
218 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

Enhancing Collaborative Filtering by User Interest
Expansion via Personalized Ranking
Qi Liu, Enhong Chen, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE,

Chris H. Q. Ding, Member, IEEE, and Jian Chen, Fellow, IEEE

Abstract—Recommender systems suggest a few items from
many possible choices to the users by understanding their past
behaviors. In these systems, the user behaviors are influenced
by the hidden interests of the users. Learning to leverage the
information about user interests is often critical for making better
recommendations. However, existing collaborative-filtering-based
recommender systems are usually focused on exploiting the in-
formation about the user’s interaction with the systems; the in-
formation about latent user interests is largely underexplored.
To that end, inspired by the topic models, in this paper, we pro-
pose a novel collaborative-filtering-based recommender system by
user interest expansion via personalized ranking, named iExpand.
The goal is to build an item-oriented model-based collaborative-
filtering framework. The iExpand method introduces a three-
layer, user–interests–item, representation scheme, which leads to
more accurate ranking recommendation results with less compu-
tation cost and helps the understanding of the interactions among
users, items, and user interests. Moreover, iExpand strategically
deals with many issues that exist in traditional collaborative-
filtering approaches, such as the overspecialization problem and
the cold-start problem. Finally, we evaluate iExpand on three
benchmark data sets, and experimental results show that iExpand
can lead to better ranking performance than state-of-the-art meth-
ods with a significant margin.

Index Terms—Collaborative filtering, latent Dirichlet allocation
(LDA), personalized ranking, recommender systems, topic model.

I. INTRODUCTION

THE DEVELOPMENT of recommender systems has been
stimulated by the rapid growth of information on the

Internet. For information filtering, recommender systems can

Manuscript received November 8, 2010; revised March 24, 2011 and
June 24, 2011; accepted July 12, 2011. Date of current version December 7,
2011. This research was supported in part by the Natural Science Foundation
of China under Grants 60775037 and 71028002, by the Key Program of
National Natural Science Foundation of China under Grant 60933013, and by
the Research Fund for the Doctoral Program of High Education of China under
Grant 20093402110017. A preliminary version of this work has been published
in the Association for Computing Machinery Conference on Information and
Knowledge Management 2010. This paper was recommended by Associate
Editor J. Liu.

Q. Liu and E. Chen are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei 230026,
China (e-mail: feiniaol@mail.ustc.edu.cn; cheneh@ustc.edu.cn).

H. Xiong is with the Management Science and Information Systems
Department, Rutgers Business School, Rutgers University, Newark, NJ 07102
USA (e-mail: hxiong@rutgers.edu).

C. H. Q. Ding is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019 USA (e-mail:
chqding@uta.edu).

J. Chen is with the Department of Management Science and Engineering,
School of Economics and Management, Tsinghua University, Beijing 100084,
China (e-mail: chenj@sem.tsinghua.edu.cn).

Digital Object Identifier 10.1109/TSMCB.2011.2163711

automatically recommend the few optimal items, which users
might like or have interests to buy by learning the user profiles,
users’ previous transactions, the content of items, etc. [2]. In the
recent 20 years, many different types of recommender systems,
such as collaborative-filtering-based methods [36], content-
based approaches [12], and hybrid approaches [46], have been
developed.

A. Collaborative Filtering

Since collaborative-filtering methods only require the infor-
mation about user interactions and do not rely on the content
information of items or user profiles, they have more broad ap-
plications [14], [16], [20], and more and more research studies
on collaborative filtering have been reported [15], [26], [27].
These methods filter or evaluate items through the opinions
of other users [41]. They are usually based on the assumption
that the given user will prefer the items which other users with
similar preferences liked in the past [2].

In the literature, there are model-based and memory-based
methods for collaborative filtering. Model-based approaches
learn a model to make recommendation. Algorithms of this
category include the matrix factorization [38], the graph-based
approaches [14], etc. The common procedure of memory-based
approaches is first to select a set of neighbor users for a
given user based on the entire collection of previously rated
items by the users. Then, the recommendations are made based
on the items that neighbor users like. Indeed, these methods
are referred to as user-oriented memory-based approaches. In
addition, an analogous procedure, which builds item similar-
ity groups using corating history, is known as item-oriented
memory-based collaborative filtering [40].

However, existing collaborative-filtering methods often di-
rectly exploit the information about the users’ interaction with
the systems. In other words, they make recommendations by
learning a “user–item” dualistic relationship. Therefore, exist-
ing methods often neglect an important fact that there are many
latent user interests which influence user behaviors. To that end,
in this paper, we propose a three-layer, user–interests–item,
representation scheme. Specifically, we interpret an interest as a
requirement from the user to items, while for the corresponding
item, the interest can be considered as one of its characteristics.
Indeed, it is necessary to leverage this three-layer representation
for enhancing collaborative filtering, since this representation
leads to better explanation of why recommended items are
chosen and helps the understanding of the interactions among
users, items, and user interests.

1083-4419/$26.00 © 2011 IEEE

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 219

Fig. 1. Simple example of a movie recommender system (where the photos
are downloaded from IMDB [http://www.imdb.com/)]. (a) When users decide
to watch a movie, there are some latent interests that affect their choices.
(b) Users’ interests may change after they watch a movie.

B. Motivating Example

Fig. 1(a) shows an example of a movie recommender sys-
tem. In the figure, user a is interested in kung fu movies,
while user b likes Oscar movies. While both of them have
watched the movie Crouching Tiger, Hidden Dragon, which
was recommended by the system, they have different reasons
for watching this movie. Thus, if we can identify user latent
interests, we will have a better understanding about the users’
requirements, since user interests can better connect users and
items. Also, when leveraging the information of user inter-
ests for developing recommender systems, we must be aware
that user interests can change from time to time under the
influence of many internal and external factors. For instance,
as shown in Fig. 1(b), after watching the movie Crouching
Tiger, Hidden Dragon, user interests may be affected by it.
For user a, while he is a fan of kung fu movies, he may start
watching other movies directed by Ang Lee. Also, user b may
become a fan of kung fu movies after her first-time exposure
to this kung fu movie. If recommender systems cannot cap-
ture these changes and only make recommendations according
to the user’s past interests rather than exploring his/her new
preferences, then they are prone to the “overspecialization”
problem [2].

In addition, in real scenarios, the training data are far less
than plentiful and most of the items/users only have a few
rating/buying records. At this time, typical measures fail to
capture actual similarities between items/users and the system
is unable to make meaningful recommendations. This situation
is summarized as the cold-start problem [41]. Let us take
user b in Fig. 1(a) as an example. If she has only watched
one movie Crouching Tiger, Hidden Dragon and it has been
watched by few people before the rating of user b, for traditional
collaborative-filtering systems, it is difficult to find out the
similar items or users for both Crouching Tiger, Hidden Dragon
and user b. However, if we have identified that Crouching Tiger,
Hidden Dragon belongs to kung fu movies and Oscar movies,
then the system could recommend user b the movies that belong
to these two interests or some related interests. Thus, the cold-
start problem can be alleviated.

Indeed, the key challenges are how to model latent user
interests and the potential correlations and changes between
them. It is relatively easy to extract user interests in content-
based or hybrid recommender systems by tracking the text
information, such as “keywords” or “tags” [43]. However, for
collaborative-filtering systems, it is difficult to identify the user
latent interests, since the only information available is the user
interaction information with the system.

C. Contributions

To address the aforementioned challenges, in our prelim-
inary work [31], we proposed an item-oriented model-based
collaborative-filtering method named iExpand. In iExpand,
we assume that each user’s rating behavior depends on an
underlying set of hidden interests and we use a three-layer,
user–interests–item, representation scheme to generate recom-
mendations. Specifically, each user interest is first captured
by a latent factor which corresponds to a “topic” in topic
models. Then, we learn the transition probabilities between
different latent interests. Moreover, to deal with the cold-
start and “overspecialization” problems, we model the possible
expansion process of user interests by personalized ranking.
In other words, we exploit a personalized ranking strategy on
a latent interest correlation graph to predict the next possible
interest for each user. At last, iExpand generates the recom-
mendation list by ranking the candidate items according to the
expanded user interests. We should note that, compared with
previous topic-model-based collaborative-filtering approaches,
discovering the correlation between latent interests and using
personalized ranking to expand user current interests are the
main advantages of iExpand.

In addition, in many previous model-based recommender
systems, there are many parameters which are assigned default
values. However, the best values for them should be determined
in each particular scenario. In iExpand, we develop a model
to select parameter values by combining Minka’s fixed-point
iterations and an evaluation method for topic models.

