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Abstract

This paper introduces an effective decolorization algo-

rithm that preserves the appearance of the original color

image. Guided by the original saliency, the method blends

the luminance and the chrominance information in order

to conserve the initial color disparity while enhancing the

chromatic contrast. As a result, our straightforward fusing

strategy generates a new spatial distribution that discrimi-

nates better the illuminated areas and color features. Since

we do not employ quantization or a per-pixel optimiza-

tion (computationally expensive), the algorithm has a linear

runtime, and depending on the image resolution it could be

used in real-time applications. Extensive experiments and a

comprehensive evaluation against existing state-of-the-art

methods demonstrate the potential of our grayscale opera-

tor. Furthermore, since the method accurately preserves the

finest details while enhancing the chromatic contrast, the

utility and versatility of our operator have been proved for

several other challenging applications such as video decol-

orization, detail enhancement, single image dehazing and

segmentation under different illuminants.

1. Introduction

Image decolorization is important in several applications

(e.g. monochrome printing, medical imaging, monochrome

image processing, stylization). Standard conversion, found

in commercial image editing software, neglects the color

distribution, and as a result it is commonly unable to con-

serve the discriminability of the original chromatic contrast

(see figure 1). Mapping three dimensional color informa-

tion onto a single dimension while still preserving the orig-

inal appearance, contrast and finest details is not a trivial

task.

In the last years several technique have been introduced

in the literature. Roughly, the decolorization techniques can

be grouped in local [10, 19, 3, 22] and global [11, 14] ap-

proaches. Among the techniques of the first class, Gooch

et al. [10] introduced an optimization technique that itera-

tively searches the gray levels that best represent the color

differences between all color pairs. Similarly, the method

of Rasche et al. [19] seeks to optimize a quadratic objec-

tive function that incorporates both contrast preservation

and luminance consistency. Smith et al. [22] developed a

two-step algorithm that employs an unsharp mask-related

strategy to emphasize the finest transitions. On the other

hand, the global strategy of Grundland and Dodgson [ 11]

performs a dimensionality reduction using the predominant

component analysis. This approach does not take into con-

sideration chromatic differences that are spatially distant,

mapping in some cases different colors into very similar

grayscale levels. Recently, Kim et al. [14] have optimized

the Gooch et al. [10] method via nonlinear global mapping.

Even more computationally effective, this strategy did not

solve the problems of the Gooch et al. [10] approach risking

to blur some of the fine details. In general, due to quantiza-

tion strategies or prohibitive function optimization, the ex-

isting approaches fail to render the original image look and

to preserve the finest details and the luminance consistency

(shadows and highlights should not be reversed). Addition-

ally, most of the existing approaches are computationally

expensive.

Different than existing methods, we argue that the con-

cept of image decolorization is not to generate a perfect op-

tical match, but rather to obtain a plausible image that main-

tains the overall appearance and primary the contrast of the

most salient regions. Our straightforward operator performs

a global chromatic mapping that acts similarly as color fil-

ters [1]. In our scheme, the luminance level is progressively

augmented by the chromatic variation of the salient infor-

mation. Generally considered an important feature, saliency

was not addressed directly in previous approaches. After

the monochromatic luminance channel is filtered and stored

as a reference, the luminance values are computed pixel-

wise by mixing both saturation and hue values, creating a

new spatial distribution with an increased contrast of the

interest regions. All the precomputed values are normal-

ized in order to fit the entire intensity range. The intensity

is re-balanced in order to conserve the amount of glare in

the initial image. For extreme lighting conditions, we apply

several constraints in order to avoid clipping and fading of
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Color image Gooch et al. Rasche et al. Smith et al. Kim et al. Our resultStandard Our result (CIE Lch)

Figure 1. Grayscale transformations. From left to right: initial color image, standard conversion, Gooch et al. [2005], Rasche et al. [2005],

Smith et al. [2008], Kim et al. [2009], our method in CIEL∗c∗h∗ and our method in HSL color space (κ = 2, γ = 0.7, χ = 0.9,

η = 0.2, φ= 200
◦). Notice the details of the highlighted areas of the apple and grapes. The reader is referred to the supplementary material

for the complete set of results.

the apparent details.

