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Abstract

Machine learning is rapidly becoming a core technology for scientific computing, with numerous opportunities
to advance the field of computational fluid dynamics. In this Perspective, we highlight some of the areas of highest
potential impact, including to accelerate direct numerical simulations, to improve turbulence closure modeling, and
to develop enhanced reduced-order models. We also discuss emerging areas of machine learning that are promising
for computational fluid dynamics, as well as some potential limitations that should be taken into account.

1 Introduction

The field of numerical simulation of fluid flows is generally known as computational fluid dynamics (CFD). Fluid
mechanics is an area of great importance, both from a scientific perspective and for a range of industrial-engineering
applications. Fluid flows are governed by the Navier–Stokes equations, which are partial differential equations
(PDEs) modeling the conservation of mass and momentum in a Newtonian fluid. These PDEs are non-linear due
to the convective acceleration (which is related to the change of velocity with the position), and they commonly
exhibit time-dependent chaotic behavior, known as turbulence. Solving the Navier–Stokes equations for turbulent
flows requires numerical methods that may be computationally expensive, or even intractable at high Reynolds
numbers, due to the wide range of scales in space and time necessary to resolve these flows. There are various
approaches to numerically solve these equations, which can be discretized using methods of different orders, for
instance finite-difference [1], finite-volume [2], finite-element [3], spectral methods [4], and so forth. Furthermore,
turbulence can be simulated with different levels of fidelity and computational cost.

At the same time, we are experiencing a revolution in the field of machine learning (ML), which is enabling
advances across a wide range of scientific and engineering areas [5–9]. Machine learning is a subfield of the broader
area of artificial intelligence (AI), which is focused on the development of algorithms with the capability of learning
from data without explicit mathematical models [10]. Many of the most exciting advances in ML have leveraged
deep learning, based on neural networks (NNs) with multiple hidden layers between the input and the output. One
key aspect contributing to the remarkable success of deep learning is the ability to learn in a hierarchical manner:
while initial layers learn simple relationships in the data, deeper layers combine this information to learn more
abstract relationships. Many physical problems exhibit this hierarchical behavior, and can therefore be effectively
modelled using deep learning, and machine learning more generally.

In this Perspective, we focus on the potential of machine learning to improve CFD, including possibilities to
increase the speed of high-fidelity simulations, develop turbulence models with different levels of fidelity, and
produce reduced-order models beyond what can be achieved with classical approaches. Several authors have sur-
veyed the potential of machine learning to improve fluid mechanics [11, 12], including topics beyond the scope
of CFD, such as experimental techniques, control applications, and related fields. Others have reviewed more spe-
cific aspects of ML for CFD, such as turbulence closure [13, 14] and heat-transfer aspects of CFD for aerodynamic
optimization [15]. Our discussion will address the middle ground of ML for CFD more broadly, with a schematic
representation of topics covered in Fig. 1. Approaches to improve CFD with ML are aligned with the larger efforts
to incorporate ML into scientific computing, for instance via physics-informed neural networks (PINNs) [16, 17] or
to accelerate computational chemistry [8, 18].
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Figure 1: Summary of some of the most relevant areas where machine learning can enhance CFD. a) Neural
network illustrating the field of machine learning. b) In direct numerical simulations, computational grids fine
enough to properly resolve the details of the flow structures (such as the one shown in blue) are needed. The grey
band denotes the wall. c) The left subpanel illustrates large-eddy simulation (LES), and we show a schematic of
the turbulence spectrum, where the larger scales (to the left of the green vertical line, i.e. the cut-off wavenumber)
are numerically simulated, and the smaller ones (to the right of the cut-off) are represented by a model. Since these
smaller scales do not need to be resolved, the computational cost of the simulation is reduced. The right subpanel
illustrates Reynolds-averaged Navier–Stokes (RANS) simulations, where ũi is the instantaneous velocity compo-
nent i, Ui the mean and ui the fluctuating component. In RANS models, the fluctuations are usually expressed as
a function of the eddy viscosity νT . d) General schematic of a dimensionality-reduction method, where the circles
denote flow quantities. The input (on the left in blue) is the high-resolution flow field, the output (on the right in
red) is the reconstruction of the input field, and the yellow box represents the low-dimensional system.