In this paper, we further explain why topic models can be
used to simulate the user latent interests and we demonstrate
the way of extracting these interests from the latent Dirichlet
allocation (LDA) model by the Gibbs sampling method. In
addition, we illustrate how to use iExpand for making online
recommendations in the real-world applications. Finally, we
provide systematic experiments on three data sets selected from
a wide and diverse range of domains, and we use multiple
evaluation metrics to evaluate the performance of iExpand.
Since iExpand views collaborative filtering as a ranking prob-
lem and aims to make recommendations by directly ranking the
candidate items, we report the ranking prediction accuracy. As
shown in the experimental results, iExpand outperforms four
benchmark methods: two graph-based algorithms and two algo-
rithms based on dimension reduction. As many other algorithms
formulate collaborative filtering as a regression problem (i.e.,
rating prediction) [30], we also report the comparison results of
the rating predictions. In addition to this, these new experiments
provide more insights into the iExpand model, such as the effect
of the parameters and the low computational cost.

220 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

D. Outline

The rest of this paper is organized as follows. Section II gives
the detail of the iExpand method for effective recommendation.
In Section III, we show the experimental results and many
discussions. In Section IV, we introduce the related work.
Finally, Section V concludes this paper.

II. USER INTEREST EXPANSION

In this section, we first introduce the framework of the
iExpand model. Then, we describe each step of the model in
detail. In addition, we show how to select parameters. Finally,
we address the computational complexity issue.

A. The Framework of the iExpand Model

First of all, the iExpand model assumes that, in recom-
mender systems, a user’s rating behavior depends on an under-
lying set of hidden interests. Inspired by the topic models, in
iExpand, each user is represented as a probability distribution
over interests and each interest is a probability distribution
over items. Fig. 3(a) shows the three-layer representation,
user–interests–item. What is more is that the iExpand model
assumes that the order of items in a user’s rating record can
be neglected and the users’ order in a user set can also be
neglected, which means both items and users are exchangeable.
In correspondence with the LDA model [8], a topic model that
we use in iExpand for extracting user interests, the users are
documents, the items are words, and the latent interests are
topics, respectively.

We should note that, in terms of items, a latent interest can
be viewed as one specific characteristic of the items and the
users who have this latent interest will prefer the items with this
characteristic. Since an item may have multiple characteristics,
it belongs to many latent interests (i.e., polysemy). At the same
time, different items may have a similar characteristic; they may
at least refer to one same latent interest (i.e., synonymy). Let us
take the movies in Fig. 1 for example; the movie Crouching
Tiger, Hidden Dragon belongs to multiple interests, Oscar,
kung fu, Yun-Fat Chow, etc., and there are also many movies
that can be denoted by the interest kung fu. However, in most
cases, it is impossible to understand the item characteristics
clearly (e.g., in collaborative-filtering scenario). Fortunately, as
a simulation tool, the topic model (e.g., LDA) can be used to
learn the meaning and characteristics of items in a data-driven
fashion, i.e., from given rating records, possibly without further
content or prior knowledge of these items.

Topic models are a type of statistical models, which were
firstly proposed in machine learning and natural language
processing for discovering the hidden topics (e.g., Basketball,
Travel, and Cooking) that occur in a collection of documents.
In terms of collaborative filtering, the documents can be viewed
as the users, the words are items, and topics become the hidden
interests. Based on the hypothesis of topic models, the co-
occurrence structure of items in the rating records can be used
to recover the latent interest structure and the items that often
appear together in one rating record may tend to have the same

Fig. 2. Framework of the iExpand model. Gray arrows show the general
process of the model, while black arrows show the procedure of online
recommendations.

TABLE I
MATHEMATICAL NOTATIONS

characteristics. In this way, the latent topics can be used to
simulate the real-world interests.

Fig. 2 shows the framework of the iExpand model. From
Fig. 2 we can see that, when a user comes, the learning and rec-
ommendation process of the iExpand model generally consists
of four steps. In the first step, the information about user latent
interests is extracted by the inference of the LDA model. In
the second step, the correlation graph/matrix of latent interests
is established by an item–interest bipartite graph projection.
In the third step, for a given user, his/her interest distribution
is expanded by letting the current interest vector perform a
random walk on the interest correlation graph/matrix. Finally,
the candidate items are ranked using expanded user interests
and the recommendation list is generated.

Each step of the iExpand model is introduced in the follow-
ing sections. For better illustration, Table I lists all mathemati-
cal notations used in this paper.

B. Extracting User Interests From the LDA Model

In this section, we show how to extract the information about
user latent interests from the LDA model. The information
about latent interests include the probability distribution of each
user over interests, the probability distribution of each interest
over items, and the distribution of each interest.

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 221

Fig. 3. (a) Three-layer representation scheme. (b) Graphical model represen-
tation of LDA.

For collaborative filtering, the LDA model can be represented
by a probabilistic graphical model, as shown in Fig. 3(b),
where shaded and unshaded variables indicate observed and
latent (i.e., unobserved) variables, respectively. In Fig. 3(b),
each user in M users is represented as a bag of item tokens
Mu, and each token is viewed as an observed variable i.
Because LDA can provide an intuitive description of each
observed variable i, it is a type of generative probabilistic
model. Specifically, this item token is generated from a multino-
mial distribution over items φt, specific to an interest t, and
interest t is chosen from a multinomial distribution over in-
terests θu, specific to this user. Both θ and φ are modeled by
the Dirichlet distribution, with the hyperparameters α and β,
respectively.

Extracting user interests θ from LDA is a latent variable
inference process, which is to “invert” the generative model
and “generate” latent variables (i.e., the interests’ distribution
over items φ and the users’ interest distributions θ) from
given observations. After inference, the value of these latent
variables should maximize the posterior distribution of the
entire user rating records (i.e., given observations). However,
learning these latent variables is intractable in general [8].
Thus, many approximations have been proposed, including
Gibbs sampling [19], variational inference [8], and so on.
The previous research has found that main differences among
these approaches could be explained by the different settings
of two hyperparameters [5]. In this paper, we choose the
Gibbs sampling technique, a form of Markov chain Monte
Carlo, which is easy to implement and provides a relatively
efficient method for extracting a set of interests from a large
rating set.

The Gibbs sampling algorithm begins with the assignment of
each item token in users’ rating records to a random interest,
determining the initial state of the Markov chain. In each of
the following iterations of the chain, for each item token, the
Gibbs sampling method estimates the conditional distribution
of assigning this token to each interest, conditioned on the
interest assignments to all other item tokens. An interest is
sampled from this conditional distribution and then stored as
the new interest assignment for this token. After an enough
number of iterations for the Markov chain, the interest as-
signment for each item token will converge and each token in
the rating records is assigned to a “stable” interest. According
to the assignment, the distribution of interest Tj over item

Fig. 4. Example for the LDA inference process based on Gibbs sampling.

Ii (φij) and user Ui’s distribution over interest Tj (θij) can be
estimated by

φij =P (Ii|Tj) =
CNK

ij + β

N∑
n=1

CNK
nj + Nβ

θij =P (Tj |Ui) =
CMK

ij + α

K∑
k=1

CMK
ik + Kα

(1)

where CNK and CMK are matrices with dimensions N × K
and M × K, respectively. CNK

ij denotes the number of times
that item Ii is sampled from interest Tj , and CMK

ij refers to
the number of times that interest Tj is assigned to the items
in user Ui’s rating record. Fig. 4 shows a simple example for
the LDA inference process by extracting two users’ interest
distributions from Gibbs sampling. From Fig. 4, we can see that
users with different preferences will finally get different interest
distributions.

In addition, in iExpand, we further extract the probability
distribution of each latent interest Ti (�ϑi), and �ϑi can be
estimated by

�ϑi = P (Ti) =

M∑
m=1

CMK
mi + α

K∑
k=1

M∑
m=1

CMK
mk + Kα

. (2)

It is worth distinguishing between our user interests and the
latent topics in topic models, like Probabilistic Latent Semantic
Analysis (PLSA) or LDA. In iExpand, each user has a distri-
bution on the spectrum of interests, whereas in PLSA/LDA,
a topic is a latent variable and the distributions are specified

222 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

Fig. 5. Example of interest–item bipartite graph. For simplicity, not all the
edges between each pair of item and interest are shown.

by the specific topic, i.e., they are class (topic)-conditional
distributions. Thus, the model representation of iExpand and
PLSA/LDA are significantly different from each other.

