
Enhancing Event Log Quality: Detecting and

Quantifying Timestamp Imperfections

D.A. Fischer1, K. Goel2, R. Andrews2, C.G.J. van Dun1, M.T. Wynn2, and M.
Röglinger1

1 FIM Research Center, University of Bayreuth, Project Group Business &
Information Systems Engineering of the Fraunhofer FIT, Bayreuth, Germany
{dominik.fischer,christopher.vandun,maximilian.roeglinger}@fim-rc.de

2 Queensland University of Technology, Brisbane, Australia
{k.goel,r.andrews,m.wynn}@qut.edu.au

Abstract. Timestamp information recorded in event logs plays a crucial
role in uncovering meaningful insights into business process performance
and behaviour via Process Mining techniques. Inaccurate or incomplete
timestamps may cause activities in a business process to be ordered in-
correctly, leading to unrepresentative process models and incorrect pro-
cess performance analysis results. Thus, the quality of timestamps in an
event log should be evaluated thoroughly before the log is used as input
for any Process Mining activity. To the best of our knowledge, research
on the (automated) quality assessment of event logs remains scarce.
Our work presents an automated approach for detecting and quantifying
timestamp-related issues (timestamp imperfections) in an event log. We
define 15 metrics related to timestamp quality across two axes: four lev-
els of abstraction (event, activity, trace, log) and four quality dimensions
(accuracy, completeness, consistency, uniqueness). We adopted the de-
sign science research paradigm and drew from knowledge related to data
quality as well as event log quality. The approach has been implemented
as a prototype within the open-source Process Mining framework ProM
and evaluated using three real-life event logs and involving experts from
practice. This approach paves the way for a systematic and interactive
enhancement of timestamp imperfections during the data pre-processing
phase of Process Mining projects.

Keywords: Process Mining · Event log · Data quality · Timestamps ·
Data quality assessment

1 Introduction

Process Mining, a sub-discipline of data science and business process manage-
ment (BPM), is a powerful technique that allows deriving insights into business
process performance and behaviour using historical records from event logs [1].
Previous research shows that Process Mining is widely applied in practice [7,10].
Thereby, using an event log as the fundamental data source for Process Mining,
organizations gain insights into process performance, conformance of processes to

2 Fischer et al.

existing process models, and process improvement opportunities [26]. Reliable
Process Mining results are, however, contingent on starting with high-quality
event log(s) [1,4,13]. In practice, event logs are often far from the desired qual-
ity [7,26]. Therefore, an event log should not be naively used for Process Mining
without ensuring that it is of adequate quality [1]. Data scientists spend up
to eighty percent of their work with identifying, assessing, and remedying data
quality issues [32]. Therefore, in the BPM community the interest in exploring
the roots of data quality problems and the related assurance of accurate data is
rising [2,32]. Following the words of Edward Deming (“you can’t manage what
you can’t measure”), it is essential to have a set of metrics for detecting and
quantifying event log quality [32].

However, to the best of our knowledge, research that focuses on the (auto-
mated) quality assessment of event logs remains scarce. We intend to bridge this
gap in research specifically for timestamp-related data quality issues since time-
stamps are the principal means for ordering events and the foundation for many
use cases [9,12,13]. Precise timestamps are essential to reproduce the correct or-
dering of activities and, thus, to obtain accurate process models (discovery), to
measure the alignment between the process model and the actual process flow
(conformance), and to determine effectiveness and efficiency in the execution of
activities (performance) [9,12]. In contrast, inaccurate and coarse timestamps
often lead to convoluted process models that may result in erroneous analyses
[9]. This paper, therefore, focuses on the following research question: How can
we detect and quantify timestamp-related data quality issues in event logs?

To address the research question, we adopt the design science research (DSR)
paradigm [11] and develop an automated approach for detecting and quantifying
timestamp imperfections in an event log. We evaluate the quality of timestamps
in an event log across two axes: four levels of abstraction (event, activity, trace,
log) and four quality dimensions (accuracy, completeness, consistency, unique-
ness). We define 15 timestamp quality-related metrics and demonstrate how they
can be computed. Following the DSR process by Peffers et al. [21] and the evalua-
tion framework by Sonnenberg and vom Brocke [24], the remainder of this paper
is structured as follows: In Section 2, we derive essential design objectives for a
timestamp quality quantification approach from mature knowledge on data and
event log quality. Section 3 introduces the required preliminaries and explains
the approach employed. Section 4 demonstrates the prototype implemented in
the Process Mining framework ProM. In Section 5, we describe the evaluation
of our approach by using three real-life event logs and involving experts from
research and practice. The paper concludes with Section 6.

