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Abstract

As the use of the Internet continues to grow explosively,
edge computing has emerged as an important technique for
delivering Web content over the Internet. Edge computing
moves data and computation closer to end-users for fast lo-
cal access and better load distribution. Current approaches
use caching, which does not work well with highly dynamic
data. In this paper, we propose a different approach to en-
hance edge computing. Our approach lies in a wide area
data replication protocol that enables the delivery of dy-
namic content with full consistency guarantees and with all
the benefits of edge computing, such as low latency and
high scalability. What is more, the proposed solution is fully
transparent to the applications that are brought to the edge.
Our extensive evaluations in a real wide area network using
TPC-W show promising results.

1 Introduction

Edge computing has emerged as an important technique
for delivering Web content over the Internet to a constantly
growing user base. Edge computing has its roots in content
delivery networks (CDNs) that deliver content by moving it
from centralized servers to the edge of the network, closer to
end-users. This reduces communication over the wide-area
network (WAN) and the load on the server since some of
the computation can be performed at the edge. Edge com-
puting is evolving from caching static content web pages
to supporting more sophisticated applications with dynamic
content. Specifications for edge computing have been de-
veloped, such as Edge Side Includes (ESI) which enables
to distinguish between cacheable and non-cacheable con-
tent, and provides facilities to aggregate and assemble con-
tent at the edge. However, these techniques are neither
generic nor transparent, requiring customization on a per-
application basis. Moreover, caching is difficult if the data
can be updated frequently. In this case, the cached data at
the edge might become stale compared to the current state at

the server. While this might be acceptable for some applica-
tions, for an important class of applications (e.g., payment
operations) transactional semantics are a must and updates
are frequent.

We propose a radically different approach for update in-
tensive edge computing applications. These applications
have at their core databases. By moving a copy of the
database to the edge and keeping the copies coordinated,
adapting the application becomes unneccessary. We present
a wide area replication protocol that enables the delivery of
dynamic content with full consistency guarantees and with
all the benefits of edge computing, such as lower latency
and higher scalability. At the same time, the solution is
transparent to the application. The proposed technique ex-
ploits a novel consistency criterion, 1-copy-snapshot isola-
tion (1-copy-SI) [14], that enables high scalability and con-
trasts with former approaches for database replication based
on 1-copy-serializability (1CS) [11] that offered poor scal-
ability and were not amenable to be used in WANs [13].

Our approach differs from lazy replication approaches
that are typically used for wide area replication to overcome
the lack of scalability of 1CS. In lazy replication, trans-
actions are executed first at one replica. Any updates are
propagated to other replicas only after transaction commit,
thus providing fast response times. However, late propa-
gation can lead to serious inconsistencies, e.g., selling the
same item concurrently at two different replicas. To sim-
plify the problem, primary-secondary approaches have been
proposed. They require all updates to be performed at a pri-
mary replica. The secondary copies can only execute read-
only transactions. Secondaries receive a serialized stream of
updates propagated from the primary that guarantees con-
sistent albeit possibly stale reads. However, transparency is
lost, since the system must know a priori whether a trans-
action is read-only or not. Furthermore, performance is af-
fected because response time for update transactions might
include a WAN message round for each operation.

Many replication solutions have been proposed that pro-
vide full data consistency by coordinating transaction exe-
cution before commit (known as eager replication) [1, 3, 4,



16, 17, 14]. However, their focus was on replication within
a data center and not to deliver content to the edge of the
network, i.e., they were designed for local-area networks
where message latency is not an issue. Hence, some of
them use several messages per transaction. Some of them
[2, 3, 16] also suffer from transparency problems.

In this paper, we propose a replication tool specifically
designed for WAN replication to deliver dynamic content
transparently to the edge of the network. Our approach is
based on a middleware architecture that separates replica-
tion issues from standard database tasks. The system has
the potential to support a heterogeneous set of database sys-
tems, e.g., supporting both Oracle and PostgreSQL database
systems. The design of our replication middleware was
driven by the aim of overcoming the drawbacks of existing
approaches described before. Firstly, replication is trans-
parent to the application such that the application does not
have to be modified to enhance it with edge computing.
Secondly, there is at most one WAN message round within
the response time of update transactions. Thirdly, data is
consistent at all times so the delivered dynamic content is
always fully consistent. The proposed approach has been
benchmarked with TPC-W, the benchmark for web servers
with dynamic content in a real wide area network with dif-
ferent latencies between main and edge servers and a het-
erogeneous setup.

