
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Enhancing confidence in using computational
thinking skills via playing a serious game: A
case study to increase motivation in learning
computer programming

Cagin Kazimoglu
1Faculty of Engineering, Cyprus International University, Nicosia, Cyprus

Corresponding author: Cagin Kazimoglu (e-mail: cagin.kazimoglu@gmail.com).

This work greatly appreciates the support of Eur Ing Dr Mary Kiernan, Prof. Liz Bacon, and Prof. Lachlan Mackinnon.

ABSTRACT Computer Science (CS) is a profession that positively impacts every single area of society

without which today’s world would come to a complete halt. Yet, there is a consensus that CS has serious

conundrums particularly in attracting students, low motivation for learning computer programming and

developing computational thinking (CT) skills. New motivational methods are needed to take the attention

of students and adapt to their learning patterns as how people learn have changed drastically over the last

two decades. To address these issues, video games and video game-based tools are proposed as a primary

approach for motivating and supporting students in developing their skills in CT and support their learning

of introductory programming. This research is concerned with the capture of statistical evidence on the

educational effectiveness of playing a serious game specifically designed to enhance the development of

CT skills to facilitate learning introductory computer programming. A total of 190 students were invited to

participate in a quasi-experimental pre-post study for the purpose of analyzing the impact of an adhoc game

to students’ confidence in learning programming constructs and using their skills in CT. All students were

studying a CS degree at the time and they were all registered to a first-year computer programming course.

151 out of 190 students successfully completed the study and the findings suggest that a) the intrinsic

motivation to learn programming; b) students’ perception of their knowledge and their tangible knowledge

in key programming constructs (i.e. programming sequence, methods, decision making and loops); and c)

students’ confidence in using their CT skills were all statistically and significantly improved after playing

the game. Additionally, students perceived computer programming significantly less difficult in their post

study responses when compared to their pre study responses.

INDEX TERMS computational thinking, serious games, computer programming, video game design,

game-based learning, gamification

I. INTRODUCTION

 While there is an increasing demand in Computer

Science (CS) profession as a mainstream discipline, CS

degrees have the highest number of students dropping out

in recent years according to the latest figures from the

Higher Education Statistics Agency (HESA) [1]. The

difficulty of learning computer programming is cited as one

of the major factors for the high attrition rates within the CS

discipline [2] [3] [4]. Recent studies in this field argue that

the task of learning to program is often recognized as a

frustrating and demanding activity by introductory

programming student because of multiple factors such as

poor teaching methods, low levels of interaction with

students and a lack of interest in the subject [5], [6].

Moreover, introductory programming students often get

confused with multiple levels of branching and locations in

the programming logic and they have major difficulties in

visualizing programming constructs from given problems

[7]–[10]. Thinking within the syntax of a programming

language is not natural to many introductory programming

students and this creates numerous challenges for them as

when they get error messages, they tend to edit programs

unrelated to these error messages [11]. It is often discussed

that students need to work at an operational level of

abstraction before producing code in a specific programming

mailto:cagin.kazimoglu@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

2

language so that they can develop their abilities in solving

problems before they start programming [12].

 The difficulties students experience in learning computer

programming are not novel, and the reasons behind these

challenges have been discussed by the field experts for

many decades. In their seminal work, Bonar & Soloway

[13] stated that the real problems introductory programming

students have lie in “putting the pieces together”. They

highlighted the problem of recalling domain specific plans

in order to encode pieces of information into meaningful

units which means that the crux of the problem is the lack

of critical thinking skills. Additionally, previous studies

emphasized that failure rates worldwide of 30-50% in the

introductory programming courses have been reported for

decades [14], [15]. This has led to many discussions and

ideas on how best to teach computer programming, because

students tend to view of computer programming as a purely

technical activity, rather than as a set of fundamental design

and problem solving skills [16], [17]. Studies show that

there are strong reasons to believe that the majority of

students who are learning introductory computer

programming tend to develop superficial knowledge on

programming constructs, and thus fail to create problem-

solving strategies through using programming constructs

[16], [18], [19].

 To address these problems several studies proposed

visual programming tools, game design classes, video

games and video game-like environments (henceforth both

referred to as games) as ways to attract students into

computer programming activities and as methods to teach

the fundamental concepts of CS [20]–[25]. The first of

these approaches are interactive syntax-free visual

programming environments, such as Scratch [26] and Alice

[27], where students often use graphical programming

commands to build their programs in order to gain a visual

perspective to abstract concepts fundamental to computer

programming. This approach has taken massive attention

by researchers as the mechanism behind these tools is

closely related to fundamental design principles of

programming and perceived to be ideal to quickly create

solutions without the need for excessive program code [10],

[28]–[30]. Another approach being followed to support

learning introductory programming is via game

development classes where although the objective is to

design a new game as the product, the rationale is the

realization of basic programming constructs in addition to

planning algorithms [6], [31], [32]. This approach can cover

an entire curriculum based on custom libraries, different

game engines, visual programming tools or new

programming languages. Therefore, students can learn

introductory programming constructs in an engaging

environment alongside developing the fundamental skills

necessary to be a computer programmer (such as problem

solving and team-working abilities). The final and certainly

the least common way is to facilitate the teaching and

learning of introductory computer programming through

the use of video game technologies in an educational game

context, also referred to as serious games, due to several

exhibiting features of games such as learner-centricity,

interactivity and immediate feedback. The rationale behind

this educational gaming context, which is the fundamental

argument for serious games, is that the immersive and

engaging nature of game-play encourages students to

greater levels of investigation, experimentation and re-use

[33], [34]. Such games can thus support the realization of

basic programming constructs in addition to planning

algorithms and enhancing problem-solving skills [17].

 This research is solely focused on this third approach

mainly for the following two reasons: a) there is an

overwhelming number of work regarding the first two

approaches in the literature, but there are few examples of

serious games that specifically focused on learning

introductory computer programming and developing skills

in CT via game-play [32], [35]–[37]. In other words, only a

limited amount of work has been undertaken to scaffold the

development of CT skills and learning how computer

programming constructs work through serious game-play;

b) there is a clear need for more empirical work in game-

based learning (GBL) that investigates the tension between

teaching CT and computer programming via game-play. It

is crucial to provide more structured studies in this area

which can combine a design framework and an

experimental statistical analysis in order to strengthen the

evaluations of learning in GBL for CS [38]–[41].

 To address the above issues, this paper investigates the

correlations between game-play and developing skills in

CT, through learning a limited number of introductory

programming constructs via serious game-play. The paper

reports a detailed analysis of the current literature and

presents an experimental evaluation through a quasi pre –
post study experimental design in the premise to answer the

following research questions:

“Can a serious game be designed to support the
development of computational thinking through the medium

of learning computer programming? If so, can this game

enhance students’ intrinsic motivation to learn computer

programming and their perception of computational

thinking skills?”

II. RESEARCH BACKGROUND

 Many studies argue that there is a link between dropout

rates in Computer Science (CS) degrees and the low

motivation for learning computer programming, since often

the mechanisms for learning computer programming are

seen by students as neither interesting nor relevant [2], [14],

[16], [42]. According to HESA figures [1], undergraduate

enrollment numbers to CS degrees increased by 4% in

recent years. However, the dropout rates from CS degrees

equally increased as 72% of students considered dropping

out of the university at some point in between 2016 and

2017, with 49% totally leaving their programme.

 Further to above, a seminal work investigating the

introductory programming failure rates undertaken a

systematic review of the introductory programming

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

3

literature, and conducted a statistical analysis on the pass

rates extracted from the relevant articles [3]. Their research

showed the mean worldwide failure rate in introductory

programming classes as 32.3%. A more recent study

supported these findings and reported the worldwide failure

rates in introductory programming courses as 28% [43].

While the failure rates in introductory programming classes

are not alarmingly high, almost one in every three students

fails in introductory programming courses. Furthermore,

recent research in this field states that even students who

have completed introductory programming courses still do

not know how to program and/or may not have the ability

to use programming codes to solve problems within the CS

discipline [44].

 It is widely accepted that learning to program requires

comprehending abstract concepts about CS and arranging

these concepts in a rational order in order to solve real life

problems successfully. In other words, introductory

programming students need to demonstrate an

understanding of the patterns evident in programming,

rather than focusing only on the syntax and semantics of

computer programming languages [17]. However, the

majority of introductory programming students perceive

computer programming as a technical activity rather than a

chain of cognitive skills [15]. Students often find the

process of learning computer programming difficult

because they need to find a solution to a problem by

acquiring a new way of thinking in addition to the need to

practice a new syntax and grammar in order to

communicate their solution to real life problems [45], [46].

Many students are not conscious of this and, despite their

training, when they undertake a computing project the

reaction of the majority of them is to start coding

immediately, skipping the crucial steps of analysis and

design and the need to develop abstractions and algorithmic

thinking [47]. Thus, learning computer programming

becomes a demanding task and requires abstraction of CS

concepts to describe a problem and propose a solution,

followed by the need to design and code in order to convert

the solution into the syntax of a programming language.

To overcome some of these challenges, Computational

Thinking (CT) has been the focal point of a number of

studies within the CS discipline in an attempt to integrate it

into the basic curriculum [12], [48]. The concept, CT, was

first used by Papert [49] and later deeply investigated by

Wing [50]. In her seminal work, Wing described CT as a

problem solving approach that combines logical thinking

with CS programming constructs, and that it can be used to

solve a problem in any discipline regardless of where the

problem lies [50], [51]. In other words, CT is described as a

set of intellectual and reasoning skills that state how people

interact and learn to think through the language of

computation that involves using methods, language and

systems of CS. This does not mean that CT proposes

problems that need to be solved in the same way a

computer tackles them, but rather it encourages the use of

critical thinking using concepts fundamental to the CS

discipline. Many researchers support this and draw

attention to the fact that CT is not a synonym for computer

programming [52], [53]. Instead they define it as the

process of making abstractions [21], [24] whereby the data

and various CS concepts (i.e. computer programming

constructs) are presented without clarifying any

implementation details, in a form similar to the description

of semantics [52]. Thus, if CT is defined as the ability to

develop high-level conceptual design skills, then students

with CT abilities can find computer programming much

easier than others as learning computer programming

requires the ability to select the appropriate symbolic and

numerical data to produce generic solutions. Therefore, CT

is related to conceptualizing and modelling solutions at an

abstract, context-free level, whereas computer

programming is directly related to the context rather than

the concept of a solution and consequently focuses on the

logical and physical realization of a solution within that

context.

Owing to their easy engagement and motivational nature,

games and game-based tools have been proposed by many

studies both to increase the motivation in computer

programming classes and also as a method to practice skills

in CT [54]–[57]. As discussed above, there is an

overwhelming number of works in this area which can be

classified into three main categories as game development

with visual tools [58], [59], extensive game development

[60], [61] and learning through game-play [17], [62]–[64].

All three approaches reported success with a radical

increase in students’ motivation to learn programming,

hence this provided some evidence that integrating games

into the education of introductory computer programming is

a promising strategy.

In game development with visual tools, students are

exposed to create visual abstractions without the need to

write excessive programming code or have a background in

games programming via visual programming tools such as

Scratch [26] or Alice [27]. Complex scenarios can be

created in these environments by combining character

behaviors which inevitably requires an understanding of

programming sequence, conditionals, iterations and

methods. Furthermore, visual programming tools remove

the syntax rules of actual programming languages and

present programmatic representations as blocks through a

simple drag and drop interface. This cleverly separates the

programming logic from programming grammar and

syntax, allowing students to focus on developing

programming strategies with little or no programming

background. Despite all these positive traits, research in this

field points out that visual programming environments are

merely tools and without well-organized teaching methods

and learning materials to support them, all they can provide

is a “short burst of enthusiasm” [65]. An extensive study

identified that visual programming environments influence

not only the learning of introductory programming but also

the habits of programing that students develop during their

learning process [66]. According to this research, when

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

4

students are asked to perform a programming task they do

not approach it by thinking at the algorithmic level but

instead, they attempt to solve the problem by using all the

blocks that seemed to be relevant for solving the task and

randomly combine these blocks into a script in order to try

to solve the problem. Additionally, it has been observed

that students tend to produce unstructured programming

solutions through using various blocks (such as with a

repeat-until loop) where the body of blocks are logically

coherent and easy to understand, but the outcomes

produced by students are no longer coherent and well-

organized. One could argue that this is not related to the

characteristics of visual programming environments but

might be the poor software development skills and weak

programming abilities of students. However, scripts and

graphical objects are often executed concurrently in visual

programming environments. As the scripts are written in

the graphical objects, it is difficult for students to develop

the skills necessary for building logically coherent solutions

as the execution of objects always happen simultaneously.

