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Abstract

The Intentional Analytics Model (IAM) has been recently envisioned as a new paradigm to couple OLAP and analytics. It

relies on two basic ideas: (i) letting the user explore data by expressing her analysis intentions rather than the data she needs,

and (ii) returning enhanced cubes, i.e., multidimensional data annotated with knowledge insights in the form of interesting

model components (e.g., clusters). In this paper we contribute to give a proof-of-concept for the IAM vision by delivering

an end-to-end implementation of describe, one of the five intention operators introduced by IAM. Among the research

challenges left open in IAM, those we address are (i) automatically tuning the size of models (e.g., the number of clusters),

(ii) devising a measure to estimate the interestingness of model components, (iii) selecting the most effective chart or graph

for visualizing each enhanced cube depending on its features, and (iv) devising a visual metaphor to display enhanced cubes

and interact with them. We assess the validity of our approach in terms of user effort for formulating intentions, effectiveness,

efficiency, and scalability.

Keywords OLAP · Models · Multidimensional data · Data exploration

1 Introduction

Data warehousing and OLAP (On-Line Analytical Pro-

cessing) have been progressively gaining a leading role

in enabling business analyses over enterprise data since

the early 90’s. During these thirty years, the underlying

technologies have evolved from the early relational imple-

mentations (still widely adopted in corporate environments),

to the new architectures solicited by Business Intelligence

2.0 scenarios, and up to the challenges posed by the integra-

tion with big data settings. However, recently, it has become

more and more evident that the OLAP paradigm alone
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is no longer sufficient to keep the pace with the increas-

ing needs of new-generation decision makers. Indeed, the

enormous success of machine learning techniques has con-

sistently shifted the interest of corporate users towards more

sophisticated analytical applications (Popovic et al. 2018;

Schuff et al. 2018). In addition, recent research envisions

cross-cutting data management, analytics, and artificial

intelligence in various sectors, such as applied data science

(Chiusano et al. 2021), behavioral research (Motiwalla et al.

2019) and social impact (Gupta et al. 2018).

In this direction, the Intentional Analytics Model (IAM)

has been envisioned as a way to tightly couple OLAP and

analytics (Vassiliadis et al. 2019). As sketched in Fig. 1, the

IAM approach relies on two major cornerstones: (i) the user

explores the data space by expressing her analysis intentions

rather than by explicitly stating what data she needs, and

(ii) in return she receives both multidimensional data and

knowledge insights in the form of annotations of interesting

subsets of data.

As to (i), five intention operators are proposed, namely,

describe (describes one or more cube measures, possibly

focused on one or more level members), assess (judges one

or more cube measures with reference to some baseline),

explain (reveals some hidden information in the data the

user is observing, for instance in the form of a correlation

between two measures), predict (shows data not in the
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Fig. 1 The IAM approach: the user expresses an intention and receives

in return an enhanced cube

original cubes, derived for instance with regression), and

suggest (shows data similar to those the current user, or

similar users, have been interested in). As to (ii), first-

class citizens of the IAM are enhanced cubes, defined as

multidimensional cubes coupled with highlights, i.e., sets

of cube cells associated with interesting components of

models automatically extracted from cubes. Each operator

is applied to an enhanced cube and returns a new enhanced

cube. To assess the interestingness of model components, a

measure based on their significance — expressed in terms

of how novel, peculiar, and surprising they are expected

to be to the user — is used. Noticeably, having different

models automatically computed and evaluated in terms of

their interestingness relieves the user from the time-wasting

effort of trying different possibilities.

Example 1 Let a SALES cube be given, and let the user’s

intention be

with SALES describe quantity

for month = ’1997-04’ by type

using outliers

Firstly, the subset of cells for April 1997 are selected

from the SALES cube, aggregated by product type, and

projected on measure quantity (in OLAP terms, a slice-and-

dice and a roll-up operator are applied). Then, the outliers

are found in these cells based on the values of quantity.

Finally, a measure of interestingness is computed for the

two components obtained (the outlier cells, and the non-

outlier ones), and the cells belonging to the component with

maximum interestingness (in this case, outlier cells) are

highlighted in the results shown to the user (see Fig. 2).

           type              quantity 

Bagels 48 

Beer 116 

Bologna 192 

Canned Fruit 138 

Deli Meats 211 

Fresh Chicken 64 

Fresh Fruit 798 

Frozen Chicken 237 

Hamburger 141 

Hot Dogs 154 

Muffins 205 

Slices Bread 266 

Wine 448 

Fig. 2 The enhanced cube resulting from the intention in Example 1;

the highlight is in red

The IAM vision aims at facilitating exploratory analysis

by redefining queries and answers, and by providing

the user with a declarative language that enables her to

specify her analytical intentions (Vassiliadis et al. 2019).

Such a paradigm shift necessarily includes a degree of

automation, and a balance is to be sought between the

implementation of the analytical intentions and the freedom

left to the user to specify it. This raises a number of

research challenges, e.g., (i) investigate if there are any

other intention operators that should be considered besides

the basic ones proposed, and how different operators can

be combined; (ii) find techniques for automatically tuning

the algorithms that create enhanced cubes by computing

models; (iii) devise a measure to estimate the interestingness

of model components; (iv) enrich the IAM framework with

an approach to select the most effective chart or graph for

visualizing each cube depending on its features such as

number of dimensions, size, etc.; and (v) devise a visual

metaphor for displaying enhanced cubes and interacting

with them.

In the direction of providing a proof-of-concept for the

IAM vision, the potentiality of the assess operator has been

recently investigated by proposing a syntax, a semantics,

and a basic optimization strategy (Francia et al. 2021). The

goal of this paper is to take one step forward in the same

direction by delivering an end-to-end implementation of

the describe operator. Specifically, we address challenge

(ii) by experimenting two techniques to automatically set

the number of model components, and challenge (iii) by

proposing and validating a new interestingness measure

for model components. Notably, this measure is consistent

with the multi-facets interestingness scheme introduced by

Marcel et al. (2019). The present work gives a precise

and motivated definition for both the facets used and

the way they are aggregated to form a global score.

We also address challenges (iv) and (v), by proposing a

visualization that couples text-based representations and
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selected graphical representations with a component-driven

interaction paradigm. In this way, the user will save the

time required to try different visualizations; besides, by

automatically selecting the most suitable charts based on the

features of each cube, we discourage the user from adopting

inappropriate visualizations which might lead her to wrong

interpretations of data.

This paper significantly extends our previous work

(Chédin et al. 2020) in different ways:

– Cube schemata are defined in more general terms,

allowing branches in hierarchies rather than only

allowing linear hierarchies.

– A new definition of interestingness is given based on

three different facets of model components: surprise,

novelty, and peculiarity.

– The computation of interestingness is generalized to

cover situations where an intention changes both the

group-by set and the selection predicate of the previous

intention, and when there is no roll-up/drill-down

relationship between the two group-by sets.

– The syntax of the describe operator has been extended.

– The visualization of enhanced cubes uses two more

chart types to give users a more comprehensive and

flexible description of data.

– The approach is evaluated through a comprehensive set

of tests not only in terms of efficiency, but also of

scalability, effectiveness, and formulation complexity.