2 Execution Model

2.1 Transaction execution model

User requests that require database access are always en-
capsulated in transactions. User requests that only access
static content are considered non-transactional. A trans-
action (typically implemented as an application program)
contains a sequence of read r(x) and write w(x) operations
on the data objects in the database, and ends with a com-
mit/abort (c/a) operation. Read-only transactions only have
reads while update transactions contain at least one write
operation. A transaction represents a logical unit of work
(in terms of business logic) and should be executed atomi-
cally, i.e., either all or none of its operations are successfully
processed. Furthermore, concurrent conflicting transactions
need to be isolated from each other via a concurrency con-
trol method.

Snapshot Isolation (SI) is a common transaction iso-
lation level (e.g., used by Oracle, PostgreSQL, Microsoft
SQL Server). Although it does not provide serializability
as traditionally defined in textbooks, it provides the ANSI
serializable isolation level. Using SI a transaction sees a
committed snapshot of the database as of start of transac-
tion, and only write/write conflicts are detected. Each up-
date on a data object x creates a new version of x that be-

comes visible only when the updating transaction commits.
A transaction T reading x sees the last committed version
of x as of start time of T . Thus, in contrast to serializability,
reads and writes do not conflict and never block each other.
Furthermore, if a transaction T wants to update x and there
is a transaction T ′ that also updated x and committed after
T started (i.e., it is concurrent to T ), then T must abort.

2.2 Edge Server Architectures

We study five different architectures for providing dy-
namic content edge services. In all approaches, clients
that are local to the main server connect to it directly and
their execution is always local. In the centralized approach
(Fig. 1), all requests go to a central server, independently of
the location of the users. Remote users always experience
long response times. Typical existing edge server systems
follow one of the two cases depicted in Fig. 2. Clients con-
nect to their local servers. In case (i) of Fig. 2 the web-
server forwards all requests to the local application logic
where they are executed. If a request is transactional, the ap-
plication logic makes calls to the remote enterprise database
to perform the database operations (resulting in one WAN
message round for each database operation). In case (ii) of
Fig. 2, the web-server is able to distinguish between trans-
actional and non-transactional requests. It redirects non-
transactional requests to the local application logic while
transactional requests are forwarded to the application logic
at the main server that then executes the transaction and ac-
cesses the database locally. In this case, one WAN round
trip message is needed for forwarding the request and re-
turning the result.

Fig. 3 shows edge services based on lazy primary repli-
cation. Note that Fig. 3 is different from Fig. 2 in that there
is a database copy at each edge server. Now, additionally to
non-transactional requests also read-only transactions will
be served locally at the local cache or local database copy.
Database operations of update transactions must be exe-
cuted at the primary database. For that, the edge server
must know whether a request triggers an update transac-
tion or is read-only. In Fig. 3 case (i) the local application
server executes update transactions leading to a WAN mes-
sage round for each database access (i.e., many rounds per
transaction). In Fig. 3 case (ii) the web-server sends the re-
quest for an update transaction directly to the application
server at the primary server, leading to one WAN message
round per transaction. We name cases (i) and (ii) as LPn-
Msg (Lazy Primary with n Messages) and LP1Msg respec-
tively for our future discussion. For both approaches, the
primary database propagates any updates to the secondary
databases on a regular basis or immediately after commit.
This does not affect the client response time but the data at
the edge is stale until changes are propagated. This has two
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negative effects. Firstly, a client might not see its own up-
dates if it first submits an update transaction (which is exe-
cuted at the primary database) and then a read-only transac-
tion (which reads the local, possibly stale data copy). Sec-
ondly, crashes might lead to lost data, if the main server
crashes before propagating some changes to the secondary
which takes over as primary.

