
Enhancing Energy Efficiency in Multi-tier Web Server Clusters via Prioritization
Tibor Horvath and Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

{tibor, skadron}@cs.virginia.edu

Tarek Abdelzaher
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801
zaher@cs.uiuc.edu

Abstract

This paper investigates the design issues and energy
savings benefits of service prioritization in multi-tier web
server clusters. In many services, classes of clients can be
naturally assigned different priorities based on their per-
formance requirements. We show that if the whole multi-
tier system is effectively prioritized, additional power and
energy savings are realizable while keeping an existing
cluster-wide energy management technique, through ex-
ploiting the different performance requirements of separate
service classes. We find a simple prioritization scheme to
be highly effective without requiring intrusive modifications
to the system. In order to quantify its benefits, we perform
extensive experimental evaluation on a real testbed. It is
shown that the scheme significantly improves both total sys-
tem power savings and energy efficiency, at the same time
as improving throughput and enabling the system to meet
per-class performance requirements.

1 Introduction

Multi-tier, clustered web server architectures are rou-
tinely used for high-performance web service provision.
Serious problems caused by the extremely high energy
consumption of large-scale systems, including the cost of
power delivery and cooling, thermal issues, and long-term
reliability challenges, are well-known today. Several power
reduction techniques based on low-power hardware states
and load distribution strategies have been devised to address
these problems in web server clusters [7, 10, 14, 15].

One of the principal techniques used to address the prob-
lem is dynamic voltage scaling (DVS), which exploits the
capability of processors to rapidly change their operating
frequency and voltage with very low overhead. The list of
valid frequency-voltage pairs constitute the CPU’s perfor-
mance states or ACPI P-states. A software controller can
transition between P-states in order to increase or decrease
the CPU’s power consumption.

Defining an optimal DVS policy for throughput-oriented
server cluster workloads is especially challenging because
the power-performance relationship varies between indi-
vidual machines. Further, in multi-tier (functionally dis-
tributed) clusters, the workload performance characteristics
also vary between tiers since different software is used for
each. Hence, similar power management decisions affect
each tier differently, and policies that are locally optimal
for each tier do not combine into a globally optimal power
management strategy. Therefore, multi-tier servers require
global, coordinated energy management to jointly optimize
power and end-to-end performance. In our previous work,
we developed a DVS control algorithm for multi-tier servers
based on theoretical optimization [11].

In this paper, we further increase the energy efficiency
of server systems that use our DVS policy by introducing
prioritization. In many applications, requests can be clas-
sified into different priority classes such that deadlines of
lower-priority requests can be relaxed. Then, if the server
is prioritized and the DVS algorithm is made aware of the
relaxed performance requirements of some classes of re-
quests, it may be able to operate some of the server ma-
chines in slower P-states, resulting in overall power savings.

We make two contributions in this paper. First, we
demonstrate an inexpensive design of a prioritized multi-
tier web server cluster running commodity software requir-
ing no application or OS modifications. Second, we quan-
tify the improvement in the system’s overall energy effi-
ciency due to such prioritization through experiments on our
testbed with a realistic multi-tier web server workload. Pri-
oritization saves up to 15% additional energy with only 3%
increase in average deadline miss ratio (DMR) and an up to
4% decrease in DMR for high-priority requests.

2 System Architecture

2.1 Motivation

One of the successful existing power and energy man-
agement techniques involves power-aware QoS, a combina-

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

tion of dynamic power management and service prioritiza-
tion [16]. The essence of such a technique is that lower-
priority tasks (requests) with longer deadlines can be sat-
isfied with lower system performance. Consequently, the
power usage of the system can be reduced.

The power-aware QoS approach was shown to yield
good results. However, prioritization in itself has not been
evaluated from an energy management standpoint. This
makes it difficult to predict how it would affect a system
with an existing dynamic power management solution al-
ready in place. Therefore, our work is motivated by the
question of what the added energy efficiency gain of priori-
tization is.

2.2 Assumptions

We address server farms running a multi-tier service
such as an e-business web site. The general architecture is
shown in Figure 1. Based on the expected load, each tier is
statically preallocated a number of machines (mi), among
which the total offered load arriving at the tier is evenly dis-
tributed.

Figure 1. General model of multi-tier system

We assume that, at a given throughput, the most impor-
tant performance metric for the multi-tier service is end-to-
end server latency, measured from the point a client request
enters the first tier until a response is sent back to the client.
Since response latency is the primary factor behind user sat-
isfaction with web sites [3], maximizing server throughput
alone is not sufficient. Hence, we assume that the site owner
defines end-to-end deadlines that the server application has
to meet. As it is typical in web services, these deadlines
are considered soft, where a user-selectable maximum miss
rate must statistically be met.