The paper outline is as follows. After introducing a

formalism to manipulate cubes and queries in Section 2, in

Section 3 we introduce models, components, and enhanced

cubes, and in Section 4 we define an interestingness

measure. Then, in Section 5 we show how an intention is

transformed into an execution plan, in Section 6 we discuss

how to automatically set the model size, i.e., its number

of components, and in Section 7 we explain how enhanced

cubes are visualized. Section 8 shows the results of the

experimental tests we performed to evaluate the approach.

Finally, in Section 9 we discuss the related literature, while

in Section 10 we draw the conclusion.

2 Formalities

In this section we introduce the formal notations we will

use in the paper to manipulate cubes. We start by defining

cube schemata; note that the definitions we give support to

hierarchies with branches and diamonds.

Definition 1 (Hierarchy and Cube Schema) A hierarchy is

a triple h = (Lh, �h, ≥h) where:

(i) (Lh, �h) is a roll-up lattice1 of categorical levels;

(ii) each level l ∈ Lh is coupled with a domain Dom(l)

including a set of members; and

(iii) (L,≥h), where L =
⋃

l∈Lh
Dom(l), is a part-of

partial order.

The top level of �h is called dimension. The bottom level,

denoted ALLh, has a single member ALLh. The part-of

partial order is such that, for each couple of levels l and l′

such that l �h l′ and for each member u ∈ Dom(l), there

is exactly one member u′ ∈ Dom(l′) such that u ≥h u′. A

cube schema is a couple C = (H, M) where:

(i) H is a set of hierarchies;

(ii) M is a set of numerical measures, with each measure

m ∈ M coupled with one aggregation operator

op(m) ∈ {sum,avg, . . .}.

Example 2 For our working example it is SALES = (H, M)

where

H = {hDate, hCustomer, hProduct, hStore}

M = {quantity, storeSales, storeCost}

op(quantity) = op(storeSales) = op(storeCost) = sum

The roll-up lattices of the hierarchies in H are shown

in Fig. 3 together with an excerpt of the part-of par-

tial order of the customer hierarchy. Intuitively, having

customer �Customer gender means that customers can be

grouped based on their gender, and having Mary ≥Customer

Female means that Mary belongs to the group of females.

Aggregation is the basic mechanism to query cubes, and

it is captured by the following definition of group-by set.

Definition 2 (Group-by Set and Coordinate) Given cube

schema C = (H, M), a group-by set G of C is a set of levels,

at least one from each hierarchy of H , such that for each

couple of levels l, l′ ∈ G, l, l′ ∈ Lh, we have l ��h l′ and

l′ ��h l. The lattice induced on the set of all group-by sets of

C by the roll-up lattices of the hierarchies in H , is denoted

with �H and called multidimensional lattice. A coordinate

of a group-by set G is a tuple of members, one for each level

of G. The partial order induced on the set of all coordinates

of C by the part-of partial orders of the members in H , is

denoted with ≥.

Intuitively, given two group-by sets G and G′, if G �H

G′ (G roll-ups to G′) then the coordinates of G can be

grouped by G′; given two specific coordinates of G and G′,

1A lattice is a partially ordered set in which every two elements have

a unique least upper bound and a unique greatest lower bound.
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Fig. 3 Roll-up lattices (left) and

an excerpt of the part-of partial

order (right) for the SALES cube

in Example 2

date 

month 

year 

allDates

store 

city 

country 

allStores

customer 

gender   ageRange

allCustomers

product 

type 

category 

allProducts

John Mary Lea 

Male Female 

AllCustomers

40-50 30-40 

namely, γ and γ ′, if γ ≥ γ ′ (γ is part of γ ′) then γ belongs

to the group defined by γ ′.

To support the definition of interestingness in Section 4,

we need to introduce a further notation to establish a

mapping between coordinates of different group-by sets.

Given two members u and u′ of levels l and l′ both

belonging to the same hierarchy h, we will write u ⋚ u′

when either (i) l = l′ and u = u′, or (ii) l �h l′ and u ≥h u′,

or (iii) l′ �h l and u′ ≥h u. Intuitively, this means that there

is a directed path in the part-of partial order connecting the

two members, so one of them is an ancestor of the other.

Given two coordinates γ and γ ′ of two group-by sets G and

G′, we will write γ ⋚ γ ′ when ∀u ∈ γ, ∃u′ ∈ γ ′ : u ⋚ u′.

Note that γ ⋚ γ ′ ⇔ γ ′ ⋚ γ .

Example 3 Three group-by sets of SALES are

G1 = {date, allCustomers, type, country}

G2 = {month, allCustomers, category, allStores}

G3 = {year, gender, ageRange,category, country}

where G1 �H G2 while G3 is incomparable with both G1

and G2 (i.e., the coordinates of G3 cannot be grouped by

G1 and G2, and vice versa). G1 aggregates sales by date,

product type, and store country, G2 by month and category,

G3 by year, gender, age range, category, and country. A

small excerpt of the multidimensional lattice is shown in

Fig. 4. Example of coordinates of the three group-by sets

are, respectively,

γ1 = 〈1997-04-15, AllCustomers, Fresh Fruit, Italy〉

γ2 = 〈1997-04, AllCustomers, Fruit, AllStores〉

γ3 = 〈1997, Female, [30-39],Fruit, France〉

where γ1 ≥ γ2 (meaning that γ1 is part of γ2), while γ3 is

incomparable in the part-of partial order with both γ1 and

γ2 (meaning that none of them is part of the other). We also

have γ1 ⋚ γ2 (because, for all levels, members are either

the same — as for allCustomers — or one is an ancestor of

the other — as 1997-04 for 1997-04-15), γ1 �⋚ γ3 (because

Italy is incomparable with France, i.e. no one is an ancestor

of the other), and γ2 ⋚ γ3.

The instances of a cube schema are called cubes and are

defined as follows:

Definition 3 (Cube) A cube over C is a tuple C =

(GC, MC, ωC) where:

(i) GC is a group-by set of C;

(ii) MC ⊆ M;

Fig. 4 An excerpt of the

multidimensional lattice for the

SALES cube

{date,product,store,customer} 

{month,product,store,customer} 

{date,type,store,customer} 

{date,product,city,customer} 

{date,product,store,gender,ageRange} 

{date,product,store,gender} 

{date,product,store,ageRange} 

{date,product,store,allCustomers} 

{date,category,store,customer} 

{date,allProducts,store,customer} 

{allDates,allProducts,allStores,allCustomers} 

......... 
......... 

......... 
......... 

......... 

......... 

......... 

......... 

......... 

{month,type,store,customer} 

{date,type,city,customer} 

{date,type,store,gender,ageRange} 

{year,allProducts,allStores,allCustomers} 

{allDates,category,allStores,allCustomers} 

{allDates,allProducts,country,allCustomers} 

{allDates,allProducts,allStores,gender} 

{allDates,allProducts,allStores,ageRange} 

......... 

......... 

......... 

......... 

......... 
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(iii) ωC is a partial function that maps some coordinates of

GC to a numerical value for each measure m ∈ MC .

The function is partial since cubes are normally sparse:

not all possible business events actually occur, and a

coordinate participates in the function only if the event it

describes took place. Each coordinate γ that participates in

ω0, with its associated tuple t of measure values, is called a

cell of C and denoted 〈γ, t〉. With a slight abuse of notation,

we will also consider a cube as the set of the coordinates

corresponding to its cells, so we will write γ ∈ C to state

that 〈γ, t〉 is a cell of C.

