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ABSTRACT Computer Science (CS) is a profession that positively impacts every single area of society 

without which today’s world would come to a complete halt. Yet, there is a consensus that CS has serious 

conundrums particularly in attracting students, low motivation for learning computer programming and 

developing computational thinking (CT) skills. New motivational methods are needed to take the attention 

of students and adapt to their learning patterns as how people learn have changed drastically over the last 

two decades. To address these issues, video games and video game-based tools are proposed as a primary 

approach for motivating and supporting students in developing their skills in CT and support their learning 

of introductory programming. This research is concerned with the capture of statistical evidence on the 

educational effectiveness of playing a serious game specifically designed to enhance the development of 

CT skills to facilitate learning introductory computer programming. A total of 190 students were invited to 

participate in a quasi-experimental pre-post study for the purpose of analyzing the impact of an adhoc game 

to students’ confidence in learning programming constructs and using their skills in CT. All students were 

studying a CS degree at the time and they were all registered to a first-year computer programming course. 

151 out of 190 students successfully completed the study and the findings suggest that a) the intrinsic 

motivation to learn programming; b) students’ perception of their knowledge and their tangible knowledge 

in key programming constructs (i.e. programming sequence, methods, decision making and loops); and c) 

students’ confidence in using their CT skills were all statistically and significantly improved after playing 

the game. Additionally, students perceived computer programming significantly less difficult in their post 

study responses when compared to their pre study responses. 

INDEX TERMS computational thinking, serious games, computer programming, video game design, 

game-based learning, gamification

I. INTRODUCTION 
 

 While there is an increasing demand in Computer 

Science (CS) profession as a mainstream discipline, CS 

degrees have the highest number of students dropping out 

in recent years according to the latest figures from the 

Higher Education Statistics Agency (HESA) [1]. The 

difficulty of learning computer programming is cited as one 

of the major factors for the high attrition rates within the CS 

discipline [2] [3] [4]. Recent studies in this field argue that 

the task of learning to program is often recognized as a 

frustrating and demanding activity by introductory 

programming student because of multiple factors such as 

poor teaching methods, low levels of interaction with 

students and a lack of interest in the subject [5], [6]. 

Moreover, introductory programming students often get 

confused with multiple levels of branching and locations in 

the programming logic and they have major difficulties in 

visualizing programming constructs from given problems 

[7]–[10]. Thinking within the syntax of a programming 

language is not natural to many introductory programming 

students and this creates numerous challenges for them as 

when they get error messages, they tend to edit programs 

unrelated to these error messages [11]. It is often discussed 

that students need to work at an operational level of 

abstraction before producing code in a specific programming 
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language so that they can develop their abilities in solving 

problems before they start programming [12].  

 The difficulties students experience in learning computer 

programming are not novel, and the reasons behind these 

challenges have been discussed by the field experts for 

many decades. In their seminal work, Bonar & Soloway 

[13] stated that the real problems introductory programming 

students have lie in “putting the pieces together”. They 

highlighted the problem of recalling domain specific plans 

in order to encode pieces of information into meaningful 

units which means that the crux of the problem is the lack 

of critical thinking skills. Additionally, previous studies  

emphasized that failure rates worldwide of 30-50% in the 

introductory programming courses have been reported for 

decades [14], [15]. This has led to many discussions and 

ideas on how best to teach computer programming, because 

students tend to view of computer programming as a purely 

technical activity, rather than as a set of fundamental design 

and problem solving skills [16], [17]. Studies show that 

there are strong reasons to believe that the majority of 

students who are learning introductory computer 

programming tend to develop superficial knowledge on 

programming constructs, and thus fail to create problem-

solving strategies through using programming constructs 

[16], [18], [19]. 

 To address these problems several studies proposed 

visual programming tools, game design classes, video 

games and video game-like environments (henceforth both 

referred to as games) as ways to attract students into 

computer programming activities and as methods to teach 

the fundamental concepts of CS [20]–[25]. The first of 

these approaches are interactive syntax-free visual 

programming environments, such as Scratch [26] and Alice 

[27], where students often use graphical programming 

commands to build their programs in order to gain a visual 

perspective to abstract concepts fundamental to computer 

programming. This approach has taken massive attention 

by researchers as the mechanism behind these tools is 

closely related to fundamental design principles of 

programming and perceived to be ideal to quickly create 

solutions without the need for excessive program code [10], 

[28]–[30]. Another approach being followed to support 

learning introductory programming is via game 

development classes where although the objective is to 

design a new game as the product, the rationale is the 

realization of basic programming constructs in addition to 

planning algorithms [6], [31], [32]. This approach can cover 

an entire curriculum based on custom libraries, different 

game engines, visual programming tools or new 

programming languages. Therefore, students can learn 

introductory programming constructs in an engaging 

environment alongside developing the fundamental skills 

necessary to be a computer programmer (such as problem 

solving and team-working abilities). The final and certainly 

the least common way is to facilitate the teaching and 

learning of introductory computer programming through 

the use of video game technologies in an educational game 

context, also referred to as serious games, due to several 

exhibiting features of games such as learner-centricity, 

interactivity and immediate feedback. The rationale behind 

this educational gaming context, which is the fundamental 

argument for serious games, is that the immersive and 

engaging nature of game-play encourages students to 

greater levels of investigation, experimentation and re-use 

[33], [34].  Such games can thus support the realization of 

basic programming constructs in addition to planning 

algorithms and enhancing problem-solving skills [17].  

 This research is solely focused on this third approach 

mainly for the following two reasons: a) there is an 

overwhelming number of work regarding the first two 

approaches in the literature, but there are few examples of 

serious games that specifically focused on learning 

introductory computer programming and developing skills 

in CT via game-play [32], [35]–[37]. In other words, only a 

limited amount of work has been undertaken to scaffold the 

development of CT skills and learning how computer 

programming constructs work through serious game-play; 

b) there is a clear need for more empirical work in game-

based learning (GBL) that investigates the tension between 

teaching CT and computer programming via game-play. It 

is crucial to provide more structured studies in this area 

which can combine a design framework and an 

experimental statistical analysis in order to strengthen the 

evaluations of learning in GBL for CS [38]–[41].  

 To address the above issues, this paper investigates the 

correlations between game-play and developing skills in 

CT, through learning a limited number of introductory 

programming constructs via serious game-play. The paper 

reports a detailed analysis of the current literature and 

presents an experimental evaluation through a quasi pre –
post study experimental design in the premise to answer the 

following research questions: 

“Can a serious game be designed to support the 
development of computational thinking through the medium 

of learning computer programming? If so, can this game 

enhance students’ intrinsic motivation to learn computer 

programming and their perception of computational 

thinking skills?” 

II. RESEARCH BACKGROUND 
 

  Many studies argue that there is a link between dropout 

rates in Computer Science (CS) degrees and the low 

motivation for learning computer programming, since often 

the mechanisms for learning computer programming are 

seen by students as neither interesting nor relevant [2], [14], 

[16], [42]. According to HESA figures [1], undergraduate 

enrollment numbers to CS degrees increased by 4% in 

recent years. However, the dropout rates from CS degrees 

equally increased as 72% of students considered dropping 

out of the university at some point in between 2016 and 

2017, with 49% totally leaving their programme. 

 Further to above, a seminal work investigating the 

introductory programming failure rates undertaken a 

systematic review of the introductory programming 
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literature, and conducted a statistical analysis on the pass 

rates extracted from the relevant articles [3]. Their research 

showed the mean worldwide failure rate in introductory 

programming classes as 32.3%. A more recent study 

supported these findings and reported the worldwide failure 

rates in introductory programming courses as 28% [43]. 

While the failure rates in introductory programming classes 

are not alarmingly high, almost one in every three students 

fails in introductory programming courses. Furthermore, 

recent research in this field states that even students who 

have completed introductory programming courses still do 

not know how to program and/or may not have the ability 

to use programming codes to solve problems within the CS 

discipline [44]. 

 It is widely accepted that learning to program requires 

comprehending abstract concepts about CS and arranging 

these concepts in a rational order in order to solve real life 

problems successfully. In other words, introductory 

programming students need to demonstrate an 

understanding of the patterns evident in programming, 

rather than focusing only on the syntax and semantics of 

computer programming languages [17]. However, the 

majority of introductory programming students perceive 

computer programming as a technical activity rather than a 

chain of cognitive skills [15]. Students often find the 

process of learning computer programming difficult 

because they need to find a solution to a problem by 

acquiring a new way of thinking in addition to the need to 

practice a new syntax and grammar in order to 

communicate their solution to real life problems [45], [46]. 

Many students are not conscious of this and, despite their 

training, when they undertake a computing project the 

reaction of the majority of them is to start coding 

immediately, skipping the crucial steps of analysis and 

design and the need to develop abstractions and algorithmic 

thinking [47]. Thus, learning computer programming 

becomes a demanding task and requires abstraction of CS 

concepts to describe a problem and propose a solution, 

followed by the need to design and code in order to convert 

the solution into the syntax of a programming language. 

To overcome some of these challenges, Computational 

Thinking (CT) has been the focal point of a number of 

studies within the CS discipline in an attempt to integrate it 

into the basic curriculum [12], [48]. The concept, CT, was 

first used by Papert [49] and later deeply investigated by 

Wing [50]. In her seminal work, Wing described CT as a 

problem solving approach that combines logical thinking 

with CS programming constructs, and that it can be used to 

solve a problem in any discipline regardless of where the 

problem lies [50], [51]. In other words, CT is described as a 

set of intellectual and reasoning skills that state how people 

interact and learn to think through the language of 

computation that involves using methods, language and 

systems of CS. This does not mean that CT proposes 

problems that need to be solved in the same way a 

computer tackles them, but rather it encourages the use of 

critical thinking using concepts fundamental to the CS 

discipline. Many researchers support this and draw 

attention to the fact that CT is not a synonym for computer 

programming [52], [53]. Instead they define it as the 

process of making abstractions [21], [24] whereby the data 

and various CS concepts (i.e. computer programming 

constructs) are presented without clarifying any 

implementation details, in a form similar to the description 

of semantics [52]. Thus, if CT is defined as the ability to 

develop high-level conceptual design skills, then students 

with CT abilities can find computer programming much 

easier than others as learning computer programming 

requires the ability to select the appropriate symbolic and 

numerical data to produce generic solutions. Therefore, CT 

is related to conceptualizing and modelling solutions at an 

abstract, context-free level, whereas computer 

programming is directly related to the context rather than 

the concept of a solution and consequently focuses on the 

logical and physical realization of a solution within that 

context.  