Our method combines the advantages of the global and

local operators being less vulnerable to artifacts due to the

continuous global color mapping (free of artifacts) while

still preserving the local contrast and details due to the

saliency-based strategy and several employed constraints.

Furthermore, our strategy is computationally effective being

as well validated perceptually by an extensive experiment.

As our decolorization is accurate and preserves finest de-

tails, we can exploit variations in chromacity as well as lu-

minance to enhance color images simply, blending the pro-

cessed luminance levels with the initial color. Observed also

by Gooch et al. [10], the human visual system has better

spatial acuity in luminance than in chrominance; by fusing

the chrominance with co-located luminance changes, weak

chroma variations are rendered sharper and better-localized.

To the best of our knowledge we are the first to demon-

strate such wide applicability of a grayscale operator. We

obtain comparable results with specialized techniques for

tasks like segmentation under different illuminants, detail

enhancement and image dehazing. Furthermore, we show

that our algorithm can yield consistent results as well for

video sequences.

2. Our Approach

As we have previously mentioned, our algorithm aims to

increase the contrast of visually salient areas while main-

taining the average gray shades that already exist in the

image. Our operator is based on a global chromatic map-

ping that is motivated by psychophysical experiments [6].

Calabria and Fairchild [6] showed that achromatic images

are perceived to have a significantly higher level of con-

trast than images with only 20% of the original image

chroma. The contrast increases monotonically for images

with chroma levels above this threshold. Practically, en-

hancing the contrast of the luminance based on the chromi-

nance information by a given degree γ can be expressed as:

L = L (1 + γS) (1)

where L is the monochromatic normalized value of the lu-

minance channel while the saturation S is defined as the

colorfulness of an area judged in proportion with its light-

ness. This basic expression represents the skeleton of the

Helmholtz-Kohlrausch effect [8] and inspired as well some

of the previous decolorization techniques [10, 11, 18, 22].

Different than previous strategies, in our approach, to in-

tegrate the chromatic polarity gain of the opponent colors

(e.g. red pixels need to be mapped lighter when green pixels

became darken), the output luminance value L is computed

based on the following chromatic filtering formula:

L = L (1 + γcos(Hκ+ φ)S) (2)

where H represents the hue, L is the luminance, S is the

saturation while γ, κ and φ are some parameters that are

discussed in the subsequent paragraphs. Even though our

operator shown robustness in preserving the initial color

contrast discriminability and details as well in the percep-

tually uniform CIEL∗c∗h∗ [8] color space (with the lumi-

nance/lightness - L∗, hue - h∗ while the saturation is com-

puted as c∗/L∗) (see our results in CIEL∗c∗h∗ shown in

Figure 1) in this paper we opted for the HSV/HSL color

space. In our experiments, besides being faster, HSV/HSL

shown to be more accurate and robust while adjusting pa-

rameters.

The parameter κ represents the period being set to κ = 2
(default value) in order to preserve the color opponency.

Briefly, the well-known opponency theory introduced by

Ewald Hering (1878) assumes that our vision perception is

characterized by three counterbalancing processes: black-

white, yellow-blue, and red-green. Practically, our decol-

orized images display complementary gray levels for these
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Figure 2. Direct influence of the offset angle φ to the grayscale rep-

resentation of the original color image. Note that our approach for

entire range of the hue offset angle φ is able to preserve the initial

white color of the background margins. The rest of the parameters

are set to their default values.

color pairs. As shown in Figure 4, this default value yields

accurate preservation of the most salient regions extracted

with the model of Itti et al. [13] that is characterized by

a color map built on the Hering’s color opponent system.

Moreover, for κ = 2 we observed that the range of off-

set angle φ can be highly compressed but also tuning the

γ parameter in a larger range does not introduce significant

degradation.