2 Accelerating direct numerical simulations

Direct numerical simulation (DNS) is a high-fidelity approach where the governing Navier–Stokes equations are
discretized and integrated in time with enough degrees of freedom to resolve all flow structures. Turbulent flows
exhibit a pronounced multi-scale character, with vortical structures across a range of sizes and energetic content [19].
This complexity requires fine meshes and accurate computational methods to avoid distorting the underlying
physics with numerical artifacts. With a properly designed DNS, it is possible to obtain a representation of the
flow field with the highest level of detail among CFD methods. However, the fine computational meshes required
to resolve the smallest scales lead to exceedingly high computational costs, which increase with the Reynolds num-
ber [20].

A number of machine-learning approaches have been developed recently to improve the efficiency of DNS.
First, we will discuss several studies aimed at improving discretization schemes. Bar-Sinai et al. [21] proposed
a technique based on deep learning to estimate spatial derivatives in low-resolution grids, outperforming stan-
dard finite-difference methods. A similar approach was developed by Stevens and Colonius [22] to improve the
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Figure 2: An example of machine-learning-accelerated direct numerical simulation. a) Results from the work
by Kochkov et al. [25], where the instantaneous vorticity field is shown for simulations with high-/low-resolution,
as well as a case with low resolution supplemented with ML. Four different time steps are shown, and some key
vortical structures are highlighted with yellow squares. Adapted from the work by Kochkov et al. [25], with per-
mission of the publisher (United States National Academy of Sciences). b) Sketch represents that ML accelerates the
simulation through a correction between the coarse and the fine resolutions. In this example, one can reduce the
resolution by downsampling the flow data on a coarser mesh, and then use ML to recover the details present in the
finer simulation through super-resolution. The correction between coarse and fine resolutions, which is based on
ML, enables the super-resolution task here.

results of fifth-order finite-difference schemes in the context of shock-capturing simulations. Jeon and Kim [23]
proposed to use a deep neural network to simulate the well-known finite-volume discretization scheme [2] em-
ployed in fluid simulations. They tested their method with reactive flows, obtaining very good agreement with
reference high-resolution data at one tenth the computational cost. However, they also documented errors with
respect to the reference solution which increased with time. Another deep-learning approach, based on a fully-
convolutional/long-short-term-memory (LSTM) network, was proposed by Stevens and Colonius [24] to improve
the accuracy of finite-difference/finite-volume methods. Second, we consider the strategy of developing a cor-
rection between fine- and coarse-resolution simulations. This was developed by Kochkov et al. [25] for the two-
dimensional Kolmogorov flow [26], which maintains fluctuations via a forcing term. They leveraged deep learning
to develop the correction, obtaining excellent agreement with reference simulations in meshes from 8 to 10 times
coarser in each dimension, as shown in Fig. 2. In particular, this figure shows that for long simulations, the standard
coarse-resolution case does not exhibit certain important vortical motions, which are however properly captured by
the low-resolution case with the ML model. These results promise to substantially reduce the computational cost of
relevant fluid simulations, including weather [27], climate [28], engineering [29] and astrophysics [30]. Finally, other
strategies to improve the performance of PDE solvers in coarser meshes have been developed by Li et al. [31–33].

It is also possible to accelerate CFD by solving the Poisson equation with deep learning; this has been done by
several research groups in various areas, such as simulations of electric fields [34] and particles [35]. The Poisson
equation is frequently used in operator-splitting methods to discretize the Navier–Stokes equations [36], where first
the velocity field is advected, and the resulting field u∗ does not satisfy the continuity equation (i.e. for incompress-
ible flows, u∗ does not satisfy the divergence-free condition). The second step involves a correction to ensure that
u∗ is divergence free, leading to the following Poisson equation:

