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Abstract
The importance of T-cell-mediated antitumor immunity has been demonstrated in both animal
models and human cancer immunotherapy. In the past 30 years, T-cell-based immunotherapy has
been improved with an objective clinical response rate of up to 72%. Identification of MHC class
I- and II-restricted tumor antigens recognized by tumor-reactive T cells has generated a resurgence
of interest in cancer vaccines. Although clinical trials with cancer peptide/protein vaccines have
only met a limited success, several phase II/III clinical trials are either completed or ongoing with
encouraging results. Recent advances in immunotherapy have led to the approval of two
anticancer drugs (sipuleucel-T vaccine and anti-CTLA-4 antibody) by the US FDA for the
treatment of meta-static castration-resistant prostate cancer and melanoma, respectively.
Intracellular delivery of antigenic peptides into dendritic cells (DCs) prolongs antigen presentation
of antigen-presenting cells to T cells, thus further improving clinical efficacy of peptide/protein
cancer vaccines. Because innate immune responses are critically important to provide sensing and
initiating of adaptive immunity, combined use of cell-penetrating peptide vaccines with
stimulation of innate immune signaling may produce potent anti-tumor immune responses. We
will discuss the recent progress and novel strategies in cancer immunotherapy.

1. INTRODUCTION
The host immune system consisting of innate and adaptive immunity plays an essential role
in immunosurveillance, recognition, and destruction of cancer cells (Schreiber et al., 2011;
Vesely et al., 2011). T cell-mediated antitumor immunity has been demonstrated in murine
tumor models 30 years ago by adoptive transfer experiments (Greenberg, 1991; Rosenberg,
1990; Rosenberg et al., 2008). Recently, adoptive T-cell therapy has been successfully used
to treat many human cancers such as melanoma, renal cell carcinoma, and lymphoma with
varying degrees of tumor regression (Lesterhuis et al., 2011; Rosenberg, 2011; Rosenberg et
al., 2008; Tey et al., 2006). Although CD4+ and CD8+ T cells are the major components of
T-cell-mediated antitumor immunity, natural killer (NK), NK1.1 T (NKT), and γδ T cells
may also play a role in immunosurveillance against cancer (Diefenbach and Raulet, 2001;
Vesely et al., 2011; Wang, 2001). Using tumor-reactive T cells, many immunogenic tumor
antigens have been identified (Boon et al., 1994; Wang and Rosenberg, 1999). Clinical
studies using molecularly defined MHC class I-restricted tumor antigens show that peptide
vaccines can induce antigen-specific immune responses in the patients who received peptide
vaccines, but overall immune responses elicited by the use of CD8+ T-cell peptides are weak
in several early clinical studies. However, several tumor antigens, including gp100 and
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MAGE-3, have been used in phase II and III clinical trials with encouraging results.
Recently, antigen-presenting cells (APCs) loaded with tumor antigens have been approved
by US Federal Food Administration (FDA) for the treatment of prostate cancer. This is an
important milestone in the field of cancer immunology. However, blood APC-based
vaccines require autologous cells from the patients and are expensive ($93,000 for a course
of three treatments) with an average extension of survival of 4.1 months. To further improve
broad application and clinical efficacy of cancer vaccines, we need to develop peptide/
protein-based vaccines as a more broadly applicable and less expensive anticancer drugs.
Further, recent studies have identified several checkpoints or roadblocks for T-cell
activation and function (Callahan et al., 2010; Chambers et al., 2001; Zhu et al., 2011).
These include coinhibitory molecules and other negative regulators in T cells and dendritic
cells (DCs), as well as immune suppression mediated by regulatory T cells (Zhu et al.,
2011). To enhance antitumor immunity, it is necessary to remove these roadblocks so that T
cells can be fully activated and to mediate the eradication of cancer cells through modulating
innate immune signaling. Importantly, anti-CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4) antibody therapy has a proven therapeutic effect on metastatic melanoma and has
recently been approved by US FDA for the treatment of metastatic melanoma (Hodi et al.,
2010; Royal et al., 2010). With encouraging results of clinical trials and FDA approval of
two anticancer immunotherapy drugs, development of synthetic peptide/protein-based
cancer vaccines will be the next frontline in the field of cancer immunotherapy and vaccines.
In this chapter, we discuss a novel strategy for enhancing antitumor immune responses by
intracellular delivery of peptides into DCs and stimulation of innate immune signaling to
overcome immune suppression.

