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Abstract

The backtracking based Davis Putnam (DPLL) procedure re-
mains the dominant method for deciding the satisfiability of
a CNF formula. In recent years there has been much work
on improving the basic procedure by adding features like im-
proved heuristics and data structures, intelligent backtrack-
ing, clause learning, etc. Reasoning with binary clauses
in DPLL has been a much discussed possibility for achiev-
ing improved performance, but to date solvers based on this
idea have not been competitive with the best unit propaga-
tion based DPLL solvers. In this paper we experiment with a
DPLL solver called2CLS+EQ that makes more extensive use
of binary clause reasoning than has been tried before. The
results are very encouraging—2CLS+EQ is competitive with
the very best DPLL solvers. The techniques it uses also open
up a number of other possibilities for increasing our ability to
solve SAT problems.

Introduction
Many interesting problems can be encoded as satisfiability
problems, e.g., planning problems (Kautz & Selman 1992),
probabilistic planning problems (Majercik & Littman 1998),
verification problems (Biereet al. 1999), etc. For many
of these problems a decision procedure is required, e.g.,
in many verification problems one wants to prove that no
model of a buggy configuration exists.

In the realm of decision procedures, the backtracking
based Davis Putnam (DPLL) procedure dominates.1 Over
the past ten years the basic procedure has been significantly
improved with better heuristics (Li & Anbulagan 1997), data
structures (Zhang 1997), intelligent backtracking (Bayardo
& Schrag 1997), clause learning (Moskewiczet al. 2001),
equality reasoning (Li 2000), etc. These improvements have
had such an impact on performance, that converting a prob-
lem to SAT and using DPLL can often be the fastest solution
technique. For example, in the verification community it has
been shown that for many problems DPLL can be faster than
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1The original Davis Putnam procedure used directed resolu-
tion not backtracking. The backtracking version was developed by
Davis, Logemann and Loveland (Cook & Mitchell 1997). Hence
our use of “DPLL” instead of “DP”.

other techniques (or at least just as fast and much easier to
use) (Coptyet al. 2001).

With one notable exception (Van Gelder 2001) current
DPLL solvers utilize unit clause reasoning, i.e., unit prop-
agation (UP). The advantage of using UP is that it can be
implemented very efficiently, while the disadvantage is that
it has limited pruning power and thus DPLL might explore a
large number of nodes during its search for a solution. It is
also possible to use binary clause reasoning in DPLL. This
yields the dual: it is significantly less efficient to implement,
but it can also cause DPLL to explore many fewer nodes due
to its greater pruning power. This tradeoff between more
reasoning at each node of a backtracking tree and the explo-
ration of fewer nodes is well known. And, as we shall see,
on some problems this tradeoff does not favor binary clause
reasoning. However, we will also see that an extremely com-
petitive DPLL solver based on binary clause reasoning can
be built.

In the sequel we first introduce DPLL, UP and the vari-
ous types of binary clause reasoning that we employ, then
a number of formal properties concerning the relative power
of these various forms of reasoning are presented and related
previous work is discussed. This leads to the2CLS+EQ sat
solver that employs binary clause reasoning. The system
uses two additional features to improve its performance—
intelligent backtracking and a technique called pruneback.
These are discussed next. A number of empirical results are
presented to give a picture of the performance that2CLS+EQ
achieves, and finally, we close with some concluding re-
marks.

UP and Binary Clause reasoning in DPLL

DPLL takes as input a CNF formula which is a conjunctive
set of clauses, with each clause being a disjunctive set of
literals, and each literal being either a propositional variable
v or its negation̄v. DPLL decides whether or not there exists
a truth assignment that satisfies the formula.

DPLL is most easily presented as a recursive algorithm,
in which case we can view its inputs as being a pair

(
F,A

)
,

whereF is a CNF formula, andA is a set of literals that
have already been assignedTRUE by previous invocations.
Initially DPLL is called with the input formulaF andA = ∅,
i.e., with

(F , ∅).



There are 2 basic transformations that DPLL can per-
form on its input prior to invoking itself recursively. First,
it can compute the reduction of its input by a literal`
(also calledforcing `), denoted by

(
F, A

)
[`].