∆t

ρ
∇2p = −∇ · u∗, (1)

where ∆t is the simulation time step, ρ is the fluid density, and p is the pressure. Solving this equation is typically
the most computationally expensive step of the numerical solver. Therefore, devising alternative strategies to solve
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it more efficiently is an area of great promise. Machine learning can be used for this task, because this technology
can exploit data from previous examples to find mappings between the divergence of the uncorrected velocity and
the resulting pressure field. For instance, Ajuria et al. [37] proposed using a convolutional neural network (CNN)
to solve Equation (1) in incompressible simulations, and tested it in a plume configuration. Their results indicate
that it is possible to outperform the traditional Jacobi solver with good accuracy at low Richardson numbers Ri (the
Richardson number measures the ratio between the buoyancy and the shear in the flow). However, the accuracy
degrades at higher Ri, motivating the authors to combine the CNN with the Jacobi solver (which is used when the
CNN diverges). CNNs were also used to solve the Poisson problem by decomposing the original problem into a
homogeneous Poisson problem plus four inhomogeneous Laplace subproblems [38]. This decomposition resulted
in errors below 10%, which motivates using this approach as a first guess in iterative algorithms, potentially reduc-
ing computational cost. Other data-driven methods [39] have been proposed to accelerate the pressure correction
in multi-grid solvers. These approaches may also be used to accelerate simulations of lower fidelity that rely on
turbulence models.

Numerical simulations can also be accelerated by decreasing the size of the computational domain needed to
retain physical properties of the system. Two ways in which the domain can be reduced are to replace a section
upstream of the domain of interest by an inflow condition, and to replace part of the far-field region by a suitable
boundary condition. Doing so, these parts of the domain do not need to be simulated, thus producing computa-
tional savings, and ML can help to develop the inflow and far-field conditions as discussed next. Fukami et al. [40]
developed a time-dependent inflow generator for wall-bounded turbulence simulations using a convolutional au-
toencoder with a multilayer perceptron (MLP). They tested their method in a turbulent channel flow at Reτ = 180,
which is the friction Reynolds number based on channel half height and friction velocity, and they maintained
turbulence for an interval long enough to obtain converged turbulence statistics. This is a promising research di-
rection due to the fact that current inflow-generation methods show limitations in terms of generality of the inflow
conditions, for instance at various flow geometries and Reynolds numbers. A second approach to reduce the com-
putational domain in external flows is to devise a strategy to set the right pressure-gradient distribution without
having to simulate the far field. This was addressed by Morita et al. [41] through Bayesian optimization based on
Gaussian-process regression, achieving accurate results when imposing concrete pressure-gradient conditions on a
turbulent boundary layer.

3 Improving turbulence models

DNS is impractical for many real-world applications due to the computational cost associated with resolving all
scales for flows with high Reynolds numbers, together with difficulties arising from complex geometries. Industrial
CFD typically relies on either Reynolds-averaged Navier–Stokes (RANS) models, where no turbulent scales are
simulated, or coarsely-resolved large-eddy simulations (LES), where only the largest turbulent scales are resolved
and smaller ones are modelled. Here the term model refers to an a-priori assumption regarding the physics of a
certain range of turbulent scales. In the following we discuss ML applications to RANS and LES modeling.

3.1 RANS modeling

Numerical simulations based on RANS models rely on the so-called RANS equations, which are obtained after de-
composing the instantaneous flow quantities into a mean and a fluctuating component, and averaging the Navier–
Stokes equations in time. Using index notation, the instantaneous i-th velocity component ũi can be decomposed
into its mean (Ui) and fluctuating (ui) components as follows: ũi = Ui + ui. Although the RANS equations gov-
ern the mean flow, the velocity fluctuations are also present in the form of the Reynolds stresses uiuj (where the
overbar denotes averaging in time), which are correlations between the i-th and j-th velocity components. Since it
is convenient to derive equations containing only mean quantities, uiuj needs to be expressed as a function of the
mean flow, and this is called the closure problem. The first approach to do this was proposed by Boussinesq [42], who
related the Reynods stresses with the mean flow via the so-called eddy viscosity νT . Although this approach has
led to some success, there are still a number of open challenges for RANS modeling in complex flows [43], where
this approach is too simple. In particular, conventional RANS models exhibit significant errors when dealing with
complex pressure-gradient distributions, complicated geometries involving curvature, separated flows, flows with
significant degree of anisotropy and three-dimensional effects, among others. As argued by Kutz [44], machine
learning can produce more sophisticated models for the Reynolds stresses by using adequate data, in particular if
the examples used for training represent a sufficiently rich set of flow configurations.

