
REVIEW ARTICLE
published: 19 May 2014

doi: 10.3389/fpls.2014.00207

Enhancing crop resilience to combined abiotic and biotic
stress through the dissection of physiological and
molecular crosstalk

Christos Kissoudis, Clemens van de Wiel, Richard G. F. Visser and Gerard van der Linden*

Laboratory of Plant Breeding, Wageningen University, Wageningen, Netherlands

Edited by:

Thomas Debener, Leibniz Universität

Hannover, Germany

Reviewed by:

Jan De Riek, Instituut voor Landbouw-

en Visserijonderzoek, Belgium

Anna Maria Mastrangelo, CRA-Centro

di Ricerca per la Cerealicoltura, Italy

*Correspondence:

Gerard van der Linden, Laboratory of

Plant Breeding, Wageningen

University, Droevendaalsesteeg 1,

6708 PB Wageningen, Netherlands

e-mail: gerard.vanderlinden@wur.nl

Plants growing in their natural habitats are often challenged simultaneously by multiple

stress factors, both abiotic and biotic. Research has so far been limited to responses to

individual stresses, and understanding of adaptation to combinatorial stress is limited, but

indicative of non-additive interactions. Omics data analysis and functional characterization

of individual genes has revealed a convergence of signaling pathways for abiotic and biotic

stress adaptation.Taking into account that most data originate from imposition of individual

stress factors, this review summarizes these findings in a physiological context, following

the pathogenesis timeline and highlighting potential differential interactions occurring

between abiotic and biotic stress signaling across the different cellular compartments

and at the whole plant level. Potential effects of abiotic stress on resistance components

such as extracellular receptor proteins, R-genes and systemic acquired resistance will

be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species,

and redox signaling. Breeding targets and strategies are proposed focusing on either

manipulation and deployment of individual common regulators such as transcription

factors or pyramiding of non- (negatively) interacting components such as R-genes with

abiotic stress resistance genes. We propose that dissection of broad spectrum stress

tolerance conferred by priming chemicals may provide an insight on stress cross regulation

and additional candidate genes for improving crop performance under combined stress.

Validation of the proposed strategies in lab and field experiments is a first step toward the

goal of achieving tolerance to combinatorial stress in crops.

Keywords: salinity, drought, disease resistance, R-genes, crosstalk, hormones, transcription factors, post-

translational modifications

INTRODUCTION

Plants are sessile and cannot escape stressful conditions originating

from the physical environment (abiotic stress) and from interac-

tions with insects and microorganisms such as fungi and bacteria

(biotic stress). The on-going change in climate conditions due to

mostly anthropogenic causes such as the increase in CO2 emissions

(Peters et al., 2011) exaggerates agricultural land deterioration due

to temperature rise. This results in increased evapotranspiration,

intensifying drought episodes (Zhao and Running, 2010) and

increasing soil salinization, augmenting the 7% of the total and

30% of the irrigated agricultural land already affected by salinity

(Munns and Tester, 2008). Available data and projections on the

effect of climate change on pathogen spread are not conclusive,

although the evidence points to increased reproductive potential

and geographic expansion that will lead to interactions with both

more hosts and different pathogen strains, increasing the chances

for the rise of more virulent strains (Garrett et al., 2006). There-

fore, the chances of plants encountering abiotic and/or biotic stress

in the future are likely to be higher, with more frequent stress

interactions.

Plants have developed a multitude of defense responses that

allow them to adapt, survive and reproduce under stress conditions

(Pieterse et al., 2009). With the advancement of ∼omics technolo-

gies and on-going functional characterizations of individual genes,

it has become apparent that environmental adaptation is under

tight regulation, which is critical for plant survival (López et al.,

2008). Many components of this regulatory network are involved

in responses to different stresses but may function antagonistically

or some responses are prioritized over others, compromising plant

resistance to multiple stresses simultaneously (Glazebrook, 2005;

Yasuda et al., 2008).

Major components of the regulatory networks underlying envi-

ronmental stress adaptation, pathogen recognition, and defense

include reactive oxygen species (ROS) signaling (Miller et al.,

2008), plant hormones (Bari and Jones, 2009; Peleg and Blumwald,

2011), changes in redox status (Munne-Bosch et al., 2013), and

inorganic ion fluxes, such as Ca2+ (Martí et al., 2013). Based

on ∼omics data analyses these components appear to be at least

partly shared between both abiotic and biotic stress signaling,

indicating crosstalk and convergence of mechanisms in these path-

ways and the existence of a general stress response (Walley et al.,

2007).

The nature of pathogen perception dictates that physical barri-

ers such as the cuticle, stomata, and cell walls are also critical for
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timely pathogen recognition and interception (Asselbergh et al.,

2007). As data generated by ∼omics analyses derive from a mix-

ture of different cell types and tissues, these spatially important

interactions may be missed and these datasets may lead to erro-

neous conclusions about components shared and their significance

in abiotic and biotic stress crosstalk. Moreover, as combinatorial

stress potentially results in novel interactions between signaling

components, extrapolation of results from studies with single

stress conditions should be done with care.

Here we will elaborate on the mechanisms involved in adap-

tation and tolerance to combinatorial abiotic and biotic stress,

with a focus on dehydration/salt stress and fungal and bacterial

pathogens interaction. This review will particularly emphasize

interactions that potentially arise during the pathogenesis timeline

and were as yet given little attention. We will discuss molec-

ular components with potentially critical roles in abiotic and

biotic stress tolerance crosstalk, and propose breeding approaches

toward effective crop improvement against combinatorial stress.

EVIDENCE OF CROSSTALK

EVIDENCE AT THE PHENOTYPIC AND PHYSIOLOGICAL LEVEL

Studies on the commonly occurring combination of drought

and heat stress have revealed that physiological and molecu-

lar responses of plants exposed to both stresses are markedly

different from their response to the individual stresses (Rizh-

sky et al., 2004). Similarly, there are numerous reports about

abiotic stress (mostly drought and salinity) affecting pathogen

resistance, which is indicative of interaction between abiotic and

biotic stress. There are reports of disease resistance attenua-

tion by high humidity and high temperature (Wang et al., 2005,

2009). In most cases, abiotic stress predisposes plants to subse-

quent pathogen infection (Sanogo, 2004; Triky-Dotan et al., 2005;

You et al., 2011), although positive effects on resistance to foliar

pathogens have also been reported (Wiese et al., 2004; Achuo et al.,

2006).

There is evidence that different levels of abiotic stress have a

significantly different impact on disease susceptibility (Soliman

and Kostandi, 1998; Desprez-Loustau et al., 2006). Salinity stress,

in particular, exerts its damaging effect through both osmotic

effects and ion toxicity resulting from ion accumulation (mainly

Na+ and Cl−). As NaCl is an antifungal agent (Blomberg and

Adler, 1993) it could potentially exert a direct toxic effect on

fungal growth after accumulation inside the plants (Figure 1).

In line with this argument are the many examples of reduction

of fungal pathogenicity by metal accumulation (Poschenrieder

et al., 2006; Fones et al., 2010), and a similar trend is observed

for NaCl accumulation (Soliman and Kostandi, 1998). There-

fore salt stress–pathogen interactions may be highly influenced

by stress intensity, which affects the degree of accumulation

of salt in the plant. The different tolerance strategies of the

host against ion toxicity (ion exclusion at the roots and/or ion

compartmentalization in the above ground organs inside the

vacuoles) can impact on the outcome of plant–pathogen inter-

actions under salt stress. Therefore, it appears that the outcome

of the interaction in most occasions is plant, genotype, pathogen,

and stress intensity dependent. Moreover abiotic stress, except

for potentially dampening or strengthening signaling responses

for pathogen defense deployment, could create more or less

favorable conditions for pathogen growth by additionally influ-

encing the physiological status of the plant such as water and ion

content.

Vice versa, plant responses to abiotic stress can be affected

by prior interactions with pathogenic fungi. Pathogen infec-

tion has been shown to reduce photosynthesis and water use

efficiency (WUE) and induce abnormal stomata opening pat-

terns, and all of these are critical for plant tolerance to abiotic

stress (Bilgin et al., 2010; Grimmer et al., 2012). Salicylic acid

(SA) signaling, induced after infection with biotrophic fungi,

can attenuate abscisic acid (ABA) signaling that is orchestrat-

ing plant adaptive responses to abiotic stress (Kim et al., 2011b).

Infection by a root pathogen was shown to increase shoot

Na+ and Cl− content under saline conditions in Phaseolus vul-

garis (You et al., 2011; Figure 1). Finally genetically heightened

resistance to pathogens is often accompanied by a fitness cost

that may generally affect the plant performance under both

abiotic stress and stress-free conditions (Huang et al., 2010;

Todesco et al., 2010).