2 Background

In this section, we present a brief overview of the background on data quality and
event log quality research in Process Mining and propose two design objectives
that underpin our approach.

Detecting and Quantifying Timestamp Imperfections 3

It is well-recognised that the quality of input data is of high importance to
Process Mining techniques [1,13]. Previous research, therefore, established data
quality dimensions for evaluating data quality as they verify the “fitness for use”
of data by data consumers [32]. A variety of studies on data quality dimensions
exist that are renowned and widely adopted (see [18,22,29,30]). However, they
often do not provide metrics for measuring data quality in databases or event
logs. Hence, we conducted a scan of recent literature on data and event log
quality while focusing on extracting metrics for quantifying event log quality.

We analysed 48 papers synthesized from a larger set of results (n=412) by
abstract screening and subsequently by text screening [31]. We created a con-
cept matrix in which we attributed data quality dimensions to each article and
whether the studies provide metrics for quality quantification [31]. We identified
six studies that provide metrics for data quality quantification [3,5,15,17,23,25].
Furthermore, we clustered 118 different data quality dimensions that were named
by the literature based on syntactic and semantic similarities which finally led
us to 25 different data quality dimensions.

Since we aim to optimize the automation of our technique, we excluded di-
mensions that are not quantifiable without user input according to the literature
(e.g., objectivity, usability, valued-added). This reduced our set to eight differ-
ent data quality dimensions. From these dimensions, we excluded dimensions,
that do not align with our intention to quantify timestamp quality (e.g., con-
ciseness, understandability) and decided on the four data quality dimensions:
accuracy, completeness, consistency, and uniqueness. We specify the following
design objective (DO):

DO 1. An approach for detecting and quantifying timestamp imperfections
should consider multiple data quality dimensions, such as accuracy, com-
pleteness, consistency, and uniqueness.

Regarding event log quality, which refers to the data quality of event logs, the
IEEE Task Force on Process Mining provides maturity levels for the suitability
of different data sources for Process Mining [13]. For instance, they categorize
semantically annotated logs of BPM systems as the pinnacle of high-quality event
logs (⋆⋆⋆⋆⋆) while they rank paper-based medical records to the lowest level (⋆).
They consider logs that at least fulfil the conditions of 3-stars (⋆ ⋆ ⋆) as suitable
for Process Mining techniques. However, most real-life logs do not comply with
these conditions as they tend to be incomplete, noisy, and imprecise [7,10].

To understand which quality issues affect event logs, Suriadi et al. [26] pro-
posed eleven event log imperfection patterns often found in real-life logs. Three of
these patterns highlight timestamp-related issues, namely form-based event cap-
ture, inadvertent time travel, and unanchored event [26]. The form-based event
capture pattern describes the existence of sets of events that mostly occur at
the same time. Electronic-based forms creating multiple events with equal time-
stamps commonly cause the presence of this pattern. The Inadvertent time travel
pattern outlines the existence of inaccurate timestamp values that lead to incor-
rect ordering of events. The unanchored event pattern characterizes timestamps
that are recorded in a different format than expected from the Process Mining

4 Fischer et al.

tool. The confusion between the month-day and day-month format is a frequent
manifestation of the named pattern.

Beyond the mentioned timestamp-related issues, we identified other factors
that may impact Process Mining analysis. Mixed granularity of traces may cause
incorrect event ordering [9]. For instance, in a hospital log, ‘admission’ may be
recorded at second-level granularity, e.g., ‘03 Feb 2019 10:23:12’, while within
the same trace ‘examination by the doctor’ may be recorded at hour-level, e.g.,
‘03 Feb 2019 10:00:00’. In the discovered process model, this will lead to incor-
rect orderings: the ‘admission’ activity follows the ‘examination by the doctor’
activity. In the majority of cases, the ‘admission’ activity may happen before the
‘examination by the doctor’, but, as the example has shown, in some instances,
mixed granularity may cause incorrect and infrequent event ordering [9].

