thorough analysis of this

situation for future work.

Defenses Against 33%+ Attacks. An attacker pow-

erful enough to control more than 1
3

of the consensus

shares can, in the Byzantine threat model, trivially censor

transactions by withholding votes, and double-spend by

splitting honest nodes in two disjoint groups and collect-

ing enough signatures for two conflicting microblocks.

Fig. 12 shows how the safety of ByzCoin fails at 30%,

whereas Bitcoin remains safe even for 48%, if a client

can wait long enough.

However, the assumption that an attacker completely

controls the network is rather unrealistic, especially if

messages are authenticated and spoofing is impossi-

ble [3]. The existence of the peer-to-peer network on

top of the tree, mentioned in the previous paragraph, en-

ables the detection of equivocation attacks such as mi-

croblock forks and mitigates the double-spending efforts,

as honest nodes will stop following the leader. Thus,

double-spending and history rewriting attacks in Byz-

Coin become trivial only after the attacker has 66% of

the shares, effectively increasing the threshold from 51%

to 66%. This assumption is realistic, as an attacker con-

trolling the complete network can actually split Bitcoin’s

network in two halves and trivially double-spend on the

weaker side. This is possible because the weak side cre-

ates blocks that will be orphaned once the partition heals.

We again leave a more thorough analysis of this situation

for future work.

Proof-of-Work Alternatives. Bitcoin’s hash-based

proof-of-work has many drawbacks, such as energy

waste and the efficiency advantages of custom ASICs

that have made mining by “normal users” impracti-

cal. Many promising alternatives are available, such

as memory-intensive puzzles [4], or proof-of-stake de-

signs [37]. Consensus group membership might in prin-

ciple also be based on other Sybil attack-resistant meth-

ods, such as those based on social trust networks [58].

A more democratic alternative might be to apportion

mining power on a “1 person, 1 vote” principle, based

on anonymous proof-of-personhood tokens distributed at

pseudonym parties [28]. Regardless, we treat the ideal

choice of Sybil attack-resistance mechanism as an issue

for future work, orthogonal to the focus of this paper.

294 25th USENIX Security Symposium USENIX Association

Other Directions. Besides the issues outlined above,

there are many more interesting open questions worth

considering: Sharding [17] presents a promising ap-

proach to scale distributed protocols and was already

studied for private blockchains [18]. A sharded variant of

ByzCoin might thus achieve even better scalability and

performance numbers. A key obstacle that needs to be

analyzed in that context before though is the generation

of bias-resistant public randomness [40] which would

enable to pick members of a shard in a distributed and se-

cure manner. Yet another challenge is to find ways to in-

crease incentives of rational miners to remain honest, like

binding coins and destroying them when misbehavior is

detected [10]. Finally, asynchronous BFT [12, 11] is an-

other interesting class of protocols, which only recently

started to be analyzed in the context of blockchains [46].

8 Conclusion

ByzCoin is a scalable Byzantine fault tolerant consen-

sus algorithm for open decentralized blockchain systems

such as Bitcoin. ByzCoin’s strong consistency increases

Bitcoin’s core security guarantees—shielding against at-

tacks on the consensus and mining system such as

N-confirmation double-spending, intentional blockchain

forks, and selfish mining—and also enables high scal-

ability and low transaction latency. ByzCoin’s applica-

tion to Bitcoin is just one example, though: theoreti-

cally, it can be deployed to any blockchain-based system,

and the proof-of-work-based leader election mechanism

might be changed to another approach such as proof-

of-stake. If open membership is not an objective, the

consensus group could be static, though still potentially

large. We developed a wide-scale prototype implemen-

tation of ByzCoin, validated its efficiency with measure-

ments and experiments, and have shown that Bitcoin can

increase the capacity of transactions it handles by more

than two orders of magnitude.

Acknowledgments

We would like to thank the DeterLab project team for

providing the infrastructure for our experimental evalu-

ation, Joseph Bonneau for his input on our preliminary

design, and the anonymous reviewers for their helpful

feedback.