A cube whose group-by set GC includes all and only the

dimensions of the hierarchies in H and such that MC = M ,

is called a base cube, the others are called derived cubes. In

OLAP terms, a derived cube is the result of either a roll-up,

a slice-and-dice, or a projection made over a base cube; this

is formalized as follows.

Definition 4 (Cube Query) A query over cube schema C is

a triple q = (Gq , Pq , Mq) where:

(i) Gq is a group-by set of H ;

(ii) Pq is a (possibly empty) set of selection predicates,

each expressed over one level of H using either a

comparison operators (=, ≥, etc.) or the set inclusion

operator (e.g., country in Italy, France);

(iii) Mq ⊆ M .

Let C0 be a base cube over C. The result of applying q to

C0 is a derived cube C = q(C0) such that (i) GC = Gq , (ii)

MC = Mq , and (iii) ωC assigns to each coordinate γ ∈ C

satisfying the conjunction of the predicates in Pq and to each

measure m ∈ MC the value computed by applying op(m)

to the values of m for all the coordinates γ ′ of C0 such that

γ ′ ≥ γ .

Example 4 The cube query over SALES used in

Example 1 is q = (Gq , Pq , Mq) where Gq =

{allDates, allCustomers, type, allStores}, Pq = {month =

’1997-04’}, and Mq = {quantity}. A cell of the result-

ing cube q(SALES0) (where SALES0 is the base cube) is

〈AllDates, AllCustomers, Canned Fruit, AllStores〉 with

associated value 138 for quantity.

3 Enhancing Cubes with Models

Models are concise, information-rich knowledge artifacts

(Terrovitis et al. 2007) that represent relationships hiding

in the cube cells. The possible models range from simple

functions and measure correlations to more elaborate

techniques such as decision trees, clusterings, etc. A model

is bound to (i.e., is computed over the levels/measures of)

one cube, and is made of a set of components (e.g., a

clustering model is made of a set of clusters). In the IAM, a

relevant role is taken by data-to-model mappings. Indeed, a

model partitions the cube on which it is computed into two

or more subsets of cells, one for each component (e.g., the

subsets of cells belonging to each cluster).

Definition 5 (Model and Component) A model is a tuple

M = (t, alg, C, In, Out, µ) where:

(i) t is the model type;

(ii) alg is the algorithm used to compute Out ;

(iii) C is the cube to which M is bound;

(iv) In is the tuple of levels/measures of C and parameter

values supplied to alg to compute M;

(v) Out is the set of components that make up M;

(vi) µ is a function mapping each coordinate of C to one

component of Out .

Each model component is a tuple of a component identifier

plus a variable number of properties that describe that

component.

In the scope of this work, it is t ∈ {top-k, bottom-k,

skyline, outliers, clustering}. The components for these

model types are as follows:

1. For t = top-k, there are two components: one for top-k

cells, one for the others (similarly for bottom-k). Each

component is described by the average z-score of its

cells.

2. For t = skyline, there are two components: one

for the cells in the skyline, one for the others. Each

component is described by the average z-score of its

cells. To compute the skyline, we resort to the algorithm

proposed by Chomicki et al. (2003).

3. For t = outliers, there are two components: one for

outlier cells, one for the others. Each component is

described by its outlierness.2 To compute outliers, we

adopt the isolation forest algorithm (Liu et al. 2008).

4. For t = clustering, there is one component for each

cluster. Each component is described by the centroid

of the corresponding cluster. To compute clustering we

resort to the well-known k-means algorithm.

The model types listed above are suggested in the original

proposition of the IAM as those that best meet the goal of

describing a cube (Vassiliadis et al. 2019). Other effective

model types are not taken into account here because they

were considered to better meet the goals of other intentional

2The outlierness (i.e., the anomaly score) of an observation in an

isolation tree is the depth of the leaf containing this observation, i.e.

the number of splittings required to isolate the observation.
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operators (e.g., correlation and regression are used to

explain, time-series decomposition and auto-regression to

predict). We also note that the properties mentioned for each

model type are not meant to be exhaustive.

Example 5 A possible model over the derived cube

q(SALES0) in Example 4 is characterized by

t = clustering, alg = K-Means, C = q(SALES0),

In = 〈quantity, n = 3, rndSeed = 0〉, Out = {c1, c2, c3},

µ(〈AllDates, AllCustomers, Bagels, AllStores〉) = c1;

µ(〈AllDates, AllCustomers, Beer, AllStores〉) = c1;

µ(〈AllDates, AllCustomers, Bologna, AllStores〉) = c2;

µ(〈AllDates, AllCustomers, Canned Fruit, AllStores〉) = c2;

µ(〈AllDates, AllCustomers, Deli Meats, AllStores〉) = c2;

µ(〈AllDates, AllCustomers, Fresh Chicken, AllStores〉) = c1;

µ(〈AllDates, AllCustomers, Fresh Fruit, AllStores〉) = c3;

µ(〈AllDates, AllCustomers, Frozen Chicken, AllStores〉) = c2;

µ(〈AllDates, AllCustomers, Hamburger, AllStores〉) = c2;

. . .

where n is the desired number of clusters and rndSeed is

the seed to be used by the k-means algorithm to randomly

generate the 3 seed clusters. Component c1 is characterized

by property centroid with value 76.

As the last step in the IAM approach, cube C is enhanced

by associating it with a set of models bound to C and with

a highlight, i.e., with the subset of cells corresponding to

the most interesting component of the model; these cells are

determined via function µ.

Definition 6 An enhanced cube E is a triple of a cube C, a

set of models {M1, . . . ,Mr} bound to C, and a highlight

chigh = argmax{c∈
⋃r

i=1 Outi }
(interest (c))

How to estimate the interestingness of component c,

interest (c), is the subject of next section.

4 Estimating the Interestingness
of Components

The basic idea of the IAM is that the user will work in

sessions, similarly to the OLAP paradigm. Thus, starting

from a base cube, the user will write a sequence of

intentions; each intention, as explained in Section 5, will

determine a cube query which will be applied to C0 to

obtain a derived cube. Now let C0 be a base cube over

schema C, C be the cube obtained by the current intention,

M = (t, alg, C, In, Out, µ) be a model bound to C, and

c ∈ Out be one of the components of M.

The measure proposed by Chédin et al. (2020) to

assess the interestingness of component c is based on the

idea of prior belief (Bie 2013): specifically, it defines

the interestingness of c as the difference of belief for

corresponding cells in the cube before and after the

application of the intention. In this work we develop a more

sophisticated model, based on three facets of interestingness

identified by Marcel et al. (2019), namely:3

– The novelty of c, which measures its interestingness

with respect to the history of the user with C0 .

Intuitively, a component has more novelty if it concerns

a larger number of previously-unseen cells.

– The peculiarity of c, which measures its interestingness

with respect to the cells in the cube C′ obtained by

the last intention the user has formulated with C0 .

Concretely, we compare the cells belonging to c to

some related cells in C′, and we measure to what extent

measure values deviate. A component is more peculiar

if such difference is higher.

– The surprise of c, which measures its interestingness

with respect to the user’s previous beliefs about C0.