A direct interaction of pathogen virulence factors with stress

tolerance components of the plant host was demonstrated for

the Pseudomonas syringae type III effector HopAM1 that targets

HSP70 (Jelenska et al., 2010) involved in heat tolerance and stom-

ata closure under stress (Clement et al., 2011). Overexpression of

HopAM1 in Arabidopsis thaliana results in increased sensitivity

to ABA and salt stress, providing proof of direct manipulation of

abiotic stress signaling components (Goel et al., 2008).

Interaction of plants with microorganisms can also be bene-

ficial to abiotic tress tolerance. For instance, infection of plants

with RNA viruses improved tolerance to drought (Xu et al.,

2008). Infection with the vascular pathogen Verticillium spp.

increased Arabidopsis thaliana drought tolerance due to de novo

xylem formation, which enhances water flow (Reusche et al.,

2012). Symbiosis with fungal endophytes (Marquez et al., 2007)

as well as association of plant roots with non-pathogenic rhi-

zobacteria and mycorrhizal fungi increases plant vigor under

stress conditions through, among others, interactions with hor-

monal pathways and the sustainment of water and source-sink

relations (Dodd and Perez-Alfocea, 2012). Remarkably, rhizobac-

teria colonization is also shown to enhance plant resistance to

fungal pathogens and insects, via systemic signaling that trig-

gers immunity (induced systemic resistance, ISR; Berendsen et al.,

2012).

Further evidence for abiotic and biotic stress resistance

crosstalk comes from studies of the effects of exogenous appli-

cation of chemicals that sensitize plant defense responses, a

phenomenon called priming (Goellner and Conrath, 2008). For

example, application in Arabidopsis thaliana of β-aminobutyric

acid (β-ABA), a non-protein amino acid, results in enhanced resis-

tance to a wide range of stresses including heat, drought, and

salinity stress, as well as enhanced resistance to biotrophic as well

as necrotrophic fungi (Ton et al., 2005). Exogenous application of

SA renders many crop plants more tolerant to an extensive array

of abiotic stresses (Horváth et al., 2007), and similar observations

have also been reported after treatment with jasmonates (Walia

et al., 2007).
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FIGURE 1 | A scheme for the interaction interface and overlapping

signaling pathways of abiotic and biotic stress at the cellular level.

Both stress factors affect the homeostasis of chemical signals at the

apoplastic space such as Ca2+, ROS, and pH levels. Abiotic stress

potentially affects the structure and properties of preformed and inducible

physical barriers that function against pathogen penetration. Signaling

nodes such as RBOHs and RLKs and other cell wall (CW) kinases localized

at the plasma membrane, and MAPKs are shared by both stressors, with

downstream signal specificity under stress combination remaining elusive.

ABA signaling, central for adaptation to abiotic stress, negatively impinges

on defense hormone signaling, while, pathogen dependent, positive

interactions are observed for JA signaling. ABA–SA interaction is two sided,

as activation of SA signaling by pathogen challenge attenuates ABA

responses. ABA positively contributes to pre-invasion defense, enhancing

callose deposition. Rewiring of secretory machinery under abiotic stress

potentially affects its function in the exocytosis of antimicrobial compounds

at the site of infection. Nuclear translocation of R-genes is negatively

affected under abiotic stress. Redox state, as well as metabolite

concentration such as sugars and amino acids (AA), function as drivers for

post-translational modifications, modulating the activity of target

proteins/transcription factors. Previously/simultaneously encountered stress

effect on chromatin and DNA methylation status, potentially impacts on

expression patterns of the recipient genes under stress combination.

Transcription factor activation and binding to stress responsive gene

promoters is a convergence point regulating the signal output under

combinatorial stress with diverse outcomes.

EVIDENCE FOR CROSSTALK FROM WHOLE GENOME EXPRESSION

ANALYSES

Evidence for regulatory crosstalk between abiotic and biotic stress

response at the molecular level comes mostly from observations

of expression patterns of genes under independent imposition of

the single stress conditions. In Arabidopsis thaliana, a significant

number of genes up-regulated by salinity stress are also induced in

response to biotic stresses (Ma et al., 2006). Whole genome expres-

sion meta-analysis experiments under different abiotic and biotic

stress treatments revealed a significant number of genes that are

commonly regulated under abiotic and biotic stress conditions

(Ma and Bohnert, 2007; Shaik and Ramakrishna, 2013, 2014).

Functional categories enriched in the 197 commonly regulated

genes identified by (Ma and Bohnert, 2007) include response to

ABA, SA, jasmonic acid (JA), and ethylene (ET), major stress

hormones controlling adaptation to abiotic and biotic stress. Sev-

eral members of signaling pathways involving mitogen-activated

protein kinase (MAPK), Ca2+, ROS, phospholipids, mitochon-

drial functions, vesicle trafficking, and apoptosis were induced

under biotic as well as abiotic stresses (Ma and Bohnert, 2007).

Transcription factors (TFs) appear to be major orchestrators of

stress crosstalk with members of WRKY, MYB, ERF, NAC, and

HSF displaying similar induction patterns across stress treat-

ments (Ma and Bohnert, 2007; Shaik and Ramakrishna, 2013).
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On the other hand, another study using co-expression data

to identify cis-regulatory elements (CREs) of stress responses

identified distinct CREs for the response to abiotic and biotic

stressors (Zou et al., 2011). In addition, a number of CREs iden-

tified for both types of stress appear to oppositely regulate the

expression of downstream genes in response to abiotic or biotic

stress.

A different approach, yeast two-hybrid assays targeting major

regulators of rice abiotic and biotic stress response, identified pro-

teins that are present in multiple interactomes (Seo et al., 2011;

Sharma et al., 2013). These include OsMPK5, the wall-associated

kinase 25 (WAK25), sucrose non-fermenting-1-related protein

kinase-1 (SnRK1), and WRKY family TFs.

Recently, examination of the transcriptional response of dif-

ferent Arabidopsis thaliana accessions to combinations of abiotic

and biotic stressors revealed that across the treatments on average

60% of expression changes under combinatorial stress could not

be predicted by the changes in response to the individual stresses

(Rasmussen et al., 2013). The functional categories enriched in

the affected genes were similar to those discovered after transcrip-

tome meta-analyses of individual stressors, i.e., stress hormone

responses, ROS, and MAPK signaling and regulation of hyper-

sensitivity response. The response of many of these transcripts

was canceled or prioritized under stress combination in compar-

ison with the individual stress pointing to potential antagonistic

interactions with detrimental effects on plant adaptation under

combinatorial stress. In a similar study, the increased susceptibility

to a virus after simultaneous application of drought and heat stress

was accompanied by down regulation of pathogenesis-related (PR)

genes and R-genes, which were otherwise induced under single

viral stress (Prasch and Sonnewald, 2013). This indicates a direct

negative effect of abiotic stress on major defense executors, that

adds up to the antagonistic regulation observed in other signaling

pathways. These studies clearly emphasize that even though reg-

ulatory pathways overlap between stresses, combinatorial stress

needs to be treated and studied as a unique condition. Further

functional characterization of individual gene members playing

key roles in these pathways is required to extract meaningful

conclusions.

ABIOTIC–BIOTIC STRESS INTERACTION INTERFACE

As mentioned above, abiotic and biotic stress interactions can

occur at multiple levels, depending on the type of the stress

(osmotic, ionic), the lifestyle, and infection strategy of the

pathogen (biotroph/necrotroph, infection by direct penetra-

tion/through stomata, etc.) as well as the pathogenesis stage. We

will summarize molecular components that according to evidence

mentioned above participate in stress crosstalk. We will follow

the pathogenesis timeline highlighting first extracellular interac-

tions taking place at the epidermis and the apoplast during the

initial stages of pathogenesis and moving on to the interactions

in the intracellular environment during pathogen colonization

(Figure 2). As information under combined stress is limited, and

a detailed coverage of all potential interactions is not possible,

our intention is to provide leads for future research that will aid

to further dissect plant adaptive responses and tolerance under

combined abiotic and biotic stress.

FIGURE 2 | A scheme for the effects of abiotic and biotic stress at the

plant level. A combination of abiotic stress with pathogen infection

potentially derails hormone and systemic ROS homeostasis. Pathogen

infection has been shown to impair stomata closure under non-stress

conditions, with the dynamics of this interaction under abiotic stress being

unknown. Senescence is a common component of both abiotic and biotic

stress that can potentially be amplified under combinatorial stress.

Systemic ROS signals generated after pathogen encounter may alter water

relation and salt uptake through their effects in root hydraulic conductance

and ion transport. Abiotic stress through ABA signaling negatively affects

signals that trigger systemic acquired resistance, enhancing pathogen

spread from the initial site of infection. Ion accumulation (Na+, Cl−) under

salt stress can have a direct toxic effect on pathogen growth.