(
F,A

)
[`] =(

F ′, A′
)

where F ′ is generated fromF by removing
from F all clauses containing̀ and then removing¯̀
from all the remaining clauses, andA′ is simply A ∪
{`}. For example,

({(a, b, c̄), (ā, d), (e, f)}, [g, h̄]
)
[a] =({(d), (e, f)}, [a, g, h̄]

)
Second, it can perform various modifications on the for-

mula component of its input. The most important of these
is unit clause reduction. Unit clause reduction simply se-
lects a clause from the input formula that has length 1
(a unit clause) and performs a reduction of the input by
the literal in that clause. For example, reduction of the
unit clause(a) converts the input

({(a), (ā, b), (a, c)}, [d]
)

to
({(b)}, [a, d]

)
. A unit clause reduction can generate

new unit clauses. Unit Propagation (UP) is the itera-
tive process of doing unit clause reductions until either
(a) a contradiction is achieved, or (b) there are no more
unit clauses in the input. The order in which the unit
clause reductions occur is not important to the correctness
of the algorithm. Ancontradiction is achieved when the
set of assigned literals,A, contains both̀ and ¯̀ for some
literal `. For example, UP

({(a), (ā), (b, c, d), (b)}, [d]
)
=({(b, c, d), (b)}, [d, a, ā]

)
where a contradiction has been

discovered.
With these two components, the basic implementation of

DPLL is to first perform unit propagation on the input for-
mula. If the resulting formula is empty, i.e., all clauses have
been satisfied, thenA is a satisfying truth assignment (any
variable not assigned a value inA is free to take any value)
and we returnTRUE to the calling invocation. Otherwise,
if A contains a contradiction then this particular collection
of assigned literals cannot be extended to a solution, and
we backtrack by returningFALSE. Otherwise, DPLL recur-
sively searches for a satisfying truth assignment containing`
and if none exist, for one that contains¯̀. If neither extension
succeeds DPLL backtracks by returning false to the calling
invocation. Note that DPLL is doing a depth-first search of a
tree with each DPLL invocation being a new node visited in
the tree, and each return being a backtrack in the tree search.
DPLL (T,A)
1. (T’,A’)=UP(T,A)
2. if A’ contains a contradiction
3. return(FALSE)
4. elseif T’ is empty
5. return(TRUE)
6. l := selectVarNotInA(T,A)
7. if (DPLL((T,A)[l])
8. return(TRUE)
9. else
10. return(DPL((T,A)[ l̄]))

Except for the 2clsVER system of (Van Gelder 2001), cur-
rent DPLL solvers use this basic algorithm (along with other
orthogonal improvements). In particular, unit propagation is
all that is used in the formula reduction phase.

The input formula might also contain many binary
clauses, and it is possible to do various kinds of reductions

of the input formula by reasoning with these clauses as well,
as is done by the system we describe in this paper. All of
these reductions are done in conjunction with UP.

The first is to perform all possible resolutions of pairs
of binary clauses. Such resolutions yield only new binary
clauses or new unit clauses. We denote by BinRes the trans-
formation of the input that consists of repeatedly (a) adding
to the formula all new binary or unit clauses producible by
resolving pairs of binary clauses, and (b) performing UP on
any new unit clauses that appear (which in turn might pro-
duce more binary clauses causing another iteration of (a)),
until either (1) a contradiction is achieved, or (2) nothing
new can be added by a step of (a) or (b). For example,
BinRes

({(a, b), (ā, c), (b̄, c)}, [])=({(a, b)}, [c]): resolving
the binary clauses produces the new binary clauses(b, c),
(a, c), and(c, c) = (c). Then unit propagation yields the
final reduction.

This example shows that BinRes can produce more literal
assignments than can UP, as UP applied to this input formula
yields no changes. This also means that BinRes can produce
a contradiction in situations where UP cannot: e.g., if we
enhance the above example so that BinRes also produces
the clause(c̄) we will get a contradiction. BinRes gives us
the obvious algorithm DPLL-BinRes in which we substitute
BinRes for UP in line 1.

OBSERVATION 1 DPLL-BinRes has the potential to explore
exponentially fewer nodes than DPLL-UP.