The parameter φ represents the offset angle of the color

wheel (0− 360◦) (see Figure 2). Its main effect is to set the

chromatic enhancing filter on the offset position that best

advantages the hue from the region that has lost its saliency

due to the decolorization. By adjusting this coefficient, the

shades are re-mapped to different gradients. The subsequent

subsection goes into detail about how to optimally set this

parameter.

The coefficient γ tempers the impact of the saturation

and acts like a modulator that controls the amount of chro-

matic contrast. This parameter secures a linear dependency

between saturation and global contrast that makes intense

saturated images to be rendered with a higher global con-

trast. To generate the results in this paper was used the de-

fault value γ = 0.7 (the only exception is for the dehazing

application when γ = 2).

In our scheme the multiplication by cosine func-

tion plays an important role since it polarizes the LS
(luminance-saturation) gain value (equation 2) according

with the period κ. A similar idea was used as well in the

previous work of Gooch et al. [10] but using two principal

opponent axis. In Grundland and Dodgson [ 11] the cosine

could be approximated by a Gaussian distribution that is

more prone to introduce artifacts such as clipping and fad-

ing of the details. In the absence of the cosine, if L and

S have comparable levels then after the post-normalization

process the new value of the luminance remains almost con-

stant. If L and S have different normalized values then the

new luminance variation is determined by the saturation.

In some particular cases (e.g. compression and color

space non-uniformity) the general equation 2 might yield

discontinuities mainly in the neighbor regions of the high-

lighted areas. In order to solve these issues, for the pixels

of the regions with the detected deviations (based on the

µ and ν thresholds), the LS (luminance-saturation) gain is

replaced by the average value of LS:

LS = (
∑

Ω

Lx,ySx,y)/N Sx,y ≥ µ and Lx,y ≥ ν (3)

where µ and ν are thresholds that filter highlighted regions

without discontinuities, while N represents the total num-

ber of image pixels in the considered region Ω. The values

of the thresholds that compensate for the saturation and in-

tensity, µ and ν, are dependent on the selected color space.

In this paper we generate the results using the default val-

ues: µ = 0.1 and ν = 0.6.

Adding previous constraints to equation 2, the luminance

Lconstr can now be expressed as:

Lconstr =

⎧

⎪

⎨

⎪

⎩

L+ γLScos(Hκ+ φ) , S ≤ µ and L ≥ ν

L [1 + γcos(Hκ+ φ)S] , otherwise
(4)

The next step is to normalize the luminance values to

match the initial range:

Lres = χ
Lconstr − Lmin

Lmax − Lmin

(5)

where Lmin, Lmax are the maximum and the minimum val-

ues after equation 4 has been computed on the entire image.

The parameter χ (default value, χ = 0.9) adjusts the global

intensity being important to avoid an image over/under-

exposure look or scene re-illumination.

A general drawback of previous techniques is the loss

of the details from clipping or fading that are more visu-

ally noticeable on dimmed highlighted and shadowed areas.

Qualitatively, although the contrast is overall increased, it

is preferable to maintain locally the initial extrema values

that practically influence the preservation of the local con-

trast. We state that for a perceptually uniform output the

luminance levels have to remain in a certain range with-

out exceeding the original levels of the input color channels

R,G,B. Therefore, the intensity is restricted to remain in

the local range [Min(R,G,B),Max(R,G,B)], securing

that the original grayer, whiter or highlighted and darker or

shadowed regions of the initial color image are preserved

while the contrast is enhanced.

Finally, our decolorized image Idec is the result of blend-

ing the initial luminance intensity L with the amount of

chromatic enhanced luminance Lres computed with equa-

tion 5:

Idec = (Lres + ηL)/(η + 1) (6)



where η is the parameter that controls the mixture ratio

of the initial L and the enhanced luminance Lres val-

ues. We believe that the way η is chosen may create a

bridge between the color opponency and the well-known

Helmholtz-Kohlrausch effect used in other grayscale con-

versions [22]. By selecting higher values (in the default

range η ∈ [0, 2] ) are obtained comparable results as with

Helmholtz-Kohlrausch predictors. To decolorize images

and for enhancing applications we set this parameter to

η = 0.2. For videos, to yield consistent results, an average

value of η = 1.1 is more beneficial. By using this value of

η, the transition artifacts between adjacent frames are mini-

mized while the saliency is well preserved.