Studies argue that concurrent programming exists as an

integral part of the visual programming environments and

although debugging concurrent programs can be seen as a

viable concept to support learning, students’ tendency to
develop unstructured programming solutions (such as an

incorrect use of a loop construct), leads to outcomes that

contain lots of repetitions in different scripts which is a bad

programming practice [10], [66]. At this point, it is

important to highlight that the intention here is not to

alienate visual programming environments from learning

introductory programming or to blame these environments

in any way, but rather to emphasize that these environments

are simply design tools which do not necessarily consider

good programming practices as this was not their purpose.

They simply lack a mechanism to support students in their

quest to understand fundamental ideas in CS such as to

algorithmic thinking, debugging programs and the correct

use of programming constructs. Although visual

programming environments are very valuable tools and can

generate well-structured programs with hundreds of

concurrent scripts, one must avoid thinking of these

environments as a substitute for pedagogy in learning

introductory programming because their characteristics

might allow students to incorrectly use programming

constructs. More importantly, a student can transfer their

bad habits in programming gained from these environments

into their further studies in CS. As suggested by many

researchers, visual programming environments remove

programming syntax problems when learning introductory

programming, but the need to write algorithms before

programming remains essentially a cognitively demanding

task [8], [65], [66].

 The second approach is the extensive game development

which aims to develop new games or linear scenarios as an

end product. This approach is often supported with game-

engines, and/or programming languages with graphical

libraries. The idea here is not to complete a polished end-

product but the learning experience and visualization of

how programming constructs work. While this approach

was proven to be useful, students need to consider all

aspects of producing a product including, but not limited to,

game graphics, sound, game play, physics and narratives

[31], [67]. This can sometimes be overwhelming for

introductory programming students and therefore, the

approach requires game development experience and

careful planning [63].

The final category is learning through game-play which

has taken less attention from researchers compared to the

first two approaches. It is discussed in the literature that CT

patterns (e.g. decomposition, abstraction, pattern

generalization, algorithm design) are context and

application independent and therefore, they can easily be

reflected and developed through game-play [52]

(Basawapatna et al., 2011). Research in scalable game

design highlights that once students understand

conceptually how to present a CT pattern, they should be

able to transfer and use it in the context they choose [65].

In recent years, studies investigating the relationship

between digital game-play and learning computer

programming have increased [63]. Survey research in this

field indicate that there are over 40 games that were

reported in the literature within the last two decades [63].

Some of the most cited of these are Robocode [68], Wu’s
Castle [69], Colobot [70], Prog & Play [62], LightBot [71],

RoboBuilder [72], Code Combat [73] and CodeSpells [74].

While many studies showed these games are powerful

motivators [62], [69], [71], majority of them use a text-

based programming language that requires the player to pay

considerable attention to the details of syntax, which is not

very well aligned with CT [75]. Additionally, some of these

games were evaluated without well-defined research design

and the results were often preliminary with small sample

sizes.

Although limited in number, there are very good

structured evaluations of learning through game-play for

CS. Lee and Ko [44], [76] introduced their game Gidget,

where a robot protagonist is expected to write code to

complete a series of missions. They managed to run

randomized controlled trials with a control and an

experimental group where the control group played a

generic version of the game and the experimental group

played a personalized version of the same game with player

selected images and sound effects. Based on a total number

of 116 responses, the motivation level of the participants in

the experimental group was higher than the motivation

level of the participants in the control group in terms of

learning computer programming [76]. More recently, the

same researchers undertook another study with 60

participants where they divided these participants into

multiple experimental groups and measured their

knowledge before and after they a) played their game and

b) completed an online Python class. The findings of this

study suggest that introductory programming concepts can

be taught within a few hours with their game when this is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

5

explicitly guided by a curriculum. While this research is

very valuable for GBL, it is important to note that the

evaluation was conducted at the computer programming

level rather than the level of CT because participants were

expected to write code in a programming language to show

their knowledge/skills. Similar to this, another study

investigated the learning effectiveness of 120 students who

were learning the database Structured Query Language

(SQL) at the time [77]. In this experimental study,

participants were asked to play an adhoc game in different

modes and their performance was compared to a paper-

based learning. It was found that the game modes they

developed, produced better learning outcomes than paper-

based learning. However, like many others, this research

also evaluated the learning performance of participants at

the level of coding. In a very recent study, Zhao and Shute

[64] introduced their game Penguin Go and asked a total of

69 participants to play their game and provide feedback.

Unlike the other studies however, they focused on the main

components of CT rather than programming which included

but not limited to problem decomposition, algorithmic

thinking, conditional logic, recursive thinking, and

debugging. Their findings indicate that participants felt

their skills significantly improved in CT after playing the

game. Yet, this did not impact on their learning of

programming which means that neither their attitudes

toward CS nor their knowledge/skills in programming were

significantly enhanced.

Based on the forementioned studies, there are promising

research findings regarding the attitude and cognitive

development of participants in playing video games

specifically designed to teach computer programming and

practicing skills in CT. However, it is also clear that this

area needs further structured assessments and more

evidence particularly in learning through playing games for

CT. In other words, more studies need to emphasis on

cognitive skills in CT rather than focusing only on the

programming knowledge through the syntax of code and

good programming practices.

For the reasons defined above, this study investigates the

relationship between game-play and participants’
confidence in learning computer programming and using

CT skills. Having done a detailed literature review on the

existing work in GBL for CT, the research questions

presented in the introduction part were refined and fit into

an experimental study structure.

As shown from Table 1, a null and an alternative

hypothesis were added to each refined research question in

order to statistically analyze the collected data with the aim

of answering these new research questions. Several studies

were reviewed before categorizing these questions [34],

[44], [64], [71] and the focus of the research was kept on

the confidence level of participants as well as their potential

knowledge gain and skill development from this study.

Table 1. Showing refined research questions, null and
alternative hypotheses in this research

Research

Question

Null Hypothesis

(Ho1)

Alternative

Hypothesis

(Ha1)
RQ1: Is there a

difference in

students’
attitude to

dropping their

degree

programmes

between the pre

and the post

study?

There is no

significant

difference in

students’ attitude to
dropping their

degree programmes

between the pre and

the post study

Students’ attitude to
dropping their

degree programmes

is significantly

changed between

the pre and the post

study

RQ2: Is there a

difference in

students’
motivation to

learn computer

programming

between the pre

and the post

study?

There is no

significant

difference in

students’ motivation

to learn

programming

between the pre and

the post study

Students’
motivation to learn

programming is

significantly

changed between

the pre and the post

study

RQ3: Is there a

difference in

students’
perception of

difficulty of

computer

programming

between the pre

and the post

study?

There is no

significant

difference in

students’ perception
of difficulty of

computer

programming

between the pre and

the post study

Students’ perception
of difficulty of

computer

programming is

significantly

changed between

the pre and the post

study

RQ4: Is there a

difference in

students’
understanding of

programming

constructs* used

in the game

between the pre

and the post

study?

There is no

significant

difference in

students’
understanding of

programming

constructs between

the pre and the post

study

Students’
understanding of

programming

constructs is

significantly

changed between

the pre and the post

study

RQ5: Is there a

difference in

students’
perception of

their CT skills**

between the pre

and the post

study?

There is no

significant

difference in

students’ perception
of their CT skills

between the pre and

the post study

Students’ perception
of their CT skills

significantly

changed between

the pre and the post

study

* Programming constructs used in the game are programming sequence,

methods, decision making and loops.

** CT Skills refer to problem solving, constructing algorithms, debugging

and simulation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

6

III. DEVELOPING A RESEARCH TEST BED

 An adhoc video game named Program Your Robot was

developed from scratch as a test-bed in order to assess the

refined research questions in this study. As discussed

previously, there are several games available to assess

motivation to learning programming. However, it was

decided to develop a new adhoc game for this research

mainly for two reasons:

 Firstly, to develop a model that would allow students to

practice a series of cognitive abilities that characterize CT,

regardless of their programming background. These

cognitive abilities are defined as problem solving,

constructing algorithms, debugging, simulation and

socialization [75]. Majority of the existing games in the

literature are played via coding where players need to

consider syntax of coding in order to efficiently play them.

This is clearly closer to the level of computer programming

rather than the cognitive abilities of CT. On the other hand,

this research is primarily focused on practicing skills in CT,

even if the participants have little or no programming

background.

 Secondly, to support the learning process of introductory

programming by demonstrating how a limited number of

key introductory computer programming constructs can be

used as vividly explicit game elements which introductory

programming students often find challenging and/or

difficult to understand. Previous guidelines prepared for CT

and serious games suggest that when programming

constructs are used as integral elements of game-play, this

tends to motivate and engage players more than when it is

not [78]. Based on these guidelines, the game in this

research needed to be a platform to practice fundamental

programming constructs students often find difficult

through familiarizing these constructs as integral parts of

the game-play. Moreover, the programming constructs used

in the game had to be well aligned with the curriculum of

the introductory programming course participants were

taking at the time because this was needed for the ethical

approval of the research. As a result, this research is

concerned with the educational effectiveness of Program

Your Robot which is specifically designed to practice CT

skills through the medium of learning introductory

programming constructs.

 Program Your Robot was developed in Adobe AIR [79]

with HTML 5, JavaScript and ActionScript support.

Additionally, it was designed as a single player isometric

puzzle solving experience, and the core idea behind this

was to encourage the development of individual cognitive

skills which would expectantly support students to learn

how computer programming constructs work. In other

words, it was aimed to practice core skills of CT

particularly problem solving, constructing algorithms,

debugging and simulation via game-play. Despite this, the

socialization aspect of CT was not implemented in this

version of the game because this needed a multi-player

game design and careful planning on the top of the other

four core skills.

Figure 1. Program Your Robot Game-Play

 As shown in Figure 1, the aim of Program Your Robot is

to steer a character to its target via the most viable route

through using a series of commands that plays a key aspect

in constructing efficient solutions. The game is designed to

be a puzzle solving action game where players control a

robot and help it to reach specific destination(s) by giving

commands. To play the game, players need to drag and

drop commands from a selection interface into a limited

number of areas, which leads them to construct their own

algorithms. There are two types of commands players can

instruct to the robot: action commands and programming

commands. Action commands have a direct effect on what

the robot does (such as go forward, turn right), while

programming commands affect robot’s actions by

supporting the solution developed by the player through a

programming construct. The current version of the game

contains four fundamental programming commands which

are the programming sequence, methods, decision making

and loops. When designing the game, the programming

sequence was taught as the initial construct students need to

instruct to the robot and discover how these are performed.

Having done so, the methods were implemented into game-

play which can support the players to break down their

solutions and create repeatable patterns. The decision

making is designed to evaluate certain conditions such as to

detect whether the robot faces an enemy or an obstacle.

Finally, the loops in the game allows players to repeat a

series of commands for a number of times they predefine.

All commands, whether action or programming, can be

dragged from their associated toolbars into specific areas

called slots. Each slot can contain only one command and

players can use any number of commands in any sequence,

for as long as they have empty slots. Once the player is

happy about the solution they created within these slots,

they can either debug their solution or run it. If the player

debugs their solution, they can observe a quick trace of the

solution they built in and can find any mistakes they might

have made in their solution. This is particularly useful for

players when the robot does not behave the way that they

expect or when they misuse a programming command.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

7

Alternatively, the players can run their solution which then

the robot is animated and follows the instructions given in

the slots one by one. This simple mechanism was applied to

encourage players to debug their solutions and find out

mistakes whenever they get stuck in the game. In other

words, the learning material in the game was designed to be

an integral part of the game-play without any need for

coding.