At a particular node DPLL-BinRes might detect a contra-
diction while DPLL-UP might descend trying other literals
and exploring an exponentially sized subtree. However, this
is only a potential savings: the subtrees that DPLL-BinRes
avoids may turn out to be easy for DPLL-UP to refute.

Another common technique used in DPLL solvers is
failed literal detection (Freeman 1995). Failed literal detec-
tion is a one-step lookahead with UP. Say we force literal`
and then perform UP. If this process yields a contradiction
then we know that̀̄ is in fact entailed by the current input
and we can force it (and then perform UP). DPLL solvers
often perform failed literal detection on a set of likely literals
at each node. TheSATZ system (Li & Anbulagan 1997) was
the first to show that very aggressive failed literal detection
can pay off. Failed literal detection and binary resolution are
related.

OBSERVATION 2 If BinRes forces the literal̀, then failed
literal detection on̄̀ would also detect that̀ is entailed.

For example, BinRes forcesc in the formula({(a, b), (ā, c), (b̄, c)}, []). On the other hand if̄c is
forced UP will generate a contradiction: i.e., thatc is
entailed will be detected by the failed literal test. This
observation can be proved by examining the implication
graph representation of binary clauses.

OBSERVATION 3 Failed literal detection is able to detect
entailed literals that cannot be detected by BinRes.

For example, if we testc with failed literal detection in the
formula

({(c̄, a), (c̄, b), (c̄, d), (ā, b̄, d̄)}, []), we will detect a
contradiction and thus thatc̄ is entailed. BinRes on the other
hand, does not forcēc. So we see that failed literal detection



is strictly stronger than BinRes.
This example indicates that a weakness of BinRes is that

it does not consider the non-binary clauses. This weakness
can be addressed by hyper-resolution.

Hyper-resolution is a resolution step that involves more
than two clauses. Here we define a hyper-resolution step
to take as inputone n-ary clause (n ≥ 2) (l1, l2, ..., ln)
and n − 1 binary clauses each of the form(l̄i, `) (i =
1, . . . , n − 1). It produces as output the new binary clause
(`, ln). For example, using hyper-resolution on the inputs
(a, b, c, d), (h, ā), (h, c̄), and(h, d̄), produces the new bi-
nary clause(h, b). Note that the standard resolution of two
binary clauses is covered by this definition (withn = 2).

With this hyper-resolution step we define a more powerful
form of formula reduction. We denote by HypBinRes the
transformation of the input that is exactly like BinRes except
that it performs the above hyper-resolution instead of simply
resolving binary clauses. DPLL-HypBinRes is then defined
to be DPLL with HypBinRes substituted for UP.

OBSERVATION 4 HypBinRes detects the same set of forced
literals as repeatedly (a) doing a failed literal test onall
literals, and (b) performing UP on all detected entailed lit-
erals, until either (1) a contradiction is achieved, or (2) no
more entailed literals are detected.

This observation can be proved by showing that HypBinRes
forces a literal if and only if it can be detected by the failed
literal test. The requirement for repeating the failed literal
test follows from fact that HypBinRes is run to closure. Note
that simply performing the failed literal test on every literal
is not as powerful as HypBinRes. One would have to retest
every literal every time an entailed literal is unit propagated
until no new entailed literals are detected. As a result it is
much more efficient to perform HypBinRes rather than re-
peated failed literal tests—HypBinRes does not need to re-
peat work in the same way.

OBSERVATION 5 DPLL-HypBinRes has the potential to ex-
plore exponentially fewer nodes than DPLL-BinRes.

This follows from the fact that DPLL-HypBinRes can detect
contradictions that DPLL-BinRes cannot.

HypBinRes is also very useful when it comes to comput-
ing heuristics. A very useful heuristic is to rank literals by
the number of new literals they would force under UP. The
idea is to split next on the literal that along with its nega-
tion will cause the largest reduction in the formula under
UP—thus the two recursions will both have to deal with a
smaller formula. This is the heuristic used by theSATZ (Li &
Anbulagan 1997). However, this heuristic is costly to com-
pute, and can usually only be estimated.SATZ for example
evaluates this heuristic on some set of candidate literals by
unit propagating each one and then counting the number of
newly forced literals. (Failed literal detection is an important
side effect of this process). HypBinRes has the following
property:

OBSERVATION 6 A literal ` will force a literal `′ under UP
if and only if the binary clause(¯̀, `′) is in the formula after
performing HypBinRes.