Owing to their easy engagement and motivational nature, 

games and game-based tools have been proposed by many 

studies both to increase the motivation in computer 

programming classes and also as a method to practice skills 

in CT [54]–[57]. As discussed above, there is an 

overwhelming number of works in this area which can be 

classified into three main categories as game development 

with visual tools [58], [59], extensive game development 

[60], [61] and learning through game-play [17], [62]–[64]. 

All three approaches reported success with a radical 

increase in students’ motivation to learn programming, 

hence this provided some evidence that integrating games 

into the education of introductory computer programming is 

a promising strategy. 

In game development with visual tools, students are 

exposed to create visual abstractions without the need to 

write excessive programming code or have a background in 

games programming via visual programming tools such as 

Scratch [26] or Alice [27]. Complex scenarios can be 

created in these environments by combining character 

behaviors which inevitably requires an understanding of 

programming sequence, conditionals, iterations and 

methods. Furthermore, visual programming tools remove 

the syntax rules of actual programming languages and 

present programmatic representations as blocks through a 

simple drag and drop interface. This cleverly separates the 

programming logic from programming grammar and 

syntax, allowing students to focus on developing 

programming strategies with little or no programming 

background. Despite all these positive traits, research in this 

field points out that visual programming environments are 

merely tools and without well-organized teaching methods 

and learning materials to support them, all they can provide 

is a “short burst of enthusiasm” [65]. An extensive study 

identified that visual programming environments influence 

not only the learning of introductory programming but also 

the habits of programing that students develop during their 

learning process [66]. According to this research, when 
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students are asked to perform a programming task they do 

not approach it by thinking at the algorithmic level but 

instead, they attempt to solve the problem by using all the 

blocks that seemed to be relevant for solving the task and 

randomly combine these blocks into a script in order to try 

to solve the problem. Additionally, it has been observed 

that students tend to produce unstructured programming 

solutions through using various blocks (such as with a 

repeat-until loop) where the body of blocks are logically 

coherent and easy to understand, but the outcomes 

produced by students are no longer coherent and well-

organized. One could argue that this is not related to the 

characteristics of visual programming environments but 

might be the poor software development skills and weak 

programming abilities of students. However, scripts and 

graphical objects are often executed concurrently in visual 

programming environments. As the scripts are written in 

the graphical objects, it is difficult for students to develop 

the skills necessary for building logically coherent solutions 

as the execution of objects always happen simultaneously. 

Studies argue that concurrent programming exists as an 

integral part of the visual programming environments and 

although debugging concurrent programs can be seen as a 

viable concept to support learning, students’ tendency to 
develop unstructured programming solutions (such as an 

incorrect use of a loop construct), leads to outcomes that 

contain lots of repetitions in different scripts which is a bad 

programming practice [10], [66]. At this point, it is 

important to highlight that the intention here is not to 

alienate visual programming environments from learning 

introductory programming or to blame these environments 

in any way, but rather to emphasize that these environments 

are simply design tools which do not necessarily consider 

good programming practices as this was not their purpose. 

They simply lack a mechanism to support students in their 

quest to understand fundamental ideas in CS such as to 

algorithmic thinking, debugging programs and the correct 

use of programming constructs. Although visual 

programming environments are very valuable tools and can 

generate well-structured programs with hundreds of 

concurrent scripts, one must avoid thinking of these 

environments as a substitute for pedagogy in learning 

introductory programming because their characteristics 

might allow students to incorrectly use programming 

constructs. More importantly, a student can transfer their 

bad habits in programming gained from these environments 

into their further studies in CS. As suggested by many 

researchers, visual programming environments remove 

programming syntax problems when learning introductory 

programming, but the need to write algorithms before 

programming remains essentially a cognitively demanding 

task [8], [65], [66]. 

 The second approach is the extensive game development 

which aims to develop new games or linear scenarios as an 

end product. This approach is often supported with game-

engines, and/or programming languages with graphical 

libraries. The idea here is not to complete a polished end-

product but the learning experience and visualization of 

how programming constructs work. While this approach 

was proven to be useful, students need to consider all 

aspects of producing a product including, but not limited to, 

game graphics, sound, game play, physics and narratives 

[31], [67]. This can sometimes be overwhelming for 

introductory programming students and therefore, the 

approach requires game development experience and 

careful planning [63]. 

The final category is learning through game-play which 

has taken less attention from researchers compared to the 

first two approaches. It is discussed in the literature that CT 

patterns (e.g. decomposition, abstraction, pattern 

generalization, algorithm design) are context and 

application independent and therefore, they can easily be 

reflected and developed through game-play [52]  

(Basawapatna et al., 2011). Research in scalable game 

design highlights that once students understand 

conceptually how to present a CT pattern, they should be 

able to transfer and use it in the context they choose [65]. 

In recent years, studies investigating the relationship 

between digital game-play and learning computer 

programming have increased [63]. Survey research in this 

field indicate that there are over 40 games that were 

reported in the literature within the last two decades [63]. 

Some of the most cited of these are Robocode [68], Wu’s 
Castle [69], Colobot [70], Prog & Play [62], LightBot [71], 

RoboBuilder [72], Code Combat [73] and CodeSpells [74]. 

While many studies showed these games are powerful 

motivators [62], [69], [71], majority of them use a text-

based programming language that requires the player to pay 

considerable attention to the details of syntax, which is not 

very well aligned with CT [75]. Additionally, some of these 

games were evaluated without well-defined research design 

and the results were often preliminary with small sample 

sizes. 

Although limited in number, there are very good 

structured evaluations of learning through game-play for 

CS. Lee and Ko [44], [76] introduced their game Gidget, 

where a robot protagonist is expected to write code to 

complete a series of missions. They managed to run 

randomized controlled trials with a control and an 

experimental group where the control group played a 

generic version of the game and the experimental group 

played a personalized version of the same game with player 

selected images and sound effects. Based on a total number 

of 116 responses, the motivation level of the participants in 

the experimental group was higher than the motivation 

level of the participants in the control group in terms of 

learning computer programming [76]. More recently, the 

same researchers undertook another study with 60 

participants where they divided these participants into 

multiple experimental groups and measured their 

knowledge before and after they a) played their game and 

b) completed an online Python class. The findings of this 

study suggest that introductory programming concepts can 

be taught within a few hours with their game when this is 
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explicitly guided by a curriculum. While this research is 

very valuable for GBL, it is important to note that the 

evaluation was conducted at the computer programming 

level rather than the level of CT because participants were 

expected to write code in a programming language to show 

their knowledge/skills. Similar to this, another study 

investigated the learning effectiveness of 120 students who 

were learning the database Structured Query Language 

(SQL) at the time [77]. In this experimental study, 

participants were asked to play an adhoc game in different 

modes and their performance was compared to a paper-

based learning. It was found that the game modes they 

developed, produced better learning outcomes than paper-

based learning. However, like many others, this research 

also evaluated the learning performance of participants at 

the level of coding. In a very recent study, Zhao and Shute 

[64] introduced their game Penguin Go and asked a total of 

69 participants to play their game and provide feedback. 

Unlike the other studies however, they focused on the main 

components of CT rather than programming which included 

but not limited to problem decomposition, algorithmic 

thinking, conditional logic, recursive thinking, and 

debugging. Their findings indicate that participants felt 

their skills significantly improved in CT after playing the 

game. Yet, this did not impact on their learning of 

programming which means that neither their attitudes 

toward CS nor their knowledge/skills in programming were 

significantly enhanced. 

Based on the forementioned studies, there are promising 

research findings regarding the attitude and cognitive 

development of participants in playing video games 

specifically designed to teach computer programming and 

practicing skills in CT. However, it is also clear that this 

area needs further structured assessments and more 

evidence particularly in learning through playing games for 

CT. In other words, more studies need to emphasis on 

cognitive skills in CT rather than focusing only on the 

programming knowledge through the syntax of code and 

good programming practices. 

For the reasons defined above, this study investigates the 

relationship between game-play and participants’ 
confidence in learning computer programming and using 

CT skills. Having done a detailed literature review on the 

existing work in GBL for CT, the research questions 

presented in the introduction part were refined and fit into 

an experimental study structure.  

As shown from Table 1, a null and an alternative 

hypothesis were added to each refined research question in 

order to statistically analyze the collected data with the aim 

of answering these new research questions. Several studies 

were reviewed before categorizing these questions [34], 

[44], [64], [71] and the focus of the research was kept on 

the confidence level of participants as well as their potential 

knowledge gain and skill development from this study. 

 

 

 

Table 1. Showing refined research questions, null and 
alternative hypotheses in this research 

 

Research 

Question 

Null Hypothesis 

(Ho1) 

Alternative 

Hypothesis 

(Ha1) 
RQ1: Is there a 

difference in 

students’ 
attitude to 

dropping their 

degree 

programmes 

between the pre 

and the post 

study? 

There is no 

significant 

difference in 

students’ attitude to 
dropping their 

degree programmes 

between the pre and 

the post study 

Students’ attitude to 
dropping their 

degree programmes 

is significantly 

changed between 

the pre and the post 

study 

RQ2: Is there a 

difference in 

students’ 
motivation to 

learn computer 

programming 

between the pre 

and the post 

study? 

There is no 

significant 

difference in 

students’ motivation 

to learn 

programming 

between the pre and 

the post study 

Students’ 
motivation to learn 

programming is 

significantly 

changed between 

the pre and the post 

study 

RQ3: Is there a 

difference in 

students’ 
perception of 

difficulty of 

computer 

programming 

between the pre 

and the post 

study? 

There is no 

significant 

difference in 

students’ perception 
of difficulty of 

computer 

programming 

between the pre and 

the post study 

Students’ perception 
of difficulty of 

computer 

programming is 

significantly 

changed between 

the pre and the post 

study 

RQ4: Is there a 

difference in 

students’ 
understanding of 

programming 

constructs* used 

in the game 

between the pre 

and the post 

study? 

There is no 

significant 

difference in 

students’ 
understanding of 

programming 

constructs between 

the pre and the post 

study 

Students’ 
understanding of 

programming 

constructs is 

significantly 

changed between 

the pre and the post 

study 

RQ5: Is there a 

difference in 

students’ 
perception of 

their CT skills** 

between the pre 

and the post 

study? 