Intuitively, user’s belief are related with what she

learned from previous cubes. Then, a component is

more surprising if it includes cells that have not been

seen frequently.

Therefore, for each component, we give three scores,

one for each interestingness facet. We then define the

global interestingness as a linear combination of the three

facets. Choosing the weights of each facet enables the user

to craft their own interestingness score. For instance, in

some typical exploratory OLAP scenario, frequently-seen

components may still be seen as interesting by the user, who

should then switch off novelty and surprise.

Definition 7 (Interestingness) Let c be a component of

model M. The interestingness of c is defined as

interest (c) = αnovnov(c) + αpecpec(c) + αsursur(c)

where nov(c), pec(c), and sur(c) denote, respectively, the

novelty, peculiarity, and surprise of c, and the α’s are

normalized weights.

4.1 Novelty

To define this score, we assume that the system keeps track

of the user’s history with C0 through the set V of all the

cubes that the user has computed during her current session

on C0.

3Note that Marcel et al. (2019) describe one more facet of

interestingness, namely, relevance. Relevance is not considered in this

work because it would largely overlap with peculiarity.
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Definition 8 (Novelty) Let c be a component of model M.

The novelty of c is defined as

nov(c) = avgγ∈µ−1(c)nov(γ )

where

nov(γ ) =

{

0, if ∃ Ci ∈ V, γ ∈ Ci

1, otherwise

Intuitively, a coordinate is novel if it has never appeared

in V and not novel otherwise. The novelty of a component

is the average novelty of its coordinates.

4.2 Peculiarity

Estimating peculiarity requires first of all to define the

concept of “corresponding cell(s)” of each coordinate γ of

C in the cube C ′ obtained by the last intention the user has

formulated with C0, which is done through a proxy function

as follows. Intuitively, if the intention changes the group-by

set, the corresponding coordinates(s) of γ are determined

via the part-of order; if the intention changes the selection

predicate, the corresponding coordinates of γ are γ itself

if it is part of C′, the empty set otherwise; if the intention

changes the measure, the corresponding coordinates of γ

are the empty set.

Definition 9 (Proxies) Let C be a cube over cube schema

C, and C′ be the cube occurring immediately before C in the

current session V . Let γ be a coordinate of C, and m be a

measure in C. The proxies of γ for m are defined as

proxyC,m(γ ) =

{

{γ ′ : γ ′ ∈ C′, γ ′ ⋚ γ }, if m is in C′

∅, otherwise

For the first intention in an analysis session, C′ is

undefined; since in this case the user has no prior belief, we

conventionally put proxyC,m(γ ) = ∅ for all γ ∈ C.

Note that, in OLAP terms, if C is a roll-up of C′, the inter-

cells mapping defined by the proxy function is many-to-one;

if C is a drill-down of C′, the mapping is one-to-many; in all

other cases (drill-anywhere), the mapping is many-to-many.

Example 6 Let

with SALES describe quantity

for month = ’1997-04’ by type

with SALES describe quantity

for month = ’1997-04’ by gender,category

using top-k size 1

with SALES describe quantity

for month = ’1997-04’ by category

using top-k size 1

be a sequence of three intentions q1, q2, q3 formulated

by the user. When no level is specified in the by clause

for hierarchy h, it is implicitly assumed by ALLh.

Thus, while the plan generated for the first intention

relies on query q1 = q defined in Example 4, the

ones for the second and third intentions rely on q2

and q3 with Gq1
= {allDates, gender, category, allStores}

and Gq2
= {allDates, allCustomers, category, allStores},

respectively (the selection predicates and measures do not

change). Let C1, C2, and C3 be the cubes resulting from q1,

q2, and q3, respectively. Some of the inter-cell relationships

induced by the proxy function are shown by green lines in

Fig. 5. Since C2 is a drill-anywhere of C1, the relationship is

many-to-many; conversely, since C3 is a roll-up of C2, the

relationship here is many-to-one.

We can now define peculiarity as follows.

Definition 10 (Peculiarity) Let c be a component of model

M. The peculiarity of c is defined as

pec(c) =
avgγ∈µ−1(c)pec(γ )

maxγ∈Cpec(γ )

where

pec(γ ) = maxm∈C(|zm(γ ) − avgγ ′∈proxyC,m(γ )zm(γ ′)|)

and function zm() returns the z-score of a cell for measure

m over the whole cube that the cell belongs to.

Fig. 5 Cubes C1 (left), C2

(top-right), and C3

(bottom-right) in Example 6; in

red the highlights for the top-1

model, in green some of the

proxy inter-cell relationships

Bagels 48 1.0 1.0 1.0 1.0 

Beer 116 0.6 1.0 0.6 1.0 

Bologna 192 0.2 1.0 0.2 1.0 

Canned Fruit 138 0.5 1.0 0.5 1.0 

Deli Meats 211 0.1 1.0 0.1 1.0 

Fresh Chicken 64 0.9 1.0 0.9 1.0 

Fresh Fruit 798 3.0 1.0 3.0 1.0 

Frozen Chicken 237 0.0 1.0 0.0 1.0 

Hamburger 141 0.5 1.0 0.5 1.0 

Hot Dogs 154 0.4 1.0 0.4 1.0 

Muffins 205 0.1 1.0 0.1 1.0 

Slices Bread 266 0.2 1.0 0.2 1.0 

Wine 448 1.1 1.0 1.1 1.0 

type          quantity  zm( )     nov( )  pec( )  sur( )

F Beer and Wine 266 1.0 1.0 1.3 1.0 

F Bread 278 0.9 1.0 0.6 1.0 

F Fruit 440 0.6 1.0 0.7 1.0 

F Meat 477 0.9 1.0 1.3 1.0 

M Beer and Wine 298 0.7 1.0 1.0 1.0 

M Bread 241 1.2 1.0 0.9 1.0 

M Fruit 496 1.1 1.0 0.2 1.0 

M Meat 522 1.3 1.0 1.7 1.0 

gender      category     quantity  zm( )    nov( )    pec( )   sur( )

Beer and Wine 564 0.9 1.0 0.018 0.5 

Bread 519 1.1 1.0 0.022 0.5 

Fruit 936 0.8 1.0 0.017 0.5 

Meat 999 1.1 1.0 0.023 0.5 

category       quantity   zm( )   nov( )     pec( )    sur( )
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Intuitively, the z-score captures to what extent the value

of a measure for a cell deviates from the measure values for

other cells in the cube, and peculiarity compares the z-scores

of a cell with those of its proxies. A cell is more peculiar if

such difference is higher. The peculiarity of a component is

the average peculiarity of its coordinates, normalized by the

highest peculiarity value.

Example 7 Consider again the intentions in Example 6.

Figure 5 shows the z-score, the novelty, and the peculiarity

of each cell of the three cubes. The novelty is 1 for all cells,

since in all cases the coordinates are seen for the first time

during the session. As to the peculiarity, in C1 its values

are simply the absolute values of the z-scores zm, as per

Definition 10 (C1 is the result of the first intention in the

session, so the set of proxies is empty for all coordinates).

4.3 Surprise

While novelty describes whether a cell was previously

unknown to the user (i.e., not present in V ), surprise

assesses whether it challenges the user’s previous beliefs

(i.e., what the user learned from V ).