Thus after performing HypBinRes a simple count of the

number of binary clauses a literal’s negation participates in
yields the precise number of literals that would be forced
by unit propagating that literal. This observation is a direct
corollary of Observation 4.

Finally, there is one more type of binary clause reason-
ing that is useful, equality reduction. If a formulaF con-
tains(ā, b) as well as(a, b̄) (i.e,, a ⇒ b as well asb ⇒ a),
then we can form a new formula EqReduce(F ) by equal-
ity reduction. Equality reduction involves (a) replacing all
instances ofb in F by a (or vice versa), (b) removing all
clauses which now contain botha and ā, (c) removing all
duplicate instances ofa (or ā) from all clauses. This process
might generate new binary clauses.

For example, EqReduce
({(a, b̄),(ā, b), (a, b̄, c), (b, d̄),

(a, b, d)},[e])=({(a, d),(a, d̄)},[e]). Clearly EqReduce(F )
will have a satisfying truth assignment if and only ifF does.
Furthermore, any truth assignment for EqReduce(F ) can be
extended to one forF by assigningb the same value asa.

EqReduce can be added to HypBinRes (HypBinRes+eq)
by repeatedly doing (a) equality reduction, (b) hyper-
resolution, and (c) unit propagation, until nothing new is
added or a contradiction is found. DPLL-HypBinRes+eq
is then defined to be DPLL using HypBinRes+eq instead of
UP

OBSERVATION 7 HypBinRes+eq detects the same set of
forced literals as HypBinRes.

The two binary clauses(a, b̄) and(ā, b) allow HypBinRes to
deduce everything that HypBinRes+eq can.

This means that modulo changes in the heuristic choices it
might make, DPLL-HypBinRes+eq does not have the poten-
tial to produce exponential savings over DPLL-HypBinRes.
The benefit of using equality reduction is that for many prob-
lems equality reduction significantly simplifies the formula.
This can have a dramatic effect on the time it takes to com-
pute HypBinRes.

We have implemented DPLL-HypBinRes+eq along with
two key extra improvements, which we describe in the next
section. But first we relate DPLL-HypBinRes+eq to the
closest previous work.

EQSAT (Li 2000) is a system specialized for equality rea-
soning. It does much more with equalities than the simple
equality reduction described above. In particular, it repre-
sents ternary equalities with a special non-causal formula
and does more extensive reasoning with these higher or-
der equalities. As a result it is the only sat solver capable
of solving the parity-32 family of problems which involve
large numbers of equalities. However, it is not particularly
successful at solving other types of theories. See (Simon &
Chatalic 2001) for detailed empirical results onEQSAT and
other solvers.

2clsVER (Van Gelder 2001) is a DPLL solver that does
binary clause reasoning. However, it does only BinRes not
HypBinRes. On the other hand, it does extensive subsump-
tion checking which our system does not do. Nevertheless,
its performance lags significantly behind our system.

2-simplify (Brafman 2001) is a preprocessor that uses bi-
nary clause reasoning to simplify the formula. It does a
limited version of HypBinRes+eq. In particular, it does



BinRes as well as EqReduce but only a limited form of
hyper-resolution (a step called “derive shared implications”
in (Brafman 2001)). In addition it does not repeat these
reductions until closure is achieved, but rather only per-
forms these reductions once. Achieving closure can make
a tremendous difference in practice.

DCDR (Rish & Dechter 2000) is a solver that can choose
to resolve away a variable during search rather than split on
it (the more recent 2clsVER system also does this). The
resolution steps are restricted so that they never generate a
resolvant larger thank literals, for some smallk. Although it
worked well on some problems, the system was not compet-
itive with UP based solvers. Interestingly, we can unroll the
hyper-resolution step we have defined here into a sequence
of ordinary resolution steps. However, these steps would
produce intermediary resolvants of arbitrary size. Hyper-
resolution allows us to avoid generating these large interme-
diate resolvants, moving instead directly to the small final
resolvant. In one sense, hyper-resolution acts as macro that
allows us to capture specific useful sequences of resolution
steps.