There is no 

significant 

difference in 

students’ perception 
of their CT skills 

between the pre and 

the post study 

Students’ perception 
of their CT skills 

significantly 

changed between 

the pre and the post 

study 

* Programming constructs used in the game are programming sequence, 

methods, decision making and loops. 

** CT Skills refer to problem solving, constructing algorithms, debugging 

and simulation. 
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III. DEVELOPING A RESEARCH TEST BED 
 

 An adhoc video game named Program Your Robot was 

developed from scratch as a test-bed in order to assess the 

refined research questions in this study. As discussed 

previously, there are several games available to assess 

motivation to learning programming. However, it was 

decided to develop a new adhoc game for this research 

mainly for two reasons: 

 Firstly, to develop a model that would allow students to 

practice a series of cognitive abilities that characterize CT, 

regardless of their programming background. These 

cognitive abilities are defined as problem solving, 

constructing algorithms, debugging, simulation and 

socialization [75].  Majority of the existing games in the 

literature are played via coding where players need to 

consider syntax of coding in order to efficiently play them. 

This is clearly closer to the level of computer programming 

rather than the cognitive abilities of CT. On the other hand, 

this research is primarily focused on practicing skills in CT, 

even if the participants have little or no programming 

background. 

 Secondly, to support the learning process of introductory 

programming by demonstrating how a limited number of 

key introductory computer programming constructs can be 

used as vividly explicit game elements which introductory 

programming students often find challenging and/or 

difficult to understand. Previous guidelines prepared for CT 

and serious games suggest that when programming 

constructs are used as integral elements of game-play, this 

tends to motivate and engage players more than when it is 

not [78]. Based on these guidelines, the game in this 

research needed to be a platform to practice fundamental 

programming constructs students often find difficult 

through familiarizing these constructs as integral parts of 

the game-play. Moreover, the programming constructs used 

in the game had to be well aligned with the curriculum of 

the introductory programming course participants were 

taking at the time because this was needed for the ethical 

approval of the research. As a result, this research is 

concerned with the educational effectiveness of Program 

Your Robot which is specifically designed to practice CT 

skills through the medium of learning introductory 

programming constructs. 

 Program Your Robot was developed in Adobe AIR [79] 

with HTML 5, JavaScript and ActionScript support. 

Additionally, it was designed as a single player isometric 

puzzle solving experience, and the core idea behind this 

was to encourage the development of individual cognitive 

skills which would expectantly support students to learn 

how computer programming constructs work. In other 

words, it was aimed to practice core skills of CT 

particularly problem solving, constructing algorithms, 

debugging and simulation via game-play. Despite this, the 

socialization aspect of CT was not implemented in this 

version of the game because this needed a multi-player 

game design and careful planning on the top of the other 

four core skills. 

 
 

Figure 1. Program Your Robot Game-Play 

 

 As shown in Figure 1, the aim of Program Your Robot is 

to steer a character to its target via the most viable route 

through using a series of commands that plays a key aspect 

in constructing efficient solutions. The game is designed to 

be a puzzle solving action game where players control a 

robot and help it to reach specific destination(s) by giving 

commands. To play the game, players need to drag and 

drop commands from a selection interface into a limited 

number of areas, which leads them to construct their own 

algorithms. There are two types of commands players can 

instruct to the robot: action commands and programming 

commands. Action commands have a direct effect on what 

the robot does (such as go forward, turn right), while 

programming commands affect robot’s actions by 

supporting the solution developed by the player through a 

programming construct. The current version of the game 

contains four fundamental programming commands which 

are the programming sequence, methods, decision making 

and loops. When designing the game, the programming 

sequence was taught as the initial construct students need to 

instruct to the robot and discover how these are performed. 

Having done so, the methods were implemented into game-

play which can support the players to break down their 

solutions and create repeatable patterns. The decision 

making is designed to evaluate certain conditions such as to 

detect whether the robot faces an enemy or an obstacle. 

Finally, the loops in the game allows players to repeat a 

series of commands for a number of times they predefine. 

All commands, whether action or programming, can be 

dragged from their associated toolbars into specific areas 

called slots. Each slot can contain only one command and 

players can use any number of commands in any sequence, 

for as long as they have empty slots. Once the player is 

happy about the solution they created within these slots, 

they can either debug their solution or run it. If the player 

debugs their solution, they can observe a quick trace of the 

solution they built in and can find any mistakes they might 

have made in their solution. This is particularly useful for 

players when the robot does not behave the way that they 

expect or when they misuse a programming command. 
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Alternatively, the players can run their solution which then 

the robot is animated and follows the instructions given in 

the slots one by one. This simple mechanism was applied to 

encourage players to debug their solutions and find out 

mistakes whenever they get stuck in the game. In other 

words, the learning material in the game was designed to be 

an integral part of the game-play without any need for 

coding.  

 In addition to these, the game-play is mapped onto part of 

the computer programming curriculum, more specifically 

on four key areas (i.e. programming sequence, methods, 

decision making and loops). The constructs are introduced 

as the players progress through the game. Due to the 

puzzle solving structure of the game, players are required to 

use their problem solving to find the most effective pathway 

for their robot to beat each level. Further to this, when 

players design their solutions, they need to construct 

algorithms in order to complete levels. Debugging in the 

game allows monitoring of solution algorithms and 

detecting potential errors which is an integral component of 

both CT and programming [52]. Correspondingly, 

simulation is the run-time mode where one can observe the 

behavior of the robot and analyze whether or not a winning 

strategy has been created in the game. 

 As the players progress through the levels in the game, 

the levels become more complex and the available number 

of empty slots decreases. Consequently, two different 

reward systems were applied in the game in order to 

stimulate players to discover efficient solutions during their 

game-play. These are the score system and the 

achievements.  

 The score system was designed to give points to players 

according to how efficiently they designed their solutions to 

beat that level. The score of the players significantly 

increased when they used repeatable patterns with smaller 

number of slots to construct solutions. As an example, a 

player that beats a level with using 8 slots and without 

considering any reusability scores lower than another player 

that considered reusability of commands and completed the 

same level with using 4 slots. In other words, if players 

want to achieve a high score in the game, they need to 

demonstrate deep understanding of the programming 

concepts used in the game, such as when they create 

repeatable patterns with methods or loops. Therefore, 

building efficient algorithms illustrates good game-play as 

well as promoting the acquisition and development of the 

CT skills discussed above. 

 The second reward systems applied was the achievements 

which are the trophies players can unlock when they 

demonstrate certain programming patterns in the game. As 

an example, earlier levels in the game do not require the use 

of nested loops to overcome them. However, should the 

players successfully demonstrate the use of nested loops to 

beat these levels, they can unlock the nested looper 

achievement which is a trophy they earn and can show the 

other players in addition to extra score points they obtain 

from unlocking this achievement. Therefore, when players 

discover good programming practices, they are rewarded in 

their game-play. This mechanism is popular among the 

current generation of games and emphasizes the importance 

of increasing the motivation through behavioral 

conditioning [75]. Finally, there is a high score chart in the 

game where players can submit their score or share the 

trophies they collected with other players. The participation 

in the high score chart is optional as when players do not do 

well in their game-play, they do not need to share this with 

others. 

 In many ways, Program Your Robot is similar to other 

games such as to Light-Bot [80], Microsoft’s Tinker [81] 

and Robozzle [82]. However, there are considerable 

differences between Program Your Robot and these games 

which are discussed below: 

 Firstly, the learning material in Program Your Robot is 

represented in game elements and mapped onto part of the 

computer programming curriculum taught within the 

Computer Science department of University of Greenwich. 

Secondly, four out of five main categories of CT skills (i.e. 

problem solving, constructing algorithms, debugging and 

simulation) are explicitly integrated as patterns into the 

game mechanics. In other words, the game is built on the 

top of the cognitive structure of CT rather than for fun only 

whereas the games listed above are created for fun and not 

for learning purposes. Additionally, none of the above-

mentioned games sufficiently focused on the accurate use 

of programming constructs or that map to an introductory 

programming curriculum as this was not their aim. 

Therefore, although the game-play of Program Your Robot 

was inspired from other games, crucial differences guided 

the development, such as the necessity to consider accurate 

use of programming constructs and the intention to practice 

cognitive CT skills during game-play. 

 Last but not least, Program Your Robot was designed to 

be gender and expertise neutral as the theme of the game 

(i.e. a robot trying to escape from a maze) is not male or 

female oriented; and players do not need to have prior 

computer programming knowledge to play the game. 

In a previous study, a free form pilot study was 

conducted with a wide variety of students as an initial 

qualitative evaluation of the game before moving to the 

experimental study stage of the research [75]. Having 

improved the game based on qualitative feedback obtained 

in the pilot study such as by adding achievements and high 

score features, an experimental study was conducted at the 

University of Greenwich on a first-year computer 

programming class of 190 students, who had diverse 

backgrounds and variable prior knowledge in computer 

programming. The details about the research design of this 

experimental study are discussed below. 

IV.  RESEARCH DESIGN 
 

This study uses one group pre – post study quasi 

experimental design to measure participants’ perception 
and confidence levels in the refined research questions 

before and after they played the game. This design is often 
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referred to as one-shot case study and it is particularly 

useful in observing before and after effects of a treatment or 

a practical approach (in this case, the game) [83]. However, 

the major limitation of this design is the lack of a 

comparison or a control group. Additionally, participants 

cannot be randomly assigned to groups in this research 

design which is a threat to internal validity of the research. 

Although these limitations are well known, and a 

Randomized Controlled Trial (RCT) or a Clustered 

Randomized Control Trial (cRCT) would have been a more 

effective approach in this research, this quasi experimental 

design was selected because of three main reasons.  

Firstly, this study was conducted at the University of 

Greenwich, London (UoG) on first year Computer Science 

students and hence, an ethical approval from the UoG 

ethics committee was needed. In order to obtain the ethical 

approval, the ethical committee insisted on ensuring that 

students receive the same experience throughout the study. 

Despite the fact that this research aims to measure the effect 

of an educational tool (i.e. Program Your Robot), if some 

students were advantaged from it, this would be considered 

unfair and it was simply not possible to treat students 

differently. In other words, the ethical restrictions prevented 

this research to divide students into two random groups and 

apply different educational interventions. 