C. Correlation Graph of User Interests

In this section, we describe how to compute the transition
probabilities between latent interests by the correlation graph.
In order to construct the correlation graph of latent interests, we
use the items as intermediary entities. ϕ is created to estimate
each item’s probability distribution over interests and ϕij can
be estimated by

ϕij = P (Tj |Ii) =
P (Tj , Ii)

P (Ii)
=

φij
�ϑj

K∑
k=1

�ϑkφik

. (3)

Although the interests may be correlated to each other in
reality, in LDA, when α is given, the distributions of interests
are independent. Unlike the Correlated Topic Model [7], in
iExpand, we model those correlations in the form of probabil-
ities. Specifically, we first use a bipartite graph G = 〈X,E〉 to
represent the relationships between items and interests, with the
vertex set X = I ∪ T , as shown in Fig. 5. In the bipartite graph,
the weight of the edge from interest Tj to item Ii is φij and the
weight of the edge from Ii to Tj is ϕij .

Then, by projecting G, we get the relationships between
interests, and we use ψ to represent them. Also, ψij indicates
the recommending strength of interest Ti for Tj , and it can be
computed by

ψij =P (Tj |Ti)=
N∑

n=1

P (Tj |In)P (In|Ti)=
N∑

n=1

ϕnjφni. (4)

At last, the bipartite graph is transformed into a correlation
graph which describes the relations between interests, and ψ
becomes its correlation matrix. It can be proven easily that
each entry in ψ is equal to or greater than zero and ψ is row
normalized. In terms of a correlation matrix, ψij means the
coefficient of correlation between Ti and Tj , from T ′

i’s view.
However, in terms of random walk, ψij is the probability that
current state jumps from Ti to Tj .

D. User Interest Expansion

In this section, we describe the solution for the expan-
sion of user interests. As discussed previously, user interests
often change from one to another. If recommender systems

just deal with user current interests, the systems will suf-
fer from the overspecialization problem and the cold-start
problem.

To address this issue, we use PageRank [34], a personalized
ranking strategy on the user interest correlation graph. We
choose this strategy not only because it can create personalized
views of interest importance but also because it can predict user
interest expansion by exploiting the structure of the interest
correlation graph. Given a user interest (a vector), we do repeat
PageRank iterations (i.e., guided random walks) until conver-
gence. The final converged PageRank score vector contains the
expanded user interests. One can also view this as predicting the
next possible interest for each user. Thus, we can make diverse
recommendations in a systematic way.

The algorithmic approach here is the personalized ranking
[25]. First, for user Ui, we represent his/her current interest

model through vector �θi
(0)

in which the jth entry �θi
(0)

(j)
corresponds to a latent interest Tj and is initialized as θij . From

Section II-C, we know �θi
(0)

is normalized and it represents
the probability distribution on each latent interest when random
walk starts.

Next, let �θi perform Random Walk with Restart (RWR)
[18] (a specific implementation of the personalized ranking)
on the correlation graph. Let us consider a random walk that

starts from �θi
(0)

; when arriving at Tj , it randomly chooses
Tj’s neighbors and keeps walking. For each step, in ad-
dition to making such decisions, the random walker goes
back to the starting point with a certain probability c, so
as to counteract the dependence on far-away parts of the
graph.

For example, the process of one step random walk of the user
Ui from step s to step (s + 1) can be formalized as

�θi
(s+1)

= (1 − c)�θi
(s)

ψ + c�θi
(0)

(5)

while, for all the users, their one-step updates can be formal-
ized as {

θ(s) = θ, s = 0
θ(s+1) = (1 − c)θ(s)ψ + cθ, s � 0

(6)

where �θi
(s)

serves as the interest vector for Ui after s steps of
random walk have completed. All users’ interest vectors form
a matrix θ(s) where θ

(s)
ij means the steady-state probability that

a random walk starts from user Ui and stops at interest Tj after
s steps, meanwhile it implies the affinity of Tj with respect

to Ui. The bigger θ
(s)
ij , the closer Ui and Tj .

The personalized ranking is run for all users simultaneously,
and it only takes several steps on average before θ(s) converges.
The parameter c indicates the restart probability, and (1 − c) is
the decay factor used to represent how much relationship is lost
in each step.

E. From Expanded User Interests to the Item Recommendation

In this section, we describe the last process of iExpand, the
ranking of the items and the generation of recommendation

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 223

lists. In iExpand, the items are ranked by their relevance with
any given user. The user’s possible distribution on latent inter-
ests serves as intermediary entities

P (Ij |Ui)=
K∑

k=1

P (Ij |t = k)Ps(t=k|Ui)=
K∑

k=1

φjkθ
(s)
ik . (7)

It is easy to obtain the top K recommendations by
ranking the candidate items. Thus, iExpand directly gener-
ates recommendations without the step of predicting rating
scores.

In addition, if the user rating has been taken into consid-
eration, iExpand can be used as a rating prediction method,
such as the traditional memory-based collaborative-filtering
methods. Here, Pearson Correlation on expanded user interest
vectors can be used to compute user similarities Sim(Ui, Uh).
Therefore, the neighborhood Neighbor(Ui) can be formed
for user Ui. Then, the rating from user Ui to item Ij can be
predicted by

r̂i,j = ri +

∑
Uh∈Neighbor(Ui)

Sim(Ui, Uh) ∗ (rh,j − rh)

∑
Uh∈Neighbor(Ui)

|Sim(Ui, Uh)| (8)

where r̄i and r̄h are the average rating values for user Ui and
Uh, respectively. rh,j refers to the rating value for item Ij from
user Uh.

What we discussed earlier is about how to make recommen-
dations in a general iExpand process. However, in real-world
applications, we face the challenge of online recommendations.
Since users’ interest distributions may change quickly from
time to time, while the correlation of interests evolves slowly,
we can update both the inference process and the correlation
graph periodically offline while renewing the user interests
whenever he/she rates. For example, when user Uu rates a new
item, Uu’s interests can be resampled by Gibbs sampling. In
each iteration, the interest assignment for every item in Uu’s
rating record is sampled by

P (tui = j|tu¬i, Uu, . . .)

∝
CNK

Iu
i

j + �Cj¬i
u

+ β

N∑
n=1

CNK
nj + �Cj

u
+ Nβ − 1

�Cj¬i
u

+ α
K∑

k=1

�Ck
u

+ Kα − 1
(9)

where tui = j means the interest assignment of item Iu
i to

interest Tj , �Cu is a vector, and �Cj
u

denotes the number of times
that interest Tj is assigned to the items in Uu’s rating record.
Also, ¬i refers to the interest assignments of all other items,
not including the current instance. After performing interest
resampling, each interest distribution component of Uu can be
computed by

θuj = P (Tj |Uu) =
�Cu
j + α

K∑
k=1

�Cu
k + Kα

. (10)

F. Estimating the Parameters

In this section, we present a method of selecting val-
ues for the parameters of iExpand. There are three para-
meters: the hyperparameters α and β and the number of
interests K.

First of all, we select the values for α and β. Previous
research works have found that α = 50/K and β = 0.01 work
well with different text collections, and they are often used
as the default values [10], [49]. However, Steyvers et al. [45]
pointed out that good choices for these values depend on the
number of interests and the item size. Furthermore, Asuncion
et al. [5] suggested that hyperparameters play an important role
in learning accurate topic models. Therefore, finding the best
α, β settings for each scenario is important. There are many
ways for learning them [48], among which Minka’s fixed-point
iteration is widely used. It was proposed by Minka in [33] and
was carefully studied by Wallach [48]. In iExpand, each step of
fixed-point iteration is formalized as

α∗ ←−
α

M∑
m=1

K∑
k=1

[
Ψ

(
CMK

mk + α
)
− Ψ(α)

]

K
M∑

m=1

[
Ψ

(
K∑

k=1

CMK
mk + Kα

)
− Ψ(Kα)

]

β∗ ←−
β

K∑
k=1

N∑
n=1

[
Ψ

(
CNK

nk + β
)
− Ψ(β)

]

N
K∑

k=1

[
Ψ

(
N∑

n=1
CNK

nk + Nβ

)
− Ψ(Nβ)

]
.

