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Abstract

Tracking-by-detection has become a popular tracking

paradigm in recent years. Due to the fact that detections

within this framework are regarded as points in the tracking

process, it brings data association ambiguities, especially

in crowded scenarios. To cope with this issue, we extended

the multiple hypothesis tracking approach by incorporating

a novel enhancing detection model that included detection-

scene analysis and detection-detection analysis; the former

models the scene by using dense confidential detections and

handles false trajectories, while the latter estimates the cor-

relations between individual detections and improves the

ability to deal with close object hypotheses in crowded sce-

narios. Our approach was tested on the MOT16 benchmark

and achieved competitive results with current state-of-the-

art trackers.

1. Introduction

Multiple object tracking(MOT) automatically estimates

the motion status of targets in video sequences, and it is

widely applied in many fields, e.g. video surveillance[14],

human-computer interaction[3], and robot vision[10]. Al-

though a lot of progress was made in MOT, problems such

as occlusion, crowded scenario, and illumination variation

still persist. Till now, MOT is a challenging task in com-

puter vision.

With the development of object detecting technology,

tracking-by-detection becomes one of the most popular

tracking frameworks. In this paradigm, the object hypothe-

ses of each frame are detected by object detectors as part

of the pre-process, and then the trackers apply data associ-

ation algorithms to link these object hypotheses into trajec-

tories. Since multiple hypothesis tracking can easily exploit

high-order constraints, it is considered to be one of the most

attractive tracking approaches.

Recent data association based trackers design energy

functions in such a way that they model the tracking status,

and find the optimal solution to get the final tracks. These

(a) With detection-scene analysis (b) No detection-scene analysis

(c) With detection-detection analy-

sis

(d) No detection-detection analysis

Figure 1. Results of multiple hypothesis tracking with/without en-

hancing detection model. (a)(b):detection-scene analysis, which

penalizes detections or tracks which do not fits the scene model,

helps to solve false tracks with high confidential false postives.

(c)(d):detection-detection analysis, which models the correlation

between close targets, helps to increase the recall, especially when

detections are overlapped.

methods help avoid local decisions and improve tracking

performance using global optimization. However, since the

input detections are often regarded as (center or foot) points

in these methods, it brings data association ambiguities, es-

pecially in crowded scenarios.

In order to address this problem, we propose a novel en-

hancing detection model, which includes detection-scene

analysis and detection-detection analysis. This approach

models the scene and correlations between individual de-

tections using analysis on our proposed dense confidential

detection set, and following this, we incorporate the model

into multiple hypothesis tracking. Tracking results using

enhancing model are illustrated in Fig.1.

The main contributions of this paper include:

• A detection-scene analysis which models the scene by

using our proposed dense confidential detection set and al-

lows the tracker to handle false trajectories.
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• A detection-detection analysis that estimates the corre-

lations between individual detections. It improves the abil-

ity to deal with close object hypotheses in crowded scenar-

ios.

• Multiple hypothesis tracking that incorporates our en-

hancing detection model and allows tracker to handle com-

plex scenes with both fixed and moving cameras.

• A demonstration of our method on the MOT16 bench-

mark which achieves competitive results with current state-

of-the-art trackers.

2. Related Work

Tracking-by-detection is a popular framework in multi-

ple object tracking[28][17], in which object hypotheses are

used as input, while trackers associate them into tracks over

the whole sequence. Many data-association methods, such

as the Hungarian algorithm[30], were introduced to solve

tracking problem.

Milan et al. [23] proposed a conditional random field

based framework, where detection-level and track-level ex-

clusions were modeled to improve tracking performance in

crowded scenarios. An extended method [24] obtained a

set of tracklets first and then designed a discrete-continuous

energy to reconstruct final trajectories. However, the per-

formance of these two approaches relied on the quality of

the tracklet proposals, and tracking errors in initial tracklets

propagated to the final results.

Zhang et al. [31] and Butt et al. [2] proposed a min-

cost flow based data association method for multiple object

tracking, and the optimal solution was solved though either

linear programming or Lagrangian methods. Chari et al.