Secondly, when the study was conducted, the participants 

had only just registered for their computer programming 

course. As the study was conducted on the fourth week that 

the computer programming course officially started at UoG, 

the students were just learning the programming constructs 

when they were asked to undertake this study.  More 

importantly, students’ background in computer 

programming and in video games were not formally 

evaluated before they agreed to participate in the study. As 

it was the beginning of the term, this was considered as a 

critical time for them to learn and practice with equal 

opportunity. 

Finally, there is no universally agreed way of teaching 

CT skills in higher education to students as this is an 

abstract concept and how to teach CT is an active research 

area [12], [84], [85]. As there is no standard or a traditional 

way of teaching CT in higher education, how to teach CT 

skills to students in the most convenient way is an 

experimental area. In addition to this, Program Your Robot 

is not intended to replace or compete against any 

experimental approach for practicing CT but rather 

developed to practice a specific way of thinking.  Given 

these circumstances, one group pre-post study design was 

perceived to be safest design to follow in order to conduct 

the experimental study on schedule. 

As discussed above, the participants of this study were 

first year CS students recruited from the UoG who were all 

adults (i.e. 18+ years old) and registered to the introduction 

to computer programming course taught at the CS 

department at the time. All participants were aware of 

computer algorithms particularly of pseudo codes and 

flowcharts. Additionally, all participants were introduced 

all of the programming constructs used in the game (i.e. 

programming sequence, methods, decision making and 

loops) during their computer programming classes. 

The study was conducted within the university during the 

computer programming tutorial hours and the participation 

in the study was voluntary work. The structure of the study 

was clearly explained to the students (i.e. pre-post study) 

and they were aware that they all had the option to dropout 

from the study at any time without providing a reason. The 

research was confidential, and the participants were not 

asked to provide any information that would reveal their 

identity. All participants were asked to use a randomly 

generated unique number in the pre and the post 

questionnaires so that it was possible to match their 

responses. Each participant received a consent form at the 

beginning of the study so that they were able to decide 

whether or not to participate. The environment was familiar 

to the participants and they were all informed that their 

honest answers were vital and valuable for the research. 

Additionally, it was clearly explained to them that their 

decision on participating in this study would not have any 

effect on their grades. 

Having signed the consent forms, the participants were 

asked to complete two online questionnaires both before 

and after they played Program Your Robot. When filling 

the questionnaires, participants were specifically asked not 

to contact to one another as this might bias their answers. 

On the other hand, the participants were free to contact their 

peers during their game-play. Each of the CT skills also 

explained to participants such as simulation was explained 

as the ability to visualize how programming constructs 

work and debugging as the skill of detecting and removing 

existing and potential errors. 

At the beginning of the study, the participants were 

invited to complete the pre study which involved 

undertaking an online questionnaire to rank their perception 

on a) giving up their degree programmes; b) motivation for 

learning computer programming; c) difficulty of learning 

computer programming; d) knowledge in programming 

constructs and e) their skills in CT. 

Participants’ confidence and their perception were 

assessed using a 5-point rating Likert scale in each 

question. The main reason for using a close ended 

questionnaire was to make the participants’ perception of 
abilities quantifiable. The Likert scale ranged from one 

extreme attitude to another from 1 (strongly disagree) to 5 

(strongly agree), 3 being the moderate (neutral) point. A 

not applicable option added to some questions in case these 

questions were not relevant to them. Each rating indicated 

more satisfaction than the rating before it, but the 

distinction between the ratings were not measurable. As an 

example, the difference between a strongly agree and an 

agree response can be less than the difference between a 

strongly disagree and disagree response. Therefore, all 

observations gathered from the participants exist on an 

ordinal scale.  
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 In addition to these perspective questions, the 

participants were asked to answer four knowledge test 

questions regarding each programming construct presented 

in the game (i.e. programming sequence, methods, decision 

making and loops). These questions were prepared by the 

tutors of the computer programming course taught at the 

UoG and revised several times before being put in the 

questionnaires. Within these questions, the participants 

were provided a problem in the format of pseudo code and 

asked to draw a flowchart or provide an algorithmic 

solution to solve the problem. Each of these questions were 

multiple choice and only one of the responses were correct. 

The participants were asked to provide their solution before 

selecting an answer, and if they did not know the answer to 

the questions, they were asked not to provide an answer at 

all since this would have had no effect on their studies. This 

approach was specifically used to observe how students 

think, approach, and solve a problem, rather than merely 

measuring their ability to code in a specific programming 

language. 

The post study online questionnaire given to the 

participants was identical to the pre study questionnaire 

provided to them at the beginning of the study. The only 

major difference between the pre and the post study was the 

knowledge test asked to the participants regarding the 

programming constructs. While these questions were kept 

at the same level of difficulty, the questions were different 

in order to accurately measure their knowledge in the 

relevant programming constructs both before and after they 

played the game. 

Table 2 shows the independent and the dependent 

variables sought through the online questionnaires (i.e. pre 

and post). While the independent variables were only asked 

in the pre study, the dependent variables were asked both in 

the pre and the post study.  
 

Table 2. Independent and Dependent Variables of the Study 

 

Variable Type Variable 
Independent Age, Sex, Ethnicity, 

Mathematical Qualification 

 

Dependent Attitude to giving up the degree 

Programme 

Perception on the difficulty of 

computer programming 

Intrinsic motivation to learn 

computer programming 

Perception of knowledge in 

programming constructs (i.e. 

sequence, methods, decision 

making and loops) 

Knowledge test on programming 

constructs (i.e. sequence, 

methods, decision making and 

loops) 

Perception of CT skills (i.e. 

problem solving, constructing 

algorithms, debugging and 

simulation) 

 

Lastly, the total time allocated for the study was about 

three hours, but it took longer than this as majority of the 

participants insisted on playing the game. When 

participants finally completed the study, the results of the 

post study were matched with the results obtained from the 

pre study by using the unique number generated for each 

participant. Hence, it was possible to investigate the 

participants’ confidence and perception in the measured 

categories as well as any potential knowledge/skill they 

gained from the study.  

 
V.  DEMOGRAPHICS AND THE STATISTICAL 
APPROACHES 
 

A total of 190 participants were invited to participate in 

this study and all participants were registered to the 

Computer Programming course taught at University of 

Greenwich. The participants were randomly invited to 

participate and they came from a wide variety of 

backgrounds and ethnicities. 

While the study was conducted with 190 participants, 39 

(20.5%) of these dropped out or did not complete the study 

adequately such as they did not complete the questionnaires 

or did not play the game. Overall, 151 out of 190 (79.47%) 

valid responses were successfully collected and interpreted 

by matching pre study responses to post study responses. 

While the exact reasons for the dropout rates are not 

known, majority of these happened within the first half an 

hour of the study and the responses were left in a state that 

it was simply not possible to compare these with the 

adequate responses collected. 

Among the valid responses obtained, 127 (84.1%) out of 

151 were from male participants and 24 (15.9%) out of 151 

were from female participants. Whilst 131 (86.8%) 

participants were in the 18-24 age range, 15 (9.9%) were in 

between 25 and 29. Additionally, 4 (2.6%) participants 

were in the 30-39 age range and 1 (0.7%) participant was 

over 40. 

In terms of ethnicity, the UK government standard 

ethnicity classification was used in this study. According to 

the data obtained, 62 (41.1%) participants defined 

themselves as White. Consecutively, 36 (23.8%) out of 151 

participants defined themselves as Asian or Asian British 

and 34 (22.5%) out of 151 participants defined themselves 

as Black or Black British. While 8 (5.3%) participants 

declared themselves as Mixed/Dual Background, 11 (7.3%) 

participants indicated that they have other ethnic 

background that did not fit into the UK government 

standard ethnic classification. 

In addition to age, sex and ethnicity, the mathematical 

qualifications of participants were collected in this study to 

analyze whether or not participants’ mathematical 

qualifications had any effect on their experience in the 

study. According to the data obtained, 36 (23.8%) out of 

151 participants had A-Level Maths or equivalent 

qualification. While 4 (2.6%) participants had AS-Level 

Maths or equivalevent qualification, 50 (33.1%) 

participants GCSE Maths grade A or B or equivalent 
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degree. Moreover, 47 (31.1%) participants stated that they 

had GCSE Maths grade C or equivalent degree, and 9 (6%) 

more participants had lower than GCSE Maths grade C. 

Finally, 5 (3.3%) participants indicated that they had other 

mathematical qualifications. 

Two statistical methods were considered to evaluate the 

data obtained from this research which are common 

statistical approaches used when comparing groups in a 

before–after design: the paired t-test (post-pre score) and 

the analysis of covariance (ANCOVA).  

Upon careful investigation of these methods, it was 

decided to use only the paired t-tests in this research 

because the initial and final scores are related to some 

ability (i.e. CT) and the effect of intervention (i.e. the 

game) is the same across all levels of this ability [86]. 

While the ANCOVA test is a more flexible model than 

paired t-test, this was not used due to the lack of a control 

group [87] . Regardless, research in this field discuss that 

both paired t-tests and ANCOVA  generally produce good 

estimates when random allocation is used in studies [86] . 

Having decided to use the paired t-tests to analyze the 

collected data, a test of normality was undertaken to 

investigate the distribution of data as this is an assumption 

for using paired t-tests.  

 

 

 

Figure 2. Showing the histogram and the Quantile-Quantile (Q-
Q) Plots of participants’ intrinsic motivation between the pre 

and the post study. 

 

According to the Central Limit Theorem (CLT), when 

random variables are added, their means tend toward a 

normal distribution even if the original variables themselves 

are not normally distributed [88]. Therefore, a computer 

simulation was run to estimate the average number on the 

pre-post differences of collected data in the repeated 

samples. Having done so, a histogram and quantile-quantile 

(Q-Q) plots for each measured category were investigated 

in detail to ensure that the data came from a normally 

distributed population. As the normality check is an 

iterative process, only the histogram and the Q-Q plots 

regarding the intrinsic motivation of participants are 

presented in this paper. 