2.3 Design

2.3.1 Ideal design

The complete prioritization of a traditional multi-tier server
is very costly in terms of implementation effort. Con-
sider the model of a typical server application’s architecture
shown in Figure 2. A request processor accepts requests
from the input socket and places them in a task queue.
The next available service thread starts executing the task.
The task may create subrequests to the next tier, which are

Figure 2. Simplified model of typical server in
multi-tier system

queued up in the subrequest queue until a free connection
is available. A thread may also become blocked and placed
in an OS resource queue (e.g., CPU, disk, or semaphores).
Finally, the response is buffered in an output socket queue
until the OS is able to send it to the network.

Ideally, all of these queues should support priorities and
all subcomponents of each task (such as subrequests, disk
IO, resource locks, etc.) should inherit its priority. How-
ever, widely used server OSs such as Linux still lack many
of these features by default. Moreover, application support
is typically largely missing. Hence, to implement the ideal
design, one would have to modify critical parts of OS re-
source management and scheduling, each server applica-
tion, as well as the communication protocols to propage pri-
ority information between them.

2.3.2 Inexpensive design

Our design goal is to find the least intrusive prioritization
solution that is effective for the multi-tier system. We avoid
application modifications since most server applications are
large and complex, and the source code is often not avail-
able. It is nevertheless critical that the task queue and sub-
request queue behave as if they were prioritized because in
general both can become a bottleneck. The reason is that
both of these queues are served by a usually small number
of pooled resources (threads or connections) and the service
times can be relatively large. The local service time of a task
primarily depends on how resource-intensive the given tier
is, while the latency of a subrequest is the total task service
time of the next tier (including its subrequests).

As a simple solution, in many cases it is possible to run

2

multiple instances (one for each service class) of the same
server application and prioritize them on the process level.
This in effect creates separate queues for each class, which
are served by each instance in FIFO order. Assuming the
OS supports preemptive real-time process scheduling (such
as SCHED FIFO in Linux), by assigning real-time priori-
ties to the instances we ensure that higher-priority queues
are served first whenever there are idle threads or free con-
nections available. Since now we have separate processes
for each class, we also have separate communication chan-
nels for each class between the tiers. Thus, fortunately there
is no need to modify the communication protocols to add
priority information, since it is implicitly preserved by the
structure: each instance only issues subrequests to next-tier
instances of the same priority.

There are many situations where this design must be sim-
plified even further. For instance, database servers are gen-
erally not possible to run as multiple instances operating on
the same data set. In addition, their disk-intensive work-
load leaves process-level prioritization less effective, unless
OS support for prioritized asynchronous IO was also added.
Following our design goal, we solve the issue by leaving the
database server unprioritized while trying to minimize task
queuing in it. By selecting restrictive connection pool sizes
in the previous tier, we ensure that it becomes a bottleneck
instead of the unprioritized database server. This works be-
cause now the bottleneck stage (typically a CPU-bound ap-
plication server) is prioritized. It also limits the number of
concurrent database queries, reducing priority inversion due
to transaction and IO locking. If the original connection
pool size was already restrictive, it does not need to be fur-
ther reduced, only partitioned between instances, since this
reserves sufficient connections for high-priority requests to
prevent their starvation. Following this principle, in our
testbed we assigned 8 connections to 3 instances each, in
place of our original pool of 24 connections.

Naturally, the inexpensive design has certain limitations.
First, if the server’s bottleneck is an OS resource that is not
prioritized (e.g., disk or network), then process priorities are
not helpful. In most cases, however, the bottleneck can be
shifted to the previous tier as discussed above. Second, if
an application that does not support multiple instances on
the same machine is not the last tier, then this design has
no way of propagating request priority to the subsequent
tiers. Fortunately, in typical 3-tier setups this is not the
case: web and application servers allow multiple instances.
Finally, if different-priority instances in the same tier need
to perform intensive communication (e.g., to maintain fast-
changing shared state coherent), then under heavy overload
as the low-priority instances are starved they cannot respond
to any messages. However, such shared state poses scalabil-
ity limitations in itself, and thus avoiding overload is impor-
tant even without prioritization.

The inexpensive design represents a great reduction in
complexity compared to the ideal design and still results in
effective prioritization in our experiments.