[3] proposed a pairwise cost to enforce or penalize track-

lets, which effectively handled overlapping problems and

tracking enhancements. [9] and [29] also followed the net-

work flow framework. McLaughlin et al. [21] extended this

min-cost network flow method so that the tracking problem

was solved in a two-step scheme: 1) An initial result was

estimated without motion information, and 2) It was then

combined with a motion model to generate a more accurate

solution. Accumulative errors could occur during this two-

step scheme. More specifically, even though network flow

based methods had the benefit of computational efficiency

and optimality, the one drawback was that only unary and

pairwise terms were taken into consideration.

Cox et al. [5] proposed classic multiple hypothesis track-

ing, in an effort to delay association decisions until they

were resolved. However, the number of hypotheses grew

exponentially. [13] incorporated appearance model to solve

this issue. Then [16] proposed an online appearance model

for multiple hypothesis tracking. In the final tracking re-

sults, false detections led to false positives.

Other methods used high-quality appearance model or

features for tracking. Ma et al. [20] exploited a novel
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Figure 2. Maximum Weighted Independent Set. Hypotheses with

common detection(s) are conflicting. Node A, C and E are selected

as a solution in this example.

deep learning based features trained on object recognition

datasets to improve tracking performance. Danelljan et

al. [8] introduced a real-time tracking framework based on

adaptive color channels. Though it handled different types

of scenarios, it failed at scaling, so [7] proposed solution to

this problem.

To summarize, although detections are fundamental to

data association approaches, trackers often regard detec-

tions as points in the tracking process. This information

loss led to final tracking errors. In this paper, we focus

on this issue and propose an enhancing detection model,

that understands the scene and mutual detection correlation

through detection analysis. Moreover, the model is incorpo-

rated into multiple hypothesis tracking so that it improves

the tracking performance in crowded scenarios with both

fixed and moving cameras.

3. Multiple Hypothesis Tracking

We give a tradition formulation of multiple hypothesis

tracking for multi-target tracking problem in this section.

The details of extended framework are given in Sec.5.

Our goal is to estimate the trajectories of each target

within a given sequence. As we adopt the tracking-by-

detection framework, the input of the approach is a de-

tection set provided by the object detector, such as DPM

detector[12]. Let D = {Dj
i } be the detection set, and

Dj
i = (xj

i , y
j
i , w

j
i , h

j
i , a

j
i , c

j
i ) indicates j-th detection in

frame i where (x, y) is the position, (w, h) is the scale, a
is the appearance and c is the detection confidence. Based

on these inputs, the problem is solved by a frame-by-frame

method and at each frame, hypothesis updating, hypothesis

formation, and hypothesis pruning are processed.

Given the hypothesis set Hi = {H1
i , H

2
i , ..., H

Ni

i }, the

goal of new hypothesis updating is to estimate hypothe-
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sis set Hi+1 = {H1
i+1, H

2
i+1, ..., H

Ni+1

i+1
} based on track-

ing evidences, such as motion, appearance, where Ni is

the number of the elements in hypothesis set Hi. Each

Hj
i = {DI

j

i,1

1 , D
I
j

i,2

2 , ..., D
I
j

i,i

i } presents a track(sequence of

detections), where Dk
i can be either element in detection

set Di or dummy detection. Note that the actual starting

time of the track is the index of the first detection which is

not dummy detection, although all hypotheses start from the

first frame. Moreover, each hypothesis H is assigned with

a score s, which is defined as follows:

s(H) = wmsm + wasa (1)

,where sm and sa are the motion and appearance confi-

dences, and wm and wa are their weights.