As shown in Figure 2, the histogram generated from the 

data demonstrates a close resemblance to a normal 

distribution as the distribution is neither too flat nor too 

peaked. The population mean value is close to 0 (μ = 0.34, 

N=151) and the standard deviation is just over 1 (σ = 1.29, 

N=151). The Q-Q plots also support the data distribution on 

the histogram as the observations embrace the linear line of 

Q-Q plots with a slight positive slope. Overall, a linear 

distribution pattern was observed and therefore, it is 

possible to assume that the data came from a normally 

distributed population. This procedure was repeated for 

each research question, and in all cases, it was found that 

the distribution of data was close to normal distribution. 

In addition to the paired t-tests, a multiple linear 

regression (MLR) was used to investigate the potential 

effect of independent variables to a possible change that 

might happened in dependent variables in between the pre 

and the post study. The MLR analysis consisted of three 

main statistical stages which are an Analysis of Variance 

(ANOVA) test, a model summary and correlation 

coefficients. The first stage focused on the ANOVA test 

results regarding the overall impact of independent 

variables (also called predictors) on the dependent variable. 

To interpret the ANOVA test results correctly, a null and an 

alternative hypothesis was created. The null hypothesis 

(Ho1) indicates that there is no significant linear 

relationship between predictors and dependent variables. 

Correspondingly, the alternative hypothesis (Ha1) indicates 

that there is a strong and significant linear relationship 

between predictors and dependent variables. Accepting the 

null hypothesis means that the outcome of dependent 

variable has no significant correlation with the independent 

variables which provide evidence that regression threat 

does not have a major impact on the outcome of the study. 

The opposite of this is rejecting the null hypothesis which 

means that the outcome of dependent variable is somehow 

correlated with the independent variables and therefore, 

predictors impact on the outcome of the study. The second 

stage is a model summary that shows how strong the 

correlations are in between the predictors and the dependent 

variables. The final stage is the correlation coefficients 

which provide evidence on whether or not the correlation 

between each independent variable and the dependent 

variable is significant and strong. Each independent 
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variable is matched with the dependent variables 

individually to identify whether or not the predictors have a 

significant impact on observations. 

To summarize, the paired t-tests were used to investigate 

the data collected in the pre and in the post study and a 

MLR was used to examine any potential associations in 

between the independent variables and the dependent 

variables. 

 
VI.  RESULTS 
 

 The results of this study are investigated in two sections: 

Raw Data and Statistical Analysis. The raw data section 

reports the responses of participants in the study, whereas 

the statistical analysis investigates whether the collected 

data are statistically significant or not. 
 
A. RAW DATA 

 

 Having collected the demographic data, one of the first 

questions directed to participants in the study was whether 

or not they considered giving up their degree programmes 

and whether the difficulty of programming was a key 

reason for this or not. There were two aspects to this 

question: a) to define how many students have thought 

giving up their degree programmes since they started, and 

b) how many of these thought that the difficulty of learning 

computer programming was a key reason for this. 

 As shown in Figure 3, 24 (15.9%) participants strongly 

disagreed and 43 (28.5%) more disagreed on giving up their 

degree programmes when filling the pre-questionnaire. 

While 53 (35.1%) participants were neutral, 27 (17.9%) 

participants agreed and 4 (2.6%) more strongly agreed on 

giving up their degree programmes in the pre study. After 

playing the game, the number of participants that strongly 

disagreed stayed the same (i.e. 24). On the other hand, the 

number of disagrees increases from 43 (28.5%) to 48 

(31.8%) and consequently, the number of participants who 

were neutral increased from 53 (35.1%) to 59 (39.1%). 

Furthermore, those participants who agreed on giving up 

their degree programmes reduced from 27 (17.9%) to 16 

(10.6%). Finally, the number of strongly agrees stayed the 

same (i.e. 4). 

 
 

Figure 3. Distribution of participants who consider giving up 
their degree programmes. 

 

 In addition to investigating how likely participants were 

to give up their degree programme, the potential impact of 

the difficulty of computer programming to this was also 

investigated. As shown in the figure 4, both in the pre and 

in the post study, 24 (15.9%) participants never considered 

giving up their degree programme. While 13 (8.6%) 

participants strongly disagreed on giving up their degree 

programme because of the difficulty of computer 

programming, a total of 32 (21.2%) participants disagreed 

in the pre study which was then raised to 35 (23.2%) in the 

post study. Similarly, the number of neutral participants 

raised from 44 (29.1%) to 49 (32.5%); and the number of 

agreed participants reduced from 32 (21.2%) to 24 (15.9%) 

after playing the game. Lastly, the number of strongly 

disagrees did not change in between the pre and the post 

study. 

 
 

Figure 4. Distribution of participants who consider giving up 
their degree programmes because of the difficulty of computer 

programming. 

 

 This data presented some evidence that participants’ 
attitude to studying their degree programme was affected in 

a positive way. To investigate this further, participants’ 
perception on the difficulty of programming was explored 

both before and after they played the game.  

 

 
 

Figure 5. Distribution of participants’ perception on the 
difficulty of computer programming. 

 

 As shown in Figure 5, majority of participants changed 

their perspective on the difficulty of learning computer 
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programming after playing the game. Although 4 (%2.6) 

participants indicated that they do not know the answer in 

the pre study, none of the participants chose this option in 

the post study. More importantly, 15 (9.9%) participants 

found learning computer programming very difficult in the 

pre study whereas this was reduced to 3 (2%) in the post 

study. Similarly, 36 (23.8%) participants selected the 

difficult choice in the pre study, but this was reduced to 8 

(5.3%) in the post study. While the neutral option raised 

from 77 (51%) to 78 (51.7%), those who found learning 

computer programming easy raised from 17 (11.3%) to 49 

(32.5%) and those who found very easy increased from 2 

(1.3%) to 13  (8.6%). These results put forward some 

evidence that participants’ confidence in learning computer 

programming increased in between the pre and the post 

study as many of them changed their opinion positively and 

none of them marked the I don’t know choice in the post 

study. 

 When participants were asked whether they have intrinsic 

motivation to learning programming or not, majority of 

them provided more positive answers in the post study than 

in the pre study. As shown in Figure 6, those who did not 

know what to answer to this question reduced from 4 

(2.6%) to 2 (1.3%) in between the pre and the post study. 

While the participants who strongly disagreed were the 

same (2, 1.3%), the disagrees and neutral responses reduced 

from 7 (4.6%) to 3 (2%) and 45 (29.8%) to 32 (21.2%) 

respectively. The agree responses also reduced from 82 

(54.3%) to 79 (52.3%). On the other hand, the strongly 

agrees increased from 11 (7.3%) to 33 

(21.9%).

 
 

Figure 6. Distribution of participants’ intrinsic motivation to 
learn computer programming. 

 
 
 
 

 

Figure 7. Distribution of participants’ perception of their knowledge in programming constructs used in the game. 
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 Figure 7 displays participants’ ranking of their own 
knowledge in four programming constructs implemented in 

the game both before and after they played the game. As 

shown in the figure, participants’ confidence in their own 

knowledge increased in between the pre and the post study. 

 When participants were asked to rank how programming 

sequence works, 7 (4.6%) participants strongly disagreed 

and 25 (16.6%) more disagreed that they know how 

programming sequence works in the pre study. While 66 

(43.7%) participants were neutral, 48 (31.8%) of them 

agreed and 5 (3.3%) more strongly agreed that they know 

how programming sequence works. After their game-play, 

the number of strongly disagree and disagree responses 

reduced from 7 (4.6%) to 2 (1.3%) and 25 (16.6%) to 8 

(5.3%) respectively. Additionally, the neutral responses 

also dropped from 66 (43.7%) to 40 (26.5%). On the other 

hand, the strongly agree and agree responses increased from 

48 (31.8%) to 85 (56.3%) and 5 (3.3%) to 16 (10.6%) 

correspondingly. 

 A similar increase also happened when participants were 

asked to rank their knowledge regarding how methods 

work. While 11 (7.3%) participants strongly disagreed and 

20 (13.2%) more disagreed, 63 (41.7%) out of 151 were 

neutral before playing the game. Additionally, 53 (35.1%) 

participants agreed and 4 (2.6%) more strongly agreed that 

they know how methods work in the pre-study. Having 

played the game, the number of strongly disagrees and 

disagrees reduced from 11 (7.3%) to 2 (1.3%), and 20 

(13.2%) to 15 (9.9%). The neutral responses also dropped 

from 63 (41.7%) to 35 (23.2%). Contrarily, the number of 

agree and strongly agree responses increased from 53 

(35.1%) to 80 (53%) and from 4 (2.6%) to 19 (12.6%) 

correspondingly meaning that participants felt more 

confident in their knowledge regarding how methods work 

in the post-study. 

 Among the four assessed programming constructs, the 

lowest increase happened in decision making. In the pre 

study, 8 (5.3%) participants strongly disagreed and 18 

(11.9%) more disagreed that they know how decision 

making construct works. 40 (26.5%) participants neither 

agreed nor disagreed, 75 (49.7%) participants agreed and 

10 (6.6%) more strongly agreed with this statement in the 

pre-study. In the post study, the number of strongly 

disagrees reduced from 8 (5.3%) to 1 (0.7%), and the 

disagrees reduced from 18 (11.9%) to 11 (7.3%). The 

neutral and agreed responses slightly changed in the study 

as the neutral responses reduced from 40 (26.5%) to 38 

(25.2%) and the agree responses increased from 75 (49.7%) 

to 76 (50.3%). Lastly, an increase happened in strongly 

agree responses from 10 (6.6%) to 25 (16.6%). 

 Loops were the final programming construct asked to 

participants to rank their own knowledge, and as shown 

from Figure 7, 13 (8.6%) participants strongly disagreed 

and 45 (29.8%) more disagreed that they know how loops 

work. 51 (33.8%) of the total responses were neutral 

whereas 37 (24.5%) participants agreed and 5 (3.3%) more 

agreed that they know how loops work before playing the 

game. After the game-play, the strongly disagree responses 

reduced from 13 (8.6%) to 5 (3.3%) and the disagree 

responses decreased from 45 (29.8%) to 15 (9.9%). 

Additionally, the neutral answers reduced from 51 (33.8%) 

to 45 (29.8%). At the same time, the strongly agree and 

agree responses increased from 37 (24.5%) to 70 (46.4%), 

and 5 (3.3%) to 16 (10.6%) respectively. 