 In addition to these, the game-play is mapped onto part of

the computer programming curriculum, more specifically

on four key areas (i.e. programming sequence, methods,

decision making and loops). The constructs are introduced

as the players progress through the game. Due to the

puzzle solving structure of the game, players are required to

use their problem solving to find the most effective pathway

for their robot to beat each level. Further to this, when

players design their solutions, they need to construct

algorithms in order to complete levels. Debugging in the

game allows monitoring of solution algorithms and

detecting potential errors which is an integral component of

both CT and programming [52]. Correspondingly,

simulation is the run-time mode where one can observe the

behavior of the robot and analyze whether or not a winning

strategy has been created in the game.

 As the players progress through the levels in the game,

the levels become more complex and the available number

of empty slots decreases. Consequently, two different

reward systems were applied in the game in order to

stimulate players to discover efficient solutions during their

game-play. These are the score system and the

achievements.

 The score system was designed to give points to players

according to how efficiently they designed their solutions to

beat that level. The score of the players significantly

increased when they used repeatable patterns with smaller

number of slots to construct solutions. As an example, a

player that beats a level with using 8 slots and without

considering any reusability scores lower than another player

that considered reusability of commands and completed the

same level with using 4 slots. In other words, if players

want to achieve a high score in the game, they need to

demonstrate deep understanding of the programming

concepts used in the game, such as when they create

repeatable patterns with methods or loops. Therefore,

building efficient algorithms illustrates good game-play as

well as promoting the acquisition and development of the

CT skills discussed above.

 The second reward systems applied was the achievements

which are the trophies players can unlock when they

demonstrate certain programming patterns in the game. As

an example, earlier levels in the game do not require the use

of nested loops to overcome them. However, should the

players successfully demonstrate the use of nested loops to

beat these levels, they can unlock the nested looper

achievement which is a trophy they earn and can show the

other players in addition to extra score points they obtain

from unlocking this achievement. Therefore, when players

discover good programming practices, they are rewarded in

their game-play. This mechanism is popular among the

current generation of games and emphasizes the importance

of increasing the motivation through behavioral

conditioning [75]. Finally, there is a high score chart in the

game where players can submit their score or share the

trophies they collected with other players. The participation

in the high score chart is optional as when players do not do

well in their game-play, they do not need to share this with

others.

 In many ways, Program Your Robot is similar to other

games such as to Light-Bot [80], Microsoft’s Tinker [81]

and Robozzle [82]. However, there are considerable

differences between Program Your Robot and these games

which are discussed below:

 Firstly, the learning material in Program Your Robot is

represented in game elements and mapped onto part of the

computer programming curriculum taught within the

Computer Science department of University of Greenwich.

Secondly, four out of five main categories of CT skills (i.e.

problem solving, constructing algorithms, debugging and

simulation) are explicitly integrated as patterns into the

game mechanics. In other words, the game is built on the

top of the cognitive structure of CT rather than for fun only

whereas the games listed above are created for fun and not

for learning purposes. Additionally, none of the above-

mentioned games sufficiently focused on the accurate use

of programming constructs or that map to an introductory

programming curriculum as this was not their aim.

Therefore, although the game-play of Program Your Robot

was inspired from other games, crucial differences guided

the development, such as the necessity to consider accurate

use of programming constructs and the intention to practice

cognitive CT skills during game-play.

 Last but not least, Program Your Robot was designed to

be gender and expertise neutral as the theme of the game

(i.e. a robot trying to escape from a maze) is not male or

female oriented; and players do not need to have prior

computer programming knowledge to play the game.

In a previous study, a free form pilot study was

conducted with a wide variety of students as an initial

qualitative evaluation of the game before moving to the

experimental study stage of the research [75]. Having

improved the game based on qualitative feedback obtained

in the pilot study such as by adding achievements and high

score features, an experimental study was conducted at the

University of Greenwich on a first-year computer

programming class of 190 students, who had diverse

backgrounds and variable prior knowledge in computer

programming. The details about the research design of this

experimental study are discussed below.

IV. RESEARCH DESIGN

This study uses one group pre – post study quasi

experimental design to measure participants’ perception
and confidence levels in the refined research questions

before and after they played the game. This design is often

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

8

referred to as one-shot case study and it is particularly

useful in observing before and after effects of a treatment or

a practical approach (in this case, the game) [83]. However,

the major limitation of this design is the lack of a

comparison or a control group. Additionally, participants

cannot be randomly assigned to groups in this research

design which is a threat to internal validity of the research.

Although these limitations are well known, and a

Randomized Controlled Trial (RCT) or a Clustered

Randomized Control Trial (cRCT) would have been a more

effective approach in this research, this quasi experimental

design was selected because of three main reasons.

Firstly, this study was conducted at the University of

Greenwich, London (UoG) on first year Computer Science

students and hence, an ethical approval from the UoG

ethics committee was needed. In order to obtain the ethical

approval, the ethical committee insisted on ensuring that

students receive the same experience throughout the study.

Despite the fact that this research aims to measure the effect

of an educational tool (i.e. Program Your Robot), if some

students were advantaged from it, this would be considered

unfair and it was simply not possible to treat students

differently. In other words, the ethical restrictions prevented

this research to divide students into two random groups and

apply different educational interventions.

Secondly, when the study was conducted, the participants

had only just registered for their computer programming

course. As the study was conducted on the fourth week that

the computer programming course officially started at UoG,

the students were just learning the programming constructs

when they were asked to undertake this study. More

importantly, students’ background in computer

programming and in video games were not formally

evaluated before they agreed to participate in the study. As

it was the beginning of the term, this was considered as a

critical time for them to learn and practice with equal

opportunity.

Finally, there is no universally agreed way of teaching

CT skills in higher education to students as this is an

abstract concept and how to teach CT is an active research

area [12], [84], [85]. As there is no standard or a traditional

way of teaching CT in higher education, how to teach CT

skills to students in the most convenient way is an

experimental area. In addition to this, Program Your Robot

is not intended to replace or compete against any

experimental approach for practicing CT but rather

developed to practice a specific way of thinking. Given

these circumstances, one group pre-post study design was

perceived to be safest design to follow in order to conduct

the experimental study on schedule.

As discussed above, the participants of this study were

first year CS students recruited from the UoG who were all

adults (i.e. 18+ years old) and registered to the introduction

to computer programming course taught at the CS

department at the time. All participants were aware of

computer algorithms particularly of pseudo codes and

flowcharts. Additionally, all participants were introduced

all of the programming constructs used in the game (i.e.

programming sequence, methods, decision making and

loops) during their computer programming classes.

The study was conducted within the university during the

computer programming tutorial hours and the participation

in the study was voluntary work. The structure of the study

was clearly explained to the students (i.e. pre-post study)

and they were aware that they all had the option to dropout

from the study at any time without providing a reason. The

research was confidential, and the participants were not

asked to provide any information that would reveal their

identity. All participants were asked to use a randomly

generated unique number in the pre and the post

questionnaires so that it was possible to match their

responses. Each participant received a consent form at the

beginning of the study so that they were able to decide

whether or not to participate. The environment was familiar

to the participants and they were all informed that their

honest answers were vital and valuable for the research.

Additionally, it was clearly explained to them that their

decision on participating in this study would not have any

effect on their grades.

Having signed the consent forms, the participants were

asked to complete two online questionnaires both before

and after they played Program Your Robot. When filling

the questionnaires, participants were specifically asked not

to contact to one another as this might bias their answers.

On the other hand, the participants were free to contact their

peers during their game-play. Each of the CT skills also

explained to participants such as simulation was explained

as the ability to visualize how programming constructs

work and debugging as the skill of detecting and removing

existing and potential errors.

At the beginning of the study, the participants were

invited to complete the pre study which involved

undertaking an online questionnaire to rank their perception

on a) giving up their degree programmes; b) motivation for

learning computer programming; c) difficulty of learning

computer programming; d) knowledge in programming

constructs and e) their skills in CT.

Participants’ confidence and their perception were

assessed using a 5-point rating Likert scale in each

question. The main reason for using a close ended

questionnaire was to make the participants’ perception of
abilities quantifiable. The Likert scale ranged from one

extreme attitude to another from 1 (strongly disagree) to 5

(strongly agree), 3 being the moderate (neutral) point. A

not applicable option added to some questions in case these

questions were not relevant to them. Each rating indicated

more satisfaction than the rating before it, but the

distinction between the ratings were not measurable. As an

example, the difference between a strongly agree and an

agree response can be less than the difference between a

strongly disagree and disagree response. Therefore, all

observations gathered from the participants exist on an

ordinal scale.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

9

 In addition to these perspective questions, the

participants were asked to answer four knowledge test

questions regarding each programming construct presented

in the game (i.e. programming sequence, methods, decision

making and loops). These questions were prepared by the

tutors of the computer programming course taught at the

UoG and revised several times before being put in the

questionnaires. Within these questions, the participants

were provided a problem in the format of pseudo code and

asked to draw a flowchart or provide an algorithmic

solution to solve the problem. Each of these questions were

multiple choice and only one of the responses were correct.

The participants were asked to provide their solution before

selecting an answer, and if they did not know the answer to

the questions, they were asked not to provide an answer at

all since this would have had no effect on their studies. This

approach was specifically used to observe how students

think, approach, and solve a problem, rather than merely

measuring their ability to code in a specific programming

language.

The post study online questionnaire given to the

participants was identical to the pre study questionnaire

provided to them at the beginning of the study. The only

major difference between the pre and the post study was the

knowledge test asked to the participants regarding the

programming constructs. While these questions were kept

at the same level of difficulty, the questions were different

in order to accurately measure their knowledge in the

relevant programming constructs both before and after they

played the game.

Table 2 shows the independent and the dependent

variables sought through the online questionnaires (i.e. pre

and post). While the independent variables were only asked

in the pre study, the dependent variables were asked both in

the pre and the post study.

Table 2. Independent and Dependent Variables of the Study

Variable Type Variable
Independent Age, Sex, Ethnicity,

Mathematical Qualification

Dependent Attitude to giving up the degree

Programme

Perception on the difficulty of

computer programming

Intrinsic motivation to learn

computer programming

Perception of knowledge in

programming constructs (i.e.

sequence, methods, decision

making and loops)

Knowledge test on programming

constructs (i.e. sequence,

methods, decision making and

loops)

Perception of CT skills (i.e.

problem solving, constructing

algorithms, debugging and

simulation)

Lastly, the total time allocated for the study was about

three hours, but it took longer than this as majority of the

participants insisted on playing the game. When

participants finally completed the study, the results of the

post study were matched with the results obtained from the

pre study by using the unique number generated for each

participant. Hence, it was possible to investigate the

participants’ confidence and perception in the measured

categories as well as any potential knowledge/skill they

gained from the study.

V. DEMOGRAPHICS AND THE STATISTICAL
APPROACHES

A total of 190 participants were invited to participate in

this study and all participants were registered to the

Computer Programming course taught at University of

Greenwich. The participants were randomly invited to

participate and they came from a wide variety of

backgrounds and ethnicities.

While the study was conducted with 190 participants, 39

(20.5%) of these dropped out or did not complete the study

adequately such as they did not complete the questionnaires

or did not play the game. Overall, 151 out of 190 (79.47%)

valid responses were successfully collected and interpreted

by matching pre study responses to post study responses.

While the exact reasons for the dropout rates are not

known, majority of these happened within the first half an

hour of the study and the responses were left in a state that

it was simply not possible to compare these with the

adequate responses collected.

Among the valid responses obtained, 127 (84.1%) out of

151 were from male participants and 24 (15.9%) out of 151

were from female participants. Whilst 131 (86.8%)

participants were in the 18-24 age range, 15 (9.9%) were in

between 25 and 29. Additionally, 4 (2.6%) participants

were in the 30-39 age range and 1 (0.7%) participant was

over 40.

In terms of ethnicity, the UK government standard

ethnicity classification was used in this study. According to

the data obtained, 62 (41.1%) participants defined

themselves as White. Consecutively, 36 (23.8%) out of 151

participants defined themselves as Asian or Asian British

and 34 (22.5%) out of 151 participants defined themselves

as Black or Black British. While 8 (5.3%) participants

declared themselves as Mixed/Dual Background, 11 (7.3%)

participants indicated that they have other ethnic

background that did not fit into the UK government

standard ethnic classification.