3 SEQ: replica control for WAN

We aim at a solution where the message overhead is kept
as small as possible and transaction execution can be dis-
tributed evenly among all servers. Furthermore, there is no
restriction on client applications and clients should always
see current and consistent data. Our architecture is depicted
in Fig. 4. There is a replication middleware instance for
each DB copy at each sever. All requests are processed lo-
cally. Neither web- nor application server need to perform
redirection or be aware of distribution and replication. All
database access is to the local copy. Only for update trans-
actions the middleware instances coordinate leading to one
WAN message round per transaction.

Our replication infrastructure provides 1-copy-SI [14]
which requires the replicated database to behave as if there
was one logical copy of the database that provides snapshot
isolation (SI). As discussed in Section 2.1, SI is more at-
tractive than serializability in that read and write operations
do not conflict and never block each other. Only writes
are relevant for conflict detection. This makes SI attrac-

tive for replication since determining read sets is difficult
for middleware based approaches. Furthermore, SI is par-
ticularly attractive for a WAN setting since no information
about reads needs to be exchanged among the replicas.

3.1 Protocol Overview

Read-only transactions are executed locally and commit-
ted immediately without any synchronization. An update
transaction is first executed at the local replica. During ex-
ecution, the middleware keeps track of all modified objects
identified by their primary key in form of a writeset. There
is no need to keep track of read operations because they
are not needed for conflict detection. When the commit re-
quest is submitted, the writeset is sent to the middleware at
the main server. We refer to this middleware as the global
sequencer. The global sequencer, upon receiving a write-
set from transaction T from replica R, performs a valida-
tion that detects whether it had received conflicting write-
sets from concurrent transactions at other replicas. In this
case, it informs R that T must abort. Otherwise, it informs
R that T can commit. Furthermore, it also sends the write-
set to all other replicas. Writesets are multicast in validation
order and remote replicas apply the writesets in the order
they receive them from the sequencer.

In this scheme, the WAN communication overhead is
one message round for update transactions executed at edge
servers. Otherwise, no WAN communication is needed.
Note that the replication middleware has already explicit



information of a transaction upon its commit time. This
nicely eliminates the need of predefining the transactions
(e.g., read-only or not). Furthermore, read operations of
update transactions are executed at their local edge servers
instead of the main server. Thus, SEQ has better load bal-
ancing potentials than primary replication.

3.2 Protocol details

The details of our protocol, denoted as SEQ (for se-
quencer) are depicted in Figure 5. The underlying database
replicas are assumed to have a concurrency control mecha-
nism that provides SI1. The application logic of the servers
uses a standard database interface, submitting a transaction
operation by operation to its local middleware replica Mk

(step 2). When a transaction begins (2a), it is assigned a
timestamp, start, referring to the last committed transac-
tion. This will later allow the identification of all concur-
rent transactions. All read and write requests are simply
forwarded to the local database replica Rk (2b). When the
application logic submits the commit request (2c), Mk ex-
tracts the writeset from Rk. If a transaction is read-only, it
commits immediately. Otherwise, Mk sends the writeset to
the sequencer middleware replica MSEQ for validation.

Once MSEQ receives the writeset for transaction T (3),
it validates T . Validation must run in a critical section. If
validation succeeds (3b), T is assigned a validation times-
tamp (increasing counter) and is stored for validation of fu-
ture transactions. Validation succeeds, if none of the con-
current, already validated transactions (those whose valida-
tion timestamps are higher than T ’s start timestamp), con-
flicts with T 2. MSEQ then sends the commit decision in-
cluding the writeset and the validation timestamp to all mid-
dleware replicas (including itself) in one FIFO message. If
the validation fails (3c), MSEQ sends an abort notification
back to the local replica of T .

Once a middleware replica Mk receives a commit
message for transaction T (4), it appends T to the
tocommit queue. If Mk receives an abort notification
for T (5), it asks Rk to abort T . A transaction T can
be applied at Mk (only needed if not a local transaction)
and commit once all previously delivered transactions have
been committed (6). Then Mk sets lastcommitted vid to
be T ’s validation timestamp. Since transactions are com-
mitted in validation order, this is the same as increasing
lastcommitted vid. Note that starting and committing

1Note that some commercial database systems use a special locking
mechanism to handle write/write conflicts early in the execution of a trans-
action. In this case, deadlocks might occur as discussed in [14]. In this
paper, we ignore this issue. Our protocol can be easily adjusted to such
situation similar to the approach taken in [14].