The Sat Solver2CLS+EQ
We have implemented DPLL-HypBinRes+eq in a system
called2CLS+EQ. 2CLS+EQ also contains two key extra im-
provements, intelligent backtracking and a simplified form
of clause learning that is closely related to the pruneback
techniques described in (Bacchus 2000). In this section we
discuss these two improvements. The implementation itself
has a number of interesting features, but space precludes dis-
cussing them.

Intelligent backtracking has been found to be essential for
solving the more realistic structured problems that arise in,
e.g., AI planning problems and hardware verification prob-
lems. Intelligent backtracking in DPLL was first imple-
mented in (Bayardo & Schrag 1997) and it is an essential
component of what is probably the most powerful current
DPLL solverZCHAFF (Moskewiczet al. 2001).

The set of assigned literalsA can be divided into two
subsets. The set of choice literals (those literals that were
assigned as a result of being split on by DPLL), and the
other literals that were forced by whatever reduction pro-
cess is being used. When a contradiction is foundA will
contain a literal̀ and its negation̄̀. Intelligent backtrack-
ing is based on identifying a subset of the choice literals that
was responsible for forcing̀ and a subset responsible for
forcing ¯̀. The union of these two sets̄C = {l1, . . . , lk} is
a set of choice literals that cannot be simultaneously made
true. That is,F |= ¬(l1 ∧ · · · ∧ lk), or in clausal form
F |= C = (l̄1, · · · , l̄k). This new clause allows DPLL
to backtrack to the deepest level where one of these lit-
erals was assigned (i.e., the shallowest level they were all
assigned), say literallk at level i, perhaps skipping many
intermediate levels, to try the alternate branch (l̄k) at that
level—the clause gives a proof that no solutions exist in the
subtree under the assignmentlk. If after trying l̄k in the al-
ternate branch DPLL again backtracks to leveli, it would
in a similar manner have discovered another new clause
C ′ = (l̄′1, . . . , l̄

′
h, lk) this time containinglk (the negation of

the current assignment at leveli). C andC ′ can thus be re-
solved to yield a new clauseC1 = (l̄1, . . . , l̄k−1, l̄

′
1, . . . , l̄

′
h)

that allows DPLL to now backtrack to the deepest assign-
ment in C1. This backtrack might also skip a number of
levels.

Notice that the kind of reasoning used to infer` and ¯̀
from the set of choice literals is irrelevant to this process.
As long as we can identify a subset of choice literals respon-
sible for forcing a literal, we can then compute a valid new
clause by unioning the subset that forced` with that which
forced ¯̀. Intelligent backtracking can then be performed. In
DPLL-UP this identification process is relatively simple. A
literal ` can only be forced by an original clause that has be-
came unit. Hence the choice literals that forced` is simply
the union of the choice literals that forced the negations of
the other literals in clause, and this set can be computed by
simply backtracing through the clauses that forced each lit-
eral. In other words, all the bookkeeping that is required is
to associate a clause with each forced literal.

With HypBinRes+eq the bookkeeping required is consid-
erably more complex. Since a literal could be forced by the
resolution of two binary clauses, we must also keep track of
the (potentially complex) reasons the binary clauses came
into existence. Nevertheless, it is possible to implement the
necessary record structures to support backtracing from a lit-
eral to a set of choice literals that entailed it. An initial im-
plementation had been completed when we discovered the
approach described in (Van Gelder 2001) which presented
a much cleaner record structure supporting greater structure
sharing.2CLS+EQ implements Van Gelder’s method.2

The other technique we implemented is related to the
backpruning techniques described in (Bacchus 2000). It is
best described by a example. Say that a contradiction is dis-
covered at level 30 in the search tree, and we compute that
new clauseC = (ā, b̄, c̄, d̄) with a having been assigned at
level 1, b at level 5,c at level 10, andd at level 25. This
clause allows us to backtrack to level 25 and there tryd̄.
Suppose we subsequently backtrack from the subtree rooted
by d̄ to level 23 to try an alternate branch. It is quite possible
that in this new branch we could again try to assignd. But
we know from the clauseC that d cannot hold whilea, b
andc are still true—which they are since we have not as yet
backtracked that far. Assigningd would violate the newly
discovered clauseC. In fact, d̄ must be forced at all levels
until we backtrack to level 10 to unassignc.