There exists an approach which tests for an inconsistent format to detect the
unanchored event pattern. This aims, for instance, to identify date specifications
in the format common in the United States (‘MM-DD-YYYY’). Studies also dis-
cover timestamp issues through stacked or parallel events [8,19]. For instance,
let the doctor submit a form at the end of each examination in which he declares
having ‘measured blood pressure’, ‘measured temperature’, and ‘intercepted air-
ways’. Submitting a form may lead to three events in the log containing the same
timestamp, i.e. the time the form was submitted (see form-based event capture
in [26]) rather than the time these three events happened. We also identified
research that addresses the issue of overlapping events, which aims to detect
resource overlap between events. For instance, according to the log, a nurse may
begin a new patient transfer before completing the previous patient transfer [6].
As a result, for our approach, we specified the following objective:

DO 2. An approach for detecting and quantifying timestamp imperfections
should consider existing imperfection detection approaches, such as incon-
sistent format (satisfies the unanchored event pattern), mixed granularity of
traces, infrequent event ordering (satisfies the inadvertent time travel pat-
tern), overlapping events, and stacked events (satisfies the form-based event
capture pattern).

3 Approach

3.1 Preliminaries

Before we present our approach, we introduce required definitions and prelimi-
naries. An event log is the necessary input to gain insights into a recorded process
via Process Mining techniques. Central to Process Mining are the notions of case
and trace in such event logs. A case is the set of events carried out in a single
process instance with a trace being the execution sequence of the events in a
case. Consequently, to conduct Process Mining analysis, an event log needs to
contain, at a minimum, enough information such that each event record can be
attributed to a case, and can be placed in sequence within the case. For ordering
events, timing information (e.g., date and time) of when an event occurred is

Detecting and Quantifying Timestamp Imperfections 5

frequently used, although some discovery algorithms rely on implicit ordering of
events in an event log instead of explicit timestamps. Optionally, an event record
may contain attributes such as a resource and costs [7,9,13].

Definition 1 (event, attribute, event log). Let E be the set of all possible
event identifiers and AN = {a1, a2, .., an} be the set of all possible attribute
labels. For each attribute ai ∈ AN (1 ≤ i ≤ n), Dai

is the set of all possible
values for the attribute ai. For any event e ∈ E and an attribute name a ∈ AN ,
we denote #a(e) ∈ Da as the value of attribute named a for event e.

For any event e ∈ E we define the following standard attributes: #id(e) ∈
Did is the event identifier of e; #case(e) ∈ Dcase is the case identifier of e;
#act(e) ∈ Dact is the activity label of e; #time(e) ∈ Dtime is the timestamp of
e; #ts(e) ∈ Dts is the lifecycle transition of e. We also define #res(e) ∈ Dres as
the resource who triggered the occurrence of e as an optional attribute. An event
log L ⊆ E is a set of events.

Definition 2 (case, trace). Let C be the set of all possible case identifiers.
For any c ∈ C and an attribute name a ∈ AN , we denote #a(c) ∈ Da as the
value of the attribute named a for case c. We denote E∗ as the set of all finite
sequences of events over E where a finite sequence of length n over E is a mapping
σ ∈ {1, · · · , n} → E and is represented as σ = 〈e1, e2, · · · , en〉 where ei = σ(i)
for 1 ≤ i ≤ n. We define the special attribute #trace(c) ∈ E∗ as representing
the trace of case c, which consists of all events associated with c. We denote
ĉ = #trace(c) as shorthand for referring to the trace of a case and further note
that the ordering in a trace should respect timestamps, i.e. for any c ∈ L, i, j
such that 1 ≤ i ≤ j ≤ |ĉ| : #time(ĉ(i)) ≤ #time(ĉ(j)).

Next, we define quality metrics and position each metric along two axes: four
quality dimensions (accuracy, completeness, consistency, uniqueness) and four
levels of abstraction (event, activity, trace, log).

Definition 3 (quality dimensions, quality metrics, abstraction levels).
Let DQ = {dq1, dq2, · · · , dqn} be the set of quality dimensions labels, M =
{m1,m2, · · · ,mn) be the set of quality metrics labels and V = {v1, v2, · · · , vn)
be the set of quality attributes labels. Let LL ⊆ AN ∗ be the set of all possible
log abstraction levels. For any ll ∈ LL we denote Ell as the set of all event
identifiers such that for any event e ∈ Ell only attributes a ∈ ll are accessible.
We define some special log abstraction levels as: llevent = {eventid, timestamp};
llactivity = {eventid, activity label, transition, timestamp}; ll trace = {eventid,
traceid, transition, timestamp}; ll log = AN .