A wide range of ML methods have recently been used to improve RANS turbulence modeling [13], focusing
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on the challenge of improving the accuracy of the Reynolds stresses for general conditions. For example, Ling et
al. [45] proposed a novel architecture, including a multiplicative layer with an invariant tensor basis, used to embed
Galilean invariance in the predicted anisotropy tensor. Incorporating this invariance improves the performance of
the network, which outperforms traditional RANS models based on linear [42] and nonlinear [46] eddy-viscosity
models. They tested their models for turbulent duct flow and the flow over a wavy wall, which are challeng-
ing to predict with RANS models [47, 48] because of the presence of secondary flows [49]. Other ML-based ap-
proaches [50, 51] rely on physics-informed random forests to improve RANS models, with applications to cases
with secondary flows and separation. On the other hand, Jiang et al. [52] recently developed an interpretable frame-
work for RANS modeling based on a physics-informed residual network (PiResNet). Their approach relies on two
modules to infer the structural and parametric representations of turbulence physics, and includes non-unique map-
pings, a realizability limiter, and noise-insensitivity constraints. Interpretable models are essential for engineering
and physics, particularly in the context of turbulence modeling. The interpretability of the framework by Jiang et
al. [52] relies on its constrained model form [53], although this is not generally possible to attain. Recent studies [54]
have discussed various approaches to include interpretability in the development of deep-learning models, and one
promising approach is the one proposed by Cranmer et al. [55]. This technique has potential in terms of embed-
ding physical laws and improving our understanding of such phenomena. Other interpretable RANS models were
proposed by Weatheritt and Sandberg [56], using gene-expression programming (GEP), which is a branch of evo-
lutionary computing [57]. GEP iteratively improves a population of candidate solutions by survival of the fittest,
with the advantage of producing closed-form models. The Reynolds-stress anisotropy tensor was also modelled
by Weatheritt and Sandberg [58], who performed tests in RANS simulations of turbulent ducts. Models based on
sparse identification of nonlinear dynamics (SINDy) [59] have also been used for RANS closure models [60–62].

Furthermore, the literature also reflects the importance of imposing physical constraints in the models and
incorporating uncertainty-quantification (UQ) [63–65] alongside ML-based models. It is also important to note
that when using DNS quantities to replace terms in the RANS closure, the predictions may be unsatisfactory [66].
This inadequacy is due to the strict assumptions associated with the RANS model, as well as the potential ill-
conditioning of the RANS equations [67]. It is thus essential to take advantage of novel data-driven methods, while
also ensuring that uncertainties are identified and quantified. Another interesting review by Ahmed et al. [14]
discussed both classical and emerging data-driven closure approaches, also connecting with ROMs.

Obiols-Sales et al. [68] developed a method to accelerate the convergence of RANS simulations based on the
very popular Spalart–Allmaras (SA) turbulence model [69] using the CFD code OpenFOAM [70]. In essence, they
combined iterations from the CFD solver and evaluation of a CNN model, obtaining convergence from 1.9 to 7.4
times faster than that of the CFD solver, both in laminar and turbulent flows. Multiphase flows, which consist of
flows with two or more thermodynamic phases, are also industrially relevant. Gibou et al. [71] proposed different
directions in which machine learning and deep learning can improve CFD of multiphase flows, in particular when
it comes to enhancing the simulation speed. Ma et al. [72] used deep learning to predict the closure terms (i.e., gas
flux and streaming stresses) in their two-fluid bubble flow, whereas Mi et al. [73] analyzed gas-liquid flows and
employed neural networks to identify the different flow regimes.

3.2 LES modeling

LES-based numerical simulations rely on low-pass filtering the Navier–Stokes equations (Fig. 1c), such that the
largest scales are simulated and the smallest ones (below a certain cut-off) are modeled by means of a so-called
subgrid-scale model (SGS). Note that the smallest scales are the most demanding from a computational point of
view (both in terms of computer time and memory usage), because they require fine meshes to be properly resolved.
The first proponent of this type of approach was Smagorinski [74], who developed an SGS model based on an eddy
viscosity which was computed in terms of the mean flow and the grid size; his model assumed that the production
equals the dissipation for the small scales. Although LES can lead to substantial computational savings with respect
to DNS while exhibiting a good accuracy, there are still challenges associated with its usage for general purpose [43].
For instance, current SGS models exhibit limited accuracy in their predictions of turbulent flows at high Reynolds
number, in complex geometries, and in cases with shocks and chemical reactions.