In addition to age, sex and ethnicity, the mathematical

qualifications of participants were collected in this study to

analyze whether or not participants’ mathematical

qualifications had any effect on their experience in the

study. According to the data obtained, 36 (23.8%) out of

151 participants had A-Level Maths or equivalent

qualification. While 4 (2.6%) participants had AS-Level

Maths or equivalevent qualification, 50 (33.1%)

participants GCSE Maths grade A or B or equivalent

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

10

degree. Moreover, 47 (31.1%) participants stated that they

had GCSE Maths grade C or equivalent degree, and 9 (6%)

more participants had lower than GCSE Maths grade C.

Finally, 5 (3.3%) participants indicated that they had other

mathematical qualifications.

Two statistical methods were considered to evaluate the

data obtained from this research which are common

statistical approaches used when comparing groups in a

before–after design: the paired t-test (post-pre score) and

the analysis of covariance (ANCOVA).

Upon careful investigation of these methods, it was

decided to use only the paired t-tests in this research

because the initial and final scores are related to some

ability (i.e. CT) and the effect of intervention (i.e. the

game) is the same across all levels of this ability [86].

While the ANCOVA test is a more flexible model than

paired t-test, this was not used due to the lack of a control

group [87] . Regardless, research in this field discuss that

both paired t-tests and ANCOVA generally produce good

estimates when random allocation is used in studies [86] .

Having decided to use the paired t-tests to analyze the

collected data, a test of normality was undertaken to

investigate the distribution of data as this is an assumption

for using paired t-tests.

Figure 2. Showing the histogram and the Quantile-Quantile (Q-
Q) Plots of participants’ intrinsic motivation between the pre

and the post study.

According to the Central Limit Theorem (CLT), when

random variables are added, their means tend toward a

normal distribution even if the original variables themselves

are not normally distributed [88]. Therefore, a computer

simulation was run to estimate the average number on the

pre-post differences of collected data in the repeated

samples. Having done so, a histogram and quantile-quantile

(Q-Q) plots for each measured category were investigated

in detail to ensure that the data came from a normally

distributed population. As the normality check is an

iterative process, only the histogram and the Q-Q plots

regarding the intrinsic motivation of participants are

presented in this paper.

As shown in Figure 2, the histogram generated from the

data demonstrates a close resemblance to a normal

distribution as the distribution is neither too flat nor too

peaked. The population mean value is close to 0 (μ = 0.34,

N=151) and the standard deviation is just over 1 (σ = 1.29,

N=151). The Q-Q plots also support the data distribution on

the histogram as the observations embrace the linear line of

Q-Q plots with a slight positive slope. Overall, a linear

distribution pattern was observed and therefore, it is

possible to assume that the data came from a normally

distributed population. This procedure was repeated for

each research question, and in all cases, it was found that

the distribution of data was close to normal distribution.

In addition to the paired t-tests, a multiple linear

regression (MLR) was used to investigate the potential

effect of independent variables to a possible change that

might happened in dependent variables in between the pre

and the post study. The MLR analysis consisted of three

main statistical stages which are an Analysis of Variance

(ANOVA) test, a model summary and correlation

coefficients. The first stage focused on the ANOVA test

results regarding the overall impact of independent

variables (also called predictors) on the dependent variable.

To interpret the ANOVA test results correctly, a null and an

alternative hypothesis was created. The null hypothesis

(Ho1) indicates that there is no significant linear

relationship between predictors and dependent variables.

Correspondingly, the alternative hypothesis (Ha1) indicates

that there is a strong and significant linear relationship

between predictors and dependent variables. Accepting the

null hypothesis means that the outcome of dependent

variable has no significant correlation with the independent

variables which provide evidence that regression threat

does not have a major impact on the outcome of the study.

The opposite of this is rejecting the null hypothesis which

means that the outcome of dependent variable is somehow

correlated with the independent variables and therefore,

predictors impact on the outcome of the study. The second

stage is a model summary that shows how strong the

correlations are in between the predictors and the dependent

variables. The final stage is the correlation coefficients

which provide evidence on whether or not the correlation

between each independent variable and the dependent

variable is significant and strong. Each independent

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

11

variable is matched with the dependent variables

individually to identify whether or not the predictors have a

significant impact on observations.

To summarize, the paired t-tests were used to investigate

the data collected in the pre and in the post study and a

MLR was used to examine any potential associations in

between the independent variables and the dependent

variables.

VI. RESULTS

 The results of this study are investigated in two sections:

Raw Data and Statistical Analysis. The raw data section

reports the responses of participants in the study, whereas

the statistical analysis investigates whether the collected

data are statistically significant or not.

A. RAW DATA

 Having collected the demographic data, one of the first

questions directed to participants in the study was whether

or not they considered giving up their degree programmes

and whether the difficulty of programming was a key

reason for this or not. There were two aspects to this

question: a) to define how many students have thought

giving up their degree programmes since they started, and

b) how many of these thought that the difficulty of learning

computer programming was a key reason for this.

 As shown in Figure 3, 24 (15.9%) participants strongly

disagreed and 43 (28.5%) more disagreed on giving up their

degree programmes when filling the pre-questionnaire.

While 53 (35.1%) participants were neutral, 27 (17.9%)

participants agreed and 4 (2.6%) more strongly agreed on

giving up their degree programmes in the pre study. After

playing the game, the number of participants that strongly

disagreed stayed the same (i.e. 24). On the other hand, the

number of disagrees increases from 43 (28.5%) to 48

(31.8%) and consequently, the number of participants who

were neutral increased from 53 (35.1%) to 59 (39.1%).

Furthermore, those participants who agreed on giving up

their degree programmes reduced from 27 (17.9%) to 16

(10.6%). Finally, the number of strongly agrees stayed the

same (i.e. 4).

Figure 3. Distribution of participants who consider giving up
their degree programmes.

 In addition to investigating how likely participants were

to give up their degree programme, the potential impact of

the difficulty of computer programming to this was also

investigated. As shown in the figure 4, both in the pre and

in the post study, 24 (15.9%) participants never considered

giving up their degree programme. While 13 (8.6%)

participants strongly disagreed on giving up their degree

programme because of the difficulty of computer

programming, a total of 32 (21.2%) participants disagreed

in the pre study which was then raised to 35 (23.2%) in the

post study. Similarly, the number of neutral participants

raised from 44 (29.1%) to 49 (32.5%); and the number of

agreed participants reduced from 32 (21.2%) to 24 (15.9%)

after playing the game. Lastly, the number of strongly

disagrees did not change in between the pre and the post

study.

Figure 4. Distribution of participants who consider giving up
their degree programmes because of the difficulty of computer

programming.

 This data presented some evidence that participants’
attitude to studying their degree programme was affected in

a positive way. To investigate this further, participants’
perception on the difficulty of programming was explored

both before and after they played the game.

Figure 5. Distribution of participants’ perception on the
difficulty of computer programming.

 As shown in Figure 5, majority of participants changed

their perspective on the difficulty of learning computer

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

12

programming after playing the game. Although 4 (%2.6)

participants indicated that they do not know the answer in

the pre study, none of the participants chose this option in

the post study. More importantly, 15 (9.9%) participants

found learning computer programming very difficult in the

pre study whereas this was reduced to 3 (2%) in the post

study. Similarly, 36 (23.8%) participants selected the

difficult choice in the pre study, but this was reduced to 8

(5.3%) in the post study. While the neutral option raised

from 77 (51%) to 78 (51.7%), those who found learning

computer programming easy raised from 17 (11.3%) to 49

(32.5%) and those who found very easy increased from 2

(1.3%) to 13 (8.6%). These results put forward some

evidence that participants’ confidence in learning computer

programming increased in between the pre and the post

study as many of them changed their opinion positively and

none of them marked the I don’t know choice in the post

study.

 When participants were asked whether they have intrinsic

motivation to learning programming or not, majority of

them provided more positive answers in the post study than

in the pre study. As shown in Figure 6, those who did not

know what to answer to this question reduced from 4

(2.6%) to 2 (1.3%) in between the pre and the post study.

While the participants who strongly disagreed were the

same (2, 1.3%), the disagrees and neutral responses reduced

from 7 (4.6%) to 3 (2%) and 45 (29.8%) to 32 (21.2%)

respectively. The agree responses also reduced from 82

(54.3%) to 79 (52.3%). On the other hand, the strongly

agrees increased from 11 (7.3%) to 33

(21.9%).

Figure 6. Distribution of participants’ intrinsic motivation to
learn computer programming.

Figure 7. Distribution of participants’ perception of their knowledge in programming constructs used in the game.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

13

 Figure 7 displays participants’ ranking of their own
knowledge in four programming constructs implemented in

the game both before and after they played the game. As

shown in the figure, participants’ confidence in their own

knowledge increased in between the pre and the post study.

 When participants were asked to rank how programming

sequence works, 7 (4.6%) participants strongly disagreed

and 25 (16.6%) more disagreed that they know how

programming sequence works in the pre study. While 66

(43.7%) participants were neutral, 48 (31.8%) of them

agreed and 5 (3.3%) more strongly agreed that they know

how programming sequence works. After their game-play,

the number of strongly disagree and disagree responses

reduced from 7 (4.6%) to 2 (1.3%) and 25 (16.6%) to 8

(5.3%) respectively. Additionally, the neutral responses

also dropped from 66 (43.7%) to 40 (26.5%). On the other

hand, the strongly agree and agree responses increased from

48 (31.8%) to 85 (56.3%) and 5 (3.3%) to 16 (10.6%)

correspondingly.

 A similar increase also happened when participants were

asked to rank their knowledge regarding how methods

work. While 11 (7.3%) participants strongly disagreed and

20 (13.2%) more disagreed, 63 (41.7%) out of 151 were

neutral before playing the game. Additionally, 53 (35.1%)

participants agreed and 4 (2.6%) more strongly agreed that

they know how methods work in the pre-study. Having

played the game, the number of strongly disagrees and

disagrees reduced from 11 (7.3%) to 2 (1.3%), and 20

(13.2%) to 15 (9.9%). The neutral responses also dropped

from 63 (41.7%) to 35 (23.2%). Contrarily, the number of

agree and strongly agree responses increased from 53

(35.1%) to 80 (53%) and from 4 (2.6%) to 19 (12.6%)

correspondingly meaning that participants felt more

confident in their knowledge regarding how methods work

in the post-study.

 Among the four assessed programming constructs, the

lowest increase happened in decision making. In the pre

study, 8 (5.3%) participants strongly disagreed and 18

(11.9%) more disagreed that they know how decision

making construct works. 40 (26.5%) participants neither

agreed nor disagreed, 75 (49.7%) participants agreed and

10 (6.6%) more strongly agreed with this statement in the

pre-study. In the post study, the number of strongly

disagrees reduced from 8 (5.3%) to 1 (0.7%), and the

disagrees reduced from 18 (11.9%) to 11 (7.3%). The

neutral and agreed responses slightly changed in the study

as the neutral responses reduced from 40 (26.5%) to 38

(25.2%) and the agree responses increased from 75 (49.7%)

to 76 (50.3%). Lastly, an increase happened in strongly

agree responses from 10 (6.6%) to 25 (16.6%).

 Loops were the final programming construct asked to

participants to rank their own knowledge, and as shown

from Figure 7, 13 (8.6%) participants strongly disagreed

and 45 (29.8%) more disagreed that they know how loops

work. 51 (33.8%) of the total responses were neutral

whereas 37 (24.5%) participants agreed and 5 (3.3%) more

agreed that they know how loops work before playing the

game. After the game-play, the strongly disagree responses

reduced from 13 (8.6%) to 5 (3.3%) and the disagree

responses decreased from 45 (29.8%) to 15 (9.9%).

Additionally, the neutral answers reduced from 51 (33.8%)

to 45 (29.8%). At the same time, the strongly agree and

agree responses increased from 37 (24.5%) to 70 (46.4%),

and 5 (3.3%) to 16 (10.6%) respectively.