EXTRACELLULAR INTERFACE

Cuticular layer

The cuticle and cell wall constitute the first layers of defense

against microbial attackers. They not only serve as physical

barriers against pathogen penetration, but also as sensitive sen-

sors for the timely activation of the intracellular and systemic

defense responses. Arabidopsis thaliana mutants in long-chain

acyl-CoA synthetase 2 (LACS2), a gene that is involved in cuti-

cle biosynthesis, exhibit increased permeability of the cuticular

layer which leads to increased resistance to Botrytis cinerea (Bessire

et al., 2007). Interestingly, ABA deficiency causes similar cuticu-

lar defects and heightened resistance to B. cinerea through faster

induction of defense responses and H2O2 production both in

Arabidopsis and tomato, indicating a link between abiotic stress
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signaling, cuticle structure and defense responses (Curvers et al.,

2010). In the study by Xiao et al. (2004), however, lacs2 Ara-

bidopsis mutants show no alteration in the resistance against

the necrotroph Alternaria brassicicola and biotrophs, and even

increased susceptibility against P. syringae. The latter observation

points to a positive contribution of a thicker cuticle to resistance

against P. syringae, indicating that the effects may be pathogen-

specific (Tang et al., 2007). The well-documented increase in

cuticular thickness under conditions of water deficiency (Kosma

et al., 2009) may thus result in alteration in the deployment of

the pathogen defense response. The cuticle does appear to be

a sensor of the osmotic status and to be essential for the up-

regulation of ABA biosynthesis genes under osmotic stress (Wang

et al., 2011) through a yet not clearly defined mechanism; cuti-

cle disruption by pathogens may therefore affect osmotic stress

acclimation.

Cell wall-apoplastic space

Cell walls similarly appear to be an integrated signaling component

for the defense against pathogens. Changes in pectin proper-

ties and composition in the Arabidopsis powdery mildew-resistant

(pmr) mutants pmr5 and pmr6 resulted in a SA, JA, and ET inde-

pendent increase in resistance to powdery mildew species (Vogel

et al., 2004). Cellulose deficiency caused either by non-functional

cellulose synthase genes or by chemical treatment enhances the

synthesis of the defense hormones SA, JA, and ET and signaling

and results in increased resistance to pathogens (Hématy et al.,

2009). Intriguingly, these responses were attenuated when plants

were grown under high osmotic pressure which reduced the tur-

gor pressure (Hamann et al., 2009), suggesting that the defense

response may be initiated by sensing the increased turgor pressure

as a result of cell wall weakening. Osmotic stress, which is a com-

mon component of many abiotic stresses, may therefore interfere

with the ability of plants to sense damage to the cell wall, due

to already reduced turgor, resulting in inadequate activation of

defense mechanisms.

The above-mentioned alterations in plant pathogen interac-

tions in cell wall component biosynthesis mutants may be the

consequence of the erroneous activation of integral receptor pro-

teins such as RLKs and RLPs (receptor-like kinases and receptor-

like proteins, respectively) which survey the cell wall integrity and

bind to MAMPs and DAMPs (microbial- and damage-associated

molecular patterns, respectively). Upon activation these trans-

membrane proteins (e.g., the RLK family WAK), send signals for

the elicitation of downstream defense responses. Changes of cell

wall structure and adherence to the plasma membrane upon expo-

sure to abiotic stresses may affect their functional integrity. This

is emphasized by the observation that NDR1, an essential compo-

nent of disease resistance mediated by CC-NB-LRR genes (McHale

et al., 2006), is functioning in cell wall-plasma membrane adhe-

sion. Down-regulation of NDR1 resulted in alterations in the cell

wall-plasma membrane interaction and compromised resistance

to virulent P. syringae (Knepper et al., 2011). Abiotic stress may

also affect the abundance of cell wall receptors by influencing

their transcript levels. THE1 is a member of the CrRLK1L RLK

family that is involved in cell wall damage sensing and subsequent

control of the downstream accumulation of ROS, and its expres-

sion is down-regulated under abiotic stress but up-regulated after

pathogen challenge (Lindner et al., 2012), while similar expres-

sion patterns are observed for the WAK gene family (Shaik and

Ramakrishna, 2013).

Pathogen recognition activates a battery of defense responses

that target the apoplastic space. These include local cell wall

enforcement, secretion of antifungal compounds at the site of

intended penetration and up-regulation of enzymes with fun-

gal cell wall degrading activities (Van Loon et al., 2006). These

events are characterized and regulated by signature changes in

pH, ROS homeostasis, and the redox state. Simultaneous expo-

sure to abiotic stress can potentially impinge on the generation

and decoding of these signatures, affecting subsequent responses.

For example, apoplastic pH is transiently decreased following

fungal infection (Felle et al., 2004), while an increase in pH is

observed under salt stress (Geilfus and Muhling, 2011). More-

over the downregulation of cell wall peroxidases under abiotic

stress (Shaik and Ramakrishna, 2014) can potentially dampen

the production of ROS signatures that trigger defense responses

(Daudi et al., 2012). Physical barriers enforcement after pathogen

encounter through crosslinking of lignin monomers by ROS,

which are produced by apoplastic peroxidases, NADPH oxidases

and germin-like proteins, prevent pathogen penetration. Lignin

content was found to be reduced under mild drought condi-

tions to facilitate the maintenance of growth under conditions of

decreased turgor pressure (Vincent et al., 2005), but severe stress

resulted in increased lignin content (Lee et al., 2007). These find-

ings may provide insight on the mechanisms leading to differential

responses under combined stress across different abiotic stress

intensities.

Vesicular trafficking and callose deposition

Another form of inducible defense response at the site of penetra-

tion is the formation of papillae that contain callose, antimicrobial

secondary metabolites such as phenolic compounds, and ROS.

Antimicrobial compounds are accumulating through vesicles orig-

inating from cellular compartments, such as the Golgi apparatus,

which become polarized toward the site of infection (Underwood

and Somerville, 2008). The significance of vesicle-mediated secre-

tion in plant immunity has been demonstrated by the discovery

of mutants defective in exocytosis of vesicles (with mutations in

SNARE complex proteins HvROR2 and AtPEN1), which display

diminished penetration resistance to powdery mildew pathogens

(Collins et al., 2003). Vesicular trafficking appears to be rewired in

an opposite way under salt stress, as vesicles containing Na+ are

fused with the central vacuole to maximize compartmentalization

of Na+ (Hamaji et al., 2009). Interestingly, knockout of different

SNARE proteins resulted in increased salt tolerance (Hamaji et al.,

2009), indicating possible antagonistic interactions of salt stress

and pathogen infection at the level of vesicle trafficking, although

further comprehensive experiments are required to substantiate

this hypothesis.

Callose is a β-1,3-glucan polymer that is deposited at the sites

of attempted fungal penetration in the form of papillae. It is an

important inducible defense mechanism, with enhanced depo-

sition being observed after exogenous application of priming
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chemicals like β-ABA. A mutant screen for plants defective in

β-ABA-induced priming identified among others mutants in the

ABA biosynthesis gene zeaxanthin epoxidase (ABA1; Ton et al.,

2005). These mutants failed to exhibit both β-ABA-induced cal-

lose deposition against H. parasitica and increased tolerance to

salt stress, thereby providing a link between the induction of abi-

otic and biotic stress responses by β-ABA. In accordance with

these observations the callose-mediated increased resistance of the

ocp3 Arabidopsis mutant to necrotrophic pathogens requires ABA

(Garcia-Andrade et al., 2011). Moreover ocp3 mutants accumulate

higher levels of ABA, and are more drought tolerant (Ramírez

et al., 2009). Therefore ocp3, a homeodomain TF, appears to

be a convergence point for ABA and callose regulation that

can be manipulated to enhance resistance under combinatorial

stress.

Callose accumulation appears to be a point of convergence of

abiotic and biotic signaling as variability in environmental con-

ditions, which affect the redox state of the plant, such as light

intensity, have a significant impact on the magnitude of callose

deposition after pathogen elicitation (Luna et al., 2011). As cal-

lose deposition is a major component of the pre-invasion defense

of plants (Ellinger et al., 2013), detailed characterization of the

regulation of callose accumulation under simultaneous abiotic

stress may be invaluable in building combined stress tolerance in

crops.

INTRACELLULAR SIGNALING INTERACTIONS

Interconnections between Ca2+ and ROS signaling

Changes in calcium fluxes and production of ROS are among the

earliest plant responses to abiotic stress and pathogen challenge.