Figure 3. Example of reference images. From left to right the

assigned offset angles (HSL color space) are 200
◦, 250◦ and

300
◦.

2.1. Offset Angle Selection

In the following we elaborate on how the offset angle

parameter φ is determined. In order to find the optimal

offset angle, our algorithm requires a dataset of reference

images with an offset angle previously assigned to each im-

age. Based on perceptual preferences by this assignment it

is ensured an offset angle value related with the decolorized

image version that best conserves the saliency.

The reference images may be real images (see Figure 3

for examples) or synthetically generated using patterns of

different color combinations (e.g. red-green, yellow-blue,

red-green-blue, red-green-yellow etc.). The allocated off-

set angle of a reference image is the one associated with

the most preferred decolorized version among all possible

decolorized variants obtained in the entire range 0◦-360◦.

Therefore, in order to simplify the procedure, it is desirable

that this range is compressed as much as possible. Theoret-

ically, a various dataset of reference images would ensure

a more accurate selection of the offset φ since, this would

better reflect the user’s preferences but this would require a

great deal of work to create such a large data set. Using this

additional information, the offset angle of a given image is

determined based on a simple histogram matching opera-

tion with a selection of images from the reference image

database.

After extensive testing (on +4000 images) we found out

that in HSV/HSL color space (κ = 2) the offset angle

mainly needs to cover the 180◦-360◦. Furthermore, we ob-

served that this range can be extremely compressed to the

discrete range of [200◦ ; 250◦ ; 300◦] with minimal loss of

Original image Standard grayscale

Smith et al. [2008] Our result

Our resultStandard grayscaleOriginal image

Figure 4. Saliency preservations. Giving a color image, our ap-

proach, compared with standard grayscale conversion and Smith

et al. [2008], is able to conserve the initial color salient re-

gions (yellow circular regions). Our results have been generated

in HSL using default parameters (κ = 2, γ = 0.7, χ = 0.9,

η = 0.2) while offset angle was set to φ= 200
◦ (top image) and

φ= 250
◦ (bottom image).

accuracy. This feature can be exploited in real time appli-

cation but also for video decolorization since it reduces the

ambiguity in selecting the offset optimal value of the entire

footage.

Instead of considering the entire image in the matching

process, for more accurate results, we developed a simple

yet effective procedure that selects the optimal offset angle

by only taking the most salient regions of the input image

into account. This strategy aims to preserve the main salient

regions (in both color and decolorized images). In order to

identify the salient parts of the image, we have opted for

the well-known method of Itti et al. [13] that embraces sev-

eral biologically plausible steps. The model extracts three

different feature maps that are blended into a final saliency

map: intensity, orientation and color. The color map of this

model is built with the intent of preserving the color oppo-

nency. We believe that other more complex models [15, 17]

that search for the saliency can be applied as well.

Based on this model we first identify the most salient

regions in both the color and the standard grayscale (lu-

minance channel) images . For grayscale images we sup-

pressed the color map of the model [13]. A circular region

is considered to preserve the saliency only if its position re-

mains relatively constant in both versions (color/grayscale)

of the image. We use the default parameters of the model

and restrict to a number of maximum five regions (green

circles). After comparison, the regions with diminished

saliency, seen as regions which lack chromatic contrast, are

easily identified. Practically, the distribution of the hue H
in these regions determines the selection of the offset angle.

(please refer to Figure (1) in the supplementary material for



Original frame Photoshop Smith et at. [2008]

Ours (offset =300) Ours (offset =330) Ours (offset =350)

Figure 5. Video decolorization. From left to right: initial color

frame, standard grayscale (Photoshop), Smith. et al [2008] and

our result for φ values of 300◦, 330◦ and 350
◦.

more details about this straightforward procedure).