For any metric m ∈ M and quality attribute v ∈ V we denote #v(m) ∈ Dv

as the value of quality attribute v for metric m where Dv is the set of all possible
values for the quality attribute v. We define the following attributes for each
metric m ∈ M : #score(m) ∈ [0, 1] ; #weight(m) ∈ R

+ ; #ll(m) ∈ Dll and ll ∈
LL; #dq(m) ∈ Dll and dq ∈ DQ. In a similar way we denote: #score(dq) ∈ [0, 1]
and dq ∈ DQ; #weight(dq) ∈ R

+ and d ∈ DQ; #score(ll) ∈ [0, 1] and ll ∈ LL.

6 Fischer et al.

TIMESTAMP QUALITY

QD1:
Accuracy

QD2:
Completeness

QD3:
Consistency

QD4:
Uniqueness

M9: Mixed Granu-
larity of the LogcLog

Level
M5: Missing

Tracec M10: Formata
M13: Duplicates

within Logc

M1: Infrequent
Event Orderinga

Trace
Level M2: Overlapping E-

vents per Resourcea

M6: Missing

Activityc

M11: Mixed Granu-

larity of Tracesa
M14: Duplicates

within Traceb

Activity
Level

M7: Missing

Eventc
M12: Mixed Granu-

larity of Activitiesc
M15: Duplicates

within Activityc

M3: Future Entryc

Event
Level M4: Precisionc

M8: Missing

Timestampc

Table 1. Timestamp quality assessment framework

3.2 Detection and quantification of timestamp imperfections

Table 1 depicts our proposed framework to detect and quantify timestamp im-
perfections in an event log. We measure the quality of timestamps at various
log abstraction levels (event, activity, trace, log) [1], using the four data qual-
ity dimensions accuracy, completeness, consistency, and uniqueness (DO 1). In
total, we defined a set of 15 novel quality metrics, consisting of metrics based
on existing detection approachesa (DO 2), modifications of existing detection
approachesb and ten new detection approaches that we designed ourselvesc based
on insights from literature. However, we found no metrics that apply to accuracy
at log or activity level. Nonetheless, the framework should be seen as an exten-
sible foundation in event log quality quantification and, thus, further metrics or
dimensions can be integrated.

We now describe all four quality dimensions and one exemplary metric for
each dimension and show how we detect timestamp-related quality issues and
quantify each metric to receive a score between 0 and 1. Due to lack of space,
we provide details on all 15 metrics here: http://bit.ly/33hz4SM.

QD1: Accuracy describes the deviation of the recorded value from the real
value represented by the data [29]. Following the stated definition, we allocated
every metric that investigates imprecise timestamps to accuracy. At the event
level, we inspect the precision (M4) of timestamps. We examine to what granu-
larity the timestamp of an individual event is recorded in the log. For instance, we
consider the quality of a timestamp that contains information down to millisec-
ond as optimal while hour-level granularity is not. We also developed the metric
future entry at the event level, which indicates whether there are future-dated
timestamps in an event log. At the trace level, we quantify accuracy through the

http://bit.ly/33hz4SM

Detecting and Quantifying Timestamp Imperfections 7

metric infrequent event ordering as this phenomenon often occurs as a result of
inaccurate timestamps [9]. Infrequent event ordering also covers the inadvertent
time travel pattern since this pattern typically manifests itself in the existence
of some traces in which event ordering deviates significantly [26]. We also de-
tect overlapping events per resource provided that the start and end times of an
activity that is executed by a resource are recorded in an event log. This can in-
dicate imprecise recordings of start or end timestamps of activities if we assume
that a resource does not multitask since the metric identifies activities that are
started by a specific resource before they finished their prior activity [6].

M4: Precision (Quality dimension: accuracy, abstraction level: event) aims to
detect events containing coarse timestamps. Particularly events that are mostly
recorded manually show coarse granularity as it is difficult for the user to provide
information, for instance, about milliseconds granularity.

Detection. For each event e ∈ L, we determine (i) the granularity g(e) by
investigating up to which time unit tu ∈ T U = {year,month, ...,millisecond}
an event is recorded, and (ii) the number #tu < g(e)(e) of time units tu that are
more granular than g(e).