  

 
 

Figure 8. Correct answers given to questions asked in the 
knowledge check in the pre and in the post study 

 In addition to participants’ raking of their knowledge, 

each participant was asked a series of knowledge check 

questions both before and after they played the game. As 

shown from figure 8, the correct answers given to these 

knowledge check question increased in every category after 

participants played the game. In the pre study, the correct 

answers given to questions were 65 (43%) for 

programming sequence, 46 (30.5%) for methods, 74 (49%) 

for decision making and 42 (27.8%) for loops. In the post 

study, these were increased to 93 (61.6%) for programming 

sequence, 73 (48.3%) for methods, 90 (59.6%) for decision 

making and 64 (42.4%) for loops. The lowest increase in 

correct answers between the pre and the post study was 

happened in decision making. These results check out with 

the previous raw data obtained that is participants’ 
perception of their knowledge of programming constructs 

implemented in the game. Among the four programming 

constructs, participants’ perception of their knowledge in 

decision making was the least one that was improved. 

Similarly, the knowledge check results show that the lowest 

increase in the number of correct answers happened in the 

decision making question. 
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Figure 9. Distribution of participants’ perception of their CT 

skills 
  

 The final assessment was measuring participants’ 
perception of their CT skills in the pre and in the post study 

where participants themselves ranked their own CT skills 

both before and after they played the game.  

 As displayed in figure 9, 9 (6%) participants ranked their 

problem solving skill as very poor and 12 (7.9%) more 

ranked this as poor in the pre study. While 67 (44.4%) 

participants ranked this skill as medium, 59 (39.1%) more 

ranked as good and 4 (2.6%) more ranked it as very good.  

 In the post study, the number of very poor responses 

reduced from 9 (6%) to 2 (1.3%). While the poor responses 

increased from 12 (7.9%) to 19 (12.6%), the medium 

responses reduced from 67 (44.4%) to 44 (29.1%). Finally 

there was an escalation in good and very good responses as 

these increased from 59 (39.1%) to 72 (47.7%) and from 4 

(2.6%) to 14 (9.3%) respectively. 

 A similar increase happened in constructing algorithms. 

In the pre study, 12 (7.9%) participants ranked this skill as 

very poor and 28 (18.5%) more ranked it as poor. 59 

(39.1%) participants ranked their skill in constructing 

algorithm as medium, 49 (32.5%) more ranked as good, 

and 3 (2%) more participants ranked it as very good. In the 

post study, the number of very poor, poor and medium 

responses were all reduced. The very poor responses 

decreased from 12 (7.9%) to 4 (2.6%), the poor responses 

decreased from 28 (18.5%) to 10 (6.6%), and the medium 

responses decreased from 59 (39.1%) to 52 (34.4%). On the 

other hand, the good and the very good responses increased 

from 49 (32.5) to 76 (50.3%) and from 3 (2%) to 9 (6%) 

correspondingly. 

 When participants were asked to rank their debugging 

skill, none of them ranked this as very good both in the pre 

and in the post study. While 6 (4%) participants ranked this 

skill as very poor, 40 (26.5%) more ranked it as poor in the 

pre study. Moreover, 87 (57.6%) participants ranked their 

debugging skill as medium and 18 (11.9%) more ranked 

this as good in the pre study. In the post study, the very 

poor and poor responses reduced from 6 (4%) to 4 (2.6%), 

and from 40 (26.5%) to 11 (7.3%) respectively. At the same 

time, the medium responses increased from 87 (57.6%) to 

96 (63.6%) and the good responses also increased from 18 

(11.9%) to 40 (26.5%). 

 Compared to the other three CT skills (i.e. problem 

solving, constructing algorithms and debugging), the 

simulation skill did not change very positively in between 

the pre and the post study. While 6 (4%) participants ranked 

their simulation skill as very poor, 11 (7.3%) participants 

ranked this as poor and 38 (25.2%) more ranked this as 

medium in the pre study. Furthermore, 79 (52.3%) 

participants ranked their skill in simulation as good and 17 

(11.3%) more ranked this as very good in the pre study. In 

the post study, the very poor responses reduced from 6 

(4%) to 5 (3.3%), and the poor responses also reduced from 

11 (7.3%) to 10 (6.6%). As the medium and good ranks 

increased from 38 (25.2%) to 43 (28.5%) and 79 (52.3%) to 

80 (53%), the very good responses decreased from 17 

(11.3%) to 13 (8.6%) in the post study. 

 The results above suggest that participants’ perception on 

their problem solving, constructing algorithms and 

debugging improved, but their perception on the simulation 

skill did not improve after their game-play. As the raw data 

obtained from the study only provided a generic picture 

about the distribution of the responses, a statistical analysis 

was conducted to investigate whether a statistically 

significant change happened in between the pre and the post 

study.  
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B. STATISTICAL ANALYSIS 

 

 A series of paired-samples t-test was conducted to 

compare the responses collected from the participants in the 

pre and in the post study in order to answer each research 

question defined in this study. 
 

Table 3. Paired sample t-test results of participants’ attitude to 
giving up their degree programme, perception of difficulty of 

computer programming and intrinsic motivation to learn 
computer programming 

 

 

Pair 1: Pre giving up degree programme – Post giving up degree 

programme. 
 

Pair 2: Pre giving up degree programme because of the difficulty of comp. 

programming – Post giving up degree programme because of the difficulty 

of comp. programming. 
 

Pair 3: Pre difficulty of comp. programming – Post difficulty of comp. 

programming. 
 

Pair 4: Pre comp. programming intrinsic motivation – Post comp. 

programming intrinsic motivation. 

 

 Table 3 shows the paired t-tests conducted to compare the 

pre and the post study responses of participants’ a) attitude 

to give up their degree programme (i.e. pair 1); b) opinion 

on the difficulty of computer programming being a key 

reason to give up their degree programme (i.e. pair 2); c) 

perception on the difficulty of computer programming (i.e. 

pair 3) and d) perception on their intrinsic motivation to 

learn computer programming (i.e. pair 4).  In other words, 

the paired t-tests were conducted to answer research 

questions 1,2 and 3. As shown from the above table, there 

was a statistically significant difference in all measured 

pairs, namely the attitude to give up a degree programme 

(M=0.106; SD=0.403); the difficulty of computer 

programming being a key reason to give up a degree 

programme (M=0.073; SD=0.285); the difficulty of 

computer programming (M=-0.781; SD=1.083) and the 

intrinsic motivation to learn computer programming (M=-

0.338; SD=1.296) conditions; t(150) = 3.235, p = 0.001 for 

the attitude to give up a degree programme, t(150) = 3.139, 

p = 0.002 for the difficulty of computer programming being 

a key reason to give up a degree programme, t(150) = -

8.870; p = 0.0001 for the difficulty of computer 

programming and t(150)=-3.203; p=0.002 for the intrinsic 

motivation to learn computer programming. These results 

suggest that there was a statistically significant difference 

between the pre and the post study responses in all 

measured categories. Considering the number of positive 

responses was greater in the post study than in the pre 

study, it is possible to suggest that participants felt more 

confident about themselves after playing the game. The 

paired sample t-test results suggest that participants 

significantly felt less likely to give up their degree 

programme in the post study; they perceived computer 

programming significantly easier; and felt significantly 

more motivated to learn computer programming than in the 

pre study. As the results of the paired t-tests were all 

significant, the alternative hypotheses for research 

questions 1, 2 and 3 can be accepted which are a) students’ 
attitude to dropping their degree programmes is 

significantly changed between the pre and the post study; b) 

students’ motivation to learn programming is significantly 
changed between the pre and the post study and c) students’ 
perception of difficulty of computer programming is 

significantly changed between the pre and the post study. 

 
Table 4. Paired sample t-test results of participants’ perception 

of their knowledge in programming constructs used in the 
game 

 

 

Pair 1: Pre perception of programming sequence – Post perception of 

programming sequence. 
 

Pair 2: Pre perception of methods – Post perception of methods. 
 

Pair 3: Pre perception of decision making – Post perception of decision 

making. 
 

Pair 4: Pre perception of loops – Post perception of loops. 

 

 Table 4 shows the results of the paired sample t-tests of 

participants’ perception of their knowledge in four 

programming constructs used in the game. As shown in the 

table, there was a statistically significant change in 

programming sequence (M=-0.57, SD=1.092); methods 

(M=-0.53; SD=1.1); decision making (M=-0.338; 

SD=1.095); and loops (M=-0.669; SD=1.165) conditions; 

t(150)=-6.406, p=0.0001 for programming sequence, 

t(150)=-5.917, p=0.0001 for methods, t(150)=-3.791, 

p=0.0001 for decision making and t(150)=-7.058, p=0.0001 

for loops. These findings show that participants felt that 

their knowledge of programming constructs significantly 

changed in the post study when compared to the pre study. 

As the responses in the post study were more positive than 

the responses in the pre study, it is possible to suggest that 

participants’ perception of their knowledge increased 

during the study. 

 In addition to their perception of knowledge, participants’ 
tangible knowledge of programming constructs was also 

assessed in the study. As displayed in Table 5, the answers 

given to the knowledge check questions were found to be 

statistically significant for all programming constructs. 

According to the paired sample t-tests results, there was a 

statistically significant change in terms of knowledge in 

programming sequence (M=-0.185, SD=0.559); methods 

(M=-0.179; SD=0.623); decision making (M=-0.106; 

Pair Mean Std. 

Deviation 

Std. 

Error 

Mean 

t df Sig.  

Pair1 0.106 0.403 0.033 3.235 150 0.001 

Pair2 0.073 0.285 0.023 3.139 150 0.002 

Pair3 -0.781 1.083 0.088 -8.870 150 0.0001 

Pair4 -0.338 1.296 0.105 -3.203 150 0.002 

Pair Mean Std. 

Deviation 

Std. 

Error 

Mean 

t df Sig.  

Pair1 -0.57 1.092 0.089 -6.406 150 0.0001 

Pair2 -0.53 1.1 0.09 -5.917 150 0.0001 

Pair3 -0.338 1.095 0.089 -3.791 150 0.0001 

Pair4 -0.669 1.165 0.095 -7.058 150 0.0001 
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SD=0.623); and loops (M=-0.146; SD=0.57); t(150)=-

4.079, p=0.0001 for programming sequence; t(150)=-3.528, 

p=0.001 for methods; t(150)=-2.088, p=0.038 for decision 

making and t(150)=-3.139, p=0.002 for loops. 