The results presented in the paper and in the supplemen-

tary material, used also in the validation, were generated

based on this strategy using the HSV/HSL color space

with the default values of the parameters (κ = 2, γ = 0.7,

χ = 0.9, η = 0.2) and only the discrete range of 3 val-

ues (200◦ , 250◦, 300◦) employed for the selected salient

regions.

3. Applications

Even though designed mainly to effectively decolorize

images we found our operator to be particularly well-suited

for several other challenging applications.

1. Video Decolorization. Seen as an extension of the

image grayscale conversion, decolorizing videos is more

complex due to the temporal coherence that needs to be

preserved between adjacent frames. Firstly, in our algo-

rithm we search in the entire sequence for the color palette

that appears in each image (mostly identified with the static

background). For sequences in which the color palette re-

mains relatively constant, a single offset angle (φ) value

computed for the middle frame, yields pleasant results. For

more challenging cases (e.g. scenes that alternate very dis-

tinctive color palette schemes), the offset φ is precomputed

as an average value of several frames, while constraining its

variation in a certain range. To minimize the details loss,

for the video decolorization task a value of η=1.1 (the other

parameters are set to their default values) yields consistent

outputs. Since this value influences the mean value of the

image, the transition artifacts are minimized.

Compared with the approach of Smith et al. [22](see

Figure 5) our decolorized frames have a higher discrimi-

native chromatic contrast, thus better preserving the initial

saliency. For the entire movie (one of its frames is shown

in Figure 5) the optimal offset angle was fount to be

φ = 300◦. It should be noted that even though a globally

optimal value could be found for the video, there will

always be a trade-off as in some frames different particular

details will be lost. As can be observed in Figure 5, by

increasing the offset angle value (330◦,350◦) even though

the global contrast is enhanced, on a close inspection

some of the details might be lost. For the complete video

sequence and some more challenging video examples the

reader is referred to the supplementary material.
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Initial LDR image Image quality metric

Smith et al. [2006]

Grundland and Dodgson [2007]

Our result

Salient regions

Figure 6. Detail Enhancing. From top to bottom: LDR initial

color image and Aydin et al. [2008] quality metric, details en-

hanced by Smith et al. [2006] , Grundland and Dodgson [2007]

and our enhanced results (HSL color space, κ = 2, γ = 0.7,

χ = 0.9, η = 0.2 and φ=250◦). Notice that our approach is

able to enhance outdoor details while interior details (e.g. curtain

texture) become more visible. The right column shows the image

quality assessment results while the bottom line shows the selected

salient regions when the Itti et al. model is employed with color

map (left image) and after color map was suppressed (right im-

age).



2. Image Detail Enhancing. The main goal of image

enhancement is to emphasize the image features for display

and analysis. As observed by Gooch et al. [10] substituting

the luminance channel with the grayscale conversion and re-

coloring back can yield more pleasant color and grayscale

images for printouts. Due to the continuous grayscale map-

ping and preserving initial details, our technique qualifies

for this operation. The LDR image in Figure 6 was obtained

by tone mapping with the photoreceptor [20] and therefore

the large variations in luminance among regions can not be

solved by employing standard operators (e.g. brightness,

contrast adjustment available in the commercial tools) that

shed details. For this task we employ an iterative coloriz-

ing/decolorizing strategy that starts from the offset angle φ,

computed as presented in the previous section, and succes-

sively blends the resulting luminance after every iteration

with the color that has been corrected. For color correction

we employed the algorithm of Mantiuk et al. [16] while the

rest of the parameters are kept to their default values. As

can be seen, our operator has the potential to manipulate

global chromatic contrast without using additional informa-

tion (e.g. images or hardware). The concept is similar to

the center-surround [4] frequently used by local enhancing

methods, where the mapping varies spatially dependent by

the neighborhood of the pixel. However, our strategy ap-

plies this concept as a global operation employing the same

mapping to all image pixels. Because of the global character

of our operator, the presence of haloing artifacts commonly

associated with local methods are significantly reduced.

An alternative solution [21] is to manipulate the chromi-

nance for detail restoration. In order to measure the quality

of the produced results we opted for the recent metric of

Aydin et al. [2] that identifies three classes of contrast

changes relative to the original image: loss of visible

contrast (green), amplification of invisible contrast (blue)

and reversal of visible contrast (red) (practically [2], green

is related with blurring while blue and red are related with

sharpening operation).