Quantification. By default, the scores of all metrics should indicate a similar
influence on Process Mining techniques. Hence, we assign a power value to each
metric. Using this and #tu < g(e)(e) of each event e, we calculate the score of
precision with the following equation:

#score(precision) = (1−

∑
e∈L

#tu < g(e)(e)

6 ∗ |L|
)2 (1)

QD2: Completeness manifests as the recording of all values for a specific
variable [29]. We quantify completeness at the event level through the metric
missing timestamp of events. For this purpose, we examine whether a timestamp
is recorded for each event. Furthermore, if an event contains a timestamp before
the year 1971, this timestamp is also considered as missing, since many systems
convert time-related null values into the year 1970 (so-called Unix time). At
the activity level, we check for missing events (M7). Since an activity requires at
least an event with a start transition and an event with a complete transition, we
consider an activity that either has no start event or end event as an indicator of
a missing event. At the trace level, we aim to detectmissing activities. To identify
this issue, we first scan the event log for infrequent predecessor-follower relations.
If a trace contains an infrequent relation, the trace is investigated to see whether
it contains an activity that frequently follows the predecessor under investigation.
Unless we are unable to find a frequent follower, we assume that an activity is
missing in this trace. Lastly, we detect possible missing traces at the log level by
examining differences between timestamps of the first events of two consecutive
traces. We consider a gap between two traces that is significantly larger than
the expected mean value as an indicator of a missing trace in between.

M7: Missing event (completeness, activity) describes cases in which an activ-
ity is either missing a start or an end event. Potential reasons are failures or

8 Fischer et al.

omissions in recording the start or end event, or the expected event has been
mapped to the wrong trace.

Detection. In each trace, we count all events e with #act(e) = a and #ts(e) =
start . We then count all events e in the trace with #act(e) = a and #ts(e) =
complete. If the two counts are not the same, the trace contains missing events
for activity a.

Quantification. To calculate a score, we use the ratio of affected activities
to total activities and the ratio of affected traces to total traces in the log. Let
Lact = {#act(e)|e ∈ L} be the set of all activity labels and Lcase = {#case(e)|e ∈
L} be the set of all case identifiers in log L. We define affected : L×Lcase×Lact →
N such that affected(L, c, a) returns the difference between the number of events
e ∈ L with #case(e) = c, #act(e) = a and #ts(e) = start and those with
#ts(e) = complete. #affected activities =

∑
c∈Lcase ,a∈Lact

affected(L, c, a). Let
T = {#case(e)|e ∈ L, affected(L,#case(e),#act(e)) > 0} be the set of traces
which contain at least one affected activity and #affected traces = |T |. Then
Thus, we calculate the score for using the following equation:

#score(missing events) = (1−
#affected activities

2 ∗ |Lact |
−

#affected traces

2 ∗ |Lcase |
)4 (2)

QD3: Consistencymeans the equal representation of data values in all events [29].
As multiple units are necessary to evaluate equality, it is not possible to mea-
sure consistency for a single event at the event level. At the activity level, we
group all events according to their activity label. After that, we examine whether
all timestamps of a specific activity show the same granularity because mixed
granularity potentially leads to the wrong order of activities [9]. We also inspect
individual traces formixed granularity of traces at the trace level. For this metric,
we group the events according to their trace IDs. Furthermore, at the log level,
we compare the granularity of all events applying the metric mixed granularity
of the log (M9) regardless of trace and activity labels. We also assess whether
all event timestamps have been recorded in the same day-month format. As ad-
dressed by the imperfection pattern unanchored event [26], a log may contain
timestamps that have been stored in a day-month format and timestamps that
have been stored in a month-day format when logs from multiple systems are
combined in a single event log.

M9: Mixed granularity of the log (consistency, log) measures the extent of
mixed granularity of the events in the log. We check whether certain events are
recorded in coarser or finer granularity. This may occur, among others, if parts of
the log are recorded automatically through electronic systems while other parts
are recorded manually by the user.

Detection. g(e) of each event e ∈ E by investigating up to which time unit
tu ∈ T U = {year,month, ...,millisecond} an event is recorded. Then, we count
how often each time unit tu was found as the most precise granularity and
determine the dominating time unit max(T U). Thereupon, we calculate the

Detecting and Quantifying Timestamp Imperfections 9

observed granularity distribution and the expected granularity distribution. We
calculate the observed distribution as follows:

dobs(tu) =
tu

|T U|
(3)

We use max(T U) for the calculation of the expected distribution. For instance,
let max(T U) = second, we assume that dexp(second) = 59/60. The remain-
ing 1/60 is distributed accordingly over the coarser time units. From there, we
calculate the deviation of the two distributions:

dev =
∑

tu∈T U

|dexp(tu)− dobs(tu)|

2
(4)

Quantification. To determine a score for the metric mixed granularity of the
log we use the following equation:

#score(mixed gran. (log)) = (1− dev)2 (5)

QD4: Uniqueness is defined as the existence of unwanted duplicates within
or across systems for a particular data set [29]. At the activity level, we mea-
sure uniqueness using the metric duplicates within activity. Therefore, we detect
all activities that contain more than one event with the same timestamp. Fre-
quently detected issues include identically timestamped start and end events for
the same activity. We identify duplicates within trace (M14) at trace level. This
metric detects events of a trace that show the same timestamp. As the imperfec-
tion pattern form-based event capture shows, several events of a trace are often
recorded using the same timestamp through e-forms, even though they happened
in a sequence [26]. Finally, applying the metric duplicates within log, we reveal
events that do not belong to the same trace but use the same timestamp. This
issue may also be caused by electronic form-based event storage, for instance, if
the user can record multiple trace start events through an e-form.

M14: Duplicates within trace (uniqueness, trace) aims to detect events with
an exact same timestamp in the same trace. As the imperfection pattern form-
based event capture shows, recording of events after the fact (e.g., via e-forms)
often causes multiple events stored with equal timestamps, although these events
did not happen concurrently in real life [26].

Detection. As duplicates within a trace we describe a set of n events Edt ⊆ E
where for every event ei ∈ Edt : #trace(ei) is equal, #time(ei) is equal, and
#act(ei) is unequal.

Quantification. To calculate a score, we use the ratio of detected events to
total events, and the ratio of affected traces to traces. Let Ltime = {#time(e)|e ∈
L} be the set of all timestamps, and Lcase = {#case(e)|e ∈ L} be the set of all
case identifiers in log L. We define duplicates : L × Lcase × Ltimes → N such
that duplicates(L, c, t) returns the number of events e ∈ L with #case(e) = c
and #time(e) = t having distinct values of #act(e).

10 Fischer et al.

Let #detected events =
∑

c∈Lcase ,a∈Lts
duplicates(L, c, t).

Let T = {#case(e)|e ∈ L, duplicates(L,#case(e),#time(e)) > 1} be the
set of traces which contain at least one timestamp with multiple events and
#affected traces = |T |. Thus, we calculate the score for the metric duplicates
within trace with the following equation:

#score(duplicates (trace)) = (1−
#detected events

2 ∗ |L|
−

#affected traces

2 ∗ |Lcase |
) (6)

4 Implementation

4.1 Software prototype

Figure 1 shows the main window of the prototype that displays the results of
metrics and calculated scores in Panel A after importing an event log in XES
format. The top row and the left column indicate the aggregated scores for each
quality dimension and event log level. The scores are also visualized with colours:
red, yellow, green for low (under 0.25), medium (0.25 - 0.75), and high (above
0.75), respectively. These thresholds are configurable in the prototype.

By using the “details” button for a metric, the prototype provides the user
with a list of detected issues for a particular metric (Panel B). For instance,
using the metric duplicates within trace, the list shows the case id, event label,
timestamp, and lifecycle transition for all events detected by the corresponding

Fig. 1. Main window: the quality quantification of the MIMIC-III log (panel A) and
the error list (panel B) of the metric duplicates within trace

Detecting and Quantifying Timestamp Imperfections 11

metric as duplicate events. Thus, the user is able to discover which events are
affected. This list can also be sorted by all columns.

A separate “User Configuration” window (not shown here) can be accessed
through the button “Configuration”. It allows the user to suppress metrics or
dimensions which are not of concern and to adjust the weight of metrics. The
default weight per metric is one. Any positive real number can be assigned. The
accumulated dimension and event log scores are then recalculated for the new
configuration. The option of suppressing irrelevant measures or dimensions and
adjusting the weight of metrics turns our approach into a domain-agnostic solu-
tion, as it allows the user to customize the timestamp quality quantification for
the specific use case and to address the issue of potential dependencies between
metrics. For instance, the results of the metric precision may have an impact on
the results of the consistency and uniqueness metrics. Thus, the user can hide
the metric overlapping events per resource if multitasking is possible in the ex-
amined use case or lower the weight of precision if millisecond granularity is not
necessary in the case under consideration. Using the “create QIEL” (QIEL =
“quality-informed event log”) button, the configuration information set by the
user as well as the assessment results are stored in the metadata of the imported
XES log file. Thus, the quality information can be used in later Process Mining
phases.