2. ADOPTIVE CELL THERAPY: HISTORY AND RECENT PROGRESSES
2.1. LAK and cytokine-induced killer cell therapy

In the early 1980s, lymphocyte-activated killer (LAK) cells were first used in mouse models
and human cancer patients (Grimm et al., 1982; Muul et al., 1987). LAK cells are generated
from the peripheral blood mononuclear cells (PBMCs) following ex vivo expansion in the
presence of interleukin (IL)-2 and are capable of killing fresh tumor cells without
requirement of MHC restriction. Clinical studies show modest efficacy against melanoma
and renal carcinoma cancer (Rosenberg et al., 1987; Takayama et al., 2000). In the early
1990s, cytokine-induced killer (CIK) cells are generated from PBMCs in the presence of
interferon (IFN)-γ on day 0, followed by adding anti-CD3 and IL-2 on day 1, with
continued addition of IL-2 during 21–28 days of culture (Schmidt-Wolf et al., 1991). These
CD3+ CD56+ CIK cells are converted from CD3+ CD56− cells and expanded up to 1000-
fold after 21–28 days with mixed cell populations (2% NK cells, and >90% CD3 and CD56+

T cells) and show strong cytotoxicity against many tumor cell targets without MHC
restriction (Linn et al., 2002). Thus, these cells may function similar to NK-like T cells. It is
not clear how they recognize tumor targets and what antigens they recognize on tumor cells.
Although CIK cells have been tested in a clinical setting for a variety of cancers, data on the
efficacy of CIK therapy are limited. The first report of the international registry on CIK
treatment of 426 patients shows that a large-scale expansion of CIK cells ex vivo is possible
and cell infusion is safe (Hontscha et al., 2011). The clinical response rate of CIK is 51/384
(13%) with complete and partial responses, 40/384 (10%) with minor response, and 161/384
(42%) with a stable disease (Hontscha et al., 2011). Several groups report that combination
of CIK or tumor-infiltrating lymphocyte (TIL) with chemotherapy produces better clinical
response rates and reduces the percentage of relapse compared with chemotherapy alone
(Dudley et al., 2002; Jiang et al., 2005). With encouraging clinical evidence of CIK therapy,
it is important to conduct randomized clinical trials to determine the clinical benefit of
cancer patients who receive CIK alone, chemotherapy alone, and CIK plus chemotherapy in
the near future.
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2.2. Adoptive T-cell therapy with TILs
Adoptive cell therapy (ACT) with TILs has emerged as the most effective treatment for
patients with metastatic melanoma. TIL-based therapy was first reported in 1988, and
clinical studies with TIL plus IL-2 showed 34% objective response rate compared with 16%
clinical response with IL-2 alone (Rosenberg, 2000; Rosenberg et al., 1988, 1994).
Importantly, ACT with TILs has been dramatically improved for clinical efficacy by
introducing treatment with a nonmyeloablative preparative immunodepleting regimen
consisting of cyclophosphamide and fludarabine before T-cell infusion (Dudley et al., 2002).
Objective clinical response rates have been observed in 49–72% of patients with metastatic
melanoma refractory to all other treatments (Rosenberg, 2011; Rosenberg et al., 2008). This
regimen depletes circulating lymphocytes as well as those at tumor sites for a week before
host hematopoietic cell recovery, thus likely removing suppressive Treg cells and allowing
antitumor T cells to survive and expand in patients after adoptive transfer. The unique
features of ACT are that clinical responses can be durable (>5 years) and low percentages of
relapse (Rosenberg et al., 2011). More recently, whole body irradiation was added to the
cyclophosphamide and fludarabine lymphodepleting preparative regimen before adoptive T-
cell transfer. These further modifications result in the highest objective clinical responses in
all patients receiving treatment (Wrzesinski et al., 2010). However, because the difficulties
associated with generation and expansion of TILs derived from tumor tissues and variable
availability of such tumor tissues in cancer patients, ACT with autologous TILs is not
suitable for many cancer patients, in particular, those with cancer other than melanoma. The
success rate for generating TILs from other types of cancer is much lower than that seen in
melanoma. Thus, use of T cells transduced with retro-viruses or lentiviruses encoding T-cell
receptors (TCRs) that recognized tumor antigens or with genes encoding cytokines or
costimulatory molecules has made ACT available for patients with different types of cancer.
Alternatively, these peripheral T cells will be stimulated with antigenic peptides to generate
antigen-specific T cells. This approach has been successfully used to treat lymphoma and
melanoma with antigen-specific T cells (Hunder et al., 2008; Leen et al., 2006; Wolf et al.,
2003; Yee et al., 2000, 2002). Despite impressive clinical response rates of ACT in cancer
therapy in phase I/II clinical studies, so far no ACT treatment has been approved as an
anticancer drug. This may be due to difficulties in patentability of many immunotherapeutic
strategies or technologies, individualized treatment associated with high costs, and lack of
funding and interests by the pharmaceutical companies. However, with recent successes and
promising clinical results, ACT or other immune cell transfer therapies are likely to move
into phase III trials and obtain FDA approval as anticancer drugs.