3. Segmentation under Different Illuminants. A known

difficulty in image segmentation is that due to the illumina-

tion variation highly inconsistent outputs are observed. The

recently introduced perceptual color space [7] was designed

to solve the illumination invariance. By only minor adjust-

ments, our operator may represent a decent solution for this

problem. For this particular task, we disable the constraint

of our algorithm that limits the illumination to remain in

the range [Min(R,G,B),Max(R,G,B)]. As presented

in the algorithm section parameter χ controls the global in-

tensity of the images. Therefore, for this task we simply

set χ to the default value (0.9) for the reference image (the

one that is relatively well illuminated) while for the second

image in order to compensate the differences of illumina-

Grundland and Dodgson [2007]

Chong et al. [2008]

Our result (default parameters)GAC++

Our result

Figure 7. Segmentation under different illuminants. Considering

the same image illuminated differently (left-right), the top line dis-

plays results obtained by employing the perceptual color space of

Chong et al. [2008] after they tweaked parameters for GAC++.

Below, the approach of Grundland and Dodgson [2007] yields in-

consistent results. The next two lines show our results with and

without default GAC++ parameters (we kept the same parameters

for our operator). Note that the rounded white object in the left

bottom is correctly unselected in our approaches in comparison

with the others since the foreground color is yellow. Additionally,

the middle opening in the flowers is observed only by our opera-

tor when tweaking the GAC++ parameters. To generate our re-

sults except for the χ we used the default parameters in HSL with

φ=300◦.

tion it varies proportionally with the luminance ratio of two

corresponding points selected from the foreground.

Since the offset (φ) selection depends on the salient

regions, the scene is reliably decolorized while advantaging

objects from the foreground. Running the same algorithm

( the geometric active contour GAC + + 1) for the same

pair of images used in the work of Chong et al. [7],

rendered by varying the light, we obtained comparable

results. The same strategy has been applied for the other

grayscale operators (Figure 7 displays only the results

1http://cvsp.cs.ntua.gr/software/GAC++/



Foggy image Fattal [2008] He et al.[2009] Our result

Figure 8. Image dehazing. The initial foggy image, results of

two specialized priori-based approaches (Fattal [2008], He et al.

[2009]) and our restored output.

of the Decolorize [11] approach). As can be noticed in

Figure 7, we firstly employed the GAC++ algorithm with

default parameters and afterward we applied the GAC ++
with tweaked parameters for the same grayscale images

(the parameters of our operator have been the same as in

the first example).

4. Single Image Dehazing. Solutions to this challenging

problem have been introduced only recently [ 9, 12]. In gen-

eral, the existing strategies succeeded due to strong priors

or assumptions that have been made. We also process only

a single image and due to the contrast enhancement charac-

teristics of our operator, the yielded results are comparable

with the results of such specialized single image dehazing

techniques.

For this task it is assumed that due to atmospheric ab-

sorption and scattering distant surfaces or objects will ap-

pear lighter and less colorful. We used a similar strategy to

the one for the detail enhancement application. The algo-

rithm first identifies the hazed areas by computing the lu-

minance difference between initial image and a processed

version (with the saturation impact factor is set to γ = 2).

The global mapping function is constrained by the color

distribution of different regions. Therefore, manipulating

the contrast difference between the hazed and non-hazed re-

gions the algorithm is able to significantly reduce the degree

of haze. Practically, our technique resembles the polarized

filters used by photographers to reduce such effects.