The decoding of both signals relies on “signature” spatiotempo-

ral patterns and oscillations specific to the stress encountered

(Dodd et al., 2010; Mittler et al., 2011). Moreover, both compo-

nents are highly interconnected: Ca2+ signaling components such

as calmodulins (CaMs) and calcium-dependent protein kinases

(CDPKs) regulate ROS production by NADPH-oxidases (Taka-

hashi et al., 2011). ROS vice versa affect Ca2+ signaling through

regulation of Ca2+ permeable channels (Demidchik et al., 2007).

It is plausible that there are either unique signatures for com-

binations of stresses, or that there is interference between the

abovementioned signals that potentially dampens or strengthens

the downstream responses.

Whole genome expression analyses coupled with promoter

motif identification provided further evidence that Ca2+ orches-

trates the early responses to both biotic and abiotic stress as the

overrepresented motif “CGCGTT” identified in the promoters of

the commonly regulated genes, contains the core “CGCG” Ca2+

responsive cis-element (Walley et al., 2007). The investigation of

mutants defective in the induction of a hypersensitive response

after pathogen infection has led to the identification of genes

encoding for cyclic nucleotide gated channels (CNGCs) which

are non-selective cation transporters (Clough et al., 2000). mem-

bers of which are also involved in salt and heat stress tolerance

through regulation of Ca2+ fluxes (Guo et al., 2010; Finka et al.,

2012). Furthermore, Ca2+ downstream signaling components

have been shown to mediate responses to both abiotic and biotic

stress stimuli. The CAMTA3 TF is important for cold acclimation

of Arabidopsis by stimulating the expression of CBF1, CBF2, and

ZAT12 that are also involved in adaptation to dehydration and

oxidative stress (Doherty et al., 2009). Moreover, CAMTA3 nega-

tively regulates SA accumulation and plant defenses through CaM

binding (Du et al., 2009). Other proteins interacting with CaM

include TF families like NAM, WRKY, and MYB (Popescu et al.,

2007) many members of which are involved in abiotic and biotic

stress crosstalk.

CDPKs have a unique feature to both bind calcium and

functionally decode the message by target protein phosphoryla-

tion. They appear to represent a central node in the regulation

of abiotic and biotic stress responses (Schulz et al., 2013). For

example, Arabidopsis CPK4 and CPK11 positively regulate ABA

responses and their down-regulation renders plants salt-sensitive

(Zhu et al., 2007), and are important for the oxidative burst and

defense responses (Boudsocq et al., 2010). In addition, CDPKs

regulate ROS production through phosphorylation-mediated reg-

ulation of RBOH activity (Dubiella et al., 2013). StCDPK4- and

StCDPK5-mediated phosphorylation increases the activity of StR-

BOHs and the increased ROS production results in a stronger

hypersensitivity response after pathogen challenge, favoring resis-

tance against biotrophic pathogens but compromising resistance

against necrotrophic fungi (Kobayashi et al., 2012). Recently, the

CDPK OsCPK12 was shown to increase salt stress tolerance and

decrease blast disease resistance in rice through reduced ROS

production as a result of down-regulation of RBOH expression,

enhanced expression of antioxidant genes such as APX (ascor-

bate peroxidase), and increased sensitivity to ABA (Asano et al.,

2012).

Dissecting the spatiotemporal and molecular specificity of

Ca2+ and ROS signaling components is crucial for determining

their precise functions in stress responses (Baxter et al., 2014), as

is elegantly demonstrated by the identification of different Ca2+

binding affinities regulating the activation of two soybean CaMs

(Gifford et al., 2013).

Signal relay by MAPKs

Mitogen-activated protein kinases are centrally positioned in

Ca2+–ROS crosstalk and regulation as well as in the signal output

after stress exposure. MAPK signaling cascades are relayed through

MAPK kinase kinases (MAP3Ks) and MAPK kinases (MAP2Ks).

Hydrogen peroxide (H2O2) has been shown to mediate activation

of the three major and well-studied Arabidopsis MAPKs, MAPK3,

4, and 6, through MAP3Ks and other kinases (Rentel et al., 2004;

Teige et al., 2004). These MAPKs appear to have an overlapping

function in signal transduction upon abiotic stress and pathogen

challenge. Activation of Arabidopsis MAPK3 and MAPK6 as well

as their homologs in tobacco WIPK and SIPK (Segonzac et al.,

2011) after PAMP recognition is essential for fungal and bacte-

rial resistance (Asai et al., 2002). The importance of MAPK3 and

MAPK6 in plant immune responses is highlighted by the discovery

that the P. syringae effector HopAI1 directly interacts and inacti-

vates both, promoting virulence (Zhang et al., 2007). Additionally

MAPK6 is directly involved in regulating ET biosynthesis in Ara-

bidopsis by activation through phosphorylation of ACS2 and ACS6,

which results in an increase in ET biosynthesis (Liu and Zhang,

2004). MAPK4 acts as a negative regulator of defense responses and
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SA accumulation by phosphorylating MEKK2, a MAP3K protein

(Kong et al., 2012).

On the other hand, down-regulation of MAPK3 resulted in

altered stomata opening patterns in response to ABA and H2O2 in

Arabidopsis (Gudesblat et al., 2007). Moreover, the ABA-induced

expression of AtCAT1, which is involved in H2O2 homeostasis,

is controlled by an AtMKK1–AtMAPK6 signaling cascade (Xing

et al., 2008). Constitutive activation of AtMAPK4 and AtMAPK6

rendered plants more tolerant to cold and salt stress (Teige et al.,

2004) and CAT2 and tAPX, which are involved in H2O2 regula-

tion, appear to be regulated by AtMAPK4 (Pitzschke et al., 2009).

In rice, OsMAPK5 appears to be a convergence point of abiotic

and biotic stress responses, as its silencing results in sensitized

defense responses and resistance to fungal and bacterial pathogens

at the expense of salt and drought tolerance (Xiong and Yang,

2003).

These examples emphasize the complexity of MAPK-mediated

defense signaling with diverse and sometimes overlapping func-

tions of different members of the signaling pathway. Downstream

targets of MAPK6 overlapped 60% with MAPK3 targets, while

a 50% overlap was observed between MAPK3 and MAPK4 tar-

gets (Popescu et al., 2009). Probably, the one-dimensional overlap

can be resolved by multidimensional regulation, such as different

spatiotemporal transcription and protein subcellular localization,

activation thresholds, feedback loops with phosphatases and scaf-

folding (Tena et al., 2011; Samajova et al., 2013). Many of the

above-mentioned components appear to be an integral part of

broad stress tolerance priming by exogenous application of chem-

icals (Beckers et al., 2009; Xia et al., 2009), and the detailed study

of MAPK activation, localization, and substrate affinity under

these conditions can increase our understanding of plant responses

under stress combinations.

Hormone signaling

Plant hormones are central to the integration of environmen-

tal stimuli in the coordination of growth under optimal and

stress conditions, including the regulation of defense responses

after pathogen attack. Plant hormones do not act independently,

and extensive synergistic or antagonistic interaction between hor-

monal pathways is observed in development and stress responses

after exogenous application, or through mutant analysis (Wolters

and Jurgens, 2009). Transcriptomic studies have aided in unveil-

ing these interactions (Nemhauser et al., 2006), and it was recently

shown that hormonal pathways can be directly connected with

each other by protein–protein interactions between their signaling

components (Hou et al., 2010; Zhu et al., 2011).

Abscisic acid is the major hormone that positively contributes

to adaptation to osmotic stress, a major component of sev-

eral abiotic stresses. Its involvement in the regulation of defense

responses has been a topic of recent comprehensive reviews (Assel-

bergh et al., 2008; Ton et al., 2009). The consensus is that ABA

negatively regulates defense responses against both biotrophic

and necrotrophic pathogens through negative interactions with

SA and JA/ET biosynthesis and signaling; ABA biosynthesis

mutations show sensitization of these signaling pathways after

pathogen challenge (Achuo et al., 2006; De Torres Zabala et al.,

2009; Sanchez-Vallet et al., 2012). Comprehensive analyses of

ABA-deficient mutants revealed further pleiotropic alterations

that may be part of ABA-defense crosstalk such as reduced cuti-

cle thickness and sensitized H2O2 production in response to B.

cinerea in tomato (Asselbergh et al., 2007) and altered cell wall

composition in Arabidopsis (Sanchez-Vallet et al., 2012). More-

over ABA compromised a chemically induced systemic acquired

resistance (SAR) through suppression of SA biosynthesis in Ara-

bidopsis, while genetically enhanced ABA catabolism reversed this

effect (Yasuda et al., 2008).