We have not as yet implemented clause learning, and if we
had the forcing of̄d would be taken care of by the presence
of the new clauseC. Instead, we use a simpler approach of
“backpruning”d to the next highest level inC at the time
we discoverC. We then discardC. Backpruning has the
effect of disallowingd (i.e., forcing d̄) at every level until
we backtrack to level 10. A related backprune is that we
also know fromC that the binary clause(c̄, d̄) must hold
between levels 5 (whileb anda are still assigned) and 10

2We also had to solve the problem of garbage collecting these
record structures on backtrack. This problem was mentioned as
open in (Van Gelder 2001). We were able to allocate off a stack
and reduce garbage collection to a single move of the stack pointer.



(below level 10d̄ will be forced and this binary clause will
be subsumed). Using a similar approach we force this binary
clause at these levels. In this way we get significant use out
of the clauseC without having to record it.3

Empirical Results
In our empirical tests we made use of the wonderful Sat-Ex
resource. We ran2CLS+EQ on a variety of local machines
and then normalized all of our timings to the Sat-Ex machine
standard (71.62 using the Dimacs machine scale program).
As a check that this normalization was reasonable we also
ran ZCHAFF on our local machines on a number of prob-
lems and compared its normalized times to those reported in
Sat-Ex, the timings were accurate to 5%. Hence, the reader
can reasonably compare the timings we report here to those
available on-line at the Sat-Ex site.4

2CLS+EQ is intended to be a general purpose sat solver
capable of solving a wide variety of sat problems. Hence,
the first experiment we ran was to try to solve a large collec-
tion of problems that the best general purpose sat solvers find
easy. We used the following benchmark families (named as
in the Sat-Ex site): aim-100, aim-200, aim-50, ais, bf, block-
world, dubois, hole, ii-16, ii-8, jnh, morphed-8-0, morphed-
8-1, parity-8, ssa, ucsc-bf, and ucsc-ssa. These families con-
tained a total of 722 problems.2CLS+EQ was able to solve
all of these problems in 16m 39s (999.52 sec). The fastest
solver for these problems wasZCHAFF which completed in
4m 13s (253 sec) Second wasSATO (v.3.00) which took 8m
43s (523 sec). ThenRELSAT-2000 which took 31m 36s,
andRELSAT (v.1.12) 34m 37s. The next fastest solverSATZ
failed to solve 2 problems from the dubois family and one of
the blocksworld problems within a 10,000 sec. timebound,
EQSAT failed to solve 9 problems from the ucsc-bf family,
andSATO-v.3.21 failed to solve three problems from the ii-
16 family. Thus we see that2CLS+EQ was third fastest on
this suite of problems, was only 4 times as slow asZCHAFF,
and was one of only 4 solvers able to solve all problems.

In all of our experiments we used the same heuristic for
variable selection. This heuristic first performs a restricted
amount of lookahead to see if it can detect any binary clauses
that are entailed by both a literal and its negation.5 If any
such clauses are found, they are added to the theory and
HypBinRes+eq performed. Then to choose the next vari-
able it simply counts the number of binary clauses each lit-
eral participates in. As pointed out in the previous section,
under HypBinRes this is equivalent to the number of literals
that it would forced under UP. These counts, for the literal
(p) and its negation (n), are combined with a Freeman like
function:n+p+1+1024∗n∗p. Ties are broken randomly.6

3In our context the complexity of hyper-resolution is heavily
dependent on the number of clauses, so clause learning must be
carefully implemented.

4The Sat-Ex data is quite accurate, and since it represents over
1 year of CPU time, difficult to reproduce locally.

5In particular, the procedure check if there are any pairs of 3-
clauses of the form(`, a, b) and (¯̀, a, b) from which it can con-
clude the new binary clause(a, b).