Hypothesis formation is applied after hypothesis updat-

ing, and it is the key process of multiple hypothesis track-

ing. Given hypothesis set H, the goal of hypothesis for-

mation is to find the most likely track set where tracks fits

given constraints. In [16], the problem is formulated as k-

dimensional assignment problem:

max
z

ΣN1

i1=1
ΣN2

i2=1
...ΣNk

ik=1
si1i2...ikzi1i2...ik (2)

s.t. ΣN1

i1=1
...Σ

Nu−1

iu−1=1
Σ

Nu+1

iu+1=1
...ΣNk

ik=1
zi1i2...ik = 1 (3)

for iu ∈ {1, 2, ..., Nu}, u ∈ {1, 2, ..., k}

,where it has a constraint that each observation can be-

long to one track at most. It is then solved as a Maximum

Weighted Independent Set(MWIS) problem as follows:

max
x

Σlwlxl (4)

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E (5)

xl ∈ {0, 1} (6)

,where E is the exclusion set. Each element (Hi, Hj) ∈ E
shows that Hi and Hj cannot be selected simultaneously.

An example is shown in Fig.2.

Hypothesis pruning is the last process of each iteration

and its purpose is to reduce the number of tracking hypothe-

ses, because the number grows exponentially. An N-scan

pruning approach is usually applied for this task[5].

To summarize, multiple hypothesis tracking converts

tracking problem into hypothesis generation and selection

problems, and provides a flexible framework to model com-

plex mutual exclusion models. Due to this property, we in-

corporate our enhancing detection model into multiple hy-

pothesis tracking to improve the tracking performance. The

enhancing detection model is introduced in later sections.

4. Enhancing Detection Model

Previous sections provide a brief overview of the

tracking-by-detection framework. One drawback of current

MOT approaches is that detections are regarded as points,

and scales are used for non-maximum suppression or de-

tection similarity calculation without position. This paper

focuses on digging out tracking evidences from the input

detection set, including scene understanding and mutual de-

tection correlation. It is noted that in this paper we use coor-

dinate of foot(middle-bottom) point to describe the position

of a detection.

To address this issue, we propose a novel enhancing

detection model. Our enhancing detection model con-

sists of two key components: detection-scene analysis and

detection-detection analysis. Detection-scene analysis un-

derstands the scene information based on input detections,

and detection-detection analysis describes the mutual re-

lationship between two individual detections. Details of

detection-scene model and detection-detection model are

introduced in Sec.4.1 and Sec.4.2 respectively.

4.1. Detection-scene Analysis

The goal for detection-scene analysis is to understand the

correlation between detection and scene using input detec-

tions. Our initial motivation is to model the correlation be-

tween detection and scene so we propose a detection-scene

mapping M : (x, y) → h which describes the height vari-

ation with the position in the scene. To get a more reliable

model, we use the foot points instead of center points to rep-

resent the positions of detections so that the detection coor-

dinates are in close positions to the ground plane where ob-

jects stand. Compared to using the center ones, this method

removes the impact of object height. It is noted that one as-

sumption of our detection-scene analysis is that height and

viewpoint of a fixed or moving camera does not change sig-

nificantly over the time so targets at a certain position in the

image space have similar scale based on perspective distor-

tion, even when the camera is moving.

Given detection set D = {Dj
i }, where Dj

i indicates j-th

detection in frame i. Each detection D ∈ D is defined as

D = (x, y, w, h, a, c), where (x, y) is the position, (w, h) is

the scale, a is the appearance and c is the confidence given

by detector.

Data Preprocess. As detection set is generated by an

object detector, it contains many noisy detections, so in or-

der to handle the detection noise problem, a data preprocess

is needed and we propose a concept of dense confidential

detection set.

Let D be the original detection set, then we first generate

the new confidential detection set Dcon. The confidential

detection set Dcon is defined as follows:

Dcon = {D ∈ D|c >= thcon} (7)

,where c is the confidence score of detection D and thcon is

the threshold.
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Figure 3. Workflow of Detection-scene Modeling. Detections with

high confidence are in green and detections with low confidence

are in yellow. x’ and y’ are the coordinates in dense confidential

detection set.

As many detections with low confidence scores are re-

moved from the original detection set, sparse data problems

for our scene estimation may occur.