(11)

Next, in addition to α and β, we choose the right value for
the interest number K. In previous works, if categories of the
data sets are known, then K will be set equal to that number [9].
However, in most scenarios, the category is unknown and how
to set K becomes a problem. In most cases, K is randomly
chosen or given a default value [5], [10], [51]. Until now,
one possible approach for setting this value is to compute the
likelihood of the test data under different K values, then the
best one is chosen by a grid search. Exact computation of the
posterior probability is intractable, since it requires summing
over all possible assignments. However, we can approximate it
by an estimator. In this paper, we refer to an approach proposed
by Wallach et al. [47] named Chib-style estimation which was
initially proposed as one evaluation method for topic models.
The main idea of this approach is first to choose a special set
of latent topic assignments and then use Bayes’ rule to estimate
the posterior probability.

Finally, as the posterior probability depends on α, β, and
K, we combine these factors together and propose a parameter
learning algorithm, as shown in Algorithm 1. In Algorithm 1,
inputting the initial values of α and β, we first use Gibbs
sampling and Minka’s fixed-point iteration to learn optimal
values for α and β specific to each number of interest K.
Then, Chib-style estimation is used to compute the posterior
probability of the test data, under current parameter setting.
Lastly, the parameters with the best posterior probability are
chosen for the model, and they are used as the default settings
for performance comparison in the experimental part.

224 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

Algorithm 1: Estimating Parameters (a, b)

input: a is the initial value of α;
b is the initial value of β;

output: the best values for α, β, and K
for all candidate K do

Initialize α = a;
Initialize β = b;
for loop ← 1 to MAX_LOOP do

Gibbs sampling;
Update α, β by (11);

posterior = log(Chib − style estimation(α, β,K));
Record the maximum posterior and the corresponding

α, β, and K;
Return the best values for α, β, and K

G. Computational Complexity

In this section, we analyze the computational complexity
issues for iExpand. Specifically, the time cost for the inference
of LDA is O(M · N · K · l), where l is the iteration number
of Gibbs sampling. For the bipartite graph projection, most of
the time is used to construct the correlation matrix ψ and the
time cost in this phase is O(N · K2). For each user, the cost for
random walk is O(s · K2) on average. Thus, for all the users,
it costs O(s · M · K2). Since K
 M and K
 N and the
time cost for ranking the items and making recommendations
can be neglected, the total computational complexity for the
general iExpand process is O(M · N · K · l). As we discussed
in Section II-D, in real-world applications, both the inference
process and the correlation graph can be updated periodically
offline; thus, for online computing, we just need to run less
than 30 iterations of Gibbs sampling [37] and one personalized
ranking or rating prediction for the current user, both of which
can be done efficiently. The online recommendations can be
followed by the black arrows shown in Fig. 2.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental results to eval-
uate the performance of iExpand. Specifically, we demonstrate
the following: 1) the results of parameter selection based on
Algorithm 1; 2) a performance comparison between iExpand
and many other benchmark methods; 3) an analysis of the
parameters in personalized ranking; 4) the understanding of
interests and interest expansion; and 5) the discussion about the
advantages and limitations of the iExpand model.

A. Experimental Setup

All the experiments were performed on three real-world
data sets: MovieLens [1], Book-Crossing [55], and Jester [17].
The first one is collected by the GroupLens Research Project
and has become a benchmark for evaluating recommender
systems. For the last two data sets, we only choose part of
them, considering the scalability problem of many of our
benchmark methods (i.e., the graph-based algorithms). The

TABLE II
DESCRIPTION OF THREE DATA SETS

detailed information about these three data sets are described
in Table II.

For each user’s rating record, we split it into a training set
and a test set, by randomly selecting some percentage of the
ratings to be part of the training set and the remaining ones to
be part of the test set. To observe how each algorithm behaves at
different sparsity levels, we construct different sizes of training
sets from 10% to 90% of the ratings with the increasing step at
10%. In total, we construct nine pairs of training and test sets,
and each split named as x − (100 − x) means x percent ratings
are selected to be the training data and the remaining (100 − x)
percent ratings for testing.

Benchmark Methods. In order to demonstrate the effective-
ness of iExpand, we compare it with many other benchmark
methods for both the ranking prediction accuracy and the rating
prediction accuracy. For the ranking purpose, we compare it
with two graph-based algorithms, ItemRank [18] and L+̇ [14],
as well as two algorithms based on dimension reduction, LDA
and SVD [39], both of which do not take user interests into
consideration. Among them, ItemRank is a personalized rank-
ing strategy on the item correlation graph for alleviating the
cold-start problem and L+̇ is widely used for measuring node
similarities in a graph. Similar to iExpand, both LDA and
SVD consider the latent factors. However, they are just used
for dimension reduction and do not consider the correlation
between latent factors. All the aforementioned four methods
can be seen as the related methods for iExpand.

For the rating purpose, we also compare it with four existing
methods. For the memory-based method, we implemented the
user-based collaborative filtering (UCF) [36]. For the model-
based method, we chose the RSVD [15] and LDA. In ad-
dition to this, we also implemented the graph-based algo-
rithm ItemRank [18]. Both UCF and RSVD are state-of-the-art
collaborative-filtering algorithms, and they are widely used for
baselines.

Among all these methods, RSVD, UCF, and SVD are orig-
inally rating-oriented algorithms and the rest of the methods,
including iExpand, are ranking-oriented algorithms. All these
methods have been chosen as the baseline methods.

B. Evaluation Metrics

For the purpose of evaluation, we adopted Degree of Agree-
ment (DOA) [14], Top-K [26], and Recall [20], [39] as the eval-
uation metrics for ranking prediction accuracy. All of them are
commonly used for ranking accuracy, and these three metrics
try to characterize the recommendation results from different
perspectives.

DOA measures the percentage of item pairs ranked in the
correct order with respect to all pairs [14], [18]. Let NWUi

=
I − (LUi

∪ EUi
) denote the set of items that do not occur in

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 225

the training and test sets for Ui, where LUi
and EUi

mean the
item set that Ui rated in the training and test sets, respectively.
Furthermore, we define check_order as

check_orderUi
(Ij , Ik) =

{
1, if

(
PRIj

≥ PRIk

)
0, otherwise

where PRIj
denotes the predicted rank of item Ij in the

recommendation list. Then, the individual DOA for user Ui is
defined as

DOAUi
=

∑
j∈EUi

,k∈NWUi
check_orderUi

(Ij , Ik)

|EUi
| × |NWUi

| .

An ideal ranking corresponds to a 100% DOA, and we use
DOA to stand for the average of each individual DOA.

Top-K indicates the precision of the selected top K items,
and Recall measures the ratio of the number of hits to the size of
each user’s test data [39]. For each user Ui, these two measures
are defined as follows:

Top − KUi
=

#hits

K
, RecallUi

=
#hits

|EUi
| .

For the purpose of evaluating the rating effectiveness, we
also choose the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) as the evaluation metrics. Both
of them are commonly used in traditional collaborative-filtering
systems [2], [15], [20], [27].

C. Parameters in LDA

In this section, we investigate the learning performances of
two parameters, namely, hyperparameters and the number of
interests, by Algorithm 1. Here, the first 893 users in Movie-
Lens are used as training data and the remaining 50 users form
the test set. Similarly, for Book-Crossing, the first 900 users
are treated as training samples and the remaining users as test
data. Also, for Jester data set, the first 1800 users are treated as
training data and the remaining 200 users for testing. For each
run of Algorithm 1, we initialize the parameters as a = 0.5 and
b = 0.5 and turn on Minka’s updates after 15 iterations, and
these settings are similar to the ones in [5].

The estimation of posterior for the test set is computed for K
sizes from 50 to 800 for both MovieLens and Book-Crossing
and K from 20 to 100 for Jester. The Gibbs sampling algorithm
runs 1000 iterations each time. Let us take the MovieLens
data set as an example. The results of parameter selection are
shown in Fig. 6. The results suggest that the test set are best
accounted for by an LDA model incorporating 300 interests
and the corresponding best hyperparameter settings are α =
0.001 and β = 0.08. In Fig. 6, we can observe that the best
hyperparameters for collaborative filtering are different from
those of text applications based on topic models. Finally, the
results of parameter selection are summarized in Table III.

D. Performance Comparison

In this section, we present a performance comparison of both
effectiveness and efficiency between iExpand and the bench-

Fig. 6. Results of parameter selection for MovieLens. (a) Best α for different
number of interests. (b) Best β for different number of interests. (c) Log-
likelihood of posterior for different number of interests.