Nevertheless, ABA signaling can positively contribute to pre-

invasive defense responses and to early defense signaling against

certain necrotrophic pathogens (Adie et al., 2007). ABA positively

contributes to resistance against pathogens that infect through

stomata, such as P. syringae (Melotto et al., 2006), as well as to

other pre-invasion defense mechanisms such as callose deposition

(Ton and Mauch-Mani, 2004; Adie et al., 2007; Garcia-Andrade

et al., 2011).

Identification of downstream regulatory nodes that channel

interactions between hormonal pathways is of great importance

in fine-tuning resistance to both abiotic and biotic stress. Besides

TFs, which will be discussed in a following section, other reg-

ulators of the transcriptional machinery have been uncovered

to function in stress crosstalk. RNA chaperones such as RNA

helicases are shown to regulate transcription in response to vari-

ous stressors (Li et al., 2008; Mazzucotelli et al., 2008). MED25,

a subunit of the mediator complex which is a component of

the transcriptional machinery, is involved in the antagonistic

crosstalk between ABA and JA (Chen et al., 2012). In a recent

report, the Arabidopsis pathogenesis-related protein 2 (PR2),

which encodes β-1,3-glucanase involved in callose degradation,

was shown to be down regulated in response to ABA, partly elu-

cidating ABA-mediated capacitation of callose deposition. The

ahg2-1 mutant in Arabidopsis accumulates both ABA and SA and

has increased expression of defense related genes, which is an

indication that ABA and SA do not always act antagonistically.

Transcriptome analysis of the ahg2-1 mutant revealed complex

interactions between ABA and SA signaling involving altered

mitochondrial and RNA metabolism (Nishimura et al., 2009),

highlighting multilevel connections between the two signaling

pathways that add to the complexity and hinder straightforward

conclusions.

Recent research has highlighted the direct involvement of the

growth hormones gibberellin, cytokinin, auxin, and brassinos-

teroid in responses to adverse growth conditions and pathogen

attack (Robert-Seilaniantz et al., 2011). For example, GA signaling

directly regulates JA signaling, mediated through direct binding

of the GA repressor protein DELLA to JAZ proteins and relieving

JA signaling repression (Hou et al., 2010). DELLA proteins appear

to be central nodes in abiotic and biotic stress cross-talk. ABA

and ET signaling promote DELLA stabilization which positively

affects ROS detoxification (beneficial for acclimation to abiotic

stress) through higher expression of ROS detoxification genes

(Achard et al., 2008). DELLAs also sensitize JA signaling (through

binding of DELLAs to JAZ) at the expense of SA signaling, enhanc-

ing resistance to necrotrophic pathogens (Navarro et al., 2008).

This may provide an explanation for the often-observed positive

correlation between resistance to abiotic stress and resistance to
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necrotrophs (Navarro et al., 2008; Abuqamar et al., 2009; Ramírez

et al., 2009).

Cytokinins were shown to positively regulate defense responses

to biotrophic pathogens (Argueso et al., 2012) via SA accumula-

tion, and increased defense gene expression through interaction

of the cytokinin response regulator ARR2 with TGA3, a TF cen-

tral for defense gene activation (Choi et al., 2010). This suggests

that the increased cytokinin catabolism observed under abiotic

stress-induced senescence may potentially contribute to further

down-regulation of SA responses and increased susceptibility to

biotrophic pathogens.

The roles of auxin and brassinosteroids in stress responses and

their potential participation in stress crosstalk remains elusive.

Auxin signaling shows antagonistic crosstalk with SA (Wang et al.,

2007), although auxin contributes to reduced senescence (Kim

et al., 2011a) which may be of great importance under exposure

to a stress combination. Brassinosteroid (BR) signaling positively

affects abiotic stress tolerance, as is evident by both BR exoge-

nous application (Divi et al., 2010) and genetic de-repression of

the BR signaling pathway (Koh et al., 2007). BR signaling prob-

ably interacts synergistically with ABA signaling and stimulates

ROS detoxification (Divi et al., 2010). BR’s involvement in defense

signaling is rather complicated. In tobacco and rice exogenous

application of BRs appeared to clearly enhance resistance to a

wide range of pathogens (Nakashita et al., 2003). Similar results

were obtained in cucumber, which showed heightened resis-

tance to Fusarium oxysporum as a result of activated production

of H2O2 by NADPH oxidase and expression of defense related

genes (Li et al., 2013). On the contrary BRs appear to be nega-

tively regulating resistance to the root-infecting oomycete Pythium

graminicola by antagonizing SA and GA related defense responses

(De Vleesschauwer et al., 2012). BR signaling shares LRR–RLK

and BAK1 proteins with PAMP immune signaling (Chinchilla

et al., 2009). Contradictory effects of BR signaling on immune

responses have been recently reported in Arabidopsis (Albrecht

et al., 2012; Belkhadir et al., 2012; Lin et al., 2013), which require

further study.

It is clear that hormonal crosstalk is extensive and occurs in

multiple combinations. Further understanding of plant responses

under combined stress exposure is required to dissect the mul-

tilevel responses under these conditions. As an example of

the underlying complexity, both drought stress and exogenous

ABA application result in an increased endogenous ABA con-

tent in tomato, but they differentially affect resistance to powdery

mildew and Botrytis, with drought enhancing and ABA appli-

cation compromising resistance (Achuo et al., 2006). Notably

the ABA-deficient tomato mutant sitiens exhibited increased

resistance similar to the effect of drought (Achuo et al., 2006).

The complexity of interactions under abiotic stress is further

emphasized by transcriptome analyses under abiotic stress in

which up-regulation of a significant number of JA/ET-responsive

genes and accumulation of their transcripts was observed (Walia

et al., 2007; Huang et al., 2008). Besides the effects of direct

hormonal interactions on abiotic and biotic stress tolerance mech-

anisms additional indirect interactions should be considered,

such as the alteration of developmental programs and the reg-

ulation of senescence which may be critical for evolutionary

species fitness and yield performance in crop plants (Wu et al.,

2012a).

Cellular redox state

The cellular redox state is the sum of reducing and oxidizing

redox-active molecules (Potters et al., 2010) and it acts both as

a sensor of environmental perturbations (as most of them impose

oxidative stress) and as a buffer against these perturbations to

maintain cellular homeostasis. It acts as a central integrator of

ROS, energy and metabolic regulation under stress as well as

optimal conditions. Its major constituents are ascorbate, glu-

tathione (GSH), NADP(H), small proteins acting as antioxidants

like thioredoxin and glutaredoxins as well as many diverse metabo-

lites such phenolics, amino acids, carotenoids, and tocopherols.

The cellular redox state is dependent on both their accumu-

lation and their reduction-oxidation state (Potters et al., 2010).

Genetic manipulation of redox homeostasis results in altered

hormone homeostasis and responses to pathogens and abiotic

stresses (Mhamdi et al., 2010), exemplifying its significance. As

abiotic and biotic stress commonly impinge on the redox status

(albeit not in a similar manner; Foyer and Noctor, 2005), redox

homeostasis is potentially a central orchestrator of the pheno-

typic response to stress combinations. Redox perturbations after

imposition of a stress factor may affect responses to subsequent

challenges by additional stressors, thereby shaping the response

to combined stresses. For example, a transient increase in GSH

content drives the antagonistic crosstalk between SA and JA sig-

naling (Koornneef et al., 2008) and GSH oxidation appears to

drive the induction of both SA and JA pathways (Mhamdi et al.,

2013).

Plant hormone signaling can directly perturb the redox status

by modifying the expression and activities of antioxidant enzymes.

ABA induces the expression of catalase, activating also at the

same time the production of the ROS hydrogen peroxide through

AtMAPK6 signaling (Xing et al., 2008). SA inhibits the function

of catalase and cytosolic ascorbate peroxidase (Corina Vlot et al.,

2009) and several glutathione transferases (Tian et al., 2012).

Programed cell death (PCD) is a plant response to developmen-

tal and environmental stimuli (e.g., in senescence) and pathogen

defense (in the form of HR) that is initiated and regulated by redox

changes, like an increased oxidation ratio of GSH and ascorbate

(De Pinto et al., 2012). APX appears to be central in the redox reg-

ulation leading to PCD. Decreased activity of APX isoforms was

observed in heat-induced PCD (Locato et al., 2009), and overex-

pression or down-regulation in Arabidopsis of a thAPX increased

or decreased, respectively, sensitivity to NO-induced cell death

(Tarantino et al., 2005). APX isoforms are also commonly up-

regulated under abiotic stress (Miller et al., 2008). Considering

the important role of APX in the drought–heat stress interaction

(Koussevitzky et al., 2008) it is of great interest to explore APX

enzyme regulation under combinatorial stress.