To handle this issue and get a smooth position-height

mapping, we divide the whole frame into M ∗ N patches,

and each patch has the same size Wp ∗ Hp. Therefore,

new detection D′ = (x′, y′, w, h, a, c) in dense confiden-

tial detection set D′

con is defined based on detection D =
(x, y, w, h, a, c) in detection set Dcon as follows:

{

x′ = ⌊ x
w
⌋+ 1

y′ = ⌊ y

h
⌋+ 1

(8)

,while the scale, appearance and confidence remain the

same.

The processes presented below are based on the dense

confidential detection set D′

con, as shown in Fig.3.

Mapping formation. Since the scale of detection in the

image plant varies with the position based on perspective

distortion and our model is designed to describe this corre-

lation between detection and scene, so as to fit the position-

height surface in the image plane using dense confidential

detection set D′

con. However, due to the complex scenar-

ios and cameras status(fixed and moving), it is not easy to

choose a certain (polynomial) function to model the scale

variation so we resort to using a neural network with k hid-

den layer with universality property to fitting our detection-

scene model[6]. Note that we choose the sigmoid function
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Figure 4. Result of Detection-scene Model. (a) is the detection-

scene model of (c), which is a sequence of fixed camera. (b) is

the detection-scene model of (d), which is a sequence of moving

camera. The coordinates of (a) and (b) are based on the foot point

of detections and the value is the estimated height in pixel.

as the active function. Position (x′, y′) is used as input

and height h is used as output. To optimize the minimum

of a multivariate function, we apply the iterative technique

known as the Levenberg-Marquardt algorithm.

As a result, we get our detection-scene mapping

M(x, y), where x and y is calculated according to Eq.8. Es-

timated results of both fixed and moving cameras are shown

in Fig.4

4.2. Detection-detection Analysis

Object detectors, such as the DPM detector, often pro-

duce more than one response for single target. Current

trackers typically solve this problem by adopting non-

maximum suppression as part of the pre-process, which

keeps the detection with high confidence when overlapping

happens. Although NMS works well when tracking sparse

scenarios, it always leads to the low recall or fragment prob-

lem when tracking objects in crowded sequences. This is

due to the fact that NMS is a method based on local deci-

sions instead of global optimization, and in crowded scenes,

multiple targets appear close to each other. Detection-

detection analysis is proposed to encourage overlapping de-

tections when detections are likely to be different targets or

to discourage them when at least one of them is supposed to

be a false detection. Detection-detection analysis is based

on proposed detection-scene analysis.

Given the detection-scene mapping M(x, y) introduced

in Sec.4.1, the objective of detection-scene mapping is to

represent the correlation between individual detections, es-

pecially for overlapping detections. For this purpose, we

propose that probability P (D1 ∈ T , D2 ∈ T |D1, D2),
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where D ∈ T means detection D is a real detection and

belongs to track T . Based on the Bayesian inference, we

have

P (D1 ∈ T , D2 ∈ T |D1, D2)

=
P (D1, D2|D1 ∈ T , D2 ∈ T )P (D1 ∈ T , D2 ∈ T )

P (D1, D2)
(9)

, where P (D1, D2|D1 ∈ T , D2 ∈ T ) is the probability that

detection D1 and D2 are detected simultaneously assuming

these two detections are real targets, P (D1 ∈ T , D2 ∈ T )
are the probability that both D1 and D2 are true detections

and P (D1, D2) is the probability that D1 and D2 are de-

tected simultaneously.

Assuming two objects occupy the exact positions of D1

and D2, the probability that two objects are simultaneously

detected by the detector is based on the overlapping area.

Thus, P (D1, D2|D1 ∈ T , D2 ∈ T ) is defined as follows:

P (D1, D2|D1 ∈ T , D2 ∈ T ) = 1− D1 ∩D2

D1 ∪D2
(10)

, where D1 ∩D2 is the intersection area of D1 and D2 and

D1∪D2 is the union area of D1 and D2. Eq.10 implies that

when the less amount of area is overlapped, the more likely

the chance that they would be simultaneously detected.