3. APC-BASED VACCINES: THE FIRST FDA APPROVED DRUG FOR
PROSTATE CANCER

Professional APCs such as DCs can potently induce antigen-specific T cells. DC loaded
with cancer antigens or tumor lysates has been used to vaccinate cancer patients with limited
success. However, the US FDA recently approved the first therapeutic cancer vaccine drug
(Provenge, Dendreon) for the treatment of metastatic castration-resistant prostate cancer.
The sipuleucel-T vaccines consist of blood APCs, including monocytes and DCs, loaded
with a fusion protein (PA2024) of the prostate antigen prostatic acid phosphatase linked to
an immunostimulatory granulocyte–macrophage colony-stimulating factor. Although tumor
regressions, radiographic, and prostate-specific antigen responses occurred very rarely, an
overall survival benefit of 4.1 months was observed for the sipuleucel-T group versus the
placebo group. This constitutes an important milestone in the field of cancer
immunotherapy. However, because of the individual patient-specific nature and the high
cost of this treatment ($93,000 for three infusions), it is very challenging to implement this
treatment in the large eligible patient population. Direct in vivo targeting and activation of
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DC with broadly injectable immunogens for cancer treatment are desirable. Moreover, the
clinical efficacy of cancer vaccines remains to be improved. To achieve this purpose, the
most appropriate tumor antigens and/or immune targets for immunotherapy of distinct
cancer types need to be identified.

4. TUMOR ANTIGENS RECOGNIZED BY TUMOR-REACTIVE T CELLS
4.1. Tumor antigens recognized by CD8+ T cells

In 1991, the first human tumor antigen was identified by screening cDNA expression library
with tumor-reactive CD8+ T cells (Van der Bruggen et al., 1991). Since then, many tumor
antigens have been identified using T cells with antitumor activity (Table 6.1). These tumor
antigens can be classified into several types: (1) tissue-specific tumor antigens with higher
expression in cancer cells compared with normal cells; (2) tumor-specific and shared
antigens that are expressed in cancer and testis, but not in other normal tissues; (3) tumor-
specific and unique antigens. Some of them, including gp100, MAGE-3, and NY-ESO-1,
have been testing in phase II/III clinical trials with encouraging results. It should be noted
that chronic infection or chronic inflammation has caused about 20% of human cancers
(Coussens and Werb, 2002; De Marzo et al., 2007). Epstein–Barr virus (EBV), a human
gamma herpesvirus with tropism for B cells, has been implicated in the pathogenesis of a
variety of human tumors, including immunoblastic lymphoma, Burkitt lymphoma,
nasopharyngeal carcinoma, and Hodgkin disease (Leen et al., 2007; Young and Rickinson,
2004). Infection with oncogenic human papilloma virus (HPV) is causally linked to the
development of cervical cancer (Melief and van der Burg, 2008). Hepatitis B virus (HBV)
and HCV infection of liver cells is a primary factor in the development of liver cancer
(Coussens and Werb, 2002; Karin et al., 2006; Peto, 2001). Viral antigens derived from
EBV, HPV, and HBV are not the subject of this review but have been extensively used to
develop prophylactic and therapeutic vaccines against viral infection and cancer (Huang et
al., 2011; Kwak et al., 2011; Long et al., 2011; van der Burg and Melief, 2011).

4.2. Tumor antigens recognized by CD4+ Th and Treg cells
Given the importance of CD4+ T cells in antitumor immunity, it is critical to identify MHC
class II-restricted tumor antigens capable of stimulating CD4+ Th cells. There are several
strategies to identify MHC class II antigens recognized by CD4+ T cells: (1) genetic
targeting expression (GTE) system using tumor-reactive human T cells isolated from
patients with cancer or other immune-related diseases, (2) use of HLA-DR transgenic (Tg)
mice for identification of MHC class II-restricted antigens in vivo, (3) peptide stimulation in
vitro using candidate antigens over-expressed in cancer cells. Many tumor antigens capable
of stimulating CD4+ T cells have been identified (Table 6.2).

4.2.1. GTE system—We have developed GTE system for identification of antigens
recognized by CD4+ T cells (Wang and Rosenberg, 1999; Wang et al., 1999a, b). The GTE
system comprises two essential components: (A) generation of a highly transfectable
HEK293IMDR cell line and (B) the creation of an Ii fusion library from tumor cells such
that the Ii fusion proteins are targeted to the endosomal/lysosomal compartment for efficient
antigen processing and presentation for T-cell recognition (Wang and Rosenberg, 1999;
Wang et al., 1999b). Using this system, many tumor antigens have successfully been
identified. For example, we identified a mutated fibronectin as a tumor antigen recognized
by HLA-DR2-restricted CD4+ T cells. A mutation in this gene results in the substitution of
lysine for glutamic acid and gives rise to a new T-cell epitope recognized by CD4+ T cells
(Wang et al., 2002b). Analysis of cytokine profiles and suppressive activity of these T cells
reveal that they are CD4+ Th1 cells, secreting IFN-γ and IL-2, but no suppressive function.
Because elevated percentage of CD4+ Treg cells are present in tumor tissues, we have
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recently generated many such tumor/antigen-specific CD4+ Treg cell clones from TILs in
surgically removed tumor samples. Using the same strategy for Th1 cells, we identified
LAGE1 and ARTC1 as antigenic ligands for CD4+ Treg cells, providing direct evidence that
antigen-specific CD4+ Treg cells are present at tumor sites and mediate antigen-specific and
local immune suppression of antitumor immunity (Wang et al., 2004, 2005).