Redox status changes can directly impact protein func-

tion through post-translational modifications. One pronounced

example of post-translational modifications controlling protein

activity and localization is the interplay of S-nitrosylation and

thioredoxin-mediated reduction in the control of the oligomeric

and monomeric state of NPR1 (Tada et al., 2008), a master
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regulator of SA-mediated defense responses and recently pro-

posed as a SA receptor (Wu et al., 2012b). The function of

many more proteins appears to be regulated by S-nitrosylation,

among them AtRBOHD as mentioned above (Yun et al., 2011),

SA binding protein 3 (SABP3), methionine adenosyltransferase

1, the metabolic enzymes glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) and glycine decarboxylase (GDC), as well as

metacaspase 9 (Astier et al., 2011). Identification of the dynamics

of post-translational modifications on these and newly identi-

fied proteins under various stress combinations will shed light

on their significance for plant adaptation responses to these

conditions.

NO was recently found to exhibit biphasic control over cell

death triggered by pathogens and pro-oxidants in Arabidopsis.

In initial stages S-nitrosothiol (SNO) accumulation results in

enhanced and accelerated cell death (Yun et al., 2011). However,

constitutively high SNO levels decreased cell death through S-

nitrosylation-mediated reduction in AtRBOHD activity (Chen

et al., 2009; Yun et al., 2011). This differential regulation might

have implications in conditions of combined abiotic and biotic

stress as both result in increased NO levels. At a certain plateau con-

centration of NO, signaling components may be desensitized or

inversely regulated, as exemplified by AtRBOHD, with detrimental

effects on stress acclimation.

Redox changes and post-translational modification appear to

be integral in priming for stress tolerance after exogenous appli-

cation of chemicals (Tanou et al., 2009). This provides a potential

explanation of the mechanism of action of diverse chemicals in

plant defense sensitization. H2O2 and NO priming for salt tol-

erance in citrus moderately increased the abundance of oxidized

and S-nitrosylated proteins, which then remained relatively similar

after the application of stress. Non-treated plants were more stress

sensitive and exhibited increased protein carbonylation and oxi-

dation (Tanou et al., 2012). As both compounds provide increased

tolerance to both abiotic and biotic stress, further characterization

including the timing and magnitude of these post-translational

modifications under different stress treatments and under stress

combination may help to better understand the redox changes

leading to stress cross-tolerance.

Metabolite homeostasis and signaling

Metabolites are the end products of gene expression and protein

activities and therefore are the penultimate regulatory compo-

nent for the phenotypic expression under stress conditions. As

metabolites can have multiple functions such as being energy

carriers, structural molecules and redox regulators or exerting

direct antimicrobial activity against pathogens, uncovering their

regulation and homeostasis under combined stress is of great

significance.

Adaptation to both abiotic and biotic stress impinges sig-

nificantly on primary metabolism homeostasis. Synthesis of

antimicrobial metabolites and defense proteins is energy demand-

ing (Bolton, 2009), while abiotic stress potentially leads to

energy deprivation as photosynthesis is reduced under abiotic

stress (De Block et al., 2005). As a result, it is fair to assume

that under stress combinations these strong antagonistic effects

will result in disturbed energy balance. However, recent results

challenge the carbohydrate deprivation notion under mild dehy-

dration stress (Hummel et al., 2010) and further experimental

data under combined stress are required for firm conclusions.

More evidence that sugar homeostasis and signaling drives defense

responses are demonstrated by the down regulation of cell wall

invertases. This results in dampening of defense responses and

increased susceptibility to pathogens as a result of decreased

availability of carbohydrates to fuel the defense responses at

the site of infection (Essmann et al., 2008). Cell wall inver-

tases appear to be down regulated under abiotic stress (Wingler

and Roitsch, 2008) and as the regulation of their activity is

a convergence point of hormonal and sugar signals for stress

tolerance and senescence progression (Wingler and Roitsch,

2008), fine tuning of their expression might be a focal point

in enhancing combined stress tolerance. The metabolic status

of the host is also crucial for pathogen growth as it appears

that pathogens manipulate different aspects of plant metabolism

to achieve optimal conditions for their growth (Chen et al.,

2010a).

The significance of amino acid homeostasis for the induc-

tion and regulation of defense responses was recently highlighted

(Zeier, 2013). Amino acids may function as precursors in hor-

mone biosynthesis and affect the redox state through their

chemical properties or as precursors of redox regulators such

as GSH. Amino acid abundance can impact hormone signaling

through conjugation-mediated regulation of hormone activity

(Woldemariam et al., 2012). Amino acid concentration appears

to be significantly perturbed by abiotic stress as is revealed by

metabolomics studies (Obata and Fernie, 2012). On the other

hand a direct link between amino acid abundance and activa-

tion of SA-induced defense responses was recently demonstrated

with heat-shock factor HsfB1, the translation of which is initi-

ated under conditions of phenylalanine starvation (Pajerowska-

Mukhtar et al., 2012). Phenylalanine appears to be accumulated

under abiotic stress conditions (Urano et al., 2009; Widodo et al.,

2009) and its potential as a molecular switch between abiotic and

biotic stress responses should be explored.

Metabolic alterations under abiotic stress include the accumu-

lation of compounds such as the raffinose family oligosaccharides

raffinose and galactinol and the amino acid proline. These exhibit

osmoprotective and antioxidant functions and have been posi-

tively correlated with abiotic stress tolerance (Korn et al., 2010).

Galactinol overproduction was recently associated with increased

resistance to necrotrophic pathogens (Mi et al., 2008). Moreover,

proline metabolic regulation at the site of pathogen infection is

important for both HR deployment and containment, probably

through modulation of ROS levels as shown by expression and

functional studies of proline dehydrogenase (Senthil-Kumar and

Mysore, 2012). Myo-inositol metabolic regulation appears to be

a convergence point for abiotic and biotic stress responses. Myo-

inositol is accumulating under most abiotic stress conditions and

is positively contributing to tolerance as a compatible solute (Tan

et al., 2013). A negative relationship between myo-inositol accu-

mulation and pathogen resistance and PCD initiation was found

in Arabidopsis, with a positive correlation between myo-inositol

depletion and increased SA production and cell death (Chaouch

and Noctor, 2010).
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Analysis of mutants that exhibit qualitative and quantitative

alterations in the accumulation of fatty acid metabolites demon-

strated that fatty acids are not only structural components of the

cellular membranes, but they also exert a multitude of signaling

functions. Fatty acid release from the membranes after pathogen

encounter triggers the defense response (Savchenko et al., 2010).

Linolenic acid (18:3) is a precursor for the production of the

major cellular signaling components JA and oxylipins (Reinbothe

et al., 2009). A reduction of the levels of oleic acid (18:1) trig-

gers constitutive defense responses that are independent of SA

signaling (Kachroo et al., 2001), but dependent on NO production

(Mandal et al., 2012). Fatty acid homeostasis is disturbed under

abiotic stress, as membrane composition changes are vital for the

maintenance of membrane rigidity and functionality. Dehydra-

tion stress is shown to result in a reduction in 18:3 and increase

in 18:1 lipid levels (Upchurch, 2008), and increased 18:3 levels

by FAD3 or FAD8 overexpression enhanced drought tolerance in

tobacco (Zhang et al., 2005). Manipulation of fatty acid compo-

sition can provide further insight into their function under stress

combination.

Transcription factors

Regulatory modules like MAPKs-based pathways and core hor-

mone signaling modules control the expression of a vast number

of genes and therefore their manipulation in most cases have

severe pleiotropic effects. Identification of downstream regulators

involved in abiotic and biotic stress crosstalk such as TFs is impor-

tant for more targeted manipulation and adaptation of plants to

multiple stresses. The appropriate fine-tuning of their expression

is an important aspect toward translation of scientific knowledge

in crop plant improvement (Kasuga et al., 2004).

Bioinformatics and functional analyses have demonstrated that

TFs involved in stress crosstalk comprise a diverse collection of

members of the largest TF families in plants, such as NAC, MYB,

AP2/ERF, WRKY, and others, reflecting the complexity of the

genetic regulatory networks underlying stress crosstalk (Atkin-

son and Urwin, 2012; Shaik and Ramakrishna, 2014). Many

members of these families are involved in regulation of leaf

senescence, an integral component of both abiotic and biotic

stress (Breeze et al., 2011). Moreover, in most cases the TFs

identified are stress hormone-regulated, and therefore poten-

tially act as molecular switches for the fine-tuning of hormonal

responses.