 As participants’ perception of their knowledge on the 

programming constructs and their knowledge check results 

were found to be statistically significant, it is possible to 

suggest the alternative hypothesis for research question 4 

that is students’ understanding of programming constructs 

is significantly changed between the pre and the post study. 

Additionally, in all significant cases the post study mean 

was higher than the pre study mean which is an indication 

that participants’ perception of their knowledge and their 

tangible knowledge regarding how programming constructs 

work were enhanced in the study. 

 
Table 5. Paired sample t-test results of participants’ knowledge 

check of programming constructs used in the game 
 

 

Pair 1: Pre knowledge of programming sequence – Post knowledge of 

programming sequence. 
 

Pair 2: Pre knowledge of methods – Post knowledge of methods. 
 

Pair 3: Pre knowledge of decision making – Post knowledge of decision 

making. 
 

Pair 4: Pre knowledge of loops – Post knowledge of loops. 

 

 The very last paired t-test samples were conducted on 

participants’ perception of their CT skills. As shown in 

Table 6, there was a statistically significant difference in 

problem solving (M=-0.265, SD=1.063); constructing 

algorithms (M=-0.483; SD=0.958) and debugging (M=-

0.364; SD=0.583) conditions; t(150)=-3.063, p=0.003 for 

problem solving, t(150)=-6.2, p=0.0001 for constructing 

algorithms, and t(150)=-7.678, p=0.0001 for debugging. On 

the other hand, there was no statistically significant change 

in simulation (M=0.026, SD=0.887), t(150)=0.367, 

p=0.714. The mean scores show that participants ranked 

their simulation skills higher in the pre study than in the 

post study which suggests that they did not feel any positive 

change in terms of their simulation skill during the study. 

As the statistical outcome of the simulation skill (i.e. pair 4) 

was not statistically significant, the fifth research question 

can only be partially answered. As a result, participants felt 

a significant change in between the pre and the post study 

regarding their problem solving, constructing algorithms, 

and debugging abilities. However, the same statistically 

significant change was not observed in simulation.  

 

 

 

 

Table 6. Paired sample t-test results of participants’ perception 
of their CT skills 

 

 
Pair 1: Pre problem solving – Post problem solving. 
 

Pair 2: Pre constructing algorithms – Post constructing algorithms. 
 

Pair 3: Pre debugging – Post debugging. 
 

Pair 4: Pre simulation – Post simulation. 

 

 Finally, a series of multiple linear regression (MLR) 

analysis was conducted to investigate the effect of age, sex, 

ethnicity, and mathematical qualifications of participants on 

their perception and knowledge scores in the study. The 

core reason behind this was to measure the effect of these 

independent variables on the mean scores of dependent 

variables so that it can be detected whether the 

characteristics of the participants impacted the results. The 

difference between the pre and post study results were 

individually investigated for each research question. 

 
Table 7. Multiple Linear Regression Analysis on participants’ 

attitude to giving up their degree programme 
 

 

 

 As displayed in Table 7, when the effects of age, sex, 

ethnicity, and mathematical qualifications (referred to as 

predictors) were investigated in the study, it was found that 

none of the predictors had any significant effect on the 

attitude of the participants for giving up their degree 

programme, F(4,146)=0.631, p=0.641, R2=0.017. In other 

words, age (β=-0.04, p=0.634), sex (β=0.066, p=0.429), 

ethnicity (β=-0.106, p=0.204) and mathematical 

qualifications (β=-0.011, p=0.895) did not have any 

significant impact on the participants’ decision to give up 

on their degree programme.  

 

 

 

 

Pair Mean Std. 

Deviation 

Std. 

Error 

Mean 

t df Sig.  

Pair1 -0.185 0.559 0.045 -4.079 150 0.0001 

Pair2 -0.179 0.623 0.051 -3.528 150 0.001 

Pair3 -0.106 0.623 0.051 -2.088 150 0.038 

Pair4 -0.146 0.570 0.046 -3.139 150 0.002 

Pair Mean Std. 

Deviation 

Std. 

Error 

Mean 

t df Sig.  

Pair1 -0.265 1.063 0.086 -3.063 150 0.003 

Pair2 -0.483 0.958 0.078 -6.200 150 0.0001 

Pair3 -0.364 0.583 0.047 -7.678 150 0.0001 

Pair4 0.026 0.887 0.072 0.367 150 0.714 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 0.413 4 0.103 0.631 0.641 

Residual 23.892 146 0.164   

Total 24.305 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.175  -0.297 0.767 

Sex 0.091 0.066 0.794 0.429 

Age Range 0.070 -0.040 -0.477 0.634 

Ethnicity 0.024 -0.106 -1.275 0.204 

Mathematical 

Qualification 

0.025 -0.011 -0.132 0.895 
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Table 8. Multiple Linear Regression Analysis on participants’ 

intrinsic motivation to learn computer programming 
  

 

 

 Further to above, a MLR was run to investigate whether 

the predictors impacted the change in intrinsic motivation 

to learn computer programming. As shown in Table 8, the 

results revealed that sex (β=0.202, p=0.014) was an 

independent variable affecting the outcome. However, the 

ANOVA test results did not show a statistically significant 

outcome F(4,146)= 2.248, p=0.067, R2=0.058 and thus, the 

linear model did not work. In this case, it is accepted that 

the effect of sex to the participants’ intrinsic motivation to 

learn programming was negligible. 

  
Table 9. Multiple Linear Regression Analysis on participants’ 

perception on the difficulty of computer programming 
 

 

 

 Contrary to the previous findings, the predictors had a 

statistically significant impact on how difficult the 

participants found computer programming, F(4,146)=3.537, 

p=0.009, R2=0.088. Table 9 shows that age range (β=0.256, 

p=0.002), and sex (β=0.235, p=0.036) were the primary 

predictors that added statistically significantly to the 

prediction. When the impact of the age range and sex was 

individually investigated with a linear regression, it was 

found that sex did not have a significant impact (β=0.138, 

p=0.099), but the age range had a significant impact 

(β=0.236, p=0.03). In other words, the linear regression 

results show that the older the participants were the more 

difficult they found computer programming in this study. 

 
Table 10. Multiple Linear Regression Analysis on participants’ 

perception of their knowledge in programming constructs  
 

 

 
Table 11. Multiple Linear Regression Analysis on participants’ 

knowledge check of programming constructs used in the game  

 

 

 
 The MLR analysis conducted on the participants’ 
perception of knowledge and their tangible knowledge in 

programming constructs used in the game presented some 

interesting results. As displayed in Table 10, none of the 

predictors impacted to the participants’ perception of their 

knowledge, F(4,146)=1.24, p=0.296, R2=0.033. However, a 

MLR analysis conducted on the knowledge check answers 

revealed that sex (β=0.176, p=0.027) and ethnicity (β=-

0.269, p=0.001) were statistically significant predictors 

added to the outcome, F(4,146)=4.288, p=0.003, R2=0.105. 

When independent linear regressions were conducted, it 

was revealed that both sex (β=0.171, p=0.03) and ethnicity 

(β=-0.26, p=0.01) added statistically significantly to the 

prediction. The findings of the linear regression analysis 

suggest that male participants provided more correct 

answers to the knowledge check test in the study than 

female participants. Additionally, participants that had a 

white background provided more correct answers than any 

other ethnicity. As the majority of the participants in the 

study defined themselves as white (41.1%) and male 

(84.1%), these results were not unexpected. 

 A final MLR analysis was run on the mean scores of the 

CT skills of the participants and as displayed in Table 12, 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 14.605 4 3.651 2.248 0.067 

Residual 237.170 146 1.624   

Total 251.775 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.550  -0.193 0.847 

Sex 0.286 0.202 2.493 0.014 

Age Range 0.220 0.055 0.661 0.510 

Ethnicity 0.077 -0.116 -1.428 0.155 

Mathematical 

Qualification 

0.079 -0.084 -1.018 0.310 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 15.531 4 3.883 3.537 0.009 

Residual 160.257 146 1.098   

Total 175.788 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.452  -0.569 0.570 

Sex 0.235 0.169 2.119 0.036 

Age Range 0.180 0.256 3.154 0.002 

Ethnicity 0.065 -0.024 -0.293 0.770 

Mathematical 

Qualification 

0.063 -0.066 -0.826 0.410 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 3.961 4 0.990 1.240 0.296 

Residual 116.559 146 0.798   

Total 120.519 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.386  0.255 0.799 

Sex 0.200 0.174 2.128 0.035 

Age Range 0.154 0.040 0.483 0.630 

Ethnicity 0.054 -0.043 -0.528 0.599 

Mathematical 

Qualification 

0.055 -0.037 -0.438 0.662 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 1.983 4 0.496 4.288 0.003 

Residual 16.875 146 0.116   

Total 18.858 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.147  1.263 0.208 

Sex 0.076 0.176 2.235 0.027 

Age Range 0.059 0.047 0.586 0.559 

Ethnicity 0.020 -0.269 -3.400 0.001 

Mathematical 

Qualification 

0.021 -0.090 -1.124 0.263 
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the findings show that none of the predictors had 

statistically significant impact on the outcome regarding the 

CT skills, F(4,146)=0.888, p=0.473, R2=0.024. In other 

words, sex (β=0.059, p=0.475), age range (β=-0.032, 

p=0.707), ethnicity (β=0.107, p=0.196) and mathematical 

qualifications (β=-0.097, p=0.249) did not have any 

statistically significant impact on how the participants 

perceived their CT skills in this study. 

 
Table 12. Multiple Linear Regression Analysis on participants’ 
perception of their CT skills 

 

 

 

 To summarize the findings, the followings were 

statistically and significantly changed in between the pre 

and the post study: a) the participants were less likely to 

give up their degree programme; b) the participants’ 
intrinsic motivation to learn computer programming 

increased; c) the participants perceived computer 

programming to be less difficult than before and d) the 

participants’ perception of their knowledge and their 

tangible knowledge on computer programming constructs 

used in the game were improved. Additionally, it was found 

that the older participants found learning computer 

programming significantly more difficult than the younger 

ones. It was also found that the participants’ self-confidence 

was positively correlated to their knowledge check scores 

which is complementary to previous research done in this 

area [89]. Finally, sex and ethnicity of the participants 

seemingly impacted to their success in knowledge check 

questions as the results showed that white and male 

participants were more successful than the others. However, 

this might be true because majority of the participants who 

completed the study were male and white. 