As detections are indpendently generated by the object

detector, so we have

P (D1 ∈ T , D2 ∈ T ) = P (D1 ∈ T )P (D2 ∈ T ) (11)

We define the probability P (D ∈ T ) that detection D =
(x, y, w, h, a, c) is a true detection. Based on our detection-

scene model M(x, y).

P (D ∈ T ) =
1√
2πσ

exp(− (h−M(x, y))2

2σ2
) (12)

, where (x, y) is the coordinate of detection D in image

space and h is the height.

5. MHT Using Enhancing Detection Model

In the previous section, we describe our proposed en-

hancing detection model. In this section, we show how en-

hancing detection model, including detection-scene analy-

sis and detection-detection analysis, could be incorporated

in multiple hypothesis tracking. We improve hypothesis

updating and hypothesis pruning by using detection-scene

analysis, which is introduced in Sec.5.1 and Sec.5.3. More-

over, detection-detection analysis is applied in hypothesis

formation, which is discussed in Sec.5.2.

5.1. Hypothesis Updating with Detection-scene
Model

Hypothesis updating generates new hypothesis set Hi at

frame i based on previous hypothesis set Hi−1. New hy-

potheses are divided into two categories as traditional mul-

tiple hypothesis tracking: one extends the original hypothe-

ses by adding new observations which fit tracking models,

such as motion model and appearance model, while another

one regards each new observation as a new object.

After new hypothesis set Hi is obtained, each hypothesis

is needed to assigned with a score to provide the evidence

for hypothesis formation. We introduce a new term wdssds
to Eq.1, the score of hypothesis H ∈ H is defined as fol-

lows:

s(H) = wmsm + wasa + wdssds (13)

, where wm, wa and wds are respectively the weights of mo-

tion, appearance and detection-scene factor, and sm, sa, sds
are the scores of motion, apperance and detection-scene fac-

tor, respectively.

We apply the method mentioned in [16] for scores of mo-

tion and appearance. Assuming D is the newest observation

of hypothesis H , motion score is defined as follows:

sm = ln
P (D ∈ H)

P (D /∈ H)
(14)

, where P (D ∈ H) is the probability that detection D is

a true detection in H , and P (D /∈ H) is the probability

that detection D is a false positive in H . Based on previ-

ous observations in H , the expected position (x̂, ŷ) can be

estimated by Kalman Filter, so P (D ∈ H) is defined as

follows:

P (D ∈ H) = N ((x, y)|(x̂, ŷ),Σxy) (15)

, where N is the normal distribution with µ = (x̂, ŷ) and

Σ = Σxy.

The probability P (D /∈ H) is defined as a constant:

P (D /∈ H) =
1

V
(16)

, where V is the pixel number in a frame.

Similar to score of motion, the appearance score is de-

fined as follows:

sa = ln
P (D ∈ H)

p(D /∈ H)
(17)

, where D is current observation of hypothesis H .

Based on previous observations, the appearance similar-

ity S(D,H) is calculated using Multi-output Regularized

Least Squares(MORLS)[16]. Then P (D ∈ H) is defined

as follows:

P (D ∈ H) = S(D,H) (18)
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And P (D /∈ H) is defined as constant:

P (D /∈ H) = c1 (19)

Score of detection-scene factor describes how the hy-

pothesis H fits the detection-scene model. Based on Eq.12,

sds is defined as follows:

sds = ln(P (D ∈ H))

= ln(
1√
2πσ

exp(− (h−M(x, y))2

2σ2
)) (20)

= c2 − (h−M(x, y))2

, where (x, y) is calculated according to Eq.8, and M is the

detection-scene mapping.

5.2. Hypothesis Formation with Detection-detection
Model

Hypothesis formation converts hypothesis selection

problem into maximum weight independent set problem,

and the key component is to model its mutual exclusion set.

Given hypothesis set H, let s(H) be the score of hypoth-

esis H where H ∈ H. In a traditional multiple hypothesis

tracking, the first constraint is that a detection can only be-

long to at most one track. Then the unique-detection based

mutual exclusion set is defined as follows:

Eud = {(H1, H2)|H1 ∩H2 ̸= ∅} (21)

, where H1 and H2 are two hypotheses. If H1 and H2 have

common observation(s), then these two detections cannot

be simultaneously selected.