TABLE III
PARAMETER SETTINGS

mark approaches: ItemRank [18], L+̇ [14], UCF [36], SVD
[39],1 LDA, and RSVD [15]. For the purpose of comparison,
we record the best performance of each algorithm by tuning
their parameters. The training models of all these algorithms
are learned only once, and ratings in the test set have never
been used in the training process. Therefore, in order to make
a clearer and fairer comparison, we do not take the online
recommendation into consideration.

First of all, we show a comparison of the effectiveness
of all the algorithms. Tables IV and V and Fig. 7 show the
performances of their recommendations with respect to dif-
ferent splits and different evaluation metrics. Table IV(a)–(c)
illustrates the evaluation results of the DOA/Recall measures.
Fig. 7 demonstrates the top K results on the three data sets, and
Table V shows the evaluation results of the rating prediction
accuracy on the MovieLens data set. Note that we did not report
the rating prediction results on the Book-Crossing and Jester
data sets because the rating scale is too big for Jester and most
of the ratings are 0 in Book-Crossing.

DOA/Recall. In terms of DOA/Recall measures, from Ta-
ble IV, we can see that iExpand outperforms the other four
algorithms in each split. Also, the sparser the data, the more
significant improvement can be made. Indeed, both Item-

1In our implementation, we rank the items by computing their Pearson
correlation with each user. This is slightly different from the implementation
in [39]; however, this way can yield better results for our situation.

226 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS BASED ON DOA/RECALL RESULTS. (a) PERFORMANCE COMPARISON ON THE MOVIELENS

DATA SET [(LEFT) DOA IN PERCENT. (RIGHT) RECALL IN PERCENT.]. (b) PERFORMANCE COMPARISON ON THE BOOK-CROSSING

DATA SET [(LEFT) DOA IN PERCENT. (RIGHT) RECALL IN PERCENT.]. (c) PERFORMANCE COMPARISON

ON THE JESTER DATA SET [(LEFT) DOA IN PERCENT. (RIGHT) RECALL IN PERCENT.]

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS BASED ON RATING RESULTS [(LEFT) MAE. (RIGHT) RMSE]

Rank and iExpand aim at alleviating the sparsity problem
and the cold-start problem, and they perform better than
L+̇, SVD, and LDA (except for Jester) when the training
sets are sparse, such as the 10–90 and 20–80 splits. How-
ever, iExpand performs much better than ItemRank. For ex-
ample, in the three 10–90 splits, iExpand achieves nearly
two points of improvement on DOA values with respect to
ItemRank.

In addition, both LDA and iExpand reduce data dimensions,
so they perform better when the data are dense, while SVD,
another algorithm based on dimension reduction, does not
perform well. This may because of the use of different de-
composing techniques. Finally, as the main difference between

iExpand and LDA is interest expansion or not and because
iExpand can expand user interests and increase the diversity
in a properly controlled manner, it performs much better than
LDA in all the cases. This means interest expansion can lead
to a better performance than only exploiting the current user
interests. Another interesting observation is that the smaller
and sparser the training set, the more significant improve-
ment is made by iExpand compared with LDA, and when
the training set becomes larger and denser, the improvement
becomes less obvious. The reason is that, when there are
enough interactions between a user and the system, the user
has experienced various types of items and his/her preference
has been decided. Hence, there will be not much difference

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 227

Fig. 7. Performance comparison based on top K results. (a) 10-90, MovieLens. (b) 30-70, MovieLens. (c) 50-50, MovieLens. (d) 70-30, MovieLens. (e) 90-10,
MovieLens. (f) 10-90, Book-Crossing. (g) 30-70, Book-Crossing. (h) 50-50, Book-Crossing. (i) 70-30, Book-Crossing. (j) 90-10, Book-Crossing. (k) 10-90, Jester.
(l) 30-70, Jester. (m) 50-50, Jester. (n) 70-30, Jester. (o) 90-10, Jester.

from the current interest distribution to the next possible interest
distribution.2

Top-K. For better illustration, we select five splits from each
data set, and we only show the results of the three algorithms
with the best top K performances. Fig. 7 shows the comparative
results of ItemRank, LDA, and iExpand, where the performance
of ItemRank is chosen as the baseline and the comparative
results of LDA and iExpand against ItemRank on each k (k
ranges from 5 to 25) are demonstrated. In Fig. 7, we can see that
iExpand performs better than the baseline on almost every split,
while there are more than five splits where LDA performs worse
than the baseline. Also, iExpand outperforms LDA, only except
for the last two splits of Book-Crossing. In all, in terms of the
top K measure, in most cases, iExpand performs better than
other methods. Finally, the sparser the data, the more significant
improvement can be seen. This is similar to the results of
DOA/Recall.

2Only one exception is for the Jester data, where LDA performs nearly as
well as iExpand on the first two splits. This is because Jester data are a very
dense data, which can be seen from the data description in Table II, and this
alleviates the advantages of interest expansion.

MAE/RMSE. From Table V, we can see that iExpand
performs the best on the two sparsest splits, while in gen-
eral, RSVD outperforms the other methods in terms of the
MAE/RMSE. On the sparse splits, the methods that can dis-
cover the indirect correlations and deal with the cold-start
problem (i.e., iExpand and ItemRank) get better results than
other algorithms (i.e., RSVD, LDA, and UCF). However, on
the remaining splits, the rating-oriented methods (i.e., RSVD
and UCF) generally perform better than the ranking-oriented
methods (i.e.,ItemRank, LDA, and iExpand). Another inter-
esting observation is that these two types of evaluation met-
rics DOA/Recall/top K and MAE/RMSE lead to inconsistent
judgements on the algorithms. The same observation has been
reported in many previous works [20], [30].

Note that we chose SVD instead of RSVD for the ranking
comparison. The reason is that RSVD led to very bad results
which are not comparable with other methods in our ranking ex-
periments. In addition, the question about whether the ranking
prediction accuracy or the rating prediction accuracy is more
important is beyond the scope of this paper.

Runtime. Next, we compare the computational efficiency of
many algorithms. Fig. 8 shows the execution time of these algo-
rithms on each data set. Without a surprise, on both MovieLens

228 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

Fig. 8. Comparison of the execution time on each data set. (a) MovieLens data set. (b) Book-Crossing data set. (c) Jester data set.

Fig. 9. Effect of parameters in personalized ranking. (a) Best c for Movie-
Lens. (b) Best c for Book-Crossing. (c) Best c for Jester. (d) Steps of random
walk for two splits.

and Book-Crossing data sets, among these five model-based
collaborative filterings, LDA costs the least time, and with
dimension reduction, the execution time of iExpand is almost
no longer than that of LDA. Both of them are much faster than
three other algorithms with respect to each split. For Jester data
set, where there are only 100 items, ItemRank method costs less
time than the other approaches. However, in most real-world
applications, the number of items are more than thousands, and
the time cost for ItemRank will be relatively very high. At the
same time, with the increase of the item numbers, its time cost
will rise rapidly.

E. Analysis of Parameters in Personalized Ranking

In this section, we provide an analysis of two parameters: the
restart probability c and the step of random walk s.

To study the effect of c, we let it vary in the range of [0, 1).
When it is 0, random walk will never restart. When c is close
to 1, the performance of iExpand will be similar to the LDA
algorithm. Fig. 9(a)–(c) shows the relationships between the
best value of c with regard to Recall/DOA metrics and the size
of training data set for iExpand on three benchmark data sets.
In the figure, we can observe that the best c for larger data

sets is often bigger than that for smaller data sets. On the one
hand, when the training set is large, the correlation graph is
dense and there are plenty of direct contacts between vertices.
In this scenario, few indirect similarities needs to be considered,
and the random walk regresses to one step random walk or
there is no need for random walk. On the other hand, when
the correlation graph is sparse, random walk does not need to
restart frequently for lack of direct contacts. In this scenario, the
indirect contacts should be considered, and multistep random
walk will perform better than one-step random walk.

As an example, Fig. 9(d) shows the effect of the step of
random walk s on the performances of iExpand for two splits.
We can see that both curves converge after a few (no more than
ten) steps. The results show that random walk does enhance
the performance of iExpand and the best performance can be
achieved by just a few steps of random walk.

F. Understanding of Interests and Interest Expansion

In this section, we first show the interrelationships between
latent interests and explicit interests, and then, we explain the
advantages of interest expansion by examples.

In the previous sections, we do not distinguish latent interests
and explicit interests deliberately. As we have mentioned, the
former is a latent factor extracted by the topic model, while the
latter is the one identified in the real world. In this paper, we
use latent interests to simulate explicit interests, and research
works have shown their one-to-one correspondence [8], [9],
[51]. Moreover, Mei et al. [32] proposed general approaches
for interpreting the meaning of each latent topic. The question
is whether every latent interest has a real meaning for use in
iExpand. A positive answer is critical for the effectiveness of
iExpand for collaborative filtering.