6The random tie breaking turns out to be essential—it causes

However, there are a few families for which this heuristic
fails badly: par-16, ii-32, pret-60, and pret-150. For these
families we found that replacing the final scoring stage with
one that estimates the number of new binary clauses that
would be forced by a literal under UP to be vastly superior
(i.e., we estimate the number of new binary clauses rather
count than the number of new unit clauses). With the stan-
dard heuristic,2CLS+EQ required 30930.75 sec. to solve the
10 par-16 problems (ranking 20th fastest among the 24 sat
solvers tested by Sat-Ex), 2229.66 sec. to solve the 17 ii-32
problems (ranking 10th), 48.97 sec. to solve the 4 pret-60
problems (ranking 15th), andcannot solveany of the pret-
150 problems within a 10,000 sec. timebound (tied for 13th
with 12 other solvers, includingPOSIT and SATZ). How-
ever, with scores based on estimating the number of binary
clauses it required only 45.32 sec. to solve the par-16 family
(ranking 4th), 495.73 sec. to solve ii-32 (ranking 7th), 0.82
sec. to solve pret-60 (ranking 10th), and 56.34 sec. to solve
pret-150 (ranking 11th).

The first experiment indicates that the competitive solvers
in the general purpose category areZCHAFF, RELSAT-2000,
andSATO-v3.00. (this is also confirmed by the solver rank-
ing given on the Sat-Ex site). The next experiment ex-
amines2CLS+EQ’s performance on a collection of families
that these three solvers find most difficult. We excluded the
families parity-32, g, and f, as none of the general purpose
solvers can solve these problems and neither can2CLS+EQ.
The results on the families we experimented with are shown
in Table 1. (We used the standard heuristic of counting the
number of new unit clauses and doing our simple lookahead,
in all of these tests. In some cases our experiments were lim-
ited by our ability to locate the problem suites.) Included in
the table are the results obtained byZCHAFF, RELSAT-2000,
andSATO-v3.00 as well as where2CLS+EQ ranks (timewise)
among all 23 solvers for which Sat-Ex has data. The table
shows the total cpu time (in seconds) required to solve all
members of the family. The number of problems in the fam-
ily are indicated in brackets after the family name, and the
number of problems that a solver failed on (with a 10,000
sec. timebound) are also indicated in brackets before the to-
tal time. We follow the Sat-Ex convention and count 10,000
as the increment in time for an unsolvable problem.7

The miters family is where2CLS+EQ has its best perfor-
mance. It is the only solver among the 23 cited on Sat-Ex
that is able to solve all of these problems (all other solvers
fail on 2 or more problems).ZCHAFF fails on the two prob-
lems c6288-s and c6288, and is unable to solve them even
when given 172,800 sec. (48hrs) of CPU time. Interesting,
2CLS+EQ solves both of these problems without any search;
i.e., an initial application of HypBinRes+eq suffices to show
these problems unsatisfiable. Thus2CLS+EQ has some po-
tential as a preprocessor. In contrast, the 2Simplify (Braf-
man 2001) system does not reduce the difficulty of these

the search to cover different possibilities rather than get stuck re-
peatedly trying the same best scoring variable.

7There are many problems with this convention, but following
it does allow our results to be more readily compared with those
presented at the Sat-Ex site.



Family (#problems) 2CLS+EQ 2CLS+EQ
ranking

RELSAT-2000 SATO-v3.00 ZCHAFF

hfo4(40) 2,622.95 13th 569.51 33,785.92 6,506.10
eq-checking(34) 32.53 3rd 13.88 (1) 10,007.25 2.45

facts(15) 95.24 5th 75.46 12.78 13.45
quasigroup(22) 6,760.12 8th 2,347.83 1,087.70 845.89
queueinvar(10) 273.93 5th 236.04 (2) 20,400.45 15.39

des-encryption(32) (8) 80,258.05 3rd (8) 80,729.42 (8) 80,402.84 (2) 22,726.43
fvp-unsat.1.0(4) (2) 27,672.40 2nd (3) 30,006.79 (3) 30,006.35 1,224.86

Beijing(16) (2) 30,435.00 8th (2) 24024.57 (4) 44078.88 (2) 20268.12
barrel(8) 4,793.61 3rd (1) 11,872.80 (1) 10,417.70 912.22

longmult(16) 4,993.56 2nd 41,243.77 (1) 22,270.98 4,502.49
miters(25) 419.80 1st (7) 86,670.25 (20) 209,123.33 (2) 21,289.77

Table 1: Results of the best general purpose Sat Solvers. Bracketed numbers indicate number of failures for that family.
Ranking is with respect to all 23 solvers on Sat-Ex. The best times are inbold.

problems: the 2Simplified versions remain unsolvable by
ZCHAFF (within 48hrs of CPU time).