References

[1] ABD-EL-MALEK, M., GANGER, G. R., GOOD-

SON, G. R., REITER, M. K., AND WYLIE, J. J.

Fault-scalable Byzantine Fault-tolerant Services.

SIGOPS Operating Systems Review 39, 5 (Oct.

2005), 59–74.

[2] ANDRESEN, G. Classic? Unlimited? XT? Core?,

Jan. 2016.

[3] APOSTOLAKI, M., ZOHAR, A., AND VAN-

BEVER, L. Hijacking Bitcoin: Large-scale Net-

work Attacks on Cryptocurrencies. arXiv preprint

arXiv:1605.07524 (2016).

[4] ATENIESE, G., BONACINA, I., FAONIO, A., AND

GALESI, N. Proofs of Space: When Space is of

the Essence. In Security and Cryptography for Net-

works. Springer, 2014, pp. 538–557.

[5] BACK, A., CORALLO, M., DASHJR, L.,

FRIEDENBACH, M., MAXWELL, G., MILLER,

A., POELSTRA, A., TIMÓN, J., AND WUILLE,

P. Enabling Blockchain Innovations with Pegged

Sidechains.

[6] BERNSTEIN, D. J., DUIF, N., LANGE, T.,

SCHWABE, P., AND YANG, B.-Y. High-speed

high-security signatures. Journal of Cryptographic

Engineering 2, 2 (2012), 77–89.

[7] BITCOIN WIKI. Confirmation, 2016.

[8] BITCOIN WIKI. Scalability, 2016.

[9] BONNEAU, J., MILLER, A., CLARK, J.,

NARAYANAN, A., KROLL, J., AND FELTEN,

E. W. Research Perspectives and Challenges for

Bitcoin and Cryptocurrencies. In 2015 IEEE Sym-

posium on Security and Privacy. IEEE (2015).

[10] BUCHMAN, E. Tendermint: Byzantine Fault Tol-

erance in the Age of Blockchains, 2016.

[11] CACHIN, C., KURSAWE, K., PETZOLD, F., AND

SHOUP, V. Secure and Efficient Asynchronous

Broadcast Protocols. In Advances in Cryptology

(CRYPTO) (Aug. 2001).

[12] CACHIN, C., KURSAWE, K., AND SHOUP, V.

Random Oracles in Constantinople: Practical asyn-

chronous Byzantine agreement using cryptography.

In 19th ACM Symposium on Principles of Dis-

tributed Computing (PODC) (July 2000).

[13] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-

M., NANDI, A., ROWSTRON, A., AND SINGH, A.

SplitStream: high-bandwidth multicast in coopera-

tive environments. In ACM Symposium on Operat-

ing Systems Principles (SOSP) (2003).

USENIX Association 25th USENIX Security Symposium 295

[14] CASTRO, M., AND LISKOV, B. Practical Byzan-

tine Fault Tolerance. In 3rd USENIX Symposium

on Operating Systems Design and Implementation

(OSDI) (Feb. 1999).

[15] CLEMENT, A., WONG, E. L., ALVISI, L.,

DAHLIN, M., AND MARCHETTI, M. Making

Byzantine Fault Tolerant Systems Tolerate Byzan-

tine Faults. In 6th USENIX Symposium on Net-

worked Systems Design and Implementation (Apr.

2009).

[16] COWLING, J., MYERS, D., LISKOV, B., RO-

DRIGUES, R., AND SHRIRA, L. HQ Replication:

A Hybrid Quorum Protocol for Byzantine Fault

Tolerance. In 7th Symposium on Operating Systems

Design and Implementation (Berkeley, CA, USA,

2006), OSDI ’06, USENIX Association, pp. 177–

190.

[17] CROMAN, K., DECKE, C., EYAL, I., GENCER,

A. E., JUELS, A., KOSBA, A., MILLER, A.,

SAXENA, P., SHI, E., SIRER, E. G., AN, D. S.,

AND WATTENHOFER, R. On Scaling Decentral-

ized Blockchains (A Position Paper). In 3rd Work-

shop on Bitcoin and Blockchain Research (2016).