Definition 11 (Surprise) Let c be a component of model

M. The surprise of c is defined as

sur(c) = avgγ∈µ−1(c)sur(γ )

where

sur(γ ) = 1 −
avgu∈γ (|{Ci ∈ V : u ∈ γi, γi ∈ Ci}|)

|V |

Intuitively, a coordinate is more surprising if its members

were not frequently seen in V . Hence, we count the number

of cubes each member appears in; the surprise of coordinate

γ is 0 when all of its members already appeared in all the

cubes of V , 1 when all of its members never appeared in V .

For the first intention in an analysis session, we set sur(c) =

1 for all components c. The surprise of a component is the

average surprise of its coordinates.

Note that novelty and surprise are defined in a such way

that a coordinate can be novel and still have a low surprise

(if all its members are frequent in V ) and, conversely, a

coordinate can be surprising while not being novel (for

instance if it was seen only once and all its members are

infrequent in V ).

Example 8 Consider again the intentions in Example 6.

Figure 5 shows the surprise of each cell of the three cubes.

Note that for C1 and C2 all cells have surprise 1, since all

the members of their coordinates were never seen before.

Conversely, the cells of C3 have surprise 0.5, since each of

their members was already seen once within a history of

two previous cubes (|V | = 2). Now, let M2 be the model

of type top-k, with k = 1, computed on C2; this model has

two components: c1
2, including only the top-1 cell (in red),

and c2
2, including all the others. The interestingness values

for these two components are interest (c1
2) = 1.00 and

interest (c2
2) = 0.83, respectively. So, the enhanced cube

E2 resulting from the second intention includes C2, M2,

and the highlight c1
2. Finally, let M3 be the top-1 model

computed on C2, with components c1
3 (the top-1 cell, in red)

and c2
3 (all the other cells). It is interest (c1

3) = 0.83 and

interest (c2
3) = 78, so the highlight here is c1

3.

Example 9 As an example of computation of interesting-

ness when an intention changes the selection predicate of

the previous one, consider the session

with SALES describe quantity

for type = ’Beer’ by product

with SALES describe quantity

for category = ’Beer and Wine’ by product

The resulting cubes are shown in Fig. 6. Here, the proxy

mapping for the cells included in both cubes is one-to-one;

conversely, the cells in C2 that were not present in C1 map

to all the cells of C1.

5 Execution Plans for describe Intentions

The describe operator provides an answer to the user asking

“show me my business” by describing one or more cube

measures, possibly focused on one or more level members,

at some given granularity (Vassiliadis et al. 2019). The cube

is enhanced by showing either the top/bottom-k cells, the

skyline, the outliers, or clusters of cells.

Let C0 be a base cube over cube schema C = (H, M).

The general syntax for describe is

with C0 describe m1, . . . , mz

[ for P ] [ by l1, . . . , ln ]

[ using t1 [ size k1 ], . . . , tr [ size kr ]]

(optional parts are in brackets) where m1, . . . , mz ∈ M are

measures of C, P is a set of selection predicates each over

one level of H , {l1, . . . , ln} denote a group-by set of H ,4

t1, . . . , tr are model types, and the ki’s are the desired sizes

to be applied to the models returned as explained in point 2

below.

The plan corresponding to a fully-specified intention, i.e.,

one where all optional clauses have been specified, is:

4As already mentioned, when no level is specified in the by clause for

hierarchy h, it is implicitly assumed by ALLh
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Fig. 6 Cubes C1 (left) and C2

(right) in Example 9; in red the

highlight for the top-1 model, in

green some of the proxy

inter-cell relationships

Good Imported Beer 154 1.0 0.2 1.0 

Good Light Beer 115 1.0 1.3 1.0 

Pearl Imported Beer 175 1.0 1.1 1.0 

product           quantity   nov( )    pec( )   sur( )

! Good Chablis Wine 163 1.0 0.2 1.0 

Good Chardonnay 192 1.0 1.4 1.0 

Chianti 146 1.0 0.5 1.0 

Good Imported Beer 154 0.0 0.4 0.0 

Good Light Beer 115 0.0 0.4 0.0 

Pearl Imported Beer 175 0.0 0.4 0.0 

   product        quantity  nov( )  pec( )  sur( )

1. Execute query q = (Gq , Pq , Mq), where Gq =

{l1, . . . , ln}, Pq = P , and Mq = {m1, . . . , mz}. Let

C = q(C0) be the cube resulting from the execution of

q over C0.

2. For 1 ≤ i ≤ r , compute model Mi =

(ti, algi, C, Ini, Outi, µi) and for each c ∈ Outi ,

compute interest (c). Size ki is used for clustering to

determine the number of clusters to be computed, for

top-k and bottom-k to determine the number of cells

to be returned, for outliers to determine the number of

outliers; it is neglected for the skyline.

3. Find the highlight chigh = argmax{c∈
⋃

i Outi }

(interest (c)).

4. Return the enhanced cube E consisting of C,

{M1, . . .Mr }, and highlight chigh.

Partially-specified intentions are interpreted as follows:

– If the for clause has not been specified, we consider

Pq = T RUE.

– If the by clause has not been specified, we consider

Gq = {ALL1, . . . , ALLn}.

– If the using t1, . . . , tr clause has not been specified, all

model types listed in Section 3 are computed over C

(the skyline is computed only if z > 1, i.e., at least two

measures have been specified).

– If the size clause has not been specified for one or more

models, the value of ki is determined automatically as

discussed in Section 6.

Example 10 Consider the following session on the SALES

cube:

with SALES describe quantity

for month = ’1997-04’ by type

with SALES describe quantity

by category

using clustering size 3

with SALES describe quantity, storeSales

for country = ’Italy’

using skyline

The models computed for the first intention are top-k,

bottom-k, clustering, and outliers (computing the skyline for

a single measure makes no sense). For the second and the

third intentions, a clustering producing 3 clusters and the

skyline are computed, respectively.

6 Setting theModel Size

Our approach to find the best value for the size parameter

k when it is not specified in the intention is based on

good practices in hierarchical clustering, especially when

single-linkage is used, meaning that inter-cluster distance

is measured by the closest two points of the clusters.

The best separation of clusters can then be found by

finding the knee of the evaluation graph of the clustering

algorithm, which is a two dimensional plot where the x-

axis is the number of clusters produced and the y-axis is

one classical clustering evaluation metric (error, silhouette,

etc.) considering x clusters. In hierarchical clustering, since

the cost for merging clusters constantly increases, the

evaluation graph often looks like an L-shaped curve with

a more or less defined knee. The assumption usually made

is that the best merging cost threshold is at the curve knee,

where the curve switches from a sharp slope to a low

decreasing line.

We tested two solutions from the literature, namely L-

method (Salvador and Chan 2004) and Kneedle (Satopaa

et al. 2011), which have been proposed to find the knee in a

curve of discrete data. These methods were compared using

3-dimensional non-random toy datasets specifically created

for the experiment with the Scikit-Learn Python package,

varying the size (6, 30, and 300 samples) and the shape of

clusters, defining a ground truth. We only report the main

findings.