Machine learning has also been used to develop SGS models in the context of LES of turbulent flows basically
in two ways: supplementing the unresolved energy in the coarse mesh using supervised learning and developing
agent-based approaches to stabilize the coarse simulation. When it comes to the first approach, we list several
studies below which rely on high-fidelity data to train both deep-learning and GEP-based models. First, Beck et
al. [75] used an artificial neural network based on local convolutional filters to predict the mapping between the flow
in a coarse simulation and the closure terms, using a filtered DNS of decaying homogeneous isotropic turbulence.
Lapeyre et al. [76] employed a similar approach, with a CNN architecture inspired by a U-net model, to predict the
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Figure 3: An example of LES modeling where the dissipation coefficient in the Smagorinski model is calculated
by means of machine learning. a) Schematic of a numerical simulation fine enough to resolve the blue flow struc-
tures, but too coarse to resolve the green structure. This small-scale structure (green) would have to be modeled by
means of a subgrid-scale (SGS) model, such as the well-known SGS model by Smagorinski [74]. This model relies
on an empirical parameter, the dissipation coefficient Cs, which can be determined more accurately by ML. b) An
example of ML-based approach to determine the value of Cs by reinforcement learning (RL) [83]. The RL agents
are located at the red blocks, and they are used to compute Cs for each grid point with coordinates xi at time t. This
calculation is carried out in terms of a policy, which depends on the state of the agent. This state is based on local
variables (invariants of the gradient and Hessian of the velocity) and also global ones (energy spectrum, viscous
dissipation rate and total dissipation rate). The agents receive a reward, which also depends on local and global
quantities, based on the accuracy of the simulation. Adapted from the work by Novati et al. [83], with permission
of the publisher (Springer Nature).

subgrid-scale wrinkling of the flame surface in premixed turbulent combustion; they obtained better results than
classical algebraic models. Maulik et al. [77] employed a multilayer perceptron (MLP) to predict the SGS model
in an LES using high-fidelity numerical data to train the model. They evaluated the performance of their method
on Kraichnan turbulence [78], which is a classical two-dimensional decaying-turbulence test case. Several other
studies have also used neural networks in a supervised manner for SGS modeling [79–81]. Furthermore, GEP has
also been used for SGS modeling [82] in an LES of a Taylor–Green vortex, outperforming standard LES models.
Regarding the second approach to LES modeling, Novati et al. [83] employed multi-agent reinforcement-learning
(RL) to estimate the unresolved subgrid-scale physics. This unsupervised method exhibits favorable generalization
properties across grid sizes and flow conditions, and the results are presented for isotropic turbulence. As shown
in the schematic representation of Fig. 3, the state of the agents at a particular instant is given in terms of both local
and global variables; this state is then used to calculate the so-called dissipation coefficient at each grid point.

In certain applications, for instance those involving atmospheric boundary layers (ABLs), the Reynolds num-
ber is several orders of magnitude larger than those of most studies based on turbulence models or wind-tunnel
experiments [84]. The mean flow in the inertial sublayer has been widely studied in the ABL community, and it
is known that in neutral conditions it can be described by a logarithmic law [85]. The logarithmic description of
the inertial sublayer led to the use of wall models, which replace the region very close to the wall with a model
defining a surface shear stress matching the logarithmic behavior. This is the cornerstone of most atmospheric
models, which avoid resolving the computationally expensive scales close to the wall. One example is the work
by Giometto et al. [86], who studied a real urban geometry, adopting the LES model by Bou-Zeid et al. [87] and
the Moeng model [88] for the wall boundary condition. It is possible to use data-driven approaches to develop
mappings between the information in the outer region (which is resolved) and a suitable off-wall boundary con-
dition (so the near-wall region does not need to be resolved). For instance, it is possible to exploit properties of
the logarithmic layer and rescale the flow in the outer region to set the off-wall boundary condition in turbulent
channels [89, 90]. This may also be accomplished via transfer functions in spectral space [91], convolutional neural
networks [92], or modeling the temporal dynamics of the near-wall region via deep neural networks [93]. Other
promising approaches based on deep learning are the one by Moriya et al. [94], based on defining a virtual velocity,
and the reinforcement-learning technique by Bae and Koumoutsakos [95]. Defining off-wall boundary conditions
with machine learning is a challenging yet promising area of research.
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4 Developing reduced-order models