2A garbage collection process is responsible for deleting a writeset once
there are no transactions in the system that are concurrent to the corre-
sponding transaction.
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transactions at the database are serialized with a mutex in
order to guarantee that the correct lastcommitted vid is
assigned to the start value of newly starting transactions.

Due to space limitations, we do not show the proof of
correctness here. Please refer to [15] for detail. We rather
show an example for the better understanding of our proto-
col.

Example 1 Fig. 6 shows an example with three transac-
tions T1:w1(x), w1(y), T2:w2(x) and T3:r3(x) running
concurrently at sites E1, M and E2, respectively. M ’s
middleware replica is the sequencer. Transactions execute
at their local database first. T3 reads a snapshot of the
database not including any changes of concurrent transac-
tions T1 and T2 (as it would be in a centralized database).
After execution, T3 can commit immediately since it is read-
only. T1’s writeset is sent to the sequencer for validation.
For T2 no communication is needed since it executed at the
sequencer site. Assume the sequencer at M validates first
T2 and then T1. T2’s validation succeeds because there is
no transaction validated so far. The sequencer sends T2’s
writeset to all sites where it is executed and committed. T2

is also committed at M . The validation of T1 fails since
concurrent conflicting transaction T2 was allowed to com-
mit. The sequencer simply sends the abort decision back to
T1’s local middleware at E1 where it is aborted. That is,
all three sites commit T2 and abort T1.

4 HYBRID

While optimized on performance, SEQ has the same
fault tolerance shortcoming as lazy primary copy replica-
tion. If the main server acting as sequencer crashes, some
transactions committed at the main server but not propa-
gated yet might be lost. Replication protocols based on
Group Communication Systems (GCS) avoid this problem
by using uniform reliable multicast for inter-replica com-
munication [1, 17, 16, 19, 14, 23]. Uniform reliable mul-
ticast guarantees that once a replica receives a message all



1. Initialization:

• next vid := 1 (MSEQ only)

• ws list := {} (MSEQ only)

• tocommit queue := {}
• lastcommitted vid := 0

• dbmutex,wsmutex

2. Upon receiving an operation Op of T

(a) if Op is the first operation of T

• obtain dbmutex

• T.start := lastcommitted vid

• begin T at the local Rk

• release dbmutex

• execute in local Rk and return to ap-
plication logic

(b) else if Op is read or write, then

• execute in local Rk and return to ap-
plication logic

(c) else (commit)
i. T.WS:=getwriteset(T) from local Rk

ii. If T.WS=∅ commit and return to ap-
plication logic

iii. Send T to MSEQ

3. MSEQ only: Upon receiving T from
M j

(a) obtain wsmutex

(b) if !∃ T’ ∈ ws list such that
T.start<T’.vid ∧ T.WS ∩ T’.WS �= ∅:
• T.vid := next vid + +

• append T to ws list

• send (COMMIT, T) to all middleware
replicas in FIFO order

• release wsmutex

(c) else
• release wsmutex

• send (ABORT, T) back to M j

4. Upon receiving (COMMIT, T) from
MSEQ

• append T to tocommit queue

5. Upon receiving (ABORT, T) from
MSEQ

• abort T and return to the application
logic

6. Upon T is first in tocommit queue

• if T is remote begin T at Rk and ap-
ply T.WS

• obtain dbmutex

• commit T at Rk

• lastcommitted vid := T.vid

• release dbmutex

• remove T from tocommit queue

• if local, return to application logic

Figure 5. SEQ protocol on middleware replica Mk

replicas receive the message unless they crash. With this,
it is impossible that a replica receives a transaction (or the
decision for a transaction), commits the transaction, but no-
body else knows about the transaction. These protocols
are also different from SEQ in that they do not have a se-
quencer. Instead, a replica multicasts all relevant informa-
tion to all other replicas using total order multicast, which
guarantees that all replicas receive all messages in the same
order. Now each replica uses that order to detect conflicts
and decide on the commit/abort of transactions. Since all
receive the messages in the same order, all replicas make
the same decisions. However, while these protocols work
well in LAN settings, they are unfeasible for WAN envi-
ronments. [13, 20] have shown that total order and uniform
reliable multicast has prohibitively long message delays in
WANs already with two or three sites.