 
VII.  DISCUSSION 

 

 The findings obtained from this study are complementary 

to the results of the previous work [34], [62], [76] that is a) 

game-play can be used to enhance students’ motivation for 

learning programming [41], [90] and b) game-play can 

inspire students’ confidence and learning experience of CT 

skills which then can support their learning of computer 

programming [64]. 

 Despite the statistically significant outcomes obtained 

from this study, there were several limitations in this 

research the lack of a control group being the major 

drawback. As explained before, the University Ethics 

Committee (UREC) insisted on conducting this study where 

all students received the same experience and none of them 

would be able to advance through a specific type of 

intervention. Due to this, it was simply not suitable to 

separate students into two equal random groups and 

conduct the study in proportionately divided environments. 

Additionally, when the study was scheduled to be 

conducted, the students were just registered to the computer 

programming course and their programming skill as well as 

their gaming background were not precisely known. 

Therefore, there was no control group in this study and 

because of this, the research became particularly vulnerable 

to internal threats. In other words, while the results of this 

research show that there is a statistically significant 

improvement in between the pre and the post study, it is not 

possible to tie these results directly to the game-play of 

participants because of the weaknesses of the quasi 

experimental structure.  

 Another challenge for this research was the dearth of a 

universally agreed conventional way of teaching CT skills 

to students as this is an experimental research area. 

Although many researchers proposed that teaching CT 

should be a part of the curriculum [91]–[93], this idea has 

not yet embraced ubiquitously, and thus this impacts on 

how research studies are designed because it is debatable 

which kind of intervention can or cannot be used in a 

control group. 

 As the lack of the control group was a known issue, 

further investigation on the responses was conducted by 

interviewing several participants and asking their opinion 

on whether or not a) the game was genuinely helpful to 

them; b) using Program Your Robot is a good idea to 

support their tutorials; c) they would like to see 

improvements in the game and if so, what type of 

improvements. Many participants provided constructive 

and positive feedback to these questions with an optimistic 

attitude. Majority of them indicated that the game provided 

a simplified structure of how the programming constructs 

work and if the game is improved, it could be a fun way of 

learning programming. Some quotes from these students 

are cited below to provide qualitative evidence that they 

found the game well suited to help them to understand how 

introductory programming constructs works: 

 

“I think this game is going in a good path. I would like it to 

have more levels that would develop my ideas of computer 

programming even better. You could also include on the 

side how the code would look like if it was run in Java (or 

any other language), this would give insight to the player of 

how that "program" would look like as the real thing. 

Another idea would be a save button so that users could 

track their progress in learning, maybe even have 

multiplayer option.” 

Model Sum of 

Squares  

df Mean 

Square 

F Sig. 

Regression 0.909 4 0.227 0.888 0.473 

Residual 37.334 146 0.256   

Total 38.243 150    

Constant Coefficient 

Std. Error  

Standardized 

Coefficient 

Beta 

t Sig. 

(Constant) 0.218  2.000 0.047 

Sex 0.113 0.059 0.716 0.475 

Age Range 0.087 -0.032 -0.377 0.707 

Ethnicity 0.030 -0.107 -1.300 0.196 

Mathematical 

Qualification 

0.031 -0.097 -1.157 0.249 
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“I think this game is useful for practicing computer 

algorithms and learning basic programming. I especially 

found loops useful and efficiently applied in the game.” 

 

“This game is good but needs improvement. When a 

specific function is executed, this should be highlighted in 

all modes. This is only done in debug mode but not in run 

mode. Also, at the end of each level there could be an 

example of a real programming code showing up.”  

 

“I think beating this game requires logical thinking. We 

should be given a coursework or exercises to play similar 

games. This can make learning programming more 

interesting and fun.” 

 

“I thought it was a simple and relatable way of teaching us 

how sequences and methods work. I want to use this game 

at home to practice.” 

 

 The above responses clearly show that the participants 

critically analyzed the game and found it useful.  

 Moreover, several precautions were taken to minimize 

the possible threats to internal validity before this study was 

conducted. Firstly, all participants were made aware that 

they always had the option to withdraw at any time if they 

felt tired and their decision of participating in this research 

or not would have no adverse effect on their studies. 

Secondly, the participants were randomly invited to this 

research and although this was not well-known before 

conducting the study, the population had diverse 

background and knowledge in computer programming and 

in playing games. Lastly, the participants completed the 

study at their own pace and were allowed to play the game 

as much as they wanted. 

 These precautions undermined the maturation threat to 

some extent which is a threat that happens when subjects 

become tired, bored or in any other state that they can no 

longer pay attention to the study. Another threat to consider 

was the mortality threat which impacts the outcome of a 

study when too many participants drop out as those who 

drop out usually provide negative feedback.  Hence, if too 

many participants drop out from a study, this often means 

losing a considerable number of negative responses. As 

discussed in the earlier sections, only 39 (20.5%) 

participants dropped out from this study which is not an 

exceedingly high number when considering this type of 

research. While vast majority of these participants left their 

questionnaires empty, it was observed that those who 

provided some responses did not respond with negative 

feedback. As a matter of fact, many participants indicated 

that they had fun participating in this study. Finally, the 

regression threat is deeply considered in this research 

which is a statistical phenomenon that occurs whenever a 

randomly selected population for a study is discovered to be 

a non-random sample with extreme scores. In other words, 

a regression threat endangers a study when subjects are 

selected because of extreme scores (either high or low) that 

might impact the outcome of a study. As an example, if 

participants were selected based on their extremely low 

knowledge in computer programming in this study, the 

improvements at the end of the study might be due to 

regression toward the mean rather than the game's 

effectiveness as in reality participants cannot know any 

lower than they already know in computer programming. 

This is to say when a sample is selected just because of low 

performance, any corrective measures applied will be very 

likely to get the scores up simply because of regression 

toward the mean and not because of any real improvement 

due to game intervention. However, this was not the case in 

this research because 19 out of 151 (12.5%) participants 

answered the pre study knowledge check questions all 

correctly, and 68 (45%) more answered at least half of the 

knowledge check questions correctly in the pre study. 

Moreover, 7 (4.6%) participants answered all knowledge 

check questions correctly both in the pre and in the post 

study. These results show that the participants came from a 

wide variety of background in computer programming and 

thus, the regression towards the mean argument is invalid. 

As presented in section VI, a series of multiple linear 

regression analysis investigated the potential effects of 

independent variables to the results, and it was found that in 

most cases, these independent variables did not have a 

statistically significant impact. 

 An important outcome of this research is that the 

mathematical qualifications of participants did not have a 

statistically significant prediction on any of the results. 

Contrary to some of the previous work conducted in this 

area [94]–[97], the participants’ mathematical qualifications 

was not a statistically significant predictor on their a) 

perspective on the difficulty of computer programming; b) 

intrinsic motivation in learning computer programming; c) 

perception of knowledge in programming constructs used in 

the game and d) knowledge check scores.  

 Despite the lack of a control group, participants’ 
quantitative responses, qualitative feedback, and the 

analysis on the internal validity provided strong reasons to 

consider that the game indeed affected their motivation and 

confidence positively in learning computer programming. 

Additionally, it was found that majority of the participants 

showed confidence in using their CT skills in the study 

particularly in problem solving, constructing algorithms, 

and debugging. 

 
VIII.  CONCLUSION AND FUTURE WORK 
 

 This paper discusses an adhoc game called Program Your 

Robot that was specifically designed to support CT skills of 

its player and thus, facilitate their learning of computer 

programming. A quasi pre-post experimental study was 

conducted to assess the potential effect of this game by 

collecting 151 responses from the participants who were all 

first-year computer programming students registered at 

University of Greenwich. The data generated from this 
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study was deeply analyzed and the statistically significant 

findings were highlighted. 

 Based on the outcomes of this study, two important 

contributions can be considered. The first one is the 

statistically significant evidence that video games can 

underpin the development of major CT skills and facilitate 

learning computer programming at the CT level. The 

second one is the game design contribution which is 

presented in the form of a serious game specifically focused 

to practice a) CT skills for puzzle solving and b) 

programming constructs as an integral part of the game-

play mechanism.  

 While the missing control group was a big drawback of 

this research, the findings from the quantitative data 

analysis and the feedback received from the participants 

provided strong reasons to believe that Program Your 

Robot significantly encouraged participants’ confidence and 

motivation both in using their major CT skills and in 

learning computer programming. Therefore, certain game 

mechanisms of the game such as those implemented to 

reinforce problem solving, constructing algorithms, and 

debugging seemingly helped the participants’ confidence 

and their learning process of computer programming. 

 As future work, this research needs further improvement 

in several areas.  

 Firstly, a new version of the game is being planned to be 

developed in Unity game engine with a new mobile friendly 

interface. The current version of the game is not mobile 

friendly and needs to be easily accessible. For this reason, it 

is planned to redesign the game as a mobile application 

with modern features such as with user profiles that save 

online data about players’ progress, an in game high score 

system and with challenging levels. This new version of the 

game will also provide an improved visualization for 

programming constructs. As an example, players will be 

able to use the decision making construct in a variety of 

ways depending on how they want to overcome challenges 

(e.g. bypass an enemy or incapacitate it). Some of the 

suggestions proposed by the participants of this study will 

also be applied into the game-play such as the new version 

of the game will support multiple players to interact with 

one another during their game-play. Therefore, the social 

aspect of CT, and how this can impact to other skills of the 

players can be investigated. 

 Secondly, the current version of the game was designed 

to operate at an operational level of abstraction to practice 

how programming constructs work and therefore, the game 

does not produce code in a specific programming language. 

It is important to indicate that the game’s operational 
stepwise refinement approach could be described in 

pseudo-code, which could then be utilized with a code 

generator to produce programming language-specific code. 

This was not within the current scope of this research but 

will be a future development in the game. 

 Thirdly, only the short-term effects of the game-play was 

investigated in this study. An enhanced study in the future 

will aim to investigate both short- and long-term effects of 

the game-play and how this would potentially reinforce 

players’ CT skills.  

 Finally, the most important future work includes 

obtaining a strong ethical approve for this ongoing research 

in the premise that this would open pathways to conduct a 

double-blind study with a control and an experimental 

group. To achieve this, a new ethical application would be 

undertaken to create a gold standard experimental design. 

Therefore, a strong experimental structure could be 

established to provide even more strong statistical evidence. 
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