4.2.2. Use of HLA-DR Tg mice and in vitro peptide stimulation—MHC class II-
restricted epitopes can be identified by using HLA-DR Tg mice in combination peptide
stimulation in vitro. HLA-DR4 Tg mice were used to identify CD4+ T-cell epitopes from
candidate antigens (Touloukian et al., 2000; Zeng et al., 2000). HLA-DR Tg mice might
have advantages for identifying putative peptides, as they should have a high precursor
frequency of antigen-specific T cells after immunization. Once candidate peptides are
known, one can generate antigen-specific CD4+ T cells from human PBMCs stimulated with
synthetic candidate peptides. Therefore, the combined use of immunization of DR Tg mice
with the intact protein antigens and stimulated with the peptides predicted by a computer-
assisted algorithm may avoid the need to stimulate human PBMCs with a large number of
peptides. NY-ESO-1 is a potent immunogen recognized by both antibody and T cells (Chen
et al., 1997; Jager et al., 1998; Wang et al., 1998b). Of particular interest is that 10–13% of
patients with advanced cancer developed a high titer of antibody (Stockert et al., 1998; Zeng
et al., 2000). We identified a T-cell epitope presented by HLA-DP4, a predominant allele
expressed in 40–70% of the population (Zeng et al., 2001). Identification of DP4-restricted
T-cell peptides from MAGE-3 and NY-ESO-1 could be of great benefit for more than 50%
of patients with cancer. These studies suggest that, unlike LAGE-1, NY-ESO-1 may
preferentially activate CD4+ Th cells. However, a recent study shows that NY-ESO-1 can
also induce Treg cells (Vence et al., 2007). Interestingly, several MHC class II peptides
recognized by CD4+ T cells have been identified from EBNA1 as well as other viral
antigens (Bickham et al., 2001; Leen et al., 2001; Munz et al., 2000; Paludan and Munz,
2003; Voo et al., 2002). T-cell peptides derived from EBV viral antigens are capable of
stimulating CD4+ Th1 and Treg cells (Marshall et al., 2003; Voo et al., 2005). It appears that
the same T-cell epitope from EBNA1 can stimulate both Th1 and Treg cells (Voo et al.,
2005). Thus, it is likely that both tumor and viral antigens can activate effector and Treg
cells, depending on particular epitope affinity and cytokine milieu. Although IL-17-
producing T (Th17) cells are present in many human cancer tissues, very little is known
about their antigen specificity. In particular, the role of Th17 cells in cancer immunity and
tumor progression is not clear and requires further study.

5. CURRENT PROGRESSES OF SYNTHETIC PEPTIDE VACCINES
Identification of these MHC class I-restricted antigens has set the stage for developing
peptide-based cancer vaccines, although some evidence for a therapeutic effect on tumor
growth inhibition and regression was observed in patients who received peptide vaccines
(Marchand et al., 1999; Rosenberg et al., 1998). However, objective complete clinical
responses were sporadic, even though CTL reactivity was clearly evident after one round of
stimulation in vitro of PBMC from the majority of vaccinated patients (Rosenberg et al.,
2004). Analysis of the infiltrating lymphocytes in skin and tumor biopsies using T-cell-
specific peptide–major histocompatibility complex tetramers showed generation of antigen-
specific CD8+ T cells (Yee et al., 2000). Recently, a multicenter phase II clinical trial of
melanoma patients with gp100 peptide with or without IL-2 shows that the gp100 peptide
vaccine plus IL-2-treated group had a significant improvement in overall clinical response
compared with the IL-2-only group (16% vs. 6%) as well as longer progression-free survival
(Schwartzentruber et al., 2011). The median overall survival was also improved in the gp100
peptide vaccine plus IL-2 group compared to the IL-2-only group (17.8 vs. 11.1 months).
Similarly, MAGE-3 peptide/protein vaccines are ongoing in phase III clinical trials (Bilusic
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and Madan, 2011; Cecco et al., 2011). The clinical efficacy of peptide vaccines may be
further improved by the use of DCs loaded with cancer peptides or by the use of synthetic
long peptides harboring both CD4 and CD8 T-cell epitopes (Melief and van der Burg, 2008;
Chapters 3 and 4). A major challenge in cancer vaccine development is how to generate
strong and long-lasting antitumor immunity through optimal delivery of well-chosen tumor-
associated antigens.