However, we can still take advantage of GCS in some
configurations. In large configurations, the main server, and
even some edge servers, might have several database repli-
cas (as they also have web-server and application server
farms). For example, a Chinese news website might have
its main server with many replicas in the company’s head-
quarter located in Beijing, an edge server with several repli-
cas in Shanghai, and then other edge servers with only one
replica scattered around the world. For these kinds of ap-
plications, we propose the HYBRID approach, which ad-
dresses the fault tolerance and performance issues. An ex-
ample of its architecture is depicted in Fig. 7. Replicas are
split into different subsets, each of them being located on a

different LAN. We assume the main server to have at least
two replicas.

Among the replicas within the main server, we use a
replica control protocol which is based on GCS and pro-
vides 1-copy-SI, e.g., SRCA-REP in [14]. Since commu-
nication is fast in a LAN, the overhead of uniform reliable,
total order delivery is acceptable. For the secondary LANs,
we use hierarchical validation. A transaction is first vali-
dated by a local sequencer at the edge server. If validation
succeeds, the local sequencer forwards it to a replica at the
main server for further validation. Decisions are sent from
the primary LAN via the local sequencers to other replicas.

HYBRID improves over SEQ in several ways. First,
since the replicas at the main server use uniform reliable
delivery, no transaction will be lost unless all replicas crash.
Secondly, at the edge servers only the local sequencers per-
form WAN communication, and only these local sequencers
must be known by the replicas at the main server. This also
leads to less WAN messages since commit decisions are not
sent to all remote replicas but only to the local sequencers
within each edge cluster which forward them in their local
LANs. Moreover, only the sequencer in a LAN will have
an open port on the firewall for WAN access. It reduces the
chances for attacks and the complexity of network manage-
ment. Finally, part of the validation is done at the local se-
quencers, decreasing the validation load at the main server.



1. Initialization:

• next vid := 1 (replicas at main
server)

• ws list:={} (replicas at main server
and M localSEQ)

• max vid := 1 (M localSEQ only)

• tocommit queue := {}
• lastcommitted vid := 0

• dbmutex,wsmutex

2. If Mk at edge server:

• See steps 2,4 5, and 6 of Figure 5

3. If Mk=M localSEQ at edge server (be-
sides step 2):

(a) Upon receiving T from M j in the same
server

i. obtain wsmutex

ii. if !∃T ′ ∈ ws list such that
T.start<T’.vid ∧ T.WS ∩ T’.WS �= ∅:

• T.start := max vid

• release wsmutex

• send T to MglobalSEQ

iii. else

• release wsmutex

• send (ABORT,T ) back to M j

(b) Upon receiving (COMMIT, T) from
MglobalSEQ

• obtain wsmutex

• max vid := T.vid

• append T to ws list

• send (COMMIT, T) to all M j in the
same LAN in FIFO order.

• release wsmutex

(c) Upon receiving (ABORT, T) from
MglobalSEQ

• send (ABORT,T) to the originator of
T

4. If Mk in main server:

(a) Upon receiving an operation Op of T

• Same as Figure 5 step 2 except step
2ciii: Multicast T locally in uniform
reliable and total order.

(b) Upon receiving T sent by a M localSEQ

from an edge server (MglobalSEQ only)

• Multicast T locally in uniform reli-
able and total order.

(c) Upon receiving T multicast in total or-
der

i. if !∃T ′ ∈ ws list such that
T.start<T’.vid ∧ T.WS ∩ T’.WS �= ∅:
• T.vid := next vid + +

• append T to ws list

• append T to tocommit queue

• if Mk is MglobalSEQ, send
(COMMIT,T) to all M localSEQ

in FIFO order

ii. else
• if T local, abort T and return

• else if T originated at edge
server and Mk is MglobalSEQ,
send (ABORT, T) back to the
M localSEQ of the originator of T .