To this end, we consider the first three latent interests ex-
tracted from the MovieLens data set. Table VI lists the top five
movies for each latent interest identified. As can be seen, all five
movies in the first latent interest have the same genres which
can be tagged as Action, Adventure, and Fantasy3 or they can
be labeled “Harrison Ford” (and contain one mistake), while
movies in the second column all fall into Comedy and Drama.
However, there are several types of movie genres for the third
one. After a closer look, we find that all of these movies are
generally recognized as classic movies and they all have won
more than one Oscar award. Another observation is that the

3This information can be obtained in IMDB. URL: http://www.imdb.com/.

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 229

TABLE VI
TOP MOVIES IN THE FIRST THREE LATENT USER INTERESTS

TABLE VII
EXAMPLE OF USER U140 AND THE CORRESPONDING RECOMMENDATION RESULTS

movie Star Wars is given high probability in both latent interests
1 and 3. This verifies that topic models can capture the multiple
characteristics of each movie, and each characteristic can be
resolved by other movies in the corresponding latent interest.

The aforementioned analysis helps to map each latent interest
into explicit interests. This means that, even for collaborative
filtering, every latent factor still has a real meaning, although
the interpretation may not be as easy and precise as that
in text applications. Furthermore, this indicates that, in real
applications, if we only get several interest information input
by the new user, we can still find out the possible items that a
given user may like by the item–interest relationship described
in iExpand model and thus mitigate the cold-start problem.

In the previous sections, we have showed that interest ex-
pansion can lead to a better performance than the method of
only exploiting the current user interests. In the following, we
will illustrate the difference between these two recommending
strategies by a user case. Let us consider the user U140 in
the MovieLens data set. The ratings of this user can be well
divided into two types, thriller and nonthriller. According to
this classification, we select the thriller movies to be the training
data and eight of the nonthriller movies to be the test set. Then,
we run the two recommending strategies one by one, and we
get two types of recommendations in the end. The results are
shown in Table VII.

In Table VII, we can see that the top eight recommendations
from the algorithm with interest expansion and the method
without interest expansion are different from each other. First,
the method with interest expansion achieves a better result with
more correctly predicted movies. Second, the recommendation
results from the method with interest expansion are more
diversified.4 In other words, the interest expansion is more
proper to capture the diversified interests and find potential
interests for the users. Finally, we would like to point out that
this advantage is meaningful to most of the users which can be
seen from the results of the performance comparisons shown in

4We should note that, in this case, we choose the movie genres as the criterion
for diversity, and there may be other appropriate criterions.

Tables IV and V and Fig. 7, while this does not mean it will
work for every single user and there may exist users whose
interest expansion are different from the majority.

G. Discussion

In this section, we analyze the advantages and limitations of
the iExpand method. From the experimental results, we can see
that there are many key advantages of iExpand. First, iExpand
models the implicit relations between users and items through a
set of latent user interests. This three-layer representation leads
to more accurate ranking recommendation results. Second,
iExpand can save the computational cost by reducing the num-
ber of item dimensions. This dimensionality reduction can also
help to alleviate the sparseness problem which is inherent to
many traditional collaborative-filtering systems. Third, iExpand
enables diverse recommendations by the interest expansion.
This can help to avoid the overspecialization problem. Finally,
iExpand can deal with the cold-start recommendations. This
means we only need several items or interests input by the new
user, and then, the corresponding items this user may like can
be predicted and recommended.

The main limitation of iExpand lies in its “bag of items”
assumption, where in each user’s rating record, the rating
contextual information (e.g., rating time) is totally ignored.
However, Ding et al. [13] demonstrated that the ratings pro-
duced at different times have different impacts on the prediction
of future user behaviors. Furthermore, Adomavicius et al. [3]
presented a systematic discussion on the importance of contex-
tual information when providing recommendations. Thus, it is
possible for iExpand to further improve the recommendations
by considering the contextual information, such as time stamp
and the rating orders.

IV. RELATED WORK

In general, related work can be grouped into four cat-
egories. The first category has a focus on the graph-
based collaborative-filtering methods. Here, the graph-based

230 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

collaborative-filtering methods refer to those approaches which
use the similarity of graph vertices to make recommendations
[14], [18], [44], [50], [52]. In these methods, users and items
are treated as vertices of a correlation graph and graph theory is
exploited for characterizing the relationship of user–item pairs.
The recommendation list is generated by considering how close
the candidate items are to a given user. The correlation graph
may consist of all users [44], all items [18], [50], [52], or both
user and item vertices [14].

While these graph-based collaborative-filtering methods
have elegant design ideas, they typically require more memory
and have high computational costs due to a large number of
vertices. Moreover, most of these methods cannot explain why
the items are chosen, and they provide limited understanding of
the interactions among users, items, and user interests.

The second category includes the research work related to
topic models, which are based upon the idea that documents are
mixtures of topics, where a topic is a probability distribution
over words. Many kinds of topic models have been proposed,
among which PLSA [21] and LDA [8] are most widely used
and studied.

Before we describe topic models, we first introduce Latent
Semantic Index (LSI), which was first proposed as a method
for automatic indexing and retrieval [11]. LSI uses a technique
called Singular Value Decomposition (SVD) to find the “latent
semantic space” by decomposing the original matrix. LSI/SVD
have been used for making recommendations probably since
2000 [28], [39]. Also, many SVD-based rating prediction meth-
ods are actually one of the successful competitors for the
Netflix prize [15], [27], [28]. These low rank recommenders
usually treat collaborative filtering as a regression problem of
user ratings. Although they perform well in rating predictions,
their effectiveness in generating recommendation lists should
be further explored, since the rating prediction accuracy is not
always consistent with the ranking accuracy [20], [30].

The following PLSA topic model can be viewed as an
enhancement of LSI. PLSA has a sound statistical foundation
and has defined a proper generative model of the data [21].
Also, PLSA is based on the observation that user preferences
and item characteristics are governed by a few latent semantics.
As a statistical model, PLSA is able to capture the complex
dependences among different factors using well-defined proba-
bilistic semantics [30]. PLSA has been used both for automatic
question recommendation [51] and collaborative filtering [22].
While PLSA has been successfully developed, it suffers from
the overspecialization problem.

Compared with PLSA, the LDA model possesses fully gen-
erative semantics and has also been widely researched [5], [9],
[47]. LDA is heavily cited in many text-related tasks, such as
finding scientific topics [19] and the information retrieval tasks
[49], but its feasibility and effectiveness in collaborative filter-
ing is largely underexplored. Sometimes, topic models were
only used to reduce the dimensionality of the data [10], [22],
like the function of principal component analysis [17]. In pre-
vious topic-model-based collaborative-filtering algorithms, the
correlation between latent factors has never been considered;
thus, they easily suffer from the overspecialization problem and
the cold-start problem.

The third category of related work has a focus on solving
the overspecialization problem in recommender systems. This
happens when the user is limited to being recommended the
items that are “similar” (with respect to content) to those
already rated [2]. In other words, at this time, users’ new or
latent interests will never be explored. This problem bothers
most of the existing recommender systems, particularly for the
content-based approaches, where many studies have attempted
to find the solutions, for instance, filtering out the items which
are too similar to something the user has seen before [6] or
introducing some kind of serendipity [24].

Since the overspecialization problem can be somewhat alle-
viated by the use of similar user interests, this problem has been
largely ignored by most of the collaborative-filtering works.
However, some efforts have been dedicated to the solutions of
this issue. Among them, one possible approach is to consider
the transitive similarities in item-based collaborative filterings
[18], [52]. However, directly computing the transitive simi-
larities between items will increase both the space and time
costs. Another approach is to introduce diverse recommenda-
tions. For instance, Ziegler et al. [55] determined the overall
diversity of the collaborative recommendations by introducing
the content information. Zhang et al. [54] modeled the goals of
maximizing the diversity of the recommendations while main-
taining adequate similarity to the user query as an optimization
problem, and they applied this technique to an item-based
recommendation algorithm. Furthermore, a survey about some
diversity enhancement algorithms was made in [53]. While the
performances of these systems can be improved by introducing
diversity, most of them suffer from a tradeoff between diversity
and the recommending accuracy. A key reason is that they
neglect the fact that diversity should be made by exploiting
users’ possible interest expansion instead of randomly choosing
some explicit interests.