3 Implementation

3.1 Overview

We deployed a three-tier web-serving system on Linux,
with Apache on the first tier, JBoss on the second, and
MySQL on the third. As the front-end load balancer, we
used the Linux Virtual Server solution. Static content (e.g.,
images) are served directly from the first tier. Forwarding
dynamic requests to JBoss and balancing them across the
second tier is done using the Apache module mod jk. Fi-
nally, database requests are issued by JBoss through the
Connector/J MySQL driver. To avoid the complexity of
database clustering, the third tier consisted of only one
server. Since in our setup database performance was not
the bottleneck, improving database scalability via cluster-
ing would not significantly affect our findings.

3.2 Energy Management

As the existing energy management solution, we employ
the following simple feedback control-based DVS policy,
discussed in more detail in our previous work [11]. The
system periodically determines its load using the follow-
ing user-defined criteria: if less than 5% of response laten-
cies exceed the 50% of the deadline, the system is consid-
ered underloaded, while if more than 5% exceed the 90% of
the deadline, we consider it overloaded. The algorithm in-
creases the speed (i.e., P-state) of the most utilized server if
the system is overloaded, or decreases the speed of the least
utilized server if it is underloaded. Since in our workload
(described in Section 4.1) the majority of deadlines were 3
or 5 seconds, a 5-second feedback period was chosen to al-
low control actions to have an effect by the next period. The
latency statistics are smoothed by exponentially weighted
moving averaging to reduce measurement noise.

Our implementation has two components: an Apache
module to measure the end-to-end latencies, and a daemon
on each server that measures its CPU utilization, runs the
feedback controller, and sets its P-state.

3.3 Server Replication

Simply replicating a server such that multiple identical
instances are executed on the same machine can result in
OS resource conflicts. Since many of these are exclusive
(bound sockets, output files, server state, etc.), separate re-
sources must be configured for each instance.

3

Another issue is that server instances that are as-
signed real-time process priorities can starve regular (non-
realtime) processes such as our user-space DVS daemon.
Hence, it may not get a chance to increase the machine’s
speed when needed. Therefore, the daemon was assigned
an even higher real-time priority than the server instances.

4 Experimental Evaluation

4.1 Workload

We used the TPC-W benchmark, a very realistic model
of an online bookstore application. On the first tier are 2
web servers serving image files, on the second tier we have
4 application servers maintaining session state and execut-
ing business logic, and on the third tier we have a database
server handling all persistent data. Client machines are run-
ning the Remote Browser Emulator, which emulates speci-
fied numbers of web clients. The database was populated
with the scaling factors of 100 Emulated Browsers and
1,000 Items. The workload profile was the TPC-W Shop-
ping Mix (the basis for the primary TPC-W metrics).

Experiments were repeated 5 times, and consisted of a
5-minute ramp-up period (to warm up the system), a 15-
minute measurement interval, and finally a 30-second ramp-
down period (to maintain load as measurement finishes).
The error bars show the standard deviation.

4.2 Experimental Setup

Our testbed consists of 8 AMD Athlon64 PCs with 512
MB RAM. The processor has two P-states with frequencies
at 1.8 GHz and 1.0 GHz. The machines are connected with
100 Mbit Ethernet. For measuring power, we use a Watts
Up Pro power analyzer (with 3% accuracy).

We performed our experiments on three different test
configurations. The Baseline configuration has no priori-
tization or DVS. In the NP-DVS configuration, we add our
DVS solution, and all clients are treated equal. In the P-
DVS configuration, however, we differentiate three clients
by relaxing some of their deadlines, assigning them to cor-
responding priority classes, and prioritizing the multi-tier
server cluster as described in Section 2.3.2. For example, if
a request type has a 3-second standard deadline, the three
clients are assigned deadlines of 3, 6, and 9 seconds, and
priority classes 1 (most important), 2, and 3, respectively.

4.3 Evaluation Metrics

Our primary metrics to evaluate performance are the sys-
tem’s throughput (web interactions per second, WIPS) and
its deadline miss ratio (DMR).

Our main results evaluate the energy efficiency of the
system, showing total system power, and total system en-
ergy per web interaction (Joules/WI). The first metric is im-
portant since many clusters are thermally constrained and
lowering the average power typically lowers related costs.
Further, since it is measured for equal intervals, it is directly
proportional to total system energy, which translates to elec-
tricity costs. The second metric is important because it is a
measure of energy efficiency (more precisely its reciprocal),
which represents the amount of “useful” energy spent exe-
cuting the successful web interactions. It also equals to av-
erage power divided by average throughput, which demon-
strates that it also accounts for performance.