Figure 8. Correct answers given to questions asked in the
knowledge check in the pre and in the post study

 In addition to participants’ raking of their knowledge,

each participant was asked a series of knowledge check

questions both before and after they played the game. As

shown from figure 8, the correct answers given to these

knowledge check question increased in every category after

participants played the game. In the pre study, the correct

answers given to questions were 65 (43%) for

programming sequence, 46 (30.5%) for methods, 74 (49%)

for decision making and 42 (27.8%) for loops. In the post

study, these were increased to 93 (61.6%) for programming

sequence, 73 (48.3%) for methods, 90 (59.6%) for decision

making and 64 (42.4%) for loops. The lowest increase in

correct answers between the pre and the post study was

happened in decision making. These results check out with

the previous raw data obtained that is participants’
perception of their knowledge of programming constructs

implemented in the game. Among the four programming

constructs, participants’ perception of their knowledge in

decision making was the least one that was improved.

Similarly, the knowledge check results show that the lowest

increase in the number of correct answers happened in the

decision making question.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

14

Figure 9. Distribution of participants’ perception of their CT

skills

 The final assessment was measuring participants’
perception of their CT skills in the pre and in the post study

where participants themselves ranked their own CT skills

both before and after they played the game.

 As displayed in figure 9, 9 (6%) participants ranked their

problem solving skill as very poor and 12 (7.9%) more

ranked this as poor in the pre study. While 67 (44.4%)

participants ranked this skill as medium, 59 (39.1%) more

ranked as good and 4 (2.6%) more ranked it as very good.

 In the post study, the number of very poor responses

reduced from 9 (6%) to 2 (1.3%). While the poor responses

increased from 12 (7.9%) to 19 (12.6%), the medium

responses reduced from 67 (44.4%) to 44 (29.1%). Finally

there was an escalation in good and very good responses as

these increased from 59 (39.1%) to 72 (47.7%) and from 4

(2.6%) to 14 (9.3%) respectively.

 A similar increase happened in constructing algorithms.

In the pre study, 12 (7.9%) participants ranked this skill as

very poor and 28 (18.5%) more ranked it as poor. 59

(39.1%) participants ranked their skill in constructing

algorithm as medium, 49 (32.5%) more ranked as good,

and 3 (2%) more participants ranked it as very good. In the

post study, the number of very poor, poor and medium

responses were all reduced. The very poor responses

decreased from 12 (7.9%) to 4 (2.6%), the poor responses

decreased from 28 (18.5%) to 10 (6.6%), and the medium

responses decreased from 59 (39.1%) to 52 (34.4%). On the

other hand, the good and the very good responses increased

from 49 (32.5) to 76 (50.3%) and from 3 (2%) to 9 (6%)

correspondingly.

 When participants were asked to rank their debugging

skill, none of them ranked this as very good both in the pre

and in the post study. While 6 (4%) participants ranked this

skill as very poor, 40 (26.5%) more ranked it as poor in the

pre study. Moreover, 87 (57.6%) participants ranked their

debugging skill as medium and 18 (11.9%) more ranked

this as good in the pre study. In the post study, the very

poor and poor responses reduced from 6 (4%) to 4 (2.6%),

and from 40 (26.5%) to 11 (7.3%) respectively. At the same

time, the medium responses increased from 87 (57.6%) to

96 (63.6%) and the good responses also increased from 18

(11.9%) to 40 (26.5%).

 Compared to the other three CT skills (i.e. problem

solving, constructing algorithms and debugging), the

simulation skill did not change very positively in between

the pre and the post study. While 6 (4%) participants ranked

their simulation skill as very poor, 11 (7.3%) participants

ranked this as poor and 38 (25.2%) more ranked this as

medium in the pre study. Furthermore, 79 (52.3%)

participants ranked their skill in simulation as good and 17

(11.3%) more ranked this as very good in the pre study. In

the post study, the very poor responses reduced from 6

(4%) to 5 (3.3%), and the poor responses also reduced from

11 (7.3%) to 10 (6.6%). As the medium and good ranks

increased from 38 (25.2%) to 43 (28.5%) and 79 (52.3%) to

80 (53%), the very good responses decreased from 17

(11.3%) to 13 (8.6%) in the post study.

 The results above suggest that participants’ perception on

their problem solving, constructing algorithms and

debugging improved, but their perception on the simulation

skill did not improve after their game-play. As the raw data

obtained from the study only provided a generic picture

about the distribution of the responses, a statistical analysis

was conducted to investigate whether a statistically

significant change happened in between the pre and the post

study.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

15

B. STATISTICAL ANALYSIS

 A series of paired-samples t-test was conducted to

compare the responses collected from the participants in the

pre and in the post study in order to answer each research

question defined in this study.

Table 3. Paired sample t-test results of participants’ attitude to
giving up their degree programme, perception of difficulty of

computer programming and intrinsic motivation to learn
computer programming

Pair 1: Pre giving up degree programme – Post giving up degree

programme.

Pair 2: Pre giving up degree programme because of the difficulty of comp.

programming – Post giving up degree programme because of the difficulty

of comp. programming.

Pair 3: Pre difficulty of comp. programming – Post difficulty of comp.

programming.

Pair 4: Pre comp. programming intrinsic motivation – Post comp.

programming intrinsic motivation.

 Table 3 shows the paired t-tests conducted to compare the

pre and the post study responses of participants’ a) attitude

to give up their degree programme (i.e. pair 1); b) opinion

on the difficulty of computer programming being a key

reason to give up their degree programme (i.e. pair 2); c)

perception on the difficulty of computer programming (i.e.

pair 3) and d) perception on their intrinsic motivation to

learn computer programming (i.e. pair 4). In other words,

the paired t-tests were conducted to answer research

questions 1,2 and 3. As shown from the above table, there

was a statistically significant difference in all measured

pairs, namely the attitude to give up a degree programme

(M=0.106; SD=0.403); the difficulty of computer

programming being a key reason to give up a degree

programme (M=0.073; SD=0.285); the difficulty of

computer programming (M=-0.781; SD=1.083) and the

intrinsic motivation to learn computer programming (M=-

0.338; SD=1.296) conditions; t(150) = 3.235, p = 0.001 for

the attitude to give up a degree programme, t(150) = 3.139,

p = 0.002 for the difficulty of computer programming being

a key reason to give up a degree programme, t(150) = -

8.870; p = 0.0001 for the difficulty of computer

programming and t(150)=-3.203; p=0.002 for the intrinsic

motivation to learn computer programming. These results

suggest that there was a statistically significant difference

between the pre and the post study responses in all

measured categories. Considering the number of positive

responses was greater in the post study than in the pre

study, it is possible to suggest that participants felt more

confident about themselves after playing the game. The

paired sample t-test results suggest that participants

significantly felt less likely to give up their degree

programme in the post study; they perceived computer

programming significantly easier; and felt significantly

more motivated to learn computer programming than in the

pre study. As the results of the paired t-tests were all

significant, the alternative hypotheses for research

questions 1, 2 and 3 can be accepted which are a) students’
attitude to dropping their degree programmes is

significantly changed between the pre and the post study; b)

students’ motivation to learn programming is significantly
changed between the pre and the post study and c) students’
perception of difficulty of computer programming is

significantly changed between the pre and the post study.

Table 4. Paired sample t-test results of participants’ perception

of their knowledge in programming constructs used in the
game

Pair 1: Pre perception of programming sequence – Post perception of

programming sequence.

Pair 2: Pre perception of methods – Post perception of methods.

Pair 3: Pre perception of decision making – Post perception of decision

making.

Pair 4: Pre perception of loops – Post perception of loops.

 Table 4 shows the results of the paired sample t-tests of

participants’ perception of their knowledge in four

programming constructs used in the game. As shown in the

table, there was a statistically significant change in

programming sequence (M=-0.57, SD=1.092); methods

(M=-0.53; SD=1.1); decision making (M=-0.338;

SD=1.095); and loops (M=-0.669; SD=1.165) conditions;

t(150)=-6.406, p=0.0001 for programming sequence,

t(150)=-5.917, p=0.0001 for methods, t(150)=-3.791,

p=0.0001 for decision making and t(150)=-7.058, p=0.0001

for loops. These findings show that participants felt that

their knowledge of programming constructs significantly

changed in the post study when compared to the pre study.

As the responses in the post study were more positive than

the responses in the pre study, it is possible to suggest that

participants’ perception of their knowledge increased

during the study.

 In addition to their perception of knowledge, participants’
tangible knowledge of programming constructs was also

assessed in the study. As displayed in Table 5, the answers

given to the knowledge check questions were found to be

statistically significant for all programming constructs.

According to the paired sample t-tests results, there was a

statistically significant change in terms of knowledge in

programming sequence (M=-0.185, SD=0.559); methods

(M=-0.179; SD=0.623); decision making (M=-0.106;

Pair Mean Std.

Deviation

Std.

Error

Mean

t df Sig.

Pair1 0.106 0.403 0.033 3.235 150 0.001

Pair2 0.073 0.285 0.023 3.139 150 0.002

Pair3 -0.781 1.083 0.088 -8.870 150 0.0001

Pair4 -0.338 1.296 0.105 -3.203 150 0.002

Pair Mean Std.

Deviation

Std.

Error

Mean

t df Sig.

Pair1 -0.57 1.092 0.089 -6.406 150 0.0001

Pair2 -0.53 1.1 0.09 -5.917 150 0.0001

Pair3 -0.338 1.095 0.089 -3.791 150 0.0001

Pair4 -0.669 1.165 0.095 -7.058 150 0.0001

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

16

SD=0.623); and loops (M=-0.146; SD=0.57); t(150)=-

4.079, p=0.0001 for programming sequence; t(150)=-3.528,

p=0.001 for methods; t(150)=-2.088, p=0.038 for decision

making and t(150)=-3.139, p=0.002 for loops.

 As participants’ perception of their knowledge on the

programming constructs and their knowledge check results

were found to be statistically significant, it is possible to

suggest the alternative hypothesis for research question 4

that is students’ understanding of programming constructs

is significantly changed between the pre and the post study.

Additionally, in all significant cases the post study mean

was higher than the pre study mean which is an indication

that participants’ perception of their knowledge and their

tangible knowledge regarding how programming constructs

work were enhanced in the study.

Table 5. Paired sample t-test results of participants’ knowledge

check of programming constructs used in the game

Pair 1: Pre knowledge of programming sequence – Post knowledge of

programming sequence.

Pair 2: Pre knowledge of methods – Post knowledge of methods.

Pair 3: Pre knowledge of decision making – Post knowledge of decision

making.

Pair 4: Pre knowledge of loops – Post knowledge of loops.

 The very last paired t-test samples were conducted on

participants’ perception of their CT skills. As shown in

Table 6, there was a statistically significant difference in

problem solving (M=-0.265, SD=1.063); constructing

algorithms (M=-0.483; SD=0.958) and debugging (M=-

0.364; SD=0.583) conditions; t(150)=-3.063, p=0.003 for

problem solving, t(150)=-6.2, p=0.0001 for constructing

algorithms, and t(150)=-7.678, p=0.0001 for debugging. On

the other hand, there was no statistically significant change

in simulation (M=0.026, SD=0.887), t(150)=0.367,

p=0.714. The mean scores show that participants ranked

their simulation skills higher in the pre study than in the

post study which suggests that they did not feel any positive

change in terms of their simulation skill during the study.

As the statistical outcome of the simulation skill (i.e. pair 4)

was not statistically significant, the fifth research question

can only be partially answered. As a result, participants felt

a significant change in between the pre and the post study

regarding their problem solving, constructing algorithms,

and debugging abilities. However, the same statistically

significant change was not observed in simulation.

Table 6. Paired sample t-test results of participants’ perception
of their CT skills

Pair 1: Pre problem solving – Post problem solving.

Pair 2: Pre constructing algorithms – Post constructing algorithms.

Pair 3: Pre debugging – Post debugging.

Pair 4: Pre simulation – Post simulation.

 Finally, a series of multiple linear regression (MLR)

analysis was conducted to investigate the effect of age, sex,

ethnicity, and mathematical qualifications of participants on

their perception and knowledge scores in the study. The

core reason behind this was to measure the effect of these

independent variables on the mean scores of dependent

variables so that it can be detected whether the

characteristics of the participants impacted the results. The

difference between the pre and post study results were

individually investigated for each research question.