Another mutual exclusion set is based on our detection-

detection analysis. We models the probability P (D1 ∈
H, D2 ∈ H|D1, D2) in Sec.4.2. The probability represents

the likelihood that two detections D1 and D2 are real detec-

tions. Therefore, when the probability is high, it means D1

and D2 are likely to be two targets and both detections can

be selected. Otherwise, at least one of them is supposed to

be a false detection, and we penalize the pair. Our detection-

detection analysis based mutual exclusion set is defined as

follows:

Edd = {(H1, H2)|P (D1 ∈ H, D2 ∈ H|D1, D2) < thdd}
(22)

, where thdd is a threshold.

Then, the maximum weight independent set problem is

formulated as follows:

max
x

Σls(Hl)xl (23)

s.t. xi + xj ≤ 1, ∀(i, j) ∈ Eud (24)

xi + xj ≤ 1, ∀(i, j) ∈ Edd (25)

xl ∈ {0, 1} (26)

, where xl is the indicator of Hl. When xl = 1, it indicates

Hl is selected. Moreover, this optimization is solved by

[25].

5.3. Hypothesis Pruning with Detection-detection
Model

In this subsection, we discuss how our proposed model

improve the efficiency of hypothesis pruning.

In the hypothesis pruning process, besides standard N-

scan pruning approach introduced in Sec.3 is applied, we

also prune hypotheses according to our proposed detection-

scene analysis. For each detection D = (x, y, w, h, a, c),
relative height of detection hrd is defined as follows:

hr(D) =
h

M(x, y)
(27)

, where M is our detection-scene mapping. Then the rela-

tive height of hypothsis hr(H) is defined as follows:

hr(H) =
ΣN

i=1hr(Di)

N
(28)

, where Di is the i−th observation in H , and N is the num-

ber of observations in H . Then, pruning hypothesis set D is

given:

D = {H|H ∈ H, hr(H) < thlow or rr(H) > thhigh}
(29)

Then hypotheses in D are also removed in each iteration.

6. Experiments

Dataset. We tested our approach on the MOT16

Benchmark[22] and achieved very competitive results.

There are seven training sequences and seven test sequences

in the benchmark. We first demonstrate the evaluation re-

sults on training sequences to verify the effectiveness of our

framework in Sec.6.2. Moreover, in Sec.6.3, we compare

our method with other state-of-art tracking methods. For a

fair comparison, we use the public detection set given by

MOT16 as our algorithm input. So all tracking approaches

are based on the same input.

Implementation Details. We trained a convolution neu-

ral network to extract the appearance feature and in our im-

plementation, the network contains three convolutional lay-

ers and six inception modules. The input size is 14456, and

the output layer is a fully-connected layer which outputs

the 256-dimensional feature. In our tracking method, de-

tections are resized to 144 56 for feature extraction. For

training the convolution neural network, we use data from

CUHK03[19], Market-1501[32], CUHK01[18], VIPeR[26]

and i-LIDS[26]. We use the softmax classifier during train-

ing.

Parameters. thcon in Eq.7 is 0. wm, wa and wds in

Eq.13 are repectively 0.7, 0,1 and 0.2. c1 in Eq.19 is 0.3.

thlow and thhigh in Eq.29 are repectively 0.6 and 1.8.