While both methods achieve similar good results for knee

detection, the L-method takes longer to execute and tends

to shift the knee on large data sets. This can be seen, for

instance, in Fig. 7 on the top-right graph. The right knee

seems to be located at x = 25 but the method returned a

knee at x = 62. Since Kneedle is quicker and provides more

consistent results, we have adopted it to determine k, both

for clustering (k being the number of clusters), top/bottom-k

(where k is the number of points in the first cluster, i.e., the

one with higher values), and outliers (where k is the number

of points in the first and last cluster).
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Fig. 7 Results on the 30 (left) and 300 (right) samples data for Kneedle

(columns 1 and 3) and L-method (columns 2 and 4)

7 Visualizing Enhanced Cubes

In this section we discuss how to provide an effective

description of an enhanced cube by coupling text-based

representations (a pivot table and a ranked component list)

and graphical representations (one or more charts) with an

ad-hoc interaction paradigm. The guidelines we adopt to

this end are explained below:

(i) For visualization purposes, we assume that an

intention can select at most three measures (1 ≤ z ≤

3) and three group-by levels (1 ≤ n ≤ 3). This

is actually not a strong limitation, considering that

a visualization of four or more dimensions and/or

measures using a single table or chart is hardly

interpretable and definitely not intuitive.

(ii) Since we are focusing on intentions aimed at

describing data, we believe that providing multiple

visualizations from different points of view should

be preferred to just picking the “most effective

one”. Indeed, the effectiveness of a visualization type

largely depends on the skills and personal tastes of

each user.

(iii) We restrict to considering visualization types that can

be easily understood both by lay users and skilled

users, and are suitable for multidimensional data.

(iv) Clearly, the effectiveness of a visualization type also

depends on the features of the specific dataset. Using

an unsuitable visualization can generate confusion

and misunderstandings in users, and can lead them

to wrong conclusions. Thus, for each intention we

visualize only the charts that are recognized to be

suitable given the characteristics of the data to be

shown.

(v) Models and components play a key role in the IAM

approach. Thus, the visualizations we provide aims at

showing not only dimension and measure values, but

also the different components of a model using a color

code. For the same reason, the interaction paradigm

should be component-driven.

The visualization we provide for enhanced cube E based

on guidelines (ii) and (v) includes three distinct but inter-

related areas: a table area that shows the cube cells using

a pivot table; a chart area that complements the table area

by representing the cube cells through one or more charts;

a component area that shows a list of model components

sorted by their interestingness. The chart types we consider

following guidelines (i) and (iii) are multiple line graphs,

radar charts, grouped column charts, heat maps, bubble

charts, parallel coordinate charts, and scatter plots. The

heuristics we adopt to decide whether using or not each

chart type for a given enhanced cube E (guideline (iv)) was

inspired by the work of Golfarelli and Rizzi (2020), where

a suitability score is assigned to each chart type depending

on the features of the dataset to be visualized. For instance,

bubble charts are considered to be suitable to visualize n-

dimensional data if the bubble size is mapped to a numerical

attribute — such as a measure — and the bubble color is

mapped to either a numerical attribute — such as a second

measure — or a categorical attribute — such as a model

component. Specifically, the features of E we take into

account to this end are the number n of dimensions, the

number z of measures, and the domain cardinality and type

of the dimensions.

The pseudocode is shown in Algorithm 1; it is based on

the heuristics described below:
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– If E has one dimension d1 (of temporal type) and one or

more measures, draw a multiple line graph using the

X axis for d1 and the Y axis for the measure(s) values

(Fig. 8a). Different line colors are used to distinguish

the different measures. Markers take the colors of the

components of model t , i.e., the model to which the

highlight of E belongs.

– If E has one low-cardinality dimension d1 (of non-

temporal type) and one or more measures, draw a

radar chart using the angle for d1 and the radius for

measure(s) values (Fig. 8b). Different line colors are

used to distinguish the different measures. Markers take

the colors of the components of t .

– If E has one dimension d1 and one or more measures,

draw a heat map using the X axis for d1 and the Y axis

for the different measures (Fig. 8c). Measure(s) values

are shown using shades of color.

– If E has two low-cardinality dimensions d1, d2 and one

measure, draw a grouped column chart using the X

axis for d1, the Y axis for measure values, and the color

for d2 (Fig. 8d).

– If E has two dimensions d1, d2 and one measure, draw

a heat map using the X axis for d1, the Y axis for d2,

and the color shades for measure values.

– If E has two (three) dimensions d1, d2 (d3) and one

or two measures, draw a 2D (3D) bubble chart using

the X axis for d1, the Y axis for d2, (the Z axis

for d3), and the bubble size for the values of one

measure (Fig. 8e). If there is a second measure, its

values are shown using shades of color of bubbles;
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Table 1 Summary of chart types used depending on the number of

dimensions n and the number of measures z (MLC = multiple line

chart, RC = radar chart, HM = heat map, SP = scatter plot, PCC =

parallel coordinate chart, GCC = grouped column chart, BC = bubble

chart)

z = 1 z = 2 z = 3

n = 1 MLC/RC, HM MLC/RC, HM, SP MLC/RC, HM,

SP, PCC

n = 2 GCC (low card.), BC, SP SP, PCC

HM, BC

n = 3 BC BC, SP SP, PCC

otherwise, bubbles take the colors of the components

of t .

– If E has two (three) measures, draw a 2D (3D) scatter

plot using the X, Y (Z) axes for the different measures

(Fig. 8f). Points take the colors of the components

of t .

– If E has three measures, draw a parallel coordinate

chart using one coordinate for each measure (Fig. 8g).

Lines take the colors of the components of t .

A summary of the chart types used depending on the number

of dimensions n and the number of measures z is shown in

Table 1.

The interaction paradigm we adopt is component-driven

(guideline (v)). Specifically, clicking on one component c in

the component area leads to emphasizing the corresponding

cube cells (i.e., those that map to c via function µ) both

in the table area and in the chart area. The highlight is

the top component in the list and is selected by default.

Following the details-on-demand paradigm (Shneiderman

1996), interaction is enhanced using a tooltip that, when the

Fig. 8 Chart types: multiple line

graph (a), radar chart (b), heat

map (c), grouped column chart

(d), bubble chart (e), scatter plot

(f), and parallel line chart (g); in

orange and blue, the different

components of the related

models

)b()a(

)d()c(

)f()e(

(g)
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Fig. 9 The visualization

obtained for the intention in

Example 11

mouse is positioned on a data point, shows its coordinate,

its measure value(s), and the component(s) it belongs to.

Example 11 Figure 9 shows the visualization obtained

when the following intention is formulated:

with SALES describe storeCost

by month, category

On the top-left, the table area; on the right, the chart area;

on the bottom-left, the component area. Here it is n =

2 and z = 1, so a heat map and a bubble chart have

been selected (the grouped column chart is not selected

due to the high cardinality of the month dimension). The

top-interestingness component is a cluster, so a color has

been assigned to each component of clustering (i.e., to

each cluster) and is uniformly used in all three areas. The

highlight (in green) is currently selected and is emphasized

using a thicker border in all areas. Note that a tooltip with

all the details about a single cell is also shown (in yellow).

8 Experimental Tests

In this section we discuss the results of the tests we made to

evaluate our approach from four points of view: formulation

effort (as compared to the one using plain SQL and Python),

effectiveness (as compared to the interestingness measure

used by Chédin et al. (2020)), efficiency, and scalability.