The fourth category of related work is focused on solving
the cold-start problem. Cold-start problem will happen when
the recommender systems try to give recommendations to the
users whose preference are underexplored or try to recommend
the new items whose characteristics are also unclear [2]. Thus,
it can be further classified as the item-side cold-start problem
[42] and the user-side cold-start problem [29].

For the content-based or the hybrid recommender systems,
where there are profile descriptions, this problem can be al-
leviated by understanding items or users with such content
information. For instance, to deal with the item-side cold-
start problem, Schein et al. proposed a probabilistic model
that combines item content and the collaborative information
for recommendation [42]. To address the user-side cold-start
problem, Lam et al. proposed a User-Info Aspect Model by
using information of users, such as age and gender [29].

However, for collaborative filtering, where there are no
content information, the only way to address the cold-start
problem is to understand both users and items better from
the limited and sparse rating records. For instance, in order
to improve the recommendation performance under cold-start
conditions, Ahn [4] designed a heuristic similarity measure
based on the minute meanings (i.e., proximity, impact, and
popularity) of coratings. Aside from exploring information

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 231

from the direct relations among items (i.e., coratings), other
methods consider the indirect similarities. For instance, Huang
et al. [23] applied associative retrieval techniques to generate
transitive associations in the user–item bipartite graph. In [35],
for alleviating the sparsity and the cold-start problems, the
authors proposed a method using the trust inferences, which are
also transitive associations between users. Meantime, similar to
this paper, many random-walk-based similarity methods have
been used in [14], [18], and [52]. However, these methods
consider the relationship between items or user–item pairs,
rather than the correlation between latent interests. Meanwhile,
as mentioned previously, with the increase of new items, users,
or rating records, both their space and time costs will rise
rapidly.

V. CONCLUDING REMARKS

In this paper, we exploited user latent interests for devel-
oping an item-oriented model-based collaborative framework,
named iExpand. Specifically, in iExpand, a topic-model-based
method is first used to capture each user’s interests. Then,
a personalized ranking strategy is developed for predicting a
user’s possible interest expansion. Moreover, a diverse recom-
mendation list is generated by using user latent interests as an
intermediate layer between the user layer and the item layer.
There are two key benefits of iExpand. First, the three-layer
representation enables a better understanding of the interactions
among users, items, and user interests and leads to more ac-
curate ranking recommendation results. Second, since the user
interests and the change of the interests have been taken into
the consideration, iExpand can keep track of these changes and
significantly mitigate the overspecialization problem and the
cold-start problem.

Finally, an empirical study has been conducted on three
benchmark data sets, namely, MovieLens, Book-Crossing, and
Jester. The corresponding experimental results demonstrate
that iExpand can lead to better ranking performances than state-
of-the-art methods including two graph-based collaborative-
filtering algorithms and two dimension-reduction-based al-
gorithms. Due to an intellectual use of dimension-reduction
techniques, iExpand also has low computational cost and is
highly scalable for a large number of users, items, and rating
records. In the future, we plan to overcome the limitations of
the current model and extend it to go beyond the usual recom-
mendations. In particular, we want to refine the iExpand model
so as to deal with the context-aware user–interests mining
problem.

ACKNOWLEDGMENT

The authors are would like to thank the anonymous reviewers
for their constructive comments. Q. Liu would like to thank the
China Scholarship Council for their support.

REFERENCES

[1] Movielens Datasets, 2007. [Online]. Available: http://www.grouplens.org/
node/73#attachments

[2] G. Adomavicius and A. Tuzhilin, “Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-

sions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749,
Jun. 2005.

[3] G. Adomavicius and A. Tuzhilin, “Context-aware recommender systems,”
in Recommender Systems Handbook. New York: Springer-Verlag, 2011,
pp. 217–253.

[4] H. J. Ahn, “A new similarity measure for collaborative filtering to alleviate
the new user cold-starting problem,” Inf. Sci., vol. 178, no. 1, pp. 37–51,
Jan. 2008.

[5] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On
smoothing and inference for topic models,” in Proc. Int. Conf. UAI,
2009, pp. 27–34.

[6] D. Billsus and M. J. Pazzani, “User modeling for adaptive news access,”
User Model. User-Adapted Interaction, vol. 10, no. 2, pp. 147–180,
2000.

[7] D. M. Blei and J. D. Lafferty, “A correlated topic model of science,” Ann.
Appl. Statist., vol. 1, no. 1, pp. 17–35, 2007.

[8] D. M. Blei, Y. N. Andrew, and I. J. Michael, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[9] K. R. Canini, L. Shi, and T. L. Griffiths, “Online inference of topics
with Latent Dirichlet allocation,” in Proc. 12th Int. Conf. AISTATS, 2009,
vol. 5, pp. 65–72.

[10] W. Chen, J. C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang, “Collabo-
rative filtering for orkut communities: Discovery of user latent behavior,”
in Proc. 18th Int. Conf. WWW, 2009, pp. 681–690.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[12] S. Debnath, N. Ganguly, and P. Mitra, “Feature weighting in content based
recommendation system using social network analysis,” in Proc. 17th Int.
Conf. WWW, 2008, pp. 1041–1042.

[13] Y. Ding and X. Li, “Time weight collaborative filtering,” in Proc. 14th
ACM Int. CIKM, 2005, pp. 485–492.

[14] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-walk
computation of similarities between nodes of a graph with application to
collaborative recommendation,” IEEE Trans. Knowl. Data Eng., vol. 19,
no. 3, pp. 355–369, Mar. 2007.

[15] S. Funk, Netflix Update: Try This at Home, 2006. [Online]. Available:
http://sifter.org/~simon/journal/20061211.html

[16] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J. Pazzani,
“An energy-efficient mobile recommender system,” in Proc. 16th ACM
SIGKDD Int. Conf. KDD, 2010, pp. 899–908.

[17] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A con-
stant time collaborative filtering algorithm,” Inf. Retrieval, vol. 4, no. 2,
pp. 133–151, Jul. 2001.

[18] M. Gori and A. Pucci, “A random-walk based scoring algorithm applied
to recommender engines,” in Proc. 8th Int. Workshop Knowl. Discov. Web
(WebKDD)—Advances in Web Mining and Web Usage Analysis, 2006,
pp. 127–146.

[19] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. Nat.
Acad. Sci. U.S.A. (PNAS), vol. 101, pp. 5228–5235, 2004.

[20] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluat-
ing collaborative filtering recommender systems,” ACM Trans. Inf. Syst.
(TOIS), vol. 22, no. 1, pp. 5–53, Jan. 2004.

[21] T. Hofmann, “Probabilistic latent semantic analysis,” in Proc. 15th Conf.
UAI, 1999, pp. 289–296.

[22] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
Trans. Inf. Syst. (TOIS), vol. 22, no. 1, pp. 89–115, Jan. 2004.

[23] Z. Huang, H. Chen, and D. Zeng, “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filter-
ing,” ACM Trans. Inf. Syst. (TOIS), vol. 22, no. 1, pp. 116–142,
Jan. 2004.

[24] L. Iaquinta, M. de Gemmis, P. Lops, and G. Semeraro, “Introducing
serendipity in a content-based recommender system,” in Proc. HIS, 2008,
pp. 168–173.

[25] G. Jeh and J. Widom, “Scaling personalized web search,” in Proc. 12th
Int. Conf. WWW, 2003, pp. 271–279.

[26] Y. Koren, “Factorization meets the neighborhood: A multifaceted collab-
orative filtering model,” in Proc. 14th ACM SIGKDD Int. Conf. KDD,
2008, pp. 426–434.

[27] Y. Koren, “Collaborative filtering with temporal dynamics,” in Proc. 15th
ACM SIGKDD Int. Conf. KDD, 2009, pp. 447–456.

[28] M. Kurucz, A. A. Benczur, and K. Csalogany, “Methods
for large scale SVD with missing values,” in Proc. KDDCup, 2007,
pp. 31–38.

[29] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-start
problem in recommendation systems,” in Proc. 2nd Int. Conf. Ubiquitous
Inf. Manage. Commun., 2008, pp. 208–211.

232 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

[30] N. N. Liu, M. Zhao, and Q. Yang, “Probabilistic latent preference
analysis for collaborative filtering,” in Proc. 18th ACM CIKM, 2009,
pp. 759–766.