Evaluation metrics. We use CLEAR MOT to measure

the tracking results:
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Table 1. Results on training sequences

Method Rcll↑ Prcn↑ GT MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑
baseline 38.4 93.4 517 62 284 3014 68044 228 312 35.4 78.7

NMS with high threshold 45.9 74.7 517 87 226 17195 59675 340 463 30.1 77.7

+detection-detection analysis 45.7 85.4 517 84 232 8653 59957 331 502 37.6 77.7

+detection-scene scoring 45.6 87.3 517 88 230 7347 60009 334 483 38.7 77.7

+detection-scene pruning 45.1 89.0 517 88 237 6187 60580 310 455 39.2 77.8

Table 2. Results from 2D MOT 2016 Challenge(accessed on 03/28/2017)

Method Rcll↑ Prcn↑ GT MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑
NOMT[4] - - 759 139 314 9753 87565 359 504 46.4 76.6

JMC[28] - - 759 118 301 6373 90914 657 1114 46.3 75.7

olCF[15] - - 759 86 368 6651 96515 381 1404 43.2 74.3

MHT DAM[16] - - 759 103 356 5668 97919 499 659 42.9 76.6

LINF[11] - - 759 88 389 7896 99224 430 963 41.0 74.8

EAMTT[27] - - 759 60 373 8114 102452 965 1657 38.8 75.1

OVBT[1] - - 759 57 359 11517 99463 1321 2140 38.4 75.4

LTTSC-CRF[17] - - 759 73 419 11969 101343 481 1012 37.6 75.9

ours(EDMT) 51.8 89.5 759 129 303 11122 87890 639 946 45.3 75.9

Multiple object tracking precision (MOTP ↑), Multiple

object tracking accuracy (MOTA ↑), Recall(Rcll ↑), Preci-

sion(Prcn ↑), the number of mostly tracked trajectories (MT

↑), the number of mostly lost trajectories(ML ↓), the num-

ber of false positives (FP ↓), the number of false negatives

(FN ↓), the number of identity switching (IDs ↓) and the

number of trajectory fragments (FM ↓).

The symbol ↑ is a positive indicator that means that the

higher the value, the better, while ↓ means the lower the

value, the better.

6.1. Computational Time

We implemented our approach in Matlab without code

optimization or parallelization and tested it on a PC with

3.0GHz CPU and 16 GB memory. It took 4345.2 seconds

for all seven training sequences and 3207.3 seconds for all

seven testing sequences. Note that the time of object detec-

tion and appearance feature extraction are not included.

6.2. Framework Verification

We first verify our method on MOT16 training se-

quences. One baseline method, three intermediate results

and final result are shown in Tab.1.

The baseline method is the implementation of traditional

multiple hypothesis tracking[16]. To verify the ability to

handle crowded scenes and avoid the errors caused by non-

maximum suppression, we first increase the threshold of

non-maximum suppression so as to remove fewer detec-

tions. As a result, the recall increases from 38.4% to 45.9%,

while false positive grows from 3014 to 17195. MOTA

decreases by 5.3%, because the high threshold of non-

maximum suppression brings too many false trajectories.

Firstly, detection-detection analysis is introduced to hy-

pothesis formation, and the result is shown as ’+detection-

detection analysis’. Compared to the previous result, false

positive drops to almost half, while false negative slightly

increases by 0.5%. Moreover, the recall keeps a high-level

while MOTA dramatically increases from 30.1% to 37.6%,

higher than the baseline method. The results prove that our

detection-detection analysis can handle noisy detections in

crowded scenes more effectively.

After we incorporate detection-scene analysis based

scoring into the approach, the result is shown as

’+detection-scene scoring’ and we find the false positive

keep falling while false negative remains stable. Moreover,

more trajectories become mostly tracked, and fewer ones

are mostly lost. Then, the MOTA reaches 38.7%, and our

results prove that our detection-scene model can help to

penalize false detections and improve the tracking perfor-

mance.

Finally, detection-scene analysis based hypothesis prun-

ing is added into tracking. Now the whole enhancing de-

tection model is incorporated into the tracker, and the result

is shown as ’+detection-scene pruning’. Almost all of the

evaluation indicators get the best of all these five results.

The reason is that our novel pruning method can remove

the trajectories which are not reasonable in the scenes.