4.2 Sources

The implementation of the automated approach for detecting and quantifying
timestamp imperfections is available in the ProM nightly build which can be
downloaded here: http://bit.ly/38KVKvJ [28]. The source code is available in
the package “LogQualityQuantification”: http://bit.ly/39OAgj0. In addition,
we provide detailed instructions for the use of the prototype in the appendix
(http://bit.ly/33hz4SM) and describe the implemented features.

Among the three event logs used for the evaluation, log A and log B are
logs from Australian partners and, therefore, cannot be made available publicly
in accordance with relevant Australian legislation. Log C, however, is openly
available and can be accessed after completing the CITI “Data or Specimens
Only Research” course here: http://bit.ly/3aNRnkW [14].

5 Evaluation

5.1 Evaluation strategy

Aligning with DSR purposes, our overall goal is to evaluate the usefulness and
applicability of the proposed approach and give an indication towards its real-
world fidelity [24]. The evaluation, therefore, involves analyzing three diverse
real-life event logs and comparing the outcomes created by the application of
our approach to the manual assessment of log experts. We define log experts
as persons with Process Mining experience who are capable of making informed

http://bit.ly/38KVKvJ
http://bit.ly/39OAgj0
http://bit.ly/33hz4SM
http://bit.ly/3aNRnkW

12 Fischer et al.

data quality statements about a particular event log. In showing that our ap-
proach returns similar quality assessments as log experts in three varying cir-
cumstances and in a fraction of the time needed for manual analysis, we provide
evidence that the approach adequately supports users in detecting and quantify-
ing timestamp-related data quality issues in event logs and, therefore, addresses
our research question. The three used logs are:

– Log A: represents the activities related to processing of 2090 annual progress
reports for PhD students at an Australian University

– Log B: represents the waypoints (dispatched, on scene, at patient, . . .) in
over 40,000 ambulance attendances to, and transport to hospital of, patients
injured in road traffic crashes in Queensland, Australia

– Log C: represents an openly available data set comprising desensitized
health data associated with 40,000 critical care patients. It includes demo-
graphics, vital signs, laboratory tests, medications, and more [14]

We decided on these logs, as many of the addressed issues are present (i.e.
insufficient precision and duplicates in log A, ordering and granularity issues in
log B, and future timestamps and completeness issues in log C).

We defined an iterative evaluation process (Figure 2). One evaluation round
contains the following steps: First, the timestamp quality of log A was assessed
using the prototype and its results compared to a quality report manually created
by a corresponding log expert A. If the quality report created by expert A
matched the outcomes of the prototype closely enough (see definition below), we
proceeded with expert B and log B and, subsequently, with expert C and log C.
When, at one point in this process, the outcomes of the prototype differed from
the results reported by the expert, we reconfigured and improved the prototype
based on the insights from the respective evaluation round and subsequently
started a new round, again starting with log A. The process terminates when
the prototype results match the experts’ quality reports in all three cases.

The manual reports are based on ordinal quality levels (low =̂ 1, medium =̂
2, and high =̂ 3), the prototype output has been scaled down accordingly. To
determine whether the assessment of an event log by the prototype matches the
report created by the respective expert, we calculated the agreement ratio and
reliability value α using Krippendorff’s alpha [16]. Following the recommenda-
tions of Krippendorff, we consider the outcomes as reliable if α ≥ 0.667 [16].

We decided first to run the evaluation within the author team to preconfigure
the prototype. Thus, three co-authors (who have worked with the respective logs

Prototype

(re-)configuration
Evaluation
with Log A

Evaluation
with Log B

Evaluation
with Log C

α≥.667 α≥.667

α<.667 α<.667 α<.667

Fig. 2. Evaluation process (performed both with internal and with external experts)

Detecting and Quantifying Timestamp Imperfections 13

before) represented the log experts for log A, B, and C until the approach passed
each evaluation step. After the internal evaluation was completed, we also went
through the evaluation process with three external log experts from academia
and practice. The detailed results are presented in the following.

5.2 Findings

Overall, one evaluation within the author team and one evaluation with exter-
nal experts were completed and one prototype reconfiguration was performed.
Below, we describe these evaluation rounds and the implemented changes.