Table 7. Multiple Linear Regression Analysis on participants’

attitude to giving up their degree programme

 As displayed in Table 7, when the effects of age, sex,

ethnicity, and mathematical qualifications (referred to as

predictors) were investigated in the study, it was found that

none of the predictors had any significant effect on the

attitude of the participants for giving up their degree

programme, F(4,146)=0.631, p=0.641, R2=0.017. In other

words, age (β=-0.04, p=0.634), sex (β=0.066, p=0.429),

ethnicity (β=-0.106, p=0.204) and mathematical

qualifications (β=-0.011, p=0.895) did not have any

significant impact on the participants’ decision to give up

on their degree programme.

Pair Mean Std.

Deviation

Std.

Error

Mean

t df Sig.

Pair1 -0.185 0.559 0.045 -4.079 150 0.0001

Pair2 -0.179 0.623 0.051 -3.528 150 0.001

Pair3 -0.106 0.623 0.051 -2.088 150 0.038

Pair4 -0.146 0.570 0.046 -3.139 150 0.002

Pair Mean Std.

Deviation

Std.

Error

Mean

t df Sig.

Pair1 -0.265 1.063 0.086 -3.063 150 0.003

Pair2 -0.483 0.958 0.078 -6.200 150 0.0001

Pair3 -0.364 0.583 0.047 -7.678 150 0.0001

Pair4 0.026 0.887 0.072 0.367 150 0.714

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 0.413 4 0.103 0.631 0.641

Residual 23.892 146 0.164

Total 24.305 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.175 -0.297 0.767

Sex 0.091 0.066 0.794 0.429

Age Range 0.070 -0.040 -0.477 0.634

Ethnicity 0.024 -0.106 -1.275 0.204

Mathematical

Qualification

0.025 -0.011 -0.132 0.895

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

17

Table 8. Multiple Linear Regression Analysis on participants’

intrinsic motivation to learn computer programming

 Further to above, a MLR was run to investigate whether

the predictors impacted the change in intrinsic motivation

to learn computer programming. As shown in Table 8, the

results revealed that sex (β=0.202, p=0.014) was an

independent variable affecting the outcome. However, the

ANOVA test results did not show a statistically significant

outcome F(4,146)= 2.248, p=0.067, R2=0.058 and thus, the

linear model did not work. In this case, it is accepted that

the effect of sex to the participants’ intrinsic motivation to

learn programming was negligible.

Table 9. Multiple Linear Regression Analysis on participants’

perception on the difficulty of computer programming

 Contrary to the previous findings, the predictors had a

statistically significant impact on how difficult the

participants found computer programming, F(4,146)=3.537,

p=0.009, R2=0.088. Table 9 shows that age range (β=0.256,

p=0.002), and sex (β=0.235, p=0.036) were the primary

predictors that added statistically significantly to the

prediction. When the impact of the age range and sex was

individually investigated with a linear regression, it was

found that sex did not have a significant impact (β=0.138,

p=0.099), but the age range had a significant impact

(β=0.236, p=0.03). In other words, the linear regression

results show that the older the participants were the more

difficult they found computer programming in this study.

Table 10. Multiple Linear Regression Analysis on participants’

perception of their knowledge in programming constructs

Table 11. Multiple Linear Regression Analysis on participants’

knowledge check of programming constructs used in the game

 The MLR analysis conducted on the participants’
perception of knowledge and their tangible knowledge in

programming constructs used in the game presented some

interesting results. As displayed in Table 10, none of the

predictors impacted to the participants’ perception of their

knowledge, F(4,146)=1.24, p=0.296, R2=0.033. However, a

MLR analysis conducted on the knowledge check answers

revealed that sex (β=0.176, p=0.027) and ethnicity (β=-

0.269, p=0.001) were statistically significant predictors

added to the outcome, F(4,146)=4.288, p=0.003, R2=0.105.

When independent linear regressions were conducted, it

was revealed that both sex (β=0.171, p=0.03) and ethnicity

(β=-0.26, p=0.01) added statistically significantly to the

prediction. The findings of the linear regression analysis

suggest that male participants provided more correct

answers to the knowledge check test in the study than

female participants. Additionally, participants that had a

white background provided more correct answers than any

other ethnicity. As the majority of the participants in the

study defined themselves as white (41.1%) and male

(84.1%), these results were not unexpected.

 A final MLR analysis was run on the mean scores of the

CT skills of the participants and as displayed in Table 12,

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 14.605 4 3.651 2.248 0.067

Residual 237.170 146 1.624

Total 251.775 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.550 -0.193 0.847

Sex 0.286 0.202 2.493 0.014

Age Range 0.220 0.055 0.661 0.510

Ethnicity 0.077 -0.116 -1.428 0.155

Mathematical

Qualification

0.079 -0.084 -1.018 0.310

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 15.531 4 3.883 3.537 0.009

Residual 160.257 146 1.098

Total 175.788 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.452 -0.569 0.570

Sex 0.235 0.169 2.119 0.036

Age Range 0.180 0.256 3.154 0.002

Ethnicity 0.065 -0.024 -0.293 0.770

Mathematical

Qualification

0.063 -0.066 -0.826 0.410

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 3.961 4 0.990 1.240 0.296

Residual 116.559 146 0.798

Total 120.519 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.386 0.255 0.799

Sex 0.200 0.174 2.128 0.035

Age Range 0.154 0.040 0.483 0.630

Ethnicity 0.054 -0.043 -0.528 0.599

Mathematical

Qualification

0.055 -0.037 -0.438 0.662

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 1.983 4 0.496 4.288 0.003

Residual 16.875 146 0.116

Total 18.858 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.147 1.263 0.208

Sex 0.076 0.176 2.235 0.027

Age Range 0.059 0.047 0.586 0.559

Ethnicity 0.020 -0.269 -3.400 0.001

Mathematical

Qualification

0.021 -0.090 -1.124 0.263

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

18

the findings show that none of the predictors had

statistically significant impact on the outcome regarding the

CT skills, F(4,146)=0.888, p=0.473, R2=0.024. In other

words, sex (β=0.059, p=0.475), age range (β=-0.032,

p=0.707), ethnicity (β=0.107, p=0.196) and mathematical

qualifications (β=-0.097, p=0.249) did not have any

statistically significant impact on how the participants

perceived their CT skills in this study.

Table 12. Multiple Linear Regression Analysis on participants’
perception of their CT skills

 To summarize the findings, the followings were

statistically and significantly changed in between the pre

and the post study: a) the participants were less likely to

give up their degree programme; b) the participants’
intrinsic motivation to learn computer programming

increased; c) the participants perceived computer

programming to be less difficult than before and d) the

participants’ perception of their knowledge and their

tangible knowledge on computer programming constructs

used in the game were improved. Additionally, it was found

that the older participants found learning computer

programming significantly more difficult than the younger

ones. It was also found that the participants’ self-confidence

was positively correlated to their knowledge check scores

which is complementary to previous research done in this

area [89]. Finally, sex and ethnicity of the participants

seemingly impacted to their success in knowledge check

questions as the results showed that white and male

participants were more successful than the others. However,

this might be true because majority of the participants who

completed the study were male and white.

VII. DISCUSSION

 The findings obtained from this study are complementary

to the results of the previous work [34], [62], [76] that is a)

game-play can be used to enhance students’ motivation for

learning programming [41], [90] and b) game-play can

inspire students’ confidence and learning experience of CT

skills which then can support their learning of computer

programming [64].

 Despite the statistically significant outcomes obtained

from this study, there were several limitations in this

research the lack of a control group being the major

drawback. As explained before, the University Ethics

Committee (UREC) insisted on conducting this study where

all students received the same experience and none of them

would be able to advance through a specific type of

intervention. Due to this, it was simply not suitable to

separate students into two equal random groups and

conduct the study in proportionately divided environments.

Additionally, when the study was scheduled to be

conducted, the students were just registered to the computer

programming course and their programming skill as well as

their gaming background were not precisely known.

Therefore, there was no control group in this study and

because of this, the research became particularly vulnerable

to internal threats. In other words, while the results of this

research show that there is a statistically significant

improvement in between the pre and the post study, it is not

possible to tie these results directly to the game-play of

participants because of the weaknesses of the quasi

experimental structure.

 Another challenge for this research was the dearth of a

universally agreed conventional way of teaching CT skills

to students as this is an experimental research area.

Although many researchers proposed that teaching CT

should be a part of the curriculum [91]–[93], this idea has

not yet embraced ubiquitously, and thus this impacts on

how research studies are designed because it is debatable

which kind of intervention can or cannot be used in a

control group.

 As the lack of the control group was a known issue,

further investigation on the responses was conducted by

interviewing several participants and asking their opinion

on whether or not a) the game was genuinely helpful to

them; b) using Program Your Robot is a good idea to

support their tutorials; c) they would like to see

improvements in the game and if so, what type of

improvements. Many participants provided constructive

and positive feedback to these questions with an optimistic

attitude. Majority of them indicated that the game provided

a simplified structure of how the programming constructs

work and if the game is improved, it could be a fun way of

learning programming. Some quotes from these students

are cited below to provide qualitative evidence that they

found the game well suited to help them to understand how

introductory programming constructs works:

“I think this game is going in a good path. I would like it to

have more levels that would develop my ideas of computer

programming even better. You could also include on the

side how the code would look like if it was run in Java (or

any other language), this would give insight to the player of

how that "program" would look like as the real thing.

Another idea would be a save button so that users could

track their progress in learning, maybe even have

multiplayer option.”

Model Sum of

Squares

df Mean

Square

F Sig.

Regression 0.909 4 0.227 0.888 0.473

Residual 37.334 146 0.256

Total 38.243 150

Constant Coefficient

Std. Error

Standardized

Coefficient

Beta

t Sig.

(Constant) 0.218 2.000 0.047

Sex 0.113 0.059 0.716 0.475

Age Range 0.087 -0.032 -0.377 0.707

Ethnicity 0.030 -0.107 -1.300 0.196

Mathematical

Qualification

0.031 -0.097 -1.157 0.249

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

19

“I think this game is useful for practicing computer

algorithms and learning basic programming. I especially

found loops useful and efficiently applied in the game.”

“This game is good but needs improvement. When a

specific function is executed, this should be highlighted in

all modes. This is only done in debug mode but not in run

mode. Also, at the end of each level there could be an

example of a real programming code showing up.”

“I think beating this game requires logical thinking. We

should be given a coursework or exercises to play similar

games. This can make learning programming more

interesting and fun.”

“I thought it was a simple and relatable way of teaching us

how sequences and methods work. I want to use this game

at home to practice.”

 The above responses clearly show that the participants

critically analyzed the game and found it useful.

 Moreover, several precautions were taken to minimize

the possible threats to internal validity before this study was

conducted. Firstly, all participants were made aware that

they always had the option to withdraw at any time if they

felt tired and their decision of participating in this research

or not would have no adverse effect on their studies.

Secondly, the participants were randomly invited to this

research and although this was not well-known before

conducting the study, the population had diverse

background and knowledge in computer programming and

in playing games. Lastly, the participants completed the

study at their own pace and were allowed to play the game

as much as they wanted.

 These precautions undermined the maturation threat to

some extent which is a threat that happens when subjects

become tired, bored or in any other state that they can no

longer pay attention to the study. Another threat to consider

was the mortality threat which impacts the outcome of a

study when too many participants drop out as those who

drop out usually provide negative feedback. Hence, if too

many participants drop out from a study, this often means

losing a considerable number of negative responses. As

discussed in the earlier sections, only 39 (20.5%)

participants dropped out from this study which is not an

exceedingly high number when considering this type of

research. While vast majority of these participants left their

questionnaires empty, it was observed that those who

provided some responses did not respond with negative

feedback. As a matter of fact, many participants indicated

that they had fun participating in this study. Finally, the

regression threat is deeply considered in this research

which is a statistical phenomenon that occurs whenever a

randomly selected population for a study is discovered to be

a non-random sample with extreme scores. In other words,

a regression threat endangers a study when subjects are

selected because of extreme scores (either high or low) that

might impact the outcome of a study. As an example, if

participants were selected based on their extremely low

knowledge in computer programming in this study, the

improvements at the end of the study might be due to

regression toward the mean rather than the game's

effectiveness as in reality participants cannot know any

lower than they already know in computer programming.