Compared to the original baseline method, our final

MOTA grew from 35.4% to 39.2%. It proves our effec-

tiveness of our model.
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Table 3. Results on testing sequences

Sequence Method Rcll↑ Prcn↑ GT MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑
MOT16-01 MHT DAM[16] - - 23 6 11 164 4294 15 30 30.1 72.8

ours(EDMT) 37.8 94.2 23 6 10 150 3975 15 41 35.3 72.3

MOT16-03 MHT DAM[16] - - 148 28 40 3591 49521 230 304 49.0 76.5

ours(EDMT) 58.4 89.5 148 36 28 7182 43487 319 479 51.2 75.9

MOT16-06 MHT DAM[16] - - 221 35 118 247 5840 62 84 46.7 75.1

ours(EDMT) 54.0 93.5 221 46 104 430 5308 53 91 49.8 74.6

MOT16-07 MHT DAM[16] - - 54 6 23 408 9896 39 60 36.6 75.8

ours(EDMT) 50.3 93.0 54 8 15 614 8114 72 103 46.1 74.9

MOT16-08 MHT DAM[16] - - 63 8 28 331 10903 76 77 32.4 80.9

ours(EDMT) 37.9 88.2 63 7 21 846 10396 85 87 32.3 80.0

MOT16-12 MHT DAM[16] - - 86 14 43 266 4480 15 27 42.6 78.5

ours(EDMT) 52.4 85.5 86 17 35 739 3948 31 40 43.1 77.7

MOT16-14 MHT DAM[16] - - 164 6 93 661 12985 62 77 25.8 75.6

ours(EDMT) 31.5 83.4 164 9 90 1161 12662 64 105 24.9 75.0

6.3. MOT16 Benchmark Comparison

Our approach are tested on the MOT16 Benchmark

which contains seven training sequences and seven test-

ing sequences. The parameters are tuned on the training

set and the final result of testing sequences is submitted

to the benchmark. Tab.2 shows the quantitative evalua-

tions of our approach and the best previous published ap-

proaches on MOT16 benchmark. The comparison is also

found in the MOT Challenge website, and our tracker is

named EDMT(Enhancing Detection Model based Tracker).

Our tracker achieved competitive results as opposed to the

published state-of-the-art trackers.

[16] is the best published multiple hypotheses tracking

method, and we also follow this framework. Compared to

[16], our tracking result has significant improvements and

outperforms [16] by 2.4% on MOTA.

Tab.3 demonstrates the performance of our approach

with the best published multiple hypothesis tracking

method[16] on each testing sequence. Compared to

MHT DAM[16], our tracking results have significant im-

provement for most testing sequences, except MOT16-08

and MOT16-14. Especially, on sequence MOT16-07 our

MOTA increase by 9.5%. On MT, ML, and FN, our method

is better for all testing sequences. The results prove that our

enhancing detection model can considerably benefit multi-

ple hypothesis tracking.

7. Conclusion

This paper proposed a novel enhancing detection

model that simultaneously modeled the detection-scene and

detection-detection correlation. The detection-scene anal-

ysis modeled the scene by using our proposed dense con-

fidential detection set and it allowed the tracker to handle

false trajectories. In addition to that, the detection-detection

analysis estimated the correlations between individual de-

tections, which improved the ability to deal with close ob-

ject hypotheses in crowded scenarios. We incorporated our

model into the multiple hypothesis tracking, by adding a

new term to hypothesis scoring, mutual detection exclu-

sion constraints and detection-scene strategy pruning, all

of which helped to handle complex scenes with both fixed

and moving cameras. The results on the MOT16 bench-

mark were provided. We first verified the effectiveness of

each process on training sequences, followed by a com-

parison with the best published trackers is shown, and we

achieved competitive performance. We also demonstrated

our method with the best published multiple hypothesis

tracking on the MOT16 benchmark, and the results proved

that our model significantly improved the tracking results,

which are available on the MOT16 website.

In future work, we plan to integrate more constraints, in-

cluding detection-detection, detection-tracklet and tracklet-

tracklet correlations, into multiple hypothesis tracking to

achieve a better tracking performance, thereby further rais-

ing the tracking performance in complex scenarios. More-

over, our proposed enhancing detection model can also try

to be incorporated into other tracking approaches to han-

dle the detection information loss problem, and it may also

benefit the tracking performance.
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