6. ENHANCING ANTITUMOR IMMUNITY BY INTRACELLULAR DELIVERY OF
PEPTIDES INTO DCs

Although mature DCs are more potent than immature DCs in priming and eliciting T-cell
responses (Apetoh et al., 2011; Delamarre and Mellman, 2011; Tacken and Figdor, 2011),
they lose the ability to efficiently take up exogenous antigens, particularly for MHC class II-
restricted antigens (Banchereau and Steinman, 1998). As a result, peptide-pulsed DCs as
vaccines have several limitations. For example, peptide degradation, rapid MHC class I
turnover, and the disassociation of peptide from MHC class I molecules during the
preparation and injection of DC/peptides may result in short half-lives of MHC class I/
peptide complexes on the DC surface, leading to weak T-cell responses. We developed a
novel strategy to overcome these problems by the use of cell-penetrating peptides (CPPs) for
intracellular delivery of cancer peptides into DCs (Wang and Wang, 2002; Wang et al.,
2002a). Intracellular delivery of peptides into DCs could allow DCs to continuously process
and present the internalized peptides to T cells for an extended period of time. Several
potent CPPs have been identified from proteins, including the Tat protein of human
immunodeficiency virus, the VP22 protein of herpes simplex virus, and fibroblast growth
factor (Berry, 2008; Deshayes et al., 2005; Edenhofer, 2008; Gupta et al., 2005; Torchilin,
2006), although some long synthetic peptides can also penetrate selectively into DCs (Melief
and van der Burg, 2008). Among them, the 11-mer TAT peptide (YGRKKRRQRRR) and
other CPPs have been well studied for the transduction of biologically active proteins into
cells both in vitro and in vivo (Gupta et al., 2005). We found that both CPP1-TRP2 or TAT-
TRP2 peptides can translocate intracellularly into mature DCs and prolong DCs to process
the internalized peptides and to present MHC–peptide complexes to antigen-specific T cells
(Wang and Wang, 2002; Wang et al., 2002a). Immunization of mice with DCs transduced
with CPP1-TRP-2 or TAT-TRP2 resulted in complete protection against B16 tumor as well
as significant inhibition of the preestablished B16 tumor (Wang and Wang, 2002; Wang et
al., 2002a). Although both DC/TRP2 and DC/TAT-TRP2 immunization increased the
number of TRP2-specific CD8+ T cells detected by Kb/TRP2 tetramers, T-cell activity
elicited by DC/TAT-TRP2 was 3- to 10-fold higher than that induced by DC/TRP2 (Wang
et al., 2002a). Consistent with previous studies showing that CD4+ T cells are required for
an antitumor effect, our studies show a similar requirement for DC/TAT-TRP-2-induced
antitumor immunity, suggesting that both CPP1- and TAT-mediated antigen delivery of a
self-peptide may have general applications for enhancing T-cell-based cancer therapy, and
CD4+ T-cell response is required for generating optimal antitumor immunity. More recently,
we initiated a phase I clinical trial for prostate cancer using TAT-NY-ESO-1 peptides.
Clinical studies show that TAT-NY-ESO-1 peptide vaccines are safe and induced antigen-
specific T-cell responses (R.-F.W. Guru Sonpavde and Teresa G. Hayes, unpublished data).

7. ENHANCING IMMUNE RESPONSES AND BLOCKING IMMUNE
SUPPRESSION BY STIMULATION OF INNATE IMMUNE RECEPTORS
7.1. Innate immune receptors and signaling

Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and
AIM-2-like receptors have emerged as innate pattern recognition receptors (PRRs) that can
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detect a variety of invading pathogens and intracellular ligands, thus serving as a first line of
defense against infectious pathogens and cancer. These germline-encoded PRRs are
expressed in DCs and other immune cells, and can recognize structure-conserved molecules,
such as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs). Recognition of PAMPs or DAMPs by PRRs triggers the activation of
several key signaling pathways, including NF-κB, type I IFN, and inflammasome, leading to
the production of inflammatory cytokines, which, in turn, promote DC maturation programs
for the induction of adaptive immune responses (Iwasaki and Medzhitov, 2004; Takeda and
Akira, 2005). TLRs are expressed on the cell surface (TLR1, TLR2, TLR4, and TLR5) or in
the endosome (TLR3, TLR7, TLR8, and TLR9). By contrast, several intracellular PRRs
such as RIG-I and MDA5 are in the cytoplasm and responsible for the recognition of
invading viruses (Akira et al., 2006; Kato et al., 2005; Yoneyama et al., 2004). NLRs
represent a large family of protein receptors/regulators harboring an initiating signal domain,
such as the caspase recruitment domain (CARD), pyrin domain (PYRIN) or baculovirus
inhibitor-of-apoptosis repeat (BIR) domain, a nucleotide-binding oligomerization domain
(NOD), and an LRR domain. Activation of such cytoplasmic receptors by invading
pathogens including bacteria and viruses activates inflammasome consisting of caspase-1
and ASC and leads to the production of proinflammatory cytokines such as IL-1b and IL-18.
Thus, TLRs, NLRs, and RLRs are critical in bridging innate and adaptive immune responses
by activating several key signaling pathways and in producing many important cytokines as
mediators. Thus, they represent a potent means of modulating immune responses in cancer
immunotherapy. Both natural and synthetic ligands for TLRs and RLRs have been identified
and characterized for their recognition, but only a limited number of ligands have been
identified for NLRs. These ligands of PRRs, in particular TLRs, have been used as potent
vaccine adjuvants to enhance immune responses. The most significant development of
cancer vaccine studies is to include various TLR agonists to vaccine formulations, including
TLR-3 (poly I:C), TLR-4 (monophosphoryl lipid A; MPL), TLR-5 (flagellin), TLR-7
(imiqui-mod), and TLR-9 (CpG) (Duthie et al., 2011). The types of signaling and cytokines
by immune cells after TLR stimulation control CD4+ T-cell differentiation into Th1, Th2,
Th17, and Treg cells. However, stimulation of immune cells such as DCs and T cells by
most TLR-based adjuvants produces proinflammatory cytokines and promotes Th1 and
CD8+ T responses (Manicassamy and Pulendran, 2009).