Characterization of the mechanism of action of the candidate

TFs involved in stress crosstalk is of great importance. For exam-

ple, a TF with positive contribution to both abiotic and biotic stress

tolerance can be directly useful for breeding combined stress tol-

erance. Functional characterization of several TFs has revealed

various members that confer both abiotic and biotic stress toler-

ance. Overexpression of the rice OsNAC6 conferred tolerance to

salt and dehydration stress as well as resistance to blast disease

(Nakashima et al., 2007). Similarly in wheat, overexpression of the

R2R3MYB gene TaPIMP1 results in drought stress tolerance and

resistance to Bipolaris sorokiniana through increased expression of

abiotic stress (many of them ABA inducible) and defense-related

genes (Zhang et al., 2012). Members of the AP2/ERF TF family

have been shown to be positive regulators of both abiotic and

biotic stress (Jung et al., 2007; Zhang et al., 2009). DREB TFs are

also members of the AP2/ERF family and important contributors

to abiotic stress tolerance (Liu et al., 2013a) that may have addi-

tional signaling functions for biotic stress tolerance. AtDREB2A

was upregulated in plants overexpressing the CC-NB-LRR gene

ADR1 which conferred pathogen resistance and drought toler-

ance (Chini et al., 2004). Overexpression of OsDREB1B in tobacco

resulted in increased resistance to abiotic stress and also virus

infection (Gutha and Reddy, 2008).

Overexpression of AtHSFA1b provided stress hormone inde-

pendent, but H2O2 signaling dependent increased tolerance to

drought and resistance to bacterial and oomycete pathogens

(Bechtold et al., 2013). It appears that the HSF TF gene fam-

ily has broad biological functions in ROS signaling and defense

responses and SAR regulation (Miller et al., 2008; Pick et al., 2012),

which can be further exploited for building broad stress toler-

ance into crops. Whole genome expression meta analyses can

provide evidence of potential antagonistic regulation in different

stress responses for a given TF, by analyzing expression pat-

terns under different stress conditions (Shaik and Ramakrishna,

2014). Detailed characterization of spatiotemporal expression and

cis-element binding patterns is, however, required for the under-

standing of the underlying mode of regulation. This was recently

elegantly demonstrated in the characterization of OsWRKY13

which exhibits tissue specific expression and condition specific

binding to cis-elements of downstream genes and thereby inversely

regulated resistance to drought and bacterial infection of rice (Xiao

et al., 2013).

Functional conservation of TF functions across species can be

exploited to take advantage of the wealth of experimental data

generated in the model plant Arabidopsis thaliana. For example,

the Arabidopsis AtBOS1, an R2R3MYB TF, as well as its homolog in

tomato SlAIM1 appear to regulate tolerance to abiotic and biotic

stress in the same way, as mutant plants exhibit reduced tolerance

to salt stress as well as to Botrytis infection (Mengiste et al., 2003;

Abuqamar et al., 2009). Further similar efforts should be under-

taken to accelerate the translation of experimental observations

obtained in model plants species to crops.

The results obtained by the functional characterization of

TFs are encouraging as many of them appear to regulate cross-

resistance in a unidirectional manner, in contrast to the obser-

vations at the level of hormonal regulation that point to antag-

onistic relationships. Therefore, their manipulation offers many

opportunities to bypass the antagonistic effects on abiotic and

biotic stress tolerance observed in the more upstream regulatory

nodes.

Epigenetic modifications

Epigenetic modifications such as DNA cytosine methylation and

histone residues methylation and acetylation contribute to the

transcriptional control of amongst others adaptive responses to

environmental stimuli (Mirouze and Paszkowski, 2011). A signifi-

cant portion of these modifications appears to be persistent across

generations and significantly contributes to phenotypic variation

(Johannes et al., 2009). While cytosine methylation generally has

repressive effects on gene transcription, leading to gene silenc-

ing, histone modifications can lead to transcriptional activation

Frontiers in Plant Science | Crop Science and Horticulture May 2014 | Volume 5 | Article 207 | 10

http://www.frontiersin.org/Crop_Science_and_Horticulture/
http://www.frontiersin.org/Crop_Science_and_Horticulture/archive


Kissoudis et al. Breeding for combined stress tolerance

through local chromatin de-condensation which facilitates the

accessibility of TFs (Liu et al., 2010). Recently, epigenetic modifi-

cations and specifically chromatin-regulated gene activation have

been proposed to govern priming responses (Conrath, 2011).

Genome wide approaches studying DNA methylation under abi-

otic and biotic stress have demonstrated widespread methylation

alterations (Bilichak et al., 2012; Dowen et al., 2012). It would

be of particular interest to further examine the occurrence of

differential alterations and their impact under combinatorial

stress.

Functional studies of chromatin remodeling enzymes have

revealed a functional involvement of these enzymes in the regula-

tion of both abiotic and biotic stress responses. Histone deacetylase

19 (HDA19) mutants exhibit enhanced basal expression of many

SA-responsive genes (Kim et al., 2008) but decreased expression

of ABA and JA/ET-responsive genes, and the mutants are hyper-

sensitive to salt stress (Chen et al., 2010b). The histone lysine

methyltransferase ATX1 is likely to be involved in dehydration

stress signaling, as atx1 mutants were sensitive to drought and

ATX1 methyltransferase activity positively regulated the expres-

sion of the ABA biosynthesis enzyme NCED3 (Ding et al., 2011).

Interestingly, down-regulation of the TF WRKY70 during dehy-

dration stress coincided with decreased presence of ATX1 at the

WRKY70 gene locus (Ndamukong et al., 2010).

Chromatin structure can also be altered by the active deposition

of variants of the canonical histones. Deposition of one of the these

variants, H2A.Z, is linked to transcriptional activation in response

to environmental stimuli (Coleman-Derr and Zilberman, 2012),

and disruption of this mechanism leads to misregulated responses

to both pathogens and elevated temperature (March-Diaz et al.,

2008; Kumar and Wigge, 2010).

It would be highly interesting to investigate how a previously

imposed stress predisposes plants at the methylation and chro-

matin level for the encounter of a subsequent stress, (de)sensitizing

subsequent responses. This type of acclimation/predisposition

may even be a useful tool for preparing seeds and propagated

material for stressful environments.

R-gene resistance and systemic acquired resistance

The plant immune system consists of successive layers counter-

acting suppression of defense responses by pathogens through

secretion of effector proteins (Hemetsberger et al., 2012). Recog-

nition of the effectors by corresponding R-genes belonging to

NB-LRR protein family or the effect of effectors on intracellu-

lar host proteins (guarded proteins) results in effector-triggered

immunity (ETI). This is usually but not always manifested by

localized cell death, termed the hypersensitivity response (Coll

et al., 2011). The complexity in the regulation of ETI is outlined by

network analyses of individual and combined hormone mutants,

which revealed compensatory interactions in contrast to syner-

gistic interaction observed in PTI (PAMP-triggered immunity;

Tsuda et al., 2009), and which may explain the robustness of ETI

to genetic perturbations. This robustness may be ideal in build-

ing tolerance to combinatorial stress through pyramiding R-genes

with genes conferring abiotic stress tolerance.

However, it is becoming clear that there are multiple aspects

of regulation at the NB-LRR protein level that are indispensable

for the deployment of R-gene resistance (Heidrich et al., 2012).

These include spatial regulation of NB-LRR accumulation in cel-

lular compartments (e.g., the nucleus). Reduction of nuclear

NB-LRR accumulation was shown to be responsible for the heat

stress attenuation of disease resistance conferred by the pro-

teins SNC1 and RPS4 in Arabidopsis (Zhu et al., 2010; Mang

et al., 2012). Interestingly, mutants with reduced sensitivity to

heat-induced defense inhibition were found to be based on

changes in among others ABA biosynthesis enzymes, indicating

that abiotic stress factors may affect R-gene compartmentation

through ABA biosynthesis and signaling, although no further evi-

dence is available. In addition, chaperone-mediated transport

and folding of NB-LRR protein is important for their activity

(Hubert et al., 2009). The heat shock protein HSP90 is a com-

ponent of this chaperone machinery. HSP90 is also required

for the maintenance of folding of other proteins under stress

conditions (Wang et al., 2004), and could potentially become

limiting for proper R-gene signaling or stress protection under

combined stress conditions. The recent discovery that NB-LRR

protein accumulation is controlled by microRNAs (Zhai et al.,

2011) adds a novel layer of regulation that would be interesting

to investigate under different stress conditions (Kulcheski et al.,

2011).