(d) Upon T is first in tocommit queue

• See step 6 of Figure 5

Figure 8. HYBRID protocol on middleware replica Mk

4.1 Protocol details

For the sake of simplicity we assume a single replica at
the main server to communicate with all local sequencers.
We refer to this replica as global sequencer (note, however,
that validation is done at all replicas at the main server).
The algorithm can be easily extended such that each replica
at the main server maintains the communication with some
of the local sequencers.

We show the details of the protocol in Fig. 8. When a
transaction is submitted to a replica in an edge server, it fol-
lows the same procedure as discussed in SEQ (Step 2) until
it passes the validation in the sequencer of this edge server
(3(a)ii). At this time, it can not commit yet because there
may be some concurrent conflicting transactions at other
servers. Hence, its writeset has to be sent to the global se-
quencer for global validation. However, its start value is
adjusted so that validation is not repeated for those transac-
tions for which already the local validation confirmed that
there is no conflict. When the global sequencer receives a
transaction from an edge server (4b), it multicasts the write-
set in uniform reliable and total order among the replicas at
the main server. When a transaction is submitted to a replica
at the main server (4a), it follows the same procedure as dis-
cussed in SEQ protocol except that its writeset will be mul-

ticast in uniform reliable and total order locally. Thus, all
transactions are delivered to all replicas at the main server
(4c). They validate transactions according to the delivery
order. Thus, all decide in the same way. If a transaction
passes validation it is enqueued for execution. Moreover,
the global sequencer sends in FIFO order the commit deci-
sion and the writeset to all the local sequencers which for-
ward it to the others replicas of their LANs (3b). Thus all
replicas will execute and commit the transaction. If valida-
tion fails (4(c)ii) and it was a transaction of the main server,
the corresponding replica aborts the transaction. Other-
wise, the global sequencer notifies the local sequencer of
the originator of the transaction about the abort. This lo-
cal sequencer forwards this decision to the originator (3c).
Replicas at the main server apply writesets as in SEQ (4d).

5 Performance evaluation

5.1 System description

In our evaluation, we compare SEQ and HYBRID
against lazy primary copy replication (LP1Msg and LPn-
Msg). In order to provide a fair comparison, all approaches
were implemented within a single Java based middleware
replication framework. As application, we use the TPC-



W standard industrial benchmark for e-commerce applica-
tions. TPC-W models an Amazon-like e-bookseller. It is a
good example of a web-based application with a substantial
amount of dynamic content. We chose the shopping mix
with has 20% write transactions in order to show the perfor-
mance of both read-only and update transactions. We use a
standard setup of 100,000 items and 100 emulated browsers
which leads to a database with 650MB. The database fits
into memory and all our experiments are CPU-bound. All
our experiments use PostgreSQL7.2 as database. For HY-
BRID we used Spread [22] as group communication sys-
tem.

We conducted our experiments in a WAN with 1-4 sites
at Montreal (Canada), 1-3 sites at Madrid (Spain), 2 sites
at Toronto (Canada), and 1 site at Edmonton (Canada).
All machines are PCs with similar computing power (e.g.,
AMD 1.5-3.0GHZ/0.5-2GB memory/Linux). The round
trip times between machines vary from 40 to 150 ms de-
pending on the distances. To achieve the desired system-
wide load, clients were evenly distributed among the main
and edge servers and submitted transactions at the same
rate. In all tests, aborts occurred. However, aborts in the
worst case never exceeded three percent (for most of the
experiments they were close to zero), and are not further
discussed. All tests achieved the confidence interval of 95%
±2.5%.

5.2 Scenario 1: Individual Edge Servers

In this first scenario we compare SEQ against the two
lazy primary copy approaches using 4 servers in 4 different
cities. We show the results for the main server (at Montreal)
and at the edge server (Madrid) that has the longest network
distance from the main server.