7.2. Blocking negative regulators of innate immune signaling
Although innate immune responses are critically important as sensors to induce adaptive
immunity, tight regulation of innate signaling pathways is essential for both innate and
adaptive immunities; otherwise, aberrant immune responses may occur, leading to severe or
even fatal consequences. Similarly, DC maturation and activation are controlled by both
positive and negative regulators, thus leading to immunity or tolerance induction. To
generate potent antitumor immunity, we need to block negative regulators in immune cells
such as DCs and T cells. For example, A20-silenced DCs produce potent antitumor
immunity (Song et al., 2008). We recently identified several negative regulators (NLRC5
and NLRX1) that inhibit NF-κB and type I IFN signaling (Cui et al., 2010; Xia et al., 2011).
Similarly, several key negative regulators such as CTLA-4 and programmed cell death 1
(PD-1) play a critical role in the inhibition of T-cell activation. Blockade of CTLA-4 and/or
PD-1 results in T-cell activation and enhances nonspecific immune responses (Chambers et
al., 2001; Zhu et al., 2011). These antibody-based immunotherapies are currently under
active clinical trials (Callahan et al., 2010), and anti-CTLA-4 antibody therapy has been
approved by US FDA for the treatment of metastatic melanoma (Hodi et al., 2010).
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7.3. Overcoming Treg cell-mediated immune suppression by TLR signaling
As Treg cells have accumulated in the tumor microenvironment, it is necessary to develop
novel strategies to overcome this type of immune suppression; otherwise, the immune
response induced by cancer vaccines will be weak and transient. To block immune
suppression mediated by Treg cells, we found that TLR8 ligands (ssRNA40 and Poly-G10
oligonucleotides) can directly reverse the suppressive function of human (but not murine)
Treg cells in the absence of DCs. Using RNA interference technology, we identified the
TLR8–MyD88 signaling pathway that is required for the reversal of Treg cell function by
Poly-G oligonucleotides (Peng et al., 2005). More importantly, we demonstrated that the
suppressive function of CD8+ Treg cells and γδ-TCR Treg cells can also be reversed after
Poly-G oligonucleotide treatment (Kiniwa et al., 2007; Peng et al., 2007), suggesting that
these cells share a common TLR8 signaling-mediated mechanism. Recent studies show that
TLR2 ligands can reverse the suppressive function of human Treg cells (Nyirenda et al.,
2011; Oberg et al., 2010). However, murine TLR2-deficient mice reduce the number of
CD4+ CD25+ Treg cells (Netea et al., 2004). Activation of TLR2 with its ligand (Pam3Cys)
directly increases the proliferation of murine Treg cells and transiently reverses their
suppressive function (Liu et al., 2006; Sutmuller et al., 2006). However, engagement of
TLR2 with polysaccharide A of Bacteroides fragilis enhances the suppressive function of
Treg cells (Round et al., 2011). These studies demonstrated that TLR signaling is critically
important in modulating immune responses.