The results demonstrate that the extended reasoning per-
formed by2CLS+EQ can be a competitive way of solving
sat problems. In fact, the system is in many respects su-
perior to all previous general purpose SAT solvers, except
for ZCHAFF. The fvp-unsat.1.0 problems,8 des-encryption,
and some other tests we ran, show thatZCHAFF remains in
a class of its own on many types of problems. Examin-
ing 2CLS+EQ’s behavior on these problems indicates that
2CLS+EQ makes good progress in the search, but then be-
comes stuck in a part of the tree that is very difficult to exit
from. A similar phenomenon occurs when using the wrong
heuristic for the pret150 family. It is clear that restarts and
clause learning are essential for improved performance on
these types of problems, and that these features have to be
implemented in2CLS+EQ. We suspect that with these fea-
tures2CLS+EQ will be able to outperformZCHAFF on many
other problems.

The Beijing family indicates that2CLS+EQ will, however,
never be uniformly superior to UP based DPLL solvers. In
this family of problems2CLS+EQ actually performs quite
well on the first 8 problems, and like the other 3 solvers
is unable to solve 3bitadd31 or 3bitadd32. However, it
takes a total of 8943.58 sec. to solve the 6 e?ddr2-10-by-5-
? problems. Many other solvers find these problems very
easy.2CLS+EQ only needs to examine a total of 764 nodes
during its search to solve all six problems. However, it re-
quires an average of 11.7 seconds to examine each node. In
these problems 90,058,925 binary clauses are added and re-
tracted as we move up and down the search trees examining
these 764 nodes. It seems that for these problems massive
numbers of binary clauses can be generated with little or no
pruning effect. In contrast,ZCHAFF solves all 6 of these
problems in 18.14 sec, searching 37,690 nodes at the rate of
0.0005 seconds per node.

Finally, 2CLS+EQ utilizes a number of different features

8A range of interesting hardware verification problems, includ-
ing the fvp-unsat.1.0 problem suite, have been generated by M.N.
Velev and are available from http://www.ece.cmu.edu/˜mvelev.

and a legitimate question is the relative impact of these fea-
tures. We do not have the space to present a proper abla-
tive study, but we can make the following general remarks.
Hyper-resolution turns out to be essential in almost every
case. Without it the binary sub-formula tends not to interact
much with the rest of the formula and hence it forces rela-
tively few literals.9 Intelligent backtracking is also essential
for most problems, e.g., without it2CLS+EQ fails on 5 of the
miters problems. Backpruning is less important, but without
it, e.g., 2 of the miters problems cannot be solved. In some
cases, however, intelligent backtracking can be a waste of
time. For example, without it2CLS+EQ can solve the barrel
family in 1527.58 sec. For these problems intelligent back-
tracking does not decrease the number of nodes searched.
Normally, however, the overhead for the record keeping in-
telligent backtracking requires is more like 25% rather than
the 300% of this extreme example.

Conclusions
We have presented a DPLL solver that is based on doing
much more extensive reasoning in order to reduce the for-
mula at each node. We have shown that with this can in fact
pay off. The result is a very robust solver that is competitive
with the best general purpose solvers. More interesting is
that the solver is by no means as fast as it could be. More en-
gineering effort could be put into making it faster, and most
importantly restarts and clause learning could be added. The
solver also has the potential of being used as a powerful pre-
processor. The overall message is that for building faster
SAT solvers we do not have to be confined by the recent
trends of investigating faster ways of doing simple things,
but rather we can continue to investigate more interesting
and powerful reasoning techniques.
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