We first analyze the CPU usage at the different servers
since it has a quite large effect on the response time of
the different algorithms. Fig 9.(a) shows the CPU usage
(cpu graphs) at the main server, i.e., the primary server for
LP1Msg and LPnMsg, and the sequencer for SEQ. SEQ has
a significant lower CPU usage than the lazy primary copy
approaches, especially at high loads. With primary copy,
both read and write operations of all update transactions are
executed at the primary. In contrast, with SEQ, the read op-
erations of update transactions submitted to edge servers are
processed only at the edge servers, keeping the load at the
primary lower. LPnMsg has slightly higher CPU usage than
LP1Msg because LPnMsg has to process more messages
than LP1Msg. At the edge servers (Fig 9.(d)), SEQ has
higher CPU usage than lazy primary copy for exactly the
same reason that it distributes the load more evenly across
the servers.

We now look at the response times of read-only transac-
tions submitted to either the main or the edge servers (total

graphs in Fig. 9.(a) and (d)), and the time spent within
the database (DB bars). We can observe that these times
are directly correlated with the CPU usage because read-
only transactions do not have any communication overhead.
Thus, SEQ has lower response than lazy primary copy at the
main server (Fig. 9.(a)) and higher response time at the edge
servers (Fig. 9.(d)). Furthermore, most of this response time
is due to time spent in the database.

Let us now examine the behaviour of update transac-
tions in Fig 9.(b) and (e). The figures show the response
time of update transactions (total graph), the time spent
at the database (DB bars) and at the network (network
bars). Update transactions submitted to the main server
(Fig. 9.(b)) are mainly affected by the time spent at the DB
since there is no WAN communication. The DB time is di-
rectly correlated with the CPU usage. Thus, since the SEQ
has the lowest CPU usage, it provides the shortest response
times. LPnMsg and LP1Msg have similar response times
since they have similar CPU usage. Update transactions
submitted to the edge servers (Fig. 9.(e)) show a different
picture. Note that the y-axis scales to 1000 ms compared
to 250 ms for the other figures. The response time of LP-
nMsg is four times higher than for LP1Msg and SEQ. The
reason is that LPnMsg needs one WAN message round per
operation (and in TPC-W an update transaction has on aver-
age four operations) while SEQ and LP1Msg only need one
per transaction. The network bars in the figure show that
LPnMsg clearly has higher communication overhead than
LP1Msg and SEQ. The figure also shows that both LP1Msg
and LPnMsg have higher DB overhead than SEQ. This is
because the update operations are executed at the primary
database. We have seen before that the primary server in the
lazy primary approaches has a higher CPU usage than the
edge servers with SEQ, leading to longer execution times.
Therefore, also LP1Msg has larger response times than SEQ
at the edge servers.

We have also evaluated the bandwidth consumption at
the main server and edge servers (Fig. 9.(c) and (f)) since
bandwidth usage is another crucial factor that edge comput-
ing aims at reducing. At the main server (Fig. 9.(c)) LPn-
Msg has the highest incoming and outgoing bandwidth con-
sumption because of the large number of messages needed.
LP1Msg has higher bandwidth consumption than SEQ be-
cause the main server must return query results of update
transactions in LP1Msg but not in SEQ. The edge server
(Fig. 9.(f)) has similar tendency as the main server.

5.3 Scenario 2: Clustered Edge Servers

In this scenario we compare HYBRID against LP1Msg
(being the better of the lazy primary protocols) and SEQ
in the network topology shown in Fig 7. Recall that HY-
BRID provides a higher level of fault-tolerance than SEQ



Figure 9. Scenario 1: individual servers (Main server + 3 Edge servers) at four cities

and LP1Msg. We study the results (1) at the global se-
quencer (primary), (2) at other replicas in the primary LAN,
(3) at a local sequencer and (4) at other replicas in the sec-
ondary LANs.