The prototype implementation we used for the tests uses the

simple multidimensional engine described by Francia et al.

(2020), which in turn relies on the Oracle 11g DBMS to

execute queries on a star schema based on multidimensional

metadata (in principle, the prototype could work on top of

any other multidimensional engine). The mining models are

imported from the Scikit-Learn Python library. Finally, the

web-based visualization is implemented in JavaScript and

exploits the D3 library for chart visualization. The prototype

implementation can be accessed at http://semantic.csr.

unibo.it/describe/.

8.1 Formulation Effort

The first goal of our experiments is to evaluate the saving

in user’s effort when writing a describe intention over the

one necessary to obtain the same result using plain SQL and

Python. To this end we adopt the simple metric proposed by

Jain et al. (2016), where the ASCII character length is used

as an approximation for the effort it takes to craft a query.5

5We deliberately chose not to differentiate the types of characters

(e.g., keywords and free text) in the statements. Indeed, given the light

syntax of the describe statements, weighing free text differently would

favor describe over more verbose languages like SQL and Python.
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Table 2 Formulation effort for different intentions (numbers of

characters)

Intention SQL Python Total describe

I1 234 5038 5272 45

I2 361 5038 5399 55

I3 478 5038 5516 64

For this evaluation we used a simple session including

three intentions on the SALES cube, where the by clause is

progressively enlarged and all the models are computed:

I1 : with SALES describe quantity, revenue

by date

I2 : with SALES describe quantity, revenue

by date, customer

I3 : with SALES describe quantity, revenue

by date, customer, product

The results are shown in Table 2; for SQL and Python we

considered the code generated by our prototype to execute

each intention. Remarkably, the total formulation effort

using SQL+Python is, for each intention type, almost two

orders of magnitude larger than using describe intentions.

To also have some insight into the time required

to operate manually, we asked five PhD students in

computer science to use Python to manually extract two

types of models (outliers and clustering) from a 2000

tuples bidimensional cube. This real-world cube was

created from the COVID dataset made available by the

European Center for Disease Prevention and Control.6

Table 3 shows, for each student, her skill in Python

(beginner/intermediate/advanced), the time taken for doing

the exercise (in minutes), the models she extracted, and

the ASCII character length of the Python code she wrote,

disregarding the quality of the models extracted. We remark

that even skilled students needed quite a long time for

extracting both models, and had to write substantial Python

programs (even though, in comparison with Table 2, they

were asked to compute two models only).

8.2 Effectiveness

Our second experimental goal is to assess the effectiveness

of our approach. Specifically, we compare the 3-facets

interestingness measure as of Definition 7 with the 1-facet

measure adopted by Chédin et al. (2020); note that the latter

mostly corresponds to peculiarity as of Definition 10. The

experimental setting we use here is again that of a real-

world cube extracted from the COVID dataset. On this cube

6www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases

Table 3 Time (minutes) and formulation effort (numbers of characters

for manual model extraction

Student Id Skill Time Models Length

A advanced 45 clustering 3479

B advanced 51 both 1777

C intermediate 25 outliers 935

D advanced 59 both 1150

E advanced 90 outliers 2627

we run 20 distinct describe sessions (including exactly 7

intentions each), of which 10 were created manually as

done by Outa et al. (2020), and 10 were created with the

CubeLoad workload generator (Rizzi and Gallinucci 2014).

To compare the two interestingness measures we

compute the highlight coverage of each intention I as

follows. Let C0 be the base cube and c be the highlight of I ;

we define the coverage of c as

cov(c) =
|{γ ∈ C0 : ∃γ ′ ∈ µ−1(c), γ ′ ⋚ γ }|

|C0|

Intuitively, the coverage of highlight c is the percentage

of cells of C0 that roll-up to cells belonging to c.

The cumulative highlight coverages at each session step,

averaged over all 20 sessions, are reported in Fig. 10 (all α

weights in Definition 7 are set to 1
3
).

Overall, the figure clearly shows that the cumulative

coverage of the 3-facets interestingness is higher than the

one of the 1-facet interestingness, which means that the

enhanced formulation we adopted in this work is more

effective in providing diversified highlights over the cube,

leading to a more comprehensive exploration. We also noted

that the by clause has a major impact on the highlights, i.e.,

in sessions mainly consisting of roll-ups and drill-downs the

two measures of interestingness behave quite similarly since

peculiarity is the main driver. On the other hand, the longer

the session, the larger the effect of surprise and novelty in

ensuring a more diversified coverage.

8.3 Efficiency

Our third experimental goal is to investigate if the

performance of our approach is compatible with the near-

real-time requirement of interactive analysis sessions. To

this end we populated the SALES cube using the FoodMart

data.7 We reused the 3-intention session introduced in

Section 8.1; from the performance point of view this

corresponds to considering the worst case, in which all five

models are computed on cubes obtained by progressively

including in the group-by set the three dimensions with

7github.com/julianhyde/foodmart-data-mysql
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Fig. 10 Average cumulative highlight coverage at different session

steps for the 1-facet and 3-facets interestingness measures

highest cardinality. The tests were run on an Intel(R)

Core(TM)i7-6700 CPU@3.40GHz with 8GB RAM.

Table 4 shows the total execution time and its breakdown

into the times necessary to query the base cube, to compute

the models, to measure the interestingness, and to generate

the pivot table returned to the browser. Remarkably, it

turns out that at most 18 seconds are necessary to retrieve

and visualize an enhanced cube of more than 86000 cells,

which is perfectly compatible with the execution time of a

normal OLAP query. The table shows that the main cost

component is, after model computation, the measurement of

interestingness. The most computationally-expensive facets

are peculiarity and surprise, the former mostly depending

on the cube cardinality, the latter increasing with the session

length.

8.4 Scalability

Our last experimental goal is to evaluate the scalability

of our approach. To this end we used the Star Schema

Benchmark (SSB) cube, described by four hierarchies;

please refer to the work by O’Neil et al. (2009) for

the logical schema of the SSB dataset. Specifically, we

generated three base SSB cubes, namely SSB1, SSB10,

Table 4 Execution times in seconds for three intentions with

increasing cardinalities of C

Intention | C | Query Model Interestingness Pivot Total

I1 323 0.10 0.25 0.00 0.00 0.36

I2 20525 0.22 5.90 0.36 0.36 6.83

I3 86832 0.22 8.50 7.43 1.72 17.87

Table 5 Resulting cardinalities of C for each intention applied to each

base cube

Intention SSB1 SSB10 SSB100

I1 7 7 7

I2 35 35 35

I3 13300 139020 1396955

and SSB100, with different scale factors resulting in the

following cardinalities:

|SSB1| = 6 · 106

|SSB10| = 6 · 107

|SSB100| = 6 · 108

Note that the cardinality of each cube is equal to the number

of tuples in the corresponding fact table. As commonly

done in OLAP settings, primary and foreign keys were

indexed using B-Trees, and materialized views were created

to improve performances.

The experiments were focused on three describe

intentions similar to those introduced in Section 8.1, i.e.,

with progressively-enlarged group-by sets. Since the by

and for clauses of each describe intention are not changed,

scaling up the cardinality of the base cube implies that also

the cardinality of the resulting cube C scales up as shown in

Table 5. To reduce the impact of caching, each intention was

executed five times on each base cube, and the execution

times were averaged.