[18] DANEZIS, G., AND MEIKLEJOHN, S. Centrally

Banked Cryptocurrencies.

[19] DECKER, C., SEIDEL, J., AND WATTENHOFER,

R. Bitcoin Meets Strong Consistency. In 17th

International Conference on Distributed Comput-

ing and Networking (ICDCN), Singapore (January

2016).

[20] DECKER, C., AND WATTENHOFER, R. A Fast and

Scalable Payment Network with Bitcoin Duplex

Micropayment Channels. In Stabilization, Safety,

and Security of Distributed Systems. Springer, Aug.

2015, pp. 3–18.

[21] DEERING, S. E., AND CHERITON, D. R. Mul-

ticast Routing in Datagram Internetworks and Ex-

tended LANs. ACM Transactions on Computer

Systems 8, 2 (May 1990).

[22] DeterLab Network Security Testbed, September

2012.

[23] DOUCEUR, J. R. The Sybil Attack. In 1st Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS)

(Mar. 2002).

[24] EYAL, I., GENCER, A. E., SIRER, E. G., AND

VAN RENESSE, R. Bitcoin-NG: A Scalable

Blockchain Protocol. In 13th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 16) (Santa Clara, CA, Mar. 2016), USENIX

Association.

[25] EYAL, I., AND SIRER, E. G. Majority is not

enough: Bitcoin mining is vulnerable. In Financial

Cryptography and Data Security. Springer, 2014,

pp. 436–454.

[26] FINNEY, H. Best practice for fast transaction ac-

ceptance – how high is the risk?, Feb. 2011. Bitcoin

Forum comment.

[27] FISCHER, M. J., LYNCH, N. A., AND PATERSON,

M. S. Impossibility of distributed consensus with

one faulty process. Journal of the ACM (JACM) 32,

2 (1985), 374–382.

[28] FORD, B., AND STRAUSS, J. An offline founda-

tion for online accountable pseudonyms. In 1st In-

ternational Workshop on Social Network Systems

(SocialNets) (2008).

[29] GARAY, J., KIAYIAS, A., AND LEONARDOS, N.

The Bitcoin backbone protocol: Analysis and ap-

plications. In EUROCRYPT 2015. Springer, 2015,

pp. 281–310.

[30] GERVAIS, A., KARAME, G. O., WUST, K.,

GLYKANTZIS, V., RITZDORF, H., AND CAPKUN,

S. On the Security and Performance of Proof of

Work Blockchains. Tech. rep., IACR: Cryptology

ePrint Archive, 2016.

[31] GERVAIS, A., RITZDORF, H., KARAME, G. O.,

AND CAPKUN, S. Tampering with the Delivery of

Blocks and Transactions in Bitcoin. In 22nd ACM

SIGSAC Conference on Computer and Communi-

cations Security (2015), ACM, pp. 692–705.

[32] GUERRAOUI, R., KNEŽEVIĆ, N., QUÉMA, V.,

AND VUKOLIĆ, M. The next 700 BFT protocols.

In 5th European conference on Computer systems

(2010), ACM, pp. 363–376.

[33] HEARN, M., AND SPILMAN, J. Rapidly-adjusted

(micro)payments to a pre-determined party, 2015.

[34] HEILMAN, E., KENDLER, A., ZOHAR, A., AND

GOLDBERG, S. Eclipse Attacks on Bitcoin’s Peer-

to-Peer Network. In 24th USENIX Security Sympo-

sium (2015), pp. 129–144.

[35] KARAME, G. O., ANDROULAKI, E., AND CAP-

KUN, S. Double-spending fast payments in Bitcoin.

In 19th ACM Conference on Computer and commu-

nications security (2012), ACM, pp. 906–917.

296 25th USENIX Security Symposium USENIX Association

[36] KIAYIAS, A., AND PANAGIOTAKOS, G. Speed-

Security Tradeoffs in Blockchain Protocols. Tech.

rep., IACR: Cryptology ePrint Archive, 2015.

[37] KING, S., AND NADAL, S. PPCoin: Peer-to-peer

Crypto-Currency with Proof-of-Stake.