4. Validation of the Grayscale Operator

Since there is no specialized color-to-gray metric, we

managed a perceptually validation similar as the one per-

formed by Cadik [5]. The evaluation considers in addi-

tion to our technique and CIEY (luminance channel) sev-

eral recently introduced decolorization strategies [3, 10, 19,

11, 18, 22, 14]. For the test 14 volunteers were been in-

volved (9 computer graphics students and researchers and

5 participants with no particular knowledge of computer

graphics techniques) in the group of ages (21-45). Be-
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Figure 9. Statistical interpretation of the perceptual evaluation

results based on ANOVA (p=1.6242E-06, F=5.67).

fore starting the evaluation the grayscale problem has been

briefly introduced to the volunteers (written instructions

were also available during the test). All volunteers had nor-

mal or corrected-to-normal visual acuity and no issues of

the color vision. The participants have been asked to rank

the grayscale images focusing mainly to the overall appear-

ance, details and contrast preservation. All the grayscale

transformations together with the initial color image could

be visualized simultaneously by Cooliris2, a transparent and

very intuitive interface to use.

The images have been visualized on a calibrated 24-inch

LCD monitor (Samsung SyncMaster 245B+) at native reso-

lution in a segregated room where the level of darkness was

maintained approximately constant for all tests. Different

than Cadik’s study [5] (where the test took about 20 min

per observer), the volunteers had the entire control result-

ing in an average time of 90 min per test. The following

ranking strategy has been used: for every set of images the

best four results received high scores (80%, 60%, 40% and

20%) while the rest of them have been classified as accept-

able (scored with 10%) or not acceptable (not scored). The

results have been interpreted statistically using analysis of

variance (ANOVA) [23]. As a general remark, analyzing

the graphic of Figure 9, the method of Smith et al. [22] and

our approach have been ranked as the most perceptually ac-

curate methods. Additionally, as in Cadik’s study it can be

observed that the methods [19, 10, 14] that optimize an ob-

jective function have been classified as less perceptually ac-

curate.

5. Discussion

A common problem of existing color to grayscale con-

versions is the parameters tweaking. Even though seeming

complicated on the first glance, the results shown in this pa-

per and supplementary material (e.g. the entire testing set

2http://www.cooliris.com



of 24 images) have been generated using the default val-

ues of the parameters discussed and motivated in section 2.

The reliability of this automatic function of our operator has

been obtained due to an extensive analysis based on a large

dataset of images. Since psychophysical experiments [6] in-

dicate that (especially) naive observers have large response

variability in chroma-contrast experiments it is comprehen-

sible that decolorization methods need to provide a set of

intuitive parameters to the users. Besides personalized per-

ception, this alternative fulfills creative interpretations. For

example in a natural scene, the shades of gray that portray

a water surface can vary over a considerable range. How-

ever, for such cases we sought for parameters that are robust

against artifacts. The scheme proposed by Smith et al [22]

offers several free parameters to the users, but tuning them

risks to introduce artifacts close to edges (see supplemen-

tary material).

Gooch Decolorize Smith Kim Ours

Optim. 4-5 min - ≈11 sec ≈0.5 sec -

Unoptim. - ≈4 sec - - ≈1 sec

Table 1. Computation times (yielded by authors optimized and un-

optimized codes) obtained for a 800× 600 image.

The runtime of our operator is linearly dependent on the

image resolution and therefore it is computationally effec-

tive being suitable for real-time applications (our Matlab

code decolorizes an 640 × 480 image in approximatelly 1

second). This is an important improvement compared to the

most of the previous approaches (please refer to the table 1).

A limitation of our scheme is the amplification of already

existing artifacts in the images or video frames due to com-

pression. Furthermore, manually adjusting the offset angle

parameter can yield reversed chromatic contrast (e.g. red

may appear darker than green). Our saliency-based strategy

may fail in cases when the employed regions (marked with

green circle) do not reflect the true salient information of

the image. This mainly occurs when specular reflections are

identified as salient regions, but also when the object/region

of interest is not clearly distinct from the background.

6. Conclusions

We presented a straightforward yet effective decoloriza-

tion algorithm that enhances the contrast of the images

while maintaining the initial appearance and quality. Aim-

ing to preserve the original saliency, the monochromatic lu-

minance channel is intensified by mixing both saturation

and hue channels. This yields a new spatial distribution,

which then is re-balanced in order to conserve the amount

of glare impression that characterizes the original version.

Besides effective decolorization our operator shown to be

appropriate as well for several applications. We currently

investigate our operator for scene relighting.