Machine learning is also being used to develop reduced-order models (ROMs) in fluid dynamics. ROMs rely on the
fact that even complex flows often exhibit a few dominant coherent structures [96–98] that may provide coarse, but
valuable information about the flow. Thus, ROMs describe the evolution of these coherent structures, providing a
lower-dimensional, lower-fidelity characterization of the fluid. In this way, ROMs provide a fast surrogate model
for the more expensive CFD techniques described above, enabling optimization and control tasks that rely on many
model iterations or fast model predictions. The cost of this efficiency is a loss of generality: ROMs are tailored to a
specific flow configuration, providing massive acceleration but a limited range of applicability.

Developing a reduced-order model involves (1) finding a set of reduced coordinates, typically describing the
amplitudes of important flow structures, and (2) identifying a differential-equation model (i.e., a dynamical system)
for how these amplitudes evolve in time. Both of these stages have seen incredible recent advances with machine
learning. One common ROM technique involves learning a low-dimensional coordinate system with the proper or-
thogonal decomposition (POD) [96, 99] and then obtaining a dynamical system for the flow system restricted to this
subspace by Galerkin projection of the Navier–Stokes equations onto these modes. Although the POD step is data
driven, working equally well for experiments and simulations, Galerkin projection requires a working numerical
implementation of the governing equations; moreover, it is often intrusive, involving custom modifications to the
numerical solver. The related dynamic-mode decomposition (DMD) [100] is a purely data-driven procedure that
identifies a low-dimensional subspace and a linear model for how the flow evolves in this subspace. Here, we will
review a number of recent developments to extend these approaches with machine learning.

The first broad opportunity to incorporate machine learning into ROMs is in learning an improved coordinate
system in which to represent the reduced dynamics. POD [96, 99] provides an orthogonal set of modes that may
be thought of as a data-driven generalization of Fourier modes, which are tailored to a specific problem. POD
is closely related to principal-component analysis (PCA) and the singular-value decomposition (SVD) [5], which
are two core dimensionality-reduction techniques used in data-driven modeling. These approaches provide linear
subspaces to approximate data, even though it is known that many systems evolve on a nonlinear manifold. Deep
learning provides a powerful approach to generalize the POD/PCA/SVD dimensionality reduction from learning a
linear subspace to learning coordinates on a curved manifold. Specifically, these coordinates may be learned using
a neural network autoencoder, which has an input and output the size of the high-dimensional fluid state and a
constriction or bottleneck in the middle that reduces to a low-dimensional latent variable. The map from the high-
dimensional state x to the latent state z is called the encoder and the map back from the latent state to an estimate
of the high-dimensional state x̂ is the decoder. The autoencoder loss function is ‖x̂ − x‖22. When the encoder and
decoder consist of a single layer and all nodes have identity activation functions, then the optimal solution to this
network will be closely related to POD [101]. However, this shallow linear autoencoder may be generalized to a
deep nonlinear autoencoder with multiple encoding and decoding layers and nonlinear activation functions for
the nodes. In this way, a deep autoencoder learns nonlinear manifold coordinates that may considerably improve
the compression in the latent space, with increasing applications in fluid mechanics [102, 103]. This concept is
illustrated in Fig. 4 for the simple flow past a cylinder, where it is known that the energetic coherent structures
evolve on a parabolic sub-manifold in the POD subspace [104]. Lee and Carlberg [105] recently showed that deep
convolutional autoencoders may be used to greatly improve the performance of classical ROM techniques based
on linear subspaces [106, 107]. More recently, Cenedese et al. [108] proposed a promising data-driven method to
construct ROMs on spectral submanifolds (SSMs).

Once an appropriate coordinate system is established, there are many machine-learning approaches to model
the dynamics in these coordinates. Several neural networks are capable of learning nonlinear dynamics [109], in-
cluding the LSTM network [110–112] and echo-state networks [113], which are a form of reservoir computing.
Beyond neural networks, there are alternative regression techniques to learn effective dynamical-systems models.
Cluster reduced-order modeling (CROM) [114] is a simple and powerful unsupervised-learning approach that de-
composes a time series into a few representative clusters, and then models the transition-state probability between
clusters. The operator-inference approach is closely related to Galerkin projection, where a neighboring operator
is learned from data [115–117]. The sparse identification of nonlinear dynamics (SINDy) [59] procedure learns a
minimalistic model by fitting the observed dynamics to the fewest terms in a library of candidate functions that
might describe the dynamics, resulting in models that are interpretable and balance accuracy and efficiency. SINDy
has been used to model a range of fluids [118–124], including laminar and turbulent wake flows, convective flows,
and shear flows.