[38] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,

A., AND WONG, E. Zyzzyva: Speculative Byzan-

tine Fault Tolerance. In 21st ACM SIGOPS Sym-

posium on Operating Systems Principles (SOSP)

(Oct. 2007), ACM.

[39] LAMPORT, L., SHOSTAK, R., AND PEASE, M.

The Byzantine Generals Problem. ACM Trans-

actions on Programming Languages and Systems

(TOPLAS) 4, 3 (1982), 382–401.

[40] LENSTRA, A. K., AND WESOLOWSKI, B. A ran-

dom zoo: sloth, unicorn, and trx. IACR eprint

archive, Apr. 2015.

[41] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZO-

HAR, A. Inclusive Block Chain Protocols. In Fi-

nancial Cryptography and Data Security. Springer,

Jan. 2015, pp. 528–547.

[42] LINUX FOUNDATION. Hyperledger Project, 2016.

[43] MAZIÈRES, D. The Stellar Consensus Protocol: A

Federated Model for Internet-level Consensus.

[44] MERKLE, R. C. Secrecy, Authentication, and Pub-

lic Key Systems. PhD thesis, Stanford University,

June 1979.

[45] MILLER, A., AND JANSEN, R. Shadow-Bitcoin:

scalable simulation via direct execution of multi-

threaded applications. In 8th Workshop on Cy-

ber Security Experimentation and Test (CSET 15)

(2015).

[46] MILLER, A., XIA, Y., CROMAN, K., SHI, E.,

AND SONG, D. The honey badger of BFT pro-

tocols. Tech. rep., Cryptology ePrint Archive

2016/199, 2016.

[47] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Elec-

tronic Cash System, 2008.

[48] NAYAK, K., KUMAR, S., MILLER, A., AND SHI,

E. Stubborn Mining: Generalizing Selfish Min-

ing and Combining with an Eclipse Attack. In 1st

IEEE European Symposium on Security and Pri-

vacy (Mar. 2015).

[49] PEASE, M., SHOSTAK, R., AND LAMPORT, L.

Reaching agreement in the presence of faults. Jour-

nal of the ACM (JACM) 27, 2 (1980), 228–234.

[50] POON, J., AND DRYJA, T. The Bitcoin Lightning

Network: Scalable Off-Chain Instant Payments,

Jan. 2016.

[51] SCHNORR, C. P. Efficient signature generation by

smart cards. Journal of Cryptology 4, 3 (1991),

161–174.

[52] SCHWARTZ, D., YOUNGS, N., AND BRITTO, A.

The Ripple protocol consensus algorithm. Ripple

Labs Inc White Paper (2014), 5.

[53] SOMPOLINSKY, Y., AND ZOHAR, A. Accelerat-

ing Bitcoin’s Transaction Processing. Fast Money

Grows on Trees, Not Chains, Dec. 2013.

[54] SYTA, E., TAMAS, I., VISHER, D., WOLINSKY,

D. I., L., GAILLY, N., KHOFFI, I., AND FORD, B.

Keeping Authorities “Honest or Bust” with Decen-

tralized Witness Cosigning. In 37th IEEE Sympo-

sium on Security and Privacy (May 2016).

[55] VENKATARAMAN, V., YOSHIDA, K., AND FRAN-

CIS, P. Chunkyspread: Heterogeneous Unstruc-

tured Tree-Based Peer-to-Peer Multicast. In 14th

International Conference on Network Protocols

(ICNP) (Nov. 2006).

[56] VUKOLIĆ, M. The quest for scalable blockchain

fabric: Proof-of-work vs. BFT replication. In Inter-

national Workshop on Open Problems in Network

Security (2015), Springer, pp. 112–125.

[57] WOOD, G. Ethereum: A secure decentralised gen-

eralised transaction ledger. Ethereum Project Yel-

low Paper (2014).

[58] YU, H., GIBBONS, P. B., KAMINSKY, M., AND

XIAO, F. SybilLimit: A Near-Optimal Social Net-

work Defense against Sybil Attacks. In 29th IEEE

Symposium on Security and Privacy (S&P) (May

2008).