8. CONCLUSIONS
In the past 30 years, significant progress has been made in the field of cancer
immunotherapy. While clinical validation and development has been slow, recent approval
of two immunotherapy drugs (sipuleucel-T and anti-CTLA-4 antibody) has boosted the
development of immunotherapy as important and promising treatment of patients with
cancer. As ACT is the most powerful treatment of cancer with up to 72% objective clinical
response rate, it is important to move forward with phase III clinical trials with tumor-
specific T cells and CIK effector cells. Like APC-based therapy, the limitation of ACT is
individualized medicine, and it is very challenging to broaden its application with
retroviruses or lentiviruses expressing antigen-specific TCR. For these reasons, development
of peptide/protein cancer vaccines has great potential. With encouraging results from recent
multicenter clinical trials with gp100 and MAGE-A3, many therapeutic companies will step
in the field and develop therapeutic peptide cancer vaccines for many types of cancer. The
key issues will be how to further improve immune responses and clinical efficacy of peptide
cancer vaccines. To achieve this goal, (1) we need to develop in vivo targeted delivery of
peptides into APCs such as DCs with CPPs-linked cancer peptides (long peptide)/proteins,
or nanoparticles; (2) we need to overcome immune suppression mediated by Treg cells and
other immune cells; (3) importantly, peptide vaccines should be combined with strategies
that block negative regulators or immune suppression to achieve maximal antitumor
immunity and clinical responses. However, because immune responses measured in the
blood do not necessarily correlate with clinical efficacy or survival, it is important to probe
the reasons for these clinical observations. Because pretreatment of patients with
chemodepleting regimens improves the clinical benefit of ACT, it is reasonable to believe
that combined use of immunotherapy with chemotherapy can enhance immune responses
and clinical outcomes. Recent advances and rapid progress in the field of cancer
immunotherapy represent an unprecedented opportunity for the development of therapeutic
cancer vaccines in the next few years.
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TABLE 6.1

Tumor antigens recognized by CD8+ T cells

Antigens MHC class I restrictions Peptide epitopes References

Tissue-specific antigens

gp100 A2 KTWGQYWQV Bakker et al. (1994)

A2 AMLGTHTMEV Tsai et al. (1997)

A2 MLGTHTMEV Tsai et al. (1997)

A2 SLADTNSLAV Tsai et al. (1997)

A2 ITDQVPFSV Kawakami et al. (1995)

A2 LLDGTATLRL Kawakami et al. (1994a)

A2 YLEPGPVTA Cox et al. (1994)

A2 VLYRYGSFSV Kawakami et al. (1995)

A2 RLMKQDFSV Kawakami et al. (1998)

A2 RLPRIFCSC Kawakami et al. (1998)

A3 LIYRRRLMK Kawakami et al. (1998)

A3 ALNFPGSQK Kawashima et al. (1998)

A3 SLIYRRRLMK Kawashima et al. (1998)

A3 ALLAVGATK Skipper et al. (1996)

A24 VYFFLPDHL Robbins et al. (1997)

A*6801 HTMEVTVYHR Sensi et al. (2002)

B*3501 VPLDCVLYRY Benlalam et al. (2003)

Cw8 SNDGPTLI Castelli et al. (1999)

MART-1/Melan-A A2 AAGIGILTV Coulie et al. (1994), Kawakami et al. (1994b)

A2 ILTVILGVL Castelli et al. (1995)

A2 EAAGIGILTV Schneider et al. (1998)

B45 AEEAAGIGIL Schneider et al. (1998)

gp75/TRP-1 A31 MSLQRQFLR Wang et al. (1996b)

TRP-2 A2 SVYDFFVWL Parkhurst et al. (1998)

A2 TLDSQVMSL Noppen et al. (2000)

A31 LLGPGRPYR Wang et al. (1996a)

A33 LLGPGRPYR Wang et al. (1998a)

A68 EVISCKLIKR Lupetti et al. (1998)

Cw8 ANDPIFVVL Castelli et al. (1999)

Tyrosinase A1 KCDICTDEY Kittlesen et al. (1998)

A1 SSDYVIPIGTY Kawakami et al. (1998)

A2 YMDGTMSQV Wolfel et al. (1994)

A2 MLLAVLYCL Wolfel et al. (1994)

A24 AFLPWHRLF Kang et al. (1995)

B44 SEIWRDIDF Brichard et al. (1996)

B*3501 TPRLPSSADVEF Benlalam et al. (2003)

Tumor-specific shared antigens

BAGE Cw16 AARAVFLAL Boel et al. (1995)
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Antigens MHC class I restrictions Peptide epitopes References

CAMEL A2 MLMAQEALAFL Aarnoudse et al. (1999)

MAGE-A1 A1 EADPTGHSY Traversari et al. (1992)

A3 SLFRAVITK Chaux et al. (1999a)

A24 NYKHCFPEI Fujie et al. (1999)

A28 EVYDGREHSA Chaux et al. (1999a)

B37 REPVTKAEML Tanzarella et al. (1999)

B53 DPARYEFLW Chaux et al. (1999a)

Cw2 SAFPTTINF Chaux et al. (1999a)

Cw3 SAYGEPRKL Chaux et al. (1999a)

Cw16 SAYGEPRKL Van der Bruggen et al. (1994b)

MAGE-A2 A2 KMVELVHFL Visseren et al. (1997)

A2 YLQLVFGIEV Visseren et al. (1997)

A24 EYLQLVFGI Tahara et al. (1999)

B37 REPVTKAEML Tanzarella et al. (1999)

MAGE-A3 A1 EADPIGHLY Gaugler et al. (1994)