This is to say when a sample is selected just because of low

performance, any corrective measures applied will be very

likely to get the scores up simply because of regression

toward the mean and not because of any real improvement

due to game intervention. However, this was not the case in

this research because 19 out of 151 (12.5%) participants

answered the pre study knowledge check questions all

correctly, and 68 (45%) more answered at least half of the

knowledge check questions correctly in the pre study.

Moreover, 7 (4.6%) participants answered all knowledge

check questions correctly both in the pre and in the post

study. These results show that the participants came from a

wide variety of background in computer programming and

thus, the regression towards the mean argument is invalid.

As presented in section VI, a series of multiple linear

regression analysis investigated the potential effects of

independent variables to the results, and it was found that in

most cases, these independent variables did not have a

statistically significant impact.

 An important outcome of this research is that the

mathematical qualifications of participants did not have a

statistically significant prediction on any of the results.

Contrary to some of the previous work conducted in this

area [94]–[97], the participants’ mathematical qualifications

was not a statistically significant predictor on their a)

perspective on the difficulty of computer programming; b)

intrinsic motivation in learning computer programming; c)

perception of knowledge in programming constructs used in

the game and d) knowledge check scores.

 Despite the lack of a control group, participants’
quantitative responses, qualitative feedback, and the

analysis on the internal validity provided strong reasons to

consider that the game indeed affected their motivation and

confidence positively in learning computer programming.

Additionally, it was found that majority of the participants

showed confidence in using their CT skills in the study

particularly in problem solving, constructing algorithms,

and debugging.

VIII. CONCLUSION AND FUTURE WORK

 This paper discusses an adhoc game called Program Your

Robot that was specifically designed to support CT skills of

its player and thus, facilitate their learning of computer

programming. A quasi pre-post experimental study was

conducted to assess the potential effect of this game by

collecting 151 responses from the participants who were all

first-year computer programming students registered at

University of Greenwich. The data generated from this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

20

study was deeply analyzed and the statistically significant

findings were highlighted.

 Based on the outcomes of this study, two important

contributions can be considered. The first one is the

statistically significant evidence that video games can

underpin the development of major CT skills and facilitate

learning computer programming at the CT level. The

second one is the game design contribution which is

presented in the form of a serious game specifically focused

to practice a) CT skills for puzzle solving and b)

programming constructs as an integral part of the game-

play mechanism.

 While the missing control group was a big drawback of

this research, the findings from the quantitative data

analysis and the feedback received from the participants

provided strong reasons to believe that Program Your

Robot significantly encouraged participants’ confidence and

motivation both in using their major CT skills and in

learning computer programming. Therefore, certain game

mechanisms of the game such as those implemented to

reinforce problem solving, constructing algorithms, and

debugging seemingly helped the participants’ confidence

and their learning process of computer programming.

 As future work, this research needs further improvement

in several areas.

 Firstly, a new version of the game is being planned to be

developed in Unity game engine with a new mobile friendly

interface. The current version of the game is not mobile

friendly and needs to be easily accessible. For this reason, it

is planned to redesign the game as a mobile application

with modern features such as with user profiles that save

online data about players’ progress, an in game high score

system and with challenging levels. This new version of the

game will also provide an improved visualization for

programming constructs. As an example, players will be

able to use the decision making construct in a variety of

ways depending on how they want to overcome challenges

(e.g. bypass an enemy or incapacitate it). Some of the

suggestions proposed by the participants of this study will

also be applied into the game-play such as the new version

of the game will support multiple players to interact with

one another during their game-play. Therefore, the social

aspect of CT, and how this can impact to other skills of the

players can be investigated.

 Secondly, the current version of the game was designed

to operate at an operational level of abstraction to practice

how programming constructs work and therefore, the game

does not produce code in a specific programming language.

It is important to indicate that the game’s operational
stepwise refinement approach could be described in

pseudo-code, which could then be utilized with a code

generator to produce programming language-specific code.

This was not within the current scope of this research but

will be a future development in the game.

 Thirdly, only the short-term effects of the game-play was

investigated in this study. An enhanced study in the future

will aim to investigate both short- and long-term effects of

the game-play and how this would potentially reinforce

players’ CT skills.

 Finally, the most important future work includes

obtaining a strong ethical approve for this ongoing research

in the premise that this would open pathways to conduct a

double-blind study with a control and an experimental

group. To achieve this, a new ethical application would be

undertaken to create a gold standard experimental design.

Therefore, a strong experimental structure could be

established to provide even more strong statistical evidence.

REFERENCES
[1] “Higher Education Statistics Agency (HESA),” 2018. [Online].

Available: https://www.hesa.ac.uk/news/11-01-2018/sfr247-

higher-education-student-statistics/subjects.

[2] T. Beaubouef and J. Mason, “Why the high attrition rate for

computer science students: some thoughts and observations,”

ACM SIGCSE Bull., vol. 37, no. 2, pp. 103–106, 2005.

[3] C. Watson and F. W. B. Li, “Failure rates in introductory

programming revisited,” in Proceedings of the 2014 conference

on Innovation & technology in computer science education,

2014, pp. 39–44.

[4] E. B. Costa, B. Fonseca, M. A. Santana, F. F. de Araújo, and J.

Rego, “Evaluating the effectiveness of educational data mining

techniques for early prediction of students’ academic failure in

introductory programming courses,” Comput. Human Behav.,

vol. 73, pp. 247–256, 2017.

[5] M. N. Giannakos, I. O. Pappas, L. Jaccheri, and D. G. Sampson,

“Understanding student retention in computer science education:

The role of environment, gains, barriers and usefulness,” Educ.

Inf. Technol., vol. 22, no. 5, pp. 2365–2382, 2017.

[6] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A systematic

literature review on teaching and learning introductory

programming in higher education,” IEEE Trans. Educ., vol. 62,

no. 2, pp. 77–90, 2018.

[7] M. McCracken et al., “A multi-national, multi-institutional study

of assessment of programming skills of first-year CS students,”

in Working group reports from ITiCSE on Innovation and

technology in computer science education, 2001, pp. 125–180.

[8] R. Lister et al., “A multi-national study of reading and tracing

skills in novice programmers,” ACM SIGCSE Bull., vol. 36, no.

4, pp. 119–150, 2004.

[9] P. Kinnunen and L. Malmi, “Why students drop out CS1

course?,” in Proceedings of the second international workshop

on Computing education research, 2006, pp. 97–108.

[10] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From

scratch to ‘real’ programming,” ACM Trans. Comput. Educ., vol.

14, no. 4, pp. 1–15, 2015.

[11] A. Altadmri and N. C. C. Brown, “37 million compilations:

Investigating novice programming mistakes in large-scale

student data,” in Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, 2015, pp. 522–527.

[12] J. Voogt, P. Fisser, J. Good, P. Mishra, and A. Yadav,

“Computational thinking in compulsory education: Towards an

agenda for research and practice,” Educ. Inf. Technol., vol. 20,

no. 4, pp. 715–728, 2015.

[13] J. Bonar and E. Soloway, “Uncovering principles of novice

programming,” in Proceedings of the 10th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages,

1983, pp. 10–13.

[14] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory

programming,” AcM SIGcSE Bull., vol. 39, no. 2, pp. 32–36,

2007.

[15] L. Porter, M. Guzdial, C. McDowell, and B. Simon, “Success in

introductory programming: What works?,” Commun. ACM, vol.

56, no. 8, pp. 34–36, 2013.

[16] N. J. Coull and I. M. M. Duncan, “Emergent requirements for

supporting introductory programming,” Innov. Teach. Learn. Inf.

Comput. Sci., vol. 10, no. 1, pp. 78–85, 2011.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

21

[17] C.-C. Liu, Y.-B. Cheng, and C.-W. Huang, “The effect of

simulation games on the learning of computational problem

solving,” Comput. Educ., vol. 57, no. 3, pp. 1907–1918, 2011.

[18] L. J. Barker, C. McDowell, and K. Kalahar, “Exploring factors

that influence computer science introductory course students to

persist in the major,” ACM Sigcse Bull., vol. 41, no. 1, pp. 153–
157, 2009.

[19] A. Ali and C. Shubra, “Efforts to reverse the trend of enrollment

decline in computer science programs,” Issues Informing Sci.

Inf. Technol., vol. 7, pp. 209–224, 2010.

[20] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar, and S.

Lahmine, “Learning basic programming concepts by creating

games with scratch programming environment,” Procedia-Social

Behav. Sci., vol. 191, pp. 1479–1482, 2015.

[21] S. Combéfis, G. Beresnevičius, and V. Dagienė, “Learning

programming through games and contests: overview,

characterisation and discussion,” Olympiads in Informatics, vol.

10, no. 1, pp. 39–60, 2016.

[22] Y. B. Kafai and Q. Burke, “Constructionist gaming:

Understanding the benefits of making games for learning,” Educ.

Psychol., vol. 50, no. 4, pp. 313–334, 2015.

[23] T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson,

“CTArcade: Computational thinking with games in school age

children,” Int. J. Child-Computer Interact., vol. 2, no. 1, pp. 26–
33, 2014.

[24] Y.-H. Ching, Y.-C. Hsu, and S. Baldwin, “Developing

computational thinking with educational technologies for young

learners,” TechTrends, vol. 62, no. 6, pp. 563–573, 2018.

[25] P.-Y. Chao, “Exploring students’ computational practice, design

and performance of problem-solving through a visual

programming environment,” Comput. Educ., vol. 95, pp. 202–
215, 2016.

[26] “Scratch,” 2020. [Online]. Available: https://scratch.mit.edu/.

[Accessed: 13-Aug-2020].

[27] “Alice,” 2020. [Online]. Available: https://www.alice.org/.

[Accessed: 13-Aug-2020].

[28] O. Erol and A. A. Kurt, “The effects of teaching programming

with scratch on pre-service information technology teachers’
motivation and achievement,” Comput. Human Behav., vol. 77,

pp. 11–18, 2017.

[29] L. A. Calao, J. Moreno-León, H. E. Correa, and G. Robles,

“Developing mathematical thinking with scratch,” in Design for

teaching and learning in a networked world, Springer, 2015, pp.

17–27.

[30] D. Topalli and N. E. Cagiltay, “Improving programming skills in

engineering education through problem-based game projects

with Scratch,” Comput. Educ., vol. 120, pp. 64–74, 2018.

[31] K. Sung, C. Hillyard, R. L. Angotti, M. W. Panitz, D. S.

Goldstein, and J. Nordlinger, “Game-themed programming

assignment modules: A pathway for gradual integration of

gaming context into existing introductory programming

courses,” IEEE Trans. Educ., vol. 54, no. 3, pp. 416–427, 2010.

[32] B. Wu and A. I. Wang, “A guideline for game development-

based learning: a literature review,” Int. J. Comput. Games

Technol., vol. 2012, 2012.

[33] N. Pellas and S. Vosinakis, “How can a simulation game support

the development of computational problem-solving strategies?,”

in 2017 IEEE Global Engineering Education Conference

(EDUCON), 2017, pp. 1129–1136.

[34] S. I. Ch’ng, Y. C. Low, Y. L. Lee, W. C. Chia, and L. S. Yeong,

“Video Games: A Potential Vehicle for Teaching Computational

Thinking,” in Computational Thinking Education, Springer,

Singapore, 2019, pp. 247–260.

[35] C. Kazimoglu, M. Kiernan, L. Bacon, and L. Mackinnon, “A

serious game for developing computational thinking and

learning introductory computer programming,” Procedia-Social

Behav. Sci., vol. 47, pp. 1991–1999, 2012.

[36] F. Bellotti, B. Kapralos, K. Lee, P. Moreno-Ger, and R. Berta,

“Assessment in and of serious games: an overview,” Adv.

human-computer Interact., vol. 2013, 2013.

[37] X. Jiang, C. Harteveld, X. Huang, and A. Y. H. Fung, “The

computational puzzle design framework: a design guide for

games teaching computational thinking,” in Proceedings of the

14th International Conference on the Foundations of Digital

Games, 2019, pp. 1–11.

[38] P. Felicia, Handbook of research on improving learning and

motivation through educational games: Multidisciplinary

approaches: Multidisciplinary approaches. iGi Global, 2011.