Fig. 10.(a)-(d) show the response time (total graphs) and
the time spent in the DB (DB bars) for read-only trans-
actions submitted to different servers, and the CPU usage
(CPU graphs) at these servers. DB overhead is the main
overhead of read-only transactions. LP1Msg has the high-
est CPU usage, and thus, the largest response time (total
graphs) for read-only transactions at the primary in the
primary LAN (main cluster) (Fig. 10.(a)). At all other
replicas (Fig. 10.(c)-(e)), it has slightly lower CPU us-
age than HYBRID and SEQ, and thus slightly lower re-
sponse times. Comparing HYBRID with SEQ, HYBRID
has slightly higher CPU usage due to the overhead of the
GCS, but response times remain similar for read-only trans-
actions.

Figure 10.(e)-(h) show the behavior of update transac-
tions. The figures contain graphs for the response time
(total), the time at the DB and at the network. Indepen-
dently to which server an update transaction is submitted,
LP1Msg has the worst response times except for transac-
tions submitted to the primary server at very low loads.
The reason is that all operations of update transaction must
be executed at the primary database. Comparing HYBRID
with SEQ, both spend similar time in the DB. However, HY-
BRID has the additional cost of the GCS resulting in higher

response times. However, the difference is relatively small
(20-50 milliseconds or 15% in most cases). This is the cost
of stronger fault tolerance provided by HYBRID.

6 Related work

Many replica control protocols in commercial solutions
and research are lazy primary [9, 6, 18]. We have already
discussed that lazy-primary is not transparent to applica-
tions since they need to know a priori whether transactions
are read-only or update. Our experiments show that lazy
primary has worse performance than SEQ and even HY-
BRID with its stronger fault-tolerance properties. Other ap-
proaches, although allowing update transactions to be ex-
ecuted everywhere, use a central scheduler to synchronize
each operation [4, 3]. Thus, similar to LPnMsg, they are
not feasible for a WAN setting. Note that although SEQ
also uses a centralized scheduler, it only synchronizes once
per transaction.

In recent years many replica control protocols have been
proposed [1, 16, 17, 7, 19], taking advantage of total or-
der and uniform reliable multicast primitives provided by
GCS [5] for synchronization before commit. [7], in fact,
provides generalized snapshot isolation which is similar to
1-copy-SI. [13] showed that protocols based on GCS do not
perform well in WANs. Some protocols [2, 16] require all
operations of a transaction to be known at start time or to
multicast the readset that can be very large. The former is



not transparent due to the need for application information,
and the latter would result in large bandwidth consumption
and large latencies in a WAN.

There exist some proposals directly addressing dynamic
content for edge computing. Traditional approaches [24]
cache static content and access the database at the main
server to assemble dynamic pages for database data. ESI
[8] is a standard for this technique. However, this technique
lacks transparency, and is implemented on a per application
basis. [10] proposes per-object replication strategies such as
primary copy for some types of objects and reconciliation
mechanisms for other types of objects. Thus, transparency
is lost and the replication architecture is highly interwoven
with the application semantics. The authors of [12] pro-
vide edge server primary-copy replication of J2EE objects
(beans) with transactional properties. However, the solution
is specific for application servers based on J2EE. Finally,
[21] proposes a lazy primary-copy DB approach where dif-
ferent edge servers might have different partitions of the
database. For each partition, a different edge server might
be primary. Our approach differs in two aspects. Firstly, we
provide full consistency, 1-copy-snapshot isolation, while
[21] uses lazy propagation. Furthermore, we can execute all
transactions locally, without complex redirection, achieving
a very good load balance across servers.

7 Conclusions

In this paper we have presented a novel approach to de-
livering dynamic content in edge computing. Unlike cur-
rent approaches either based in static content caching or
primary-copy replication, our approach provides a fully
consistent update-everywhere solution where all transac-
tions are always executed at the local replica. Update trans-
actions only incur one WAN message round per transaction,
and hence, their performance is similar to the fastest exist-
ing replication solutions. Different to nearly all existing so-
lutions, our approach is transparent to the application. The
proposed approach results in higher scalability and lower la-
tencies for delivering dynamic content. And finally, our pro-
tocols provide a high degree of fault-tolerance, especially
HYBRID, and are able to adjust to the network topology of
the application.
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Figure 10. Scenario 2: Clustered edge servers (10 servers) at four cites