A2 FLWGPRALV Van der Bruggen et al. (1994a)

A24 TFPDLESEF Oiso et al. (1999)

A24 IMPKAGLLI Tanaka et al. (1997)

B44 MEVDPIGHLY Fleischhauer et al. (1995), Herman et al. (1996)

B52 WQYFFPVIF Russo et al. (2000)

B37 REPVTKAEML Tanzarella et al. (1999)

B*3501 EVDPIGHLY Benlalam et al. (2003)

MAGE-A4 A2 GVYDGREHTV Duffour et al. (1999)

MAGE-A6 A34 MVKISGGPR Zorn and Hercend (1999)

B37 REPVTKAEML Tanzarella et al. (1999)

B*3501 EVDPIGHVY Benlalam et al. (2003)

MAGE-A10 A2 GLYDGMEHL Huang et al. (1999)

MAGE-A12 Cw7 VRIGHLYIL Heidecker et al. (2000), Panelli et al. (2000)

NY-ESO-1 A2 SLLMWITQCFL Jager et al. (1998)

A2 SLLMWITQC Jager et al. (1998)

A2 QLSLLMWIT Jager et al. (1998)

A31 ASGPGGGAPR Wang et al. (1998b)

B*3501 MPFATPMEA Benlalam et al. (2003)

SSX-2 A2 KASEKIFYV Ayyoub et al. (2002)

Tumor-specific unique antigens

β-Catenin A24 S YLDSGIHF Robbins et al. (1996)

Caspase-8 B35 FPSDSWCYF Mandruzzato et al. (1997)

CDK-4 A2 ACDPHSGHFV Wolfel et al. (1995)
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TABLE 6.2

MHC class II-restricted melanoma antigens recognized by CD4+ T cells

Tumor antigens HLA restrictions Peptides References

Mutated/fusion antigens

TPI HLA-DR1 GELIGILNAAKVPAD Wang et al. (1999a), Pieper et al. (1999)

LDFP HLA-DR1 PVIWRRAPA Wang et al. (1999b)

HLA-DR1 WRRAPAPGA Wang et al. (1999b)

CDC27 HLA-DR4 FSWAMDLDPKGA Wang et al. (1999a)

Fibronectin HLA-DR2

PSVGQQMIFEKHGFRRTTPP Wang et al. (2002b)

Neo-PAP HLA-DR7 RVIKNSIRLTL Topalian et al. (2002)

ARTC1 HLA-DR1 YSVYFNLPADTIYTN Wang et al. (2005)

Nonmutated antigens

Tyrosinase HLA-DR4 QNILLSNAPLGPQFP Topalian et al. (1996)

HLA-DR4 SYLQDSDPDSFQD Topalian et al. (1996)

HLA-DR15 FLLHHAFVDSIFEQWLQRHRP Kobayashi et al. (1998)

gp100 HLA-DR4 WNRQLYPEWTEAQRLD Touloukian et al. (2000)

HLA-DR7 GPTLIGANASFSIALN Kobayashi et al. (2001a)

HLA-DR7/DR53 TGRAMLGTHTMEVTVYH Lapointe et al. (2001), Kobayashi et al. (2001a)

HLA-DR7 SLAVVSTQLIMPGQE Kobayashi et al. (2001a)

MART-1 HLA-DR4 RNGYRALMDKSLHVGTQCALTRR Zarour et al. (2000)

MAGE-A1 HLA-DR13 LLKYRAREPVTKAE Chaux et al. (1999a)

MAGE-A2 HAL-DR1 LLKYRAREPVTKAE Chaux et al. (1999a)

MAGE-3 HLA-DR11 TSYVKVLHHMVKISG Manici et al. (1999)

HLA-DR13 AELVHFLLLKYRAR Chaux et al. (1999b)

HLA-DR13 FLLLKYRAREPVTKAE Chaux et al. (1999b)

HLA-DP4 TQHFVQENYLEY Schultz et al. (2000)

HLA-DR1, 4, 7, 11 FFPVIFSKASSSLQL Kobayashi et al. (2001b)

HLA-DR1, 4, 11 RKVAELVHFLLLKYR Consogno et al. (2003)

MAGE-A6 HLA-DR13 LLKYRAREPVTKAE Chaux et al. (1999a)

LAGE1 HLA-DR13 RLLQLHITMPFSS Wang et al. (2004)

CAMEL HLA-DR11/12 PWKRSWSA Slager et al. (2003)

NY-ESO-1 HLA-DR4 LPVPGVLLKEFTVSGNILTI Zeng et al. (2000)

HLA-DP4 WITQCFLPVFLAQPPSGQRR Zeng et al. (2001)

hTRT HLA-DR7 RPGLLGASVLGLDDI Schroers et al. (2002)

Eph HLA-DR11 DVTFNIACKKCG Chiari et al. (2000)

Note: Amino acid sequence in bold stands for mutated or core sequence for recognition.
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