4.4 Results

4.4.1 Performance

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

W
IP

S)

Load (# Emulated Browsers)

Class 1
Class 2
Class 3

Figure 3. Throughputs of the P-DVS setup

As expected of the prioritized system, Figure 3 shows
that the throughput of higher-priority classes is better as the
load increases toward peak capacity. When the load is low,
the system has enough capacity to satisfy requests from all
classes equally, hence the throughput is also identical.

Figure 4 compares the combined throughput of all
classes achieved by each setup. Note that in the higher
load region the Baseline setup sustains a higher throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

W
IP

S)

Load (# Emulated Browsers)

Baseline
NP-DVS
P-DVS

Figure 4. Total throughput comparison
(summed across all classes)

4

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

 0 100 200 300 400 500 600

D
ea

dl
in

e
M

is
s

R
at

io

Load (# Emulated Browsers)

Baseline
NP-DVS
P-DVS

Figure 5. Overall deadline miss ratio compar-
ison (including all classes)

than both NP-DVS and P-DVS. This behavior is expected
because, with many concurrent requests in the system, re-
sponse times are streched out more as the DVS policy slows
down some servers, hence the web interactions become
more spread out, resulting in lower throughput. In other
words, since the think times in the emulated browsers do
not depend on the response times, if the latter are longer, the
next requests will arrive later, effectively reducing through-
put. This is, however, not a problem as long as deadlines
are honored; in fact, the goal of the DVS policy is to use
up all slack time to save energy. It is a major advantage in
that the DVS-capable server automatically paces client be-
havior without missing deadlines, as opposed to operating
faster and bringing more requests upon itself that ultimately
results in lower energy efficiency.

We make two key observations from Figure 4. First, the
Baseline setup’s performance quickly falls off under very
high loads due to inefficient scheduling. In contrast, P-DVS
maintains a more consistent throughput by still allowing
most high-priority requests to complete. Second, P-DVS
clearly wins over NP-DVS, which degrades even earlier
than the Baseline because the stretched execution times in-
crease concurrency, exacerbating the scheduling inefficien-
cies. The fact that performing DVS in a throughput-oriented
soft real-time system places more stress on the scheduler
points to a fundamental performance advantage of prioriti-
zation in conjunction with energy management.

Comparing the overall deadline miss ratios between se-
tups in Figure 5, we can see that when heavily loaded, NP-
DVS has a higher miss ratio since treating all clients equally
causes it to saturate earlier. P-DVS, on the other hand,
successfully maintains an acceptable miss ratio by reduc-
ing scheduler contention via prioritization and by relaxing
deadlines of low-priority requests.

4.4.2 Energy Efficiency

The average power of each experiment measured on the
whole cluster is shown in Figure 6. As expected, NP-DVS

 420
 440
 460
 480
 500
 520
 540
 560
 580
 600
 620

 0 100 200 300 400 500 600

T
ot

al
 P

ow
er

 (
W

)

Load (# Emulated Browsers)

Baseline
NP-DVS
P-DVS

Figure 6. Total system power comparison

follows the curve seen with conventional DVS algorithms,
converging with the Baseline as load increases. In contrast,
P-DVS keeps power usage lower even as the system be-
comes overloaded. As we saw earlier, the differentiated
client classes result in a better overall deadline miss ratio,
which allows as much as 15% greater power savings. Note
that since all experiments had identical measurement inter-
vals, this also equals to the total energy savings.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

E
ne

rg
y

(J
/W

I)

Load (# Emulated Browsers)

Baseline
NP-DVS

P-DVS

Figure 7. Total system energy per web inter-
action comparison

Our final goal is to quantify and compare the energy ef-
ficiency benefits of the DVS setups. As discussed in Sec-
tion 4.3, energy efficiency is important since it factors in
throughput in addition to energy usage. Figure 7 plots the
average energy spent per web interaction, or the reciprocal
of energy efficiency of each setup. While the graph shows
no significant difference between the DVS setups at lighter
loads up to 375 EBs (7–14% savings over Baseline with
NP-DVS vs. 6–13% with P-DVS), around 525 EBs we see
a large increase (i.e., drop in energy efficiency) with NP-
DVS, which is due to the earlier saturation we observed in
Section 4.4.1 that causes throughput reduction. P-DVS, on
the other hand, avoids wasting energy on less important re-
quests and even achieves 48% savings over the Baseline at
600 EBs because of its ability to use less power and still
have higher throughput.