[31] Q. Liu, E. Chen, H. Xiong, and C. H. Q. Ding, “Exploiting user interests
for collaborative filtering: Interests expansion via personalized ranking,”
in Proc. 19th ACM CIKM, 2010, pp. 1697–1700.

[32] Q. Mei, X. Shen, and C. Zhai, “Automatic labeling of multinomial
topic models,” in Proc. 13th ACM SIGKDD Int. Conf. KDD, 2007,
pp. 490–499.

[33] T. Minka, Estimating a Dirichlet Distribution, 2000. [Online].
Available: http://research.microsoft.com/en-us/um/people/minka/papers/
dirichlet/minka-dirichlet.pdf

[34] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Comput. Sci. Dept., Stanford Univ.,
Stanford, CA, Tech. Rep. 1999-0120, 1998.

[35] M. Papagelis, D. Plexousakis, and T. Kutsuras, “Alleviating the sparsity
problem of collaborative filtering using trust inferences,” in Proc. Trust
Manage., 2005, pp. 224–239.

[36] R. Paul, I. Neophytos, S. Mitesh, B. Peter, and R. John, “GroupLens: An
open architecture for collaborative filtering of netnews,” in Proc. ACM
Conf. CSCW, 1994, pp. 175–186.

[37] X. H. Phan, L. M. Nguyen, and S. Horiguchi, “Learning to classify short
and sparse text & web with hidden topics from large-scale data collec-
tions,” in Proc. 17th Int. Conf. WWW, 2008, pp. 91–100.

[38] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1257–1264.

[39] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimen-
sionality reduction in recommender systems—A case study,” in Proc.
ACM WebKDD Workshop, 2000, pp. 82–90.

[40] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. WWW,
2001, pp. 285–295.

[41] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative
filtering recommender systems,” in Proc. Adapt. Web, Lecture Notes in
Computer Science, 2007, pp. 291–324.

[42] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods
and metrics for cold-start recommendations,” in Proc. 25th Annu.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (SIGIR), 2002,
pp. 253–260.

[43] S. Sen, J. Vig, and J. Riedl, “Tagommenders: Connecting
users to items through tags,” in Proc. 18th Int. Conf. WWW, 2009,
pp. 671–680.

[44] X. Song, B. L. Tseng, C. Y. Lin, and M. T. Sun, “Personalized
recommendation driven by information flow,” in Proc. 29th Annu.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (SIGIR), 2006,
pp. 509–516.

[45] M. Steyvers and T. Griffiths, “Probabilistic topic models,” in Handbook
of Latent Semantic Analysis, vol. 427. Mahwah, NJ: Lawrence Erlbaum
Associates, 2007, pp. 1–15.

[46] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “Providing justi-
fications in recommender systems,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 38, no. 6, pp. 1262–1272, Nov. 2008.

[47] H. M. Wallach, I. Murray, R. Salakhutdinov, and D. M. Mimno, “
Evaluation methods for topic models,” in Proc. 26th Annu. ICML, 2009,
pp. 1105–1112.

[48] H. M. Wallach, “Structured topic models for language,”
Ph.D. dissertation, Univ. Cambridge, Cambridge, U.K., 2008.

[49] X. Wei and W. B. Croft, “LDA-based document models for ad-hoc
retrieval,” in Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval (SIGIR), 2006, pp. 178–185.

[50] D. T. Wijaya and S. Bressan, “A random walk on the red carpet: Rating
movies with user reviews and pagerank,” in Proc. 17th ACM CIKM, 2008,
pp. 951–960.

[51] H. Wu, Y. Wang, and X. Cheng, “Incremental probabilistic latent semantic
analysis for automatic question recommendation,” in Proc. ACM Conf.
RecSys, 2008, pp. 99–106.

[52] H. Yildirim and M. S. Krishnamoorthy, “A random walk method for
alleviating the sparsity problem in collaborative filtering,” in Proc. ACM
Conf. RecSys, 2008, pp. 131–138.

[53] M. Zhang, “Enhancing diversity in top-N recommendation,” in Proc.
ACM Conf. RecSys, 2009, pp. 397–400.

[54] M. Zhang and N. Hurley, “Avoiding monotony: Improving the
diversity of recommendation lists,” in Proc. ACM Conf. RecSys, 2008,
pp. 123–130.

[55] C. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” in Proc. 14th Int.
Conf. WWW, 2005, pp. 22–32.

Qi Liu received the B.E. degree in computer science
from Qufu Normal University, Shandong, China, in
2007. He is currently working toward the Ph.D.
degree from the School of Computer and Technol-
ogy, University of Science and Technology of China,
Hefei, China.

He is currently supported by the China Scholar-
ship Council and will stay for a year in Rutgers, The
State University of New Jersey, as a Visiting Re-
search Student in the Data Mining Group. His main
research interests include intelligent data analysis,

recommender systems, and Web data mining. During his Ph.D. study, he has
published several papers in refereed conference proceedings and journals.

Enhong Chen (SM’07) received the Ph.D. degree
from the University of Science and Technology of
China (USTC), Hefei, China.

He is a Professor and the Vice Dean of the School
of Computer Science and Technology, USTC. His
general areas of research are data mining, personal-
ized recommendation systems, and Web information
processing. He has published more than 100 papers
in refereed conferences and journals. His research is
supported by the National Natural Science Founda-
tion of China, National High Technology Research

and Development Program 863 of China, etc. He is the program committee
member of more than 20 international conferences and workshops.

Hui Xiong (SM’07) received the B.E. degree
from the University of Science and Technology
of China, Hefei, China, the M.S. degree from the
National University of Singapore, Singapore, and
the Ph.D. degree from the University of Minnesota,
Minneapolis, MN.

He is currently an Associate Professor and the
Vice Department Chair of the Management Science
and Information Systems Department, Rutgers Uni-
versity, NJ. His general area of research is data and
knowledge engineering, with a focus on developing

effective and efficient data analysis techniques for emerging data-intensive
applications. He has published over 90 technical papers in peer-reviewed
journals and conference proceedings. He is a Coeditor of Clustering and
Information Retrieval (Kluwer Academic Publishers, 2003) and a Co-Editor-
in-Chief of Encyclopedia of GIS (Springer, 2008). He is an Associate Editor of
the Knowledge and Information Systems Journal and has served regularly in the
organization and program committees of a number of international conferences
and workshops.

Dr. Xiong is a senior member of the Association for Computing Machinery
(ACM).

Chris H. Q. Ding (M’09) received the Ph.D. degree
from Columbia University, New York, NY.

He is currently a Professor with the Department
of Computer Science and Engineering, University
of Texas, Arlington (UTA). Prior to joining UTA,
he was in the Lawrence Berkeley National Labora-
tory, University of California, Berkeley, and, prior
to that, with the California Institute of Technology,
Pasadena. His general research areas are machine
learning/data mining and bioinformatics. He also
works on information retrieval, Web link analysis,

and high-performance computing. His research is supported by National Sci-
ence Foundation grants and by the University of Texas Regents STARS Award.
He has published over 150 research papers in peer-reviewed journals and
conference proceedings, and these papers have been cited more than 5000
times. He serves on many program committees of international conferences
and gave tutorials on spectral clustering and matrix models. He is an Associate
Editor of the journal Data Mining and Bioinformatics and is writing a book on
spectral clustering to be published by Springer.

Dr. Ding is a member of the IEEE Computer Society since 2000.

LIU et al.: ENHANCING COLLABORATIVE FILTERING BY USER INTEREST EXPANSION 233

Jian Chen (M’95–SM’96–F’08) received the B.Sc.
degree in electrical engineering and the M.Sc. and
Ph.D. degrees in systems engineering from Tsinghua
University, Beijing, China, in 1983, 1986, and 1989,
respectively.

He is a Professor and the Chairman of the Man-
agement Science Department and the Director of
the Research Center for Contemporary Management,
Tsinghua University. His main research interests in-
clude supply chain management, E-commerce, deci-
sion support systems, and modeling and control of

complex systems. He has published over 100 papers in refereed journals and
has been a principal investigator for over 30 grants or research contracts with
the National Science Foundation of China, governmental organizations, and
companies. He has presented several plenary lectures.

Dr. Chen is a Ministry of Education Changjiang Scholar and the recipient of
the Fudan Management Excellence Award (3rd) and the Science and Technol-
ogy Progress Award from the Beijing Municipal Government; the Outstanding
Contribution Award from the IEEE Systems, Man, and Cybernetics Society; the
Science and Technology Progress Award from the State Educational Commis-
sion; and the Science and Technology Award for Chinese Youth.