Initial pathogen perception and interception through PTI or

ETI triggers systemic signals that prime plant defense responses to

effectively counter subsequent infection attempts and limit spread-

ing of the disease. This is referred to as SAR. Many compounds and

genes have been identified that function in mobile signal genera-

tion and transport. Conversion of MeSA produced at the infection

site to SA at the systemic tissues appears to be a prerequisite for SAR

manifestation (Park et al., 2007). Additional metabolites such as

pipecolic acid, dehydroabietinal, azelaic acid, and glyceraldehyde

3-phosphate probably function in the amplification of the signal,

with no clear conclusions yet on their precise placement in the

SAR circuit pathway (Dempsey and Klessig, 2012). SAR has been

shown to be affected by environmental conditions such as expo-

sure to light (Griebel and Zeier, 2008) and abiotic stresses such

as salinity, through ABA suppression of SA biosynthesis (Yasuda

et al., 2008). The further investigation of the patterns of accu-

mulation and transport of these metabolites under conditions of

combined abiotic and biotic stress may reveal potential connec-

tions between their regulation and plant phenotypic responses to

combined stress.

APPROACHES FOR GENE IDENTIFICATION AND BREEDING

FOR TOLERANCE TO STRESS COMBINATION

In accordance with individual abiotic and biotic stressors, each

abiotic stress/pathogen/host combination should be treated inde-

pendently as, despite the potential universal applicability of some

interactions that were characterized in Arabidopsis, many unique

interactions may be crucial for the phenotypic response. As a

result improving crops to these complex stress conditions first

requires an extensive phenotypic characterization at different

levels of cellular regulation, i.e., transcription, translation, post-

translation, and metabolites, as well as at different stages of

plant development. As evidence from research on individual abi-

otic and biotic stress responses points to a strong dependency
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on developmental (Skirycz et al., 2010) as well as environmen-

tal factors (Luna et al., 2011), the environmental conditions

and developmental stages of the plants should be appropri-

ately defined before any interpretation of the phenotypic and

molecular response can be done. Finally the different layers of

defense can be differentially affected by abiotic stress imposition

(Figure 2); therefore, the outcome of the interaction will vary

with the defense mechanisms employed and on the pathogens

involved.

Breeding for resistance to combinatorial stress is challeng-

ing. However, various novel approaches can aid in dissecting

interactions between various types of stressors and identify-

ing genetic components that can be breeding targets. The

combination of different ∼omics technologies has enabled the

molecular dissection of plant phenotypes (Baerenfaller et al.,

2012; Nagano et al., 2012). They provide information about

the biological function of the whole gene set of an organism,

and overlapping expression patterns might imply participation

in common pathways (Quackenbush, 2003), enabling more

efficient reverse genetic approaches. Utilization of‘∼omics in

combination with forward genetic approaches like association

mapping (Chan et al., 2011) may narrow down the candidate

genes responsible for the observed phenotypes and provide tar-

gets for functional characterization, further manipulation and

improvement of crops through breeding. As mentioned pre-

viously, currently there are limited studies on the ∼omics

characterization of combined abiotic and biotic stress toler-

ance, however, functional characterization of differentially reg-

ulated genes is starting to provide interesting candidates for

combined stress tolerance and their mode of action (Atkinson

et al., 2013).

Manipulations that induce resistance to abiotic and biotic stress

such as application of priming chemicals, followed by compre-

hensive phenotypic characterization can be used for candidate

gene identification and molecular processes underlying stress

cross-tolerance. Utilization of pre-existing chemical libraries for

compounds that can prime abiotic and/or biotic stress tolerance

and identification of their mode of action through chemical genet-

ics approaches can both provide biotechnological targets for crop

stress improvement and an opportunity to directly use the identi-

fied chemical in agricultural practice if no unintended side effects

are observed (Hicks and Raikhel, 2009; McCourt and Desveaux,

2010; Okamoto et al., 2013). Moreover as the effects of chemi-

cal priming are shown to, in part, be exerted through induction

of phosphorylation and other post-translational modifications

(Beckers et al., 2009), probing these modifications and genetically

manipulating the underlying codons to constitutively mimic them

(Riano-Pachon et al., 2010) can result in altered responses under

combinatorial stress.

Breeding for resistance to exposure to combined abiotic and

biotic stress by incorporation of genetic components regulating

the response to both stresses faces various challenges. For exam-

ple, TFs can have thousands of binding sites across the genome (Lu

et al., 2013), increasing the chance of unwanted pleiotropic effects

and therefore more sophisticated deployment should be employed.

Both expression regulation and binding specificity can be altered

through promoter and binding domain engineering (Desai et al.,

2009; Cox et al., 2013) which can be aided by comparative genomic

FIGURE 3 | Approaches for building combined abiotic and biotic stress

tolerance in plants. Two strategies are proposed through either the

manipulation of genetic components which potentially regulate resistance

to both stresses in a preferentially unidirectional manner, or the

pyramiding of genes that independently confer abiotic or biotic stress

resistance and do not (negatively) interact. The selection of individual

components might differ depending on the pathogen and the abiotic

stress scenario.
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approaches (Korkuc et al., 2014) and applied through novel site-

specific mutagenesis techniques (Liu et al., 2013b). As selective

and stimulus specific TF binding drives stress responses regula-

tion (Xiao et al., 2013), implementation of the above methods

will aid to fine-tune downstream targets toward the desired phe-

notypic response. A potential drawback of TF utilization is that

resistance typically achieved by this approach is partial, and poten-

tially prone to numerous antagonistic effects between stresses that

cannot be predicted and can hinder efficient deployment for crop

improvement to combined stresses.

Pyramiding genes that provide increased tolerance to either

stress and do not (negatively) interact with each other offers an

alternative route. Strong resistance mediated by R-genes, that

appear to be robust to perturbations, can be pyramided with

well-characterized genes conferring abiotic stress tolerance (Hu

and Xiong, 2013; Kissoudis et al., unpublished data). R-gene

robustness can be assessed by testing resistance responses under

different abiotic stressors prior to pyramiding. The drawback of

this approach is the quick breakdown of resistance due to evolving

pathogens, and the fact that necrotrophic fungi resistance can-

not be acquired with these genes. R-gene stacking aided by novel

biotechnological approaches can reduce the risk of breakdown of

R-gene-mediated resistance.

Pre-invasion defense mechanisms can be exploited, especially

the one that is conferred by preformed or inducible physical barri-

ers such as callose and antimicrobial compound deposition at the

site of attempted penetration. As discussed earlier, callose deposi-

tion appears to be positively regulated by ABA signaling, therefore

positive or no interaction should be expected under abiotic stress.

Genes such as the OCP3 TF can be utilized, and for instance pyra-

miding abiotic stress tolerance with resistance conferred by mlo

loss of function which sensitizes callose deposition at the site of

infection for resistance against powdery mildew (Buschges et al.,

1997) may be a viable route (Kissoudis et al. unpublished data).

However, pleiotropic effects reported in mlo mutants such as com-

promised resistance against necrotrophic pathogens (Kumar et al.,

2001) and accelerated senescence (Piffanelli et al., 2002) can have

adverse consequences under stress combination.

The mechanisms through which abiotic stress tolerance is

conferred can have a differential effect on disease resistance. As

mentioned earlier, drought tolerance through ABA upregulation

at the whole-plant level is expected to have antagonistic effects with

SA signaling and therefore compromises resistance to biotrophs.

Localized ABA sensitization in stomata (Bauer et al., 2013) can

overcome these drawbacks and offer an advantage for resistance

against pathogen that infect through stomata. Manipulation of

developmental traits such as root system architecture can be

beneficial for drought tolerance (Uga et al., 2013) with poten-

tially no adverse effects on disease resistance, as they employ

cell type specific signaling. Deployment of genes that have a

protective function on proteins and cellular components under

abiotic stress, such as dehydrins, LEA proteins or RNA chaperones

(Kang et al., 2013) that apparently are downstream compo-

nents of abiotic stress adaptation and mostly function through

their structural properties, can minimize interaction with biotic

stress signaling. Moreover, under salt stress, increased tolerance

through Na+ compartmentalization in the vacuoles may offer an

advantage in comparison with Na+ exclusion, as Na+ at high

concentrations can have adverse effects on pathogen feeding and

development.

Approaches that result in greater antioxidant capacity such

as the accumulation of flavonoids appear to confer resistance to

abiotic and oxidative stress (Nakabayashi et al., 2014) while over-

production of their derivatives, anthocyanins, increase resistance

to the necrotrophic pathogen B. cinerea in tomato by minimiz-

ing ROS burst (Zhang et al., 2013). Therefore engineering for

increased flavonoid accumulation can be promising in conferring

resistance to multiple stressors, however, it is unknown how it

can affect the deployment of hypersensitivity response due to dis-

turbed ROS homeostasis and thus resistance against biotrophic

pathogens.

Exploitation and deployment of different strategies (Figure 3)

under different abiotic stress/pathogen combinations will demon-

strate their feasibility and applicability, further leading toward the

goal of breeding for crops that maintain their robustness and yield

performance under diverse environmental conditions.
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