5

5 Related Work

Several papers address priorities in individual servers
[2, 6, 13, 16]. These solutions, however, require modifying
the server application, which is costly and often not feasible.
Other efforts [1, 17] have been directed at middleware QoS
solutions that do not require application or OS changes.
These do not, however, address multi-tier servers or energy
consumption. In contrast, our work is concerned with the
interaction of service differentiation with power manage-
ment and the energy consumption of clusters. Closely re-
lated to our research is the work of Sharma et al. [16]. While
we build on some of their results, we have a multi-tier sys-
tem model that requires coordinated energy management.

There is significant recent research on energy manage-
ment in server clusters [4, 8–10, 12, 14, 15]. However, they
either do not deal with service differentiation or they are
restricted to a single-tier cluster. An economically-driven
energy and resource management framework was presented
for clusters in [5]. This research is closely related to our
work since it allows service differentiation in conjunction
with energy management. However, extending it to the case
of multi-tier servers with end-to-end latency constraints is
not straightforward. Our work is distinguished from the
above literature in that we address multi-tier clusters with
different service classes, and we focus on how prioritization
affects the energy efficiency of such clusters.

6 Conclusion

This paper investigated how much additional benefit pri-
oritization has on a multi-tier server system’s energy effi-
ciency with an existing DVS-based power management pol-
icy. We prioritized the multi-tier system without application
or kernel modifications, and performed experiments using
three client classes, two with relaxed deadlines. Our results
clearly illustrate that the main benefit of prioritization is not
only more stable performance as the system nears overload,
but also greatly improved energy savings and efficiency, re-
sulting in energy savings up to 15%.

Acknowledgment

This work was funded in part by NSF grant no. CNS-
0306404, NSF grant no. CNS-0615277, ARO grant no.
W911NF-04-1-0288, and a grant from Intel MRL.

References

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Perfor-
mance guarantees for Web server end-systems: A control-
theoretical approach. IEEE Transactions on Parallel and
Distributed Systems, 13(1):80–96, 2002.

[2] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Provid-
ing differentiated levels of service in web content hosting.
Technical Report CS-TR-1998-1364, 1998.

[3] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-
perceived quality into web server design. In Proc. 9th In-
ternational World Wide Web Conference on Computer Net-
works, pages 1–16, Amsterdam, The Netherlands, May
2000. North-Holland Publishing Co.

[4] R. Bianchini and R. Rajamony. Power and energy manage-
ment for server systems. In IEEE Computer, Special issue
on Internet data centers, volume 37, Nov. 2004.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and
R. P. Doyle. Managing energy and server resources in host-
ing centers. In Symposium on Operating Systems Principles,
pages 103–116, 2001.

[6] L. Eggert and J. S. Heidemann. Application-level differen-
tiated services for web servers. World Wide Web, 2(3):133–
142, 1999.

[7] E. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient
server clusters. In Proc. Workshop on Power-Aware Com-
puting Systems, Feb. 2002.

[8] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conser-
vation policies for web servers. In Proc. 4th USENIX Sym-
posium on Internet Technologies and Systems, Mar. 2003.

[9] V. W. Freeh and D. K. Lowenthal. Using multiple en-
ergy gears in mpi programs on a power-scalable cluster. In
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 164–173, New York, NY, USA, 2005. ACM Press.

[10] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bian-
chini. Self-configuring heterogeneous server clusters. In
Proc. Workshop on Compilers and Operating Systems for
Low Power, Sept. 2003.

[11] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dy-
namic voltage scaling in multi-tier web servers with end-to-
end delay control. In IEEE Trans. Comput. In press.

[12] L. Mastroleon, N. Bambos, C. Kozyrakis, and
D. Economou. Autonomic power management schemes for
internet servers and data centers. 2, 2005.

[13] D. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-
Balter. Priority mechanisms for OLTP and transactional
web applications. In Proc. 20th International Conference
on Data Engineering, page 535. IEEE Computer Society,
2004.

[14] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Dy-
namic cluster reconfiguration for power and performance. In
L. Benini, M. Kandemir, and J. Ramanujam, editors, Com-
pilers and Operating Systems for Low Power. Kluwer Aca-
demic Publishers, 2002.

[15] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-
efficient real-time heterogeneous server clusters. In Proc.
12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’06), pages 418–428, Washington,
DC, USA, 2006. IEEE Computer Society.

[16] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and
Z. Lu. Power-aware QoS management in web servers. In
Proc. IEEE International Real-Time Systems Symposium,
page 63, Cancun, Mexico, 2003.

[17] P. B. Srinivas. Web2k: Bringing qos to web servers, 2000.

6