The modeling approaches above may be combined with a deep autoencoder to uncover a low-dimensional
latent space, as in the SINDy-autoencoder [125]. DMD has also been extended to nonlinear coordinate embed-
dings through the use of deep-autoencoder networks [126–130]. In all of these architectures, there is a tremendous
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Figure 4: Schematic of neural-network autoencoders for dimensionality reduction and model identification.
Reduced-order models are typically designed to balance efficiency and accuracy. ML solutions further improve the
efficiency by reducing the effective dimension of the model and increasing the accuracy through better modeling of
how these few variables co-evolve in time. In this figure, the input is a high-resolution flow field evolving in time
(t) and the output is a reconstruction of that field from the latent space. a) Classic proper orthogonal decomposi-
tion/principal component analysis (POD/PCA) may be viewed as a shallow autoencoder with a single encoder U>

and decoder V layers, together with linear activation units. For the flow past a cylinder example shown, the dynam-
ics evolve in a three-dimensional coordinate system. b) A deep, multi-level autoencoder with mulit-layer encoder
ϕ and decoder ψ, as well as nonlinear activation functions provides enhanced nonlinear coordinates on a mani-
fold. The cylinder flow now evolves on a two-dimensional submanifold. c) The classic Galerkin-projection model,
obtained by projecting the governing Navier–Stokes equations onto an orthogonal basis. The Galerkin-projection
model in c) can be replaced by more generic machine-learning regressions in d), such as long-short-term-memory
(LSTM) networks, reservoir networks or sparse nonlinear models to represent the nonlinear dynamical system
ż = f(z).

opportunity to embed partial knowledge of the physics, such as conservation laws [118], symmetries [120], and
invariances [131–133]. It may also be possible to directly impose stability in the learning pipeline [118, 134, 135].

The ultimate goal for machine-learning ROMs is to develop models that have improved accuracy and efficiency,
better generalizability to new initial and boundary conditions, flow configurations, varying parameters, as well
as improved model interpretability, ideally with less intrusive methods and less data. Enforcing partially-known
physics, such as symmetries and other invariances, along with sparsity, is expected to be critical in these efforts. It is
also important to continue integrating these efforts with the downstream applications of control and optimization.
Finally, many applications of fluid dynamics involve safety-critical systems, and therefore certifiable models are
essential.

5 Emerging possibilities and outlook

In this Perspective we have provided our view on the potential of ML to advance the capabilities of CFD, focusing on
three main areas: accelerating simulations, enhancing turbulence models, and improving reduced-order models. In
Table 1 we highlight some examples of application within each of the three areas. There are also several emerging
areas of ML that are promising for CFD, which we discuss in this section. One area is non-intrusive sensing -
that is the possibility of performing flow predictions based on, for instance, information at the wall. This task,
which has important implications for closed-loop flow control [136], has been carried out via CNNs in turbulent
channels [137]. In connection to the work by Guastoni et al. [137], there are a number of studies documenting the
possibility of performing super-resolution predictions (e.g. when limited flow information is available) in wall-
bounded turbulence using CNNs, autoencoders and generative-adversarial networks (GANs) [138–141]. Another
promising direction is the imposition of constraints based on physical invariances and symmetries on the ML model,
which has been used for SGS modeling [131], ROMs [118], and for geophysical flows [133].
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Accelerate DNS Improve LES/RANS Develop ROMs Future developments
Deep learning for correction Deep learning / Proper-orthogonal Deep learning for

between coarse and reinforcement learning decomposition prediction and control
fine simulations for more general for improved linear subspaces of turbulent flows

subgrid-scale models to represent dynamics
Deep learning for accelerating Deep learning / Autoencoders Better interpretability

the solution of the reinforcement learning to learn manifolds of deep learning for
Poisson equation for more robust wall to represent dynamics computational-fluid-

wall models dynamics models
Domain reduction: deep learning Deep learning / Deep learning for More efficient
for inflow generation; Gaussian symbolic regression representing temporal operation of high-
processes for pressure-gradient for more accurate and system dynamics performance-computing

distributions general RANS models facilities facilitated by ML
Deep learning for improved Deep learning / Sparse identification ML-enabled more

accuracy of finite-difference / symbolic regression of nonlinear dynamics advanced computational
finite-volume schemes for interpretable for learning efficient architectures