Acknowledgments: The authors would like to thank the

reviewers for the suggestions and Cedric Vanaken, Chris

Hermans, Mark Gerrits and user-study volunteers for their

support.

References

[1] A. Adams. The negative. Little, Brown and Company, 1981. 1

[2] T. O. Aydin, R. Mantiuk, K. Myszkowski, and H.-S. Seidel. Dynamic

range independent image quality assessment. In SIGGRAPH, 2008.

6

[3] R. Bala and R. Eschbach. Spatial color-to-grayscale transform pre-

serving chrominance edge information. In Color Img., 2004. 1, 7

[4] R. Benavente, R. Baldrich, M. Vanrell, and A. Salvatella. Color im-

age enhancement based on perceptual sharpening. In IEEE Int. Conf.

Image. Proc. (ICIP), 2003. 6

[5] M. Cadik. Perceptual evaluation of color-to-grayscale image conver-

sions. Computer Graphics Forum, 27(7), 2008. 7

[6] A. Calabria and M. Fairchild. Perceived image contrast and observer

preference i: The effects of lightness, chroma, and sharpness manip-

ulations on contrast perception. J. of Img. Sc. and Tech., 2003. 2,

8

[7] H. Y. Chong, S. J. Gortler, and T. Zickler. A perception-based color

space for illumination-invariant image processing. SIGGRAPH,

27(3), 2008. 6

[8] M. D. Fairchild. Color Appearance Models, 2nd Ed. Wiley-IS&T,

Chichester, 2005. 2

[9] R. Fattal. Single image dehazing. SIGGRAPH, 27(3):1–9, 2008. 7

[10] A. Gooch, S. C. Olsen, J. Tumblin, and B. Gooch. Color2gray:

salience-preserving color removal. SIGGRAPH, 2005. 1, 2, 3, 6,

7

[11] M. Grundland and N. A. Dodgson. Decolorize: Fast, contrast en-

hancing, color to grayscale conversion. Pattern Recognition, 40(11),

2007. 1, 2, 3, 7

[12] K. He, J. Sun, and X. Tang. Single image haze removal using dark

channel prior. In IEEE CVPR, 2009. 7

[13] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual

attention for rapid scene analysis. IEEE TPAMI, 1998. 3, 4

[14] Y. Kim, C. Jang, J. Demouth, and S. Lee. Robust color-to-gray via

nonlinear global mapping. SIGGRAPH Asia, 2009. 1, 7

[15] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum. Learning to

detect a salient object. In IEEE CVPR, 2007. 4

[16] R. Mantiuk, R. Mantiuk, A. Tomaszewska, and W. Heindrich. Color

correction for tone mapping. In Comp. Graph. Forum, 2009. 6

[17] L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for visual

saliency detection with applications to image thumbnailing. In IEEE

ICCV, 2009. 4

[18] L. Neumann, M. Cadik, and A. Nemcsics. An efficient perception-

based adaptive color to gray transformation. In Proceedings of Com-

putational Aesthetics 2007, pages 73–80, 2007. 2, 7

[19] K. Rasche, R. Geist, and J. Westall. Re-coloring images for gamuts

of lower dimension. Eurographics, 2005. 1, 7

[20] E. Reinhard and K. Devlin. Dynamic range reduction inspired by

photoreceptor physiology. IEEE Trans. Vis. Comp. Graph., 2005. 6

[21] K. Smith, G. Krawczyk, K. Myszkowski, and H.-S. Seidel. Beyond

tone mapping: Enhanced depiction of tone mapped HDR images. In

Computer Graphics Forum, 2006. 6

[22] K. Smith, P.-E. Landes, J. Thollot, and K. Myszkowski. Apparent

greyscale: A simple and fast conversion to perceptually accurate im-

ages and video. Comp. Graph. Forum, 2008. 1, 2, 4, 5, 7, 8

[23] B. G. Tabachnick and L. S. Fidell. Using Multivariate Statistics.

Allyn & Bacon, 5th edition, 2005. 7