[39] T. Mitamura, Y. Suzuki, and T. Oohori, “Serious games for

learning programming languages,” in 2012 IEEE international

conference on systems, man, and cybernetics (SMC), 2012, pp.

1812–1817.

[40] T. Hainey et al., “Students’ attitudes toward playing games and

using games in education: Comparing Scotland and the

Netherlands,” Comput. Educ., vol. 69, pp. 474–484, 2013.

[41] P. Molins-Ruano, C. Sevilla, S. Santini, P. A. Haya, P.

Rodríguez, and G. M. Sacha, “Designing videogames to improve

students’ motivation,” Comput. Human Behav., vol. 31, pp. 571–
579, 2014.

[42] J. Sinclair, M. Butler, M. Morgan, and S. Kalvala, “Measures of

student engagement in computer science,” in Proceedings of the

2015 ACM conference on innovation and technology in

computer science education, 2015, pp. 242–247.

[43] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory

programming: 12 years later,” ACM Inroads, vol. 10, no. 2, pp.

30–36, 2019.

[44] M. J. Lee and A. J. Ko, “Comparing the effectiveness of online

learning approaches on CS1 learning outcomes,” in Proceedings

of the eleventh annual international conference on international

computing education research, 2015, pp. 237–246.

[45] N. Dalal, P. Dalal, S. Kak, P. Antonenko, and S. Stansberry,

“Rapid digital game creation for broadening participation in

computing and fostering crucial thinking skills,” Int. J. Soc.

Humanist. Comput., vol. 1, no. 2, pp. 123–137, 2009.

[46] C. Kazimoglu, “Empirical evidence that proves a serious game is

an educationally effective tool for learning computer

programming constructs at the computational thinking level.”

University of Greenwich, 2013.

[47] R. Rajaravivarma, “A games-based approach for teaching the

introductory programming course,” ACM SIGCSE Bull., vol. 37,

no. 4, pp. 98–102, 2005.

[48] I. Lee, F. Martin, and K. Apone, “Integrating computational

thinking across the K--8 curriculum,” Acm Inroads, vol. 5, no. 4,

pp. 64–71, 2014.

[49] S. Papert, “An exploration in the space of mathematics

educations,” Int. J. Comput. Math. Learn., vol. 1, no. 1, pp. 95–
123, 1996.

[50] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49,

no. 3, pp. 33–35, 2006.

[51] J. M. Wing, “Computational thinking and thinking about

computing,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol.

366, no. 1881, pp. 3717–3725, 2008.

[52] A. Basawapatna, K. H. Koh, A. Repenning, D. C. Webb, and K.

S. Marshall, “Recognizing computational thinking patterns,” in

Proceedings of the 42nd ACM technical symposium on

Computer science education, 2011, pp. 245–250.

[53] G. Michaelson, “Teaching programming with computational and

informational thinking,” J. Pedagog. Dev., 2015.

[54] P. Curzon and P. W. McOwan, The power of computational

thinking: Games, magic and puzzles to help you become a

computational thinker. World Scientific, 2017.

[55] M. L. Wu and K. Richards, “Facilitating computational thinking

through game design,” in International Conference on

Technologies for E-Learning and Digital Entertainment, 2011,

pp. 220–227.

[56] J. F. Roscoe, S. Fearn, and E. Posey, “Teaching computational

thinking by playing games and building robots,” in 2014

International Conference on Interactive Technologies and

Games, 2014, pp. 9–12.

[57] D. Weintrop, N. Holbert, M. S. Horn, and U. Wilensky,

“Computational thinking in constructionist video games,” Int. J.

Game-Based Learn., vol. 6, no. 1, pp. 1–17, 2016.

[58] J. Moreno-León, G. Robles, and M. Román-González, “Dr.

Scratch: Automatic analysis of scratch projects to assess and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

22

foster computational thinking,” RED. Rev. Educ. a Distancia,

no. 46, pp. 1–23, 2015.

[59] M. J. Marcelino, T. Pessoa, C. Vieira, T. Salvador, and A. J.

Mendes, “Learning computational thinking and scratch at

distance,” Comput. Human Behav., vol. 80, pp. 470–477, 2018.

[60] A. Settle, “Computational thinking in a game design course,” in

Proceedings of the 2011 conference on Information technology

education, 2011, pp. 61–66.

[61] P. Boechler, C. Artym, E. Dejong, M. Carbonaro, and E.

Stroulia, “Computational thinking, code complexity, and prior

experience in a videogame-building assignment,” in 2014 IEEE

14th International Conference on Advanced Learning

Technologies, 2014, pp. 396–398.

[62] M. Muratet, P. Torguet, F. Viallet, and J.-P. Jessel,

“Experimental feedback on Prog&Play: a serious game for

programming practice,” in Computer Graphics Forum, 2011,

vol. 30, no. 1, pp. 61–73.

[63] A. Vahldick, A. J. Mendes, and M. J. Marcelino, “A review of

games designed to improve introductory computer programming

competencies,” in 2014 IEEE frontiers in education conference

(FIE) proceedings, 2014, pp. 1–7.

[64] W. Zhao and V. J. Shute, “Can playing a video game foster

computational thinking skills?,” Comput. Educ., vol. 141, p.

103633, 2019.

[65] A. Repenning et al., “Scalable game design: A strategy to bring

systemic computer science education to schools through game

design and simulation creation,” ACM Trans. Comput. Educ.,

vol. 15, no. 2, p. 11, 2015.

[66] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of

programming in scratch,” in Proceedings of the 16th annual

joint conference on Innovation and technology in computer

science education, 2011, pp. 168–172.

[67] S. Leutenegger and J. Edgington, “A games first approach to

teaching introductory programming,” in Proceedings of the 38th

SIGCSE technical symposium on Computer science education,

2007, pp. 115–118.

[68] “RoboCode,” 2001. [Online]. Available:

https://robocode.sourceforge.io/. [Accessed: 13-Aug-2020].

[69] M. Eagle and T. Barnes, “Experimental evaluation of an

educational game for improved learning in introductory

computing,” ACM SIGCSE Bull., vol. 41, no. 1, pp. 321–325,

2009.

[70] “Colobot,” 2007. [Online]. Available:

http://www.ceebot.com/colobot/index-e.php. [Accessed: 13-

Aug-2020].

[71] L. A. Gouws, K. Bradshaw, and P. Wentworth, “Computational

thinking in educational activities: an evaluation of the

educational game light-bot,” in Proceedings of the 18th ACM

conference on Innovation and technology in computer science

education, 2013, pp. 10–15.

[72] D. Weintrop and U. Wilensky, “Robobuilder: a computational

thinking game,” in SIGCSE, 2013, p. 736.

[73] “Code Combat,” 2013. [Online]. Available:

https://codecombat.com/. [Accessed: 19-Aug-2020].

[74] “Code Spells,” 2014. [Online]. Available: https://codespells.org/.

[Accessed: 13-Aug-2020].

[75] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon,

“Learning programming at the computational thinking level via

digital game-play,” Procedia Comput. Sci., vol. 9, pp. 522–531,

2012.

[76] M. J. Lee and A. J. Ko, “Personifying programming tool

feedback improves novice programmers’ learning,” in

Proceedings of the seventh international workshop on

Computing education research, 2011, pp. 109–116.

[77] M. Soflano, T. M. Connolly, and T. Hainey, “An application of

adaptive games-based learning based on learning style to teach

SQL,” Comput. Educ., vol. 86, pp. 192–211, 2015.

[78] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon,

“Understanding computational thinking before programming:

developing guidelines for the design of games to learn

introductory programming through game-play,” Int. J. Game-

Based Learn., vol. 1, no. 3, pp. 30–52, 2011.

[79] “Adoba AIR,” 2008. [Online]. Available:

https://get.adobe.com/air/. [Accessed: 27-Aug-2020].

[80] “LightBot,” 2008. [Online]. Available:

https://lightbot.com/flash.html. [Accessed: 23-Aug-2020].

[81] “Tinker,” Microsoft, 2009. [Online]. Available:

https://softfamous.com/tinker/. [Accessed: 23-Aug-2020].

[82] “Robozzle,” 2015. [Online]. Available: http://robozzle.com/.

[Accessed: 23-Aug-2020].

[83] D. T. Campbell and J. C. Stanley, “Experimental and Quasi-

Experimental Designs for Research, Rand Mc,” Na1ly Coll.

Publ. Chicago, vol. 47, p. 1, 1966.

[84] A. Ater-Kranov, R. Bryant, G. Orr, S. Wallace, and M. Zhang,

“Developing a community definition and teaching modules for

computational thinking: accomplishments and challenges,” in

Proceedings of the 2010 ACM conference on Information

technology education, 2010, pp. 143–148.

[85] T.-C. Hsu, S.-C. Chang, and Y.-T. Hung, “How to learn and how

to teach computational thinking: Suggestions based on a review

of the literature,” Comput. Educ., vol. 126, pp. 296–310, 2018.

[86] D. B. Wright, “Comparing groups in a before–after design:

When t test and ANCOVA produce different results,” Br. J.

Educ. Psychol., vol. 76, no. 3, pp. 663–675, 2006.

[87] L. Yang and A. A. Tsiatis, “Efficiency study of estimators for a

treatment effect in a pretest–posttest trial,” Am. Stat., vol. 55, no.

4, pp. 314–321, 2001.

[88] M. Rosenblatt, “A central limit theorem and a strong mixing

condition,” Proc. Natl. Acad. Sci. U. S. A., vol. 42, no. 1, p. 43,

1956.

[89] G. Chen and J. Shen, “Student Learning of Computational

Thinking in A Robotics Curriculum: Transferrable Skills and

Relevant Factors,” International Society of the Learning

Sciences, Inc.[ISLS]., 2018.

[90] M. J. Lee, “Gidget: An online debugging game for learning and

engagement in computing education,” in 2014 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC),

2014, pp. 193–194.

[91] J. A. Qualls and L. B. Sherrell, “Why computational thinking

should be integrated into the curriculum,” J. Comput. Sci. Coll.,

vol. 25, no. 5, pp. 66–71, 2010.

[92] L. Perković, A. Settle, S. Hwang, and J. Jones, “A framework

for computational thinking across the curriculum,” in

Proceedings of the fifteenth annual conference on Innovation

and technology in computer science education, 2010, pp. 123–
127.

[93] A. Yadav, J. Good, J. Voogt, and P. Fisser, “Computational

thinking as an emerging competence domain,” in Competence-

based vocational and professional education, Springer, 2017,

pp. 1051–1067.

[94] B. C. Wilson and S. Shrock, “Contributing to success in an

introductory computer science course: a study of twelve factors,”

Acm sigcse Bull., vol. 33, no. 1, pp. 184–188, 2001.

[95] G. White and M. Sivitanides, “An empirical investigation of the

relationship between success in mathematics and visual

programming courses,” J. Inf. Syst. Educ., vol. 14, no. 4, p. 409,

2003.

[96] I. L. Balmes, “Correlation of mathematical ability and

programming ability of the computer science students,” Asia

Pacific J. Educ. Arts Sci., vol. 4, no. 3, pp. 85–88, 2017.

[97] L. M. de Souza, B. M. Ferreira, I. M. Félix, L. de Oliveira

Brandão, A. A. F. Brandão, and P. A. Pereira, “Mathematics and

programming: marriage or divorce?,” in 2019 IEEE World

Conference on Engineering Education (EDUNINE), 2019, pp.

1–5.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043278, IEEE Access

23

CAGIN KAZIMOGLU received the B.Sc.,

M.Sc., Ph.D. degrees. He is a User Experience

(UX) Researcher and an Assistant Professor

with the Department of Computer

Engineering, Cyprus International University

(CIU). Previously, he was a Senior Lecturer

with the University of Greenwich, London,

and a Researcher at the Center for Advanced

Studies (CAS) Research Group. He has over

13 years of professional research experience with various institutions and

research centers. His research interests include usability testing, user

experience design for digital media, serious game design, gamification and

disruptive technologies. He is a Fellow of the Higher Education Academy

(FHEA). His research interests began in childhood and later developed

into a passion as he sought to effectively find a way to integrate interactive

media tools to the fields of education, psychology, and health in order to

emphasize the acquisition of transferable skills that would support

everyday life.