RANS models and interpretable ROMs

Table 1: Summary of applications of ML to enhance CFD. We show options to accelerate direct numerical sim-
ulations (DNSs), improvement of turbulence models for large-eddy simulations (LESs) and Reynolds-averaged
Navier–Stokes (RANS) simulations, development of reduced-order models (ROMs) and possible future develop-
ments.

Physics-informed neural networks (PINNs) constitute another family of methods that are becoming widely
adopted for scientific computing, more broadly. This technique, introduced by Raissi et al. [16], uses deep learning to
solve PDEs, exploiting the concept of automatic differentiation used in the back-propagation algorithm to calculate
partial derivatives and form the equations, which are enforced through a loss function. Although the method
is different from the ML approaches discussed above, in certain cases PINNs provide a promising alternative to
traditional numerical methods for solving PDEs. This framework also shows promise for biomedical simulations,
in particular after the recent work by Raissi et al. [142], in which the concentration field of a tracer is used as an input
to accurately predict the instantaneous velocity fields by minimizing the residual of the Navier–Stokes equations.
The growing usage of PINNs highlights the relevance of exploiting the knowledge we have about the governing
equations when conducting flow simulations. In fact, PINNs are being used for turbulence modeling [143] (solving
the RANS equations without the need of a model for the Reynolds stresses), for developing ROMs [144], for dealing
with noisy data [145] and for accelerating traditional solvers, for instance by means of solving the Poisson equation
more efficiently [146].

There are also grand challenges in CFD that necessitate new methods in ML. One motivating challenge in CFD
is to perform accurate coarse-resolution simulations in unforced three-dimensional wall-bounded turbulent flows.
The production of turbulent kinetic energy (TKE) in these flows takes place close to the wall [147] (although at
very high Reynolds numbers, outer-layer production also becomes relevant), and therefore using coarse meshes
may significantly distort TKE production. In these flows of high technological importance, the TKE production
sustains the turbulent fluctuations, and therefore a correction between coarse and fine resolutions may not be suf-
ficient to obtain accurate results. Another challenge is the need for robust and interpretable models, a goal which
is not easily attainable with deep-learning methods. There are however promising directions [54, 55] to achieve
interpretable deep-learning models, with important applications to CFD. A clear challenge of CFD is the large en-
ergy consumption associated with large-scale simulations. In this sense, ML can be an enabler for more efficient
operation of the high-performance-computing (HPC) facilities [7], or even for future computational architectures,
including quantum computers [148], as shown in Table 1.

It is worth noticing that, while ML has a very high potential for CFD, there are also a number of caveats which
may limit the applicability of ML to certain areas of CFD. Firstly, ML methods, such as deep learning, are often
expensive to train and require large amounts of data. It is therefore important to identify areas where ML outper-
forms classical methods, which have been established for decades, and may be more accurate and efficient in certain
cases. For instance, it is possible to develop interpretable ROMs with traditional methods such as POD and DMD,
and while deep learning can provide some advantages [103], the simpler machine-learning methods may be more
efficient and straightforward. Finally, it is important to assess the information about the training data available to
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the user: certain flow properties (e.g. incompressibility, periodicity, etc.) should be embedded in the ML model to
increase training efficiency and prediction accuracy. There is also a question of how the training data is generated,
and whether the associated cost is taken into account when benchmarking. In this context, transfer learning is a
promising area [137].

Despite the caveats above, we believe that the trend of advancing CFD with ML will continue in the future. This
progress will continue to be driven by an increasing availability of high-quality data, high-performance comput-
ing, and a better understanding and facility with these emerging techniques. Improved adoption of reproducible
research standards [149, 150] is also a necessary step. Given the critical importance of data when developing ML
modes, we advocate that the community continues to establish proper benchmark systems and best practices for
open-source data and software in order to harness the full potential of ML to improve CFD.
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