Figure 11 shows, on a logarithmic scale, the times in

seconds for executing the three intentions on the three base

cubes with increasing cardinalities. When I3 is executed

over SSB100, yielding as a result a cube with almost 1.5

millions of cells, the overall time turns out to be about 95

seconds, which is still compatible with the requirements of

an interactive analysis session. Of this time, 68 seconds are

Fig. 11 Execution times for increasing cardinalities of the base cube
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used to compute the models, and 24 seconds to compute

the interestingness. Though the chart shows an exponential

trend, which clearly raises some concerns about further

scalability, we observe that even dealing with a 1.5M-cells

cube should be considered quite unusual in the context of an

analysis session.

9 RelatedWork

The idea of coupling data and analytical models was

born in the 90’s with inductive databases, where data

were coupled with patterns meant as generalizations of the

data (Raedt 2002). Later on, data-to-model unification was

addressed in MauveDB (Deshpande and Madden 2006),

which provides a language for specifying model-based

views of data using common statistical models. However,

achieving a unified view of data and models was still

seen as a research challenge in business intelligence a

few years later (Pedersen 2009). More recently, Northstar

(Kraska 2018) has been proposed as a system to support

interactive data science by enabling users to switch between

data exploration and model building, adopting a real-time

strategy for hyper-parameter tuning. Finally, the coupling

of data and models is at the core of the IAM vision

(Vassiliadis et al. 2019), on which this paper relies. The

three basic pillars of IAM are (i) the redefinition of query

as expressing the user’s intention rather than explicitly

declaring what data are to be retrieved, (ii) the extension

of query results from plain data cubes to cubes enhanced

with models and highlights, and (iii) the characterization of

model components in terms of their interestingness to users.

The coupling of the OLAP paradigm and data mining

to create an approach where concise patterns are extracted

from multidimensional data for user’s evaluation, was the

goal of some approaches commonly labeled as OLAM

(Han 1997). In this context, k-means clustering is used

by Bentayeb and Favre (2009) to dynamically create

semantically-rich aggregates of facts other than those

statically provided by dimension hierarchies. Similarly, the

shrink operator is proposed by Golfarelli et al. (2014)

to compute small-size approximations of a cube via

agglomerative clustering. Other operators that enrich data

with knowledge extraction results are DIFF (Sarawagi

1999), which returns a set of tuples that most successfully

describe the difference of values between two cells of

a cube, and RELAX (Sathe and Sarawagi 2001), which

verifies whether a pattern observed at a certain level of

detail is also present at a coarser level of detail, too. Finally,

Chen et al. (2005) reuse the OLAP paradigm to explore

prediction cubes, i.e., cubes where each cell summarizes a

predictive model trained on the data corresponding to that

cell. The IAM approach can be regarded as OLAM since,

like the approaches mentioned above, it relies on mining

techniques to enhance the cube resulting from an OLAP

query. However, while each of the approaches above uses

one single technique (e.g., clustering) to this end, the IAM

leans on multiple mining techniques to give users a wider

variety of insights, using the interestingness measure to

select the most relevant ones.

In the same direction, Sarawagi (2000) describes a

method that profiles the exploration of a user and uses the

Maximum Entropy principle to recommend which unvisited

parts of the cube can be the most surprising in a subsequent

query. The Cinecubes method (Gkesoulis and Vassiliadis

2013; Gkesoulis et al. 2015) aims at providing automated

reporting as a result to an original OLAP query. The

proposed method enriches an original OLAP query with

auxiliary queries to aid (a) the comparison and assessment

of the result of the query to similar data and (b) the

explanation of the result with values at the most detailed

level. So, the results of the Cinecubes system can coarsely

be grouped as the result of two operators: the first one

computes queries for values similar to ones defining the

selection filters of the original query; the second one

by drilling down into the dimensions of the result, one

dimension at a time.

The characteristics of the different approaches for

visualizing data and interacting with them have been deeply

explored in the literature, also with reference to their

suitability for datasets with different features and users

with varying skills and goals. Börner (2015) surveys the

classifications proposed in the literature for visualization

types and integrates them into a single comprehensive

framework. Abela (2008) proposes a decision tree to select

the best visualization according to the user’s goal and to

the main features of data. More recently, SkyViz — to

which our approach is inspired — starts from a visualization

context based on seven coordinates for assessing the

user’s objectives and describing the data to be visualized

(Golfarelli and Rizzi 2020). Then it uses skyline-based

techniques to translate a visualization context into a set of

suitable visualization types and to find the best bindings

between the columns of the dataset and the graphical

coordinates used by each visualization type.

To the best of our knowledge, though some tools

(e.g., Spotfire and Tableau) integrate OLAP and analytics

capabilities in the same environment, none of them allows

users to formulate queries at a higher level of abstraction

than OLAP (as done in the IAM using intentions), nor they

support the automated out-of-the-box enrichment of cubes

with insights obtained by analytics (as done in the IAM

through enhanced cubes). For instance, Tableau8 enables

OLAP sessions through a drag-and-drop metaphor. First,

8https://www.tableau.com/
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the user selects the levels and measures in which she is

interested. Then, Tableau provides a single visualization

based on such levels and measures (no cardinality checks

are performed against level domains). Finally, the user can

manually add some models (e.g., linear regression) and

statistics. Thus, in comparison to the describe operator and

the IAM, Tableau does not provide a high-level syntax (i.e.,

users must explicitly pick levels, measures, and models),

an interestingness measure, and multiple visualizations

combined with interesting highlights.

As stated in the Introduction, this paper extends our

previous work (Chédin et al. 2020) in different ways.

Specifically:

– While Chédin et al. (2020) only considered linear

hierarchies, here cube schemata are defined in more

general terms, allowing branches in hierarchies.

– The new definition of interestingness we propose here

is based on three different facets: surprise, novelty,

and peculiarity, while the one previously proposed

considers peculiarity only.

– The definition of proxies we give here also covers

situations where an intention changes both the group-by

set and the selection predicate of the previous intention,

and when there is no roll-up/drill-down relationship

between the two group-by sets.

– The syntax of the describe operator has been extended

by supporting multiple levels in the by clause and by

allowing users to specify different sizes for each model.

– The visualization of enhanced cubes uses two more

chart types to give users a more comprehensive and

flexible description of data.

– The approach is evaluated through a comprehensive set

of tests not only in terms of efficiency, but also of

scalability, effectiveness, and formulation complexity.

10 Conclusion

In this paper we have given a proof-of-concept for the

IAM vision by delivering an end-to-end implementation

of the describe operator, based on a novel measure of

interestingness and relying on a visual metaphor to display

enhanced cubes. This new measure of interestingness has

been shown to be more effective than the one proposed by

Chédin et al. (2020) in providing diversified highlights over

enhanced cubes. We have also showed that our approach

diminishes the effort for formulating complex analyses

while ensuring that performances are compatible with near-

real-time requirements of interactive sessions.

The main directions for future research we wish to

pursue are: (i) evaluate the effectiveness of the approach

by conducting extensive experiments with real users;

(ii) optimize the computation of interestingness, especially

for long sessions; and (iii) extend the approach to operate

with dashboards of enhanced cubes.
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