For the first internal evaluation round (see Table 2, 1.A), the assigned
quality levels of expert A regarding log A and the results of the prototype did
not match closely enough. A number of changes were made in the prototype as a
result. One main difference is the score for the metric form-based event capture.
Expert A is certain that no events of log A were recorded through electronic
forms and, therefore, the score should not be less than 3. After further analysis,
we noticed that this metric detects sets of events which have the same timestamps
in the same trace but for different activities. Such a pattern does not only occur
due to the form-based event capture pattern but can also be caused by other

1.A 2.A 2.B 2.C 3.A 3.B 3.C
Ps Pql A Ps Pql A Ps Pql B Ps Pql C Ps Pql A Ps Pql B Ps Pql C

M1 .616 2 3 .616 2 3 .674 2 1 .242 1 2 .616 2 3 .674 2 2 .242 1 2
M2 1 3 3 1 3 3 1 3 2 1 3 3 1 3 3 1 3 3 1 3 3
M3 1 3 3 1 3 3 1 3 3 0 1 1 1 3 3 1 3 3 0 1 1
M4 .683 2 2 .683 2 2 .586 2 2 .576 2 2 .586 2 3 .586 2 2 .576 2 2
M5 .977 3 - .977 3 - .983 3 3 1 3 3 .977 3 3 .983 3 3 1 3 -
M6 .936 3 3 .936 3 3 .947 3 3 .998 3 3 .936 3 3 .947 3 3 .998 3 2
M7 .951 3 2 .741 2 2 0 1 1 .013 1 1 .741 2 2 0 1 1 .013 1 1
M8 1 3 3 1 3 3 1 3 3 .395 2 2 1 3 3 1 3 3 .395 2 1
M9 .956 3 3 .956 3 3 .393 2 2 .489 2 2 .956 3 3 .393 2 2 .489 2 2
M10 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 2 1 3 3
M11 .918 3 3 .918 3 3 .533 2 2 .621 2 2 .918 3 3 .533 2 2 .621 2 3
M12 .956 3 3 .956 3 3 .972 3 3 .867 3 3 .956 3 3 .972 3 3 .867 3 3
M13 .695 2 3 .869 3 3 .601 2 2 .771 3 2 .869 3 3 .601 2 2 .771 3 3
M14 .488 2 3 .397 2 2 .820 3 2 .305 2 2 .397 2 2 .820 3 3 .305 2 2
M15 .509 2 2 .999 3 3 .270 2 3 .509 2 2 .999 3 3 .270 2 3
M16

1 .522 2 3

AG 64.29% 92.86% 80.00% 80.00% 86.67% 93.33% 64.29%

α 0.082 0.842 0.777 0.801 0.670 0.890 0.692

Ps = indicated scores of the prototype; Pql = indicated quality levels of the proto-
type; A, B, C = quality levels assigned by experts; AG = agreement; α = reliability

Table 2. Evaluation of the applied metrics

1The initial version of the prototype (for the first evaluation) contains the met-
ric M16: form-based event capture instead of the metric M15: duplicates within activity.

14 Fischer et al.

reasons. Thus, we removed the metric form-based event capture and proposed a
new metric duplicates within activity that detects sets of events with the same
timestamp, the same event name and in the same trace. Originally, the metric
duplicates within log detected sets of events with the same timestamp and same
event name. However, using this detection method, we identified issues that are
already covered by duplicates within activity or duplicates within trace. Thus,
we modified the metric duplicates within log so that it detects sets of events
with the same timestamp but in different traces. For the metric missing event,
we adjusted the score quantification. Initially, we considered only the ratio of
affected events to total events. For event log A, just 1.26% of total events were
affected and, thus, the prototype assigns a high score to the metric missing
event. However, expert A observed that 12.85% of the total traces were affected
by missing events and, therefore, expected the score to be medium. Hence, we
concluded that, in terms of score quantification, it is necessary to consider the
ratio of affected traces to total traces.

In the second internal evaluation round (see Table 2, 2.A-2.C), the out-
comes of the reconfigured prototype met the expectations of each expert for
at least 12 of 15 metrics. As we obtained sufficient reliability, we assumed the
internal evaluation to be successful.

We continued with an evaluation round involving external experts from
academia and practice who were not engaged in the design of the approach. A
data expert from an Australian university acted as the expert for log A, a data
scientist working in the healthcare domain as the expert for log B, and a research
associate from Germany with Process Mining focus as the expert for log C. Each
of these external experts has gathered expertise with the corresponding log dur-
ing previous research or industry projects and is therefore capable of providing
information on all relevant quality characteristics of these logs. In all steps of the
evaluation with external experts (see Table 2, 3.A-3.C), we obtained sufficient
reliability and, therefore, assumed the external evaluation to be successful.

Our evaluation allowed us to improve our approach iteratively. Morever, by
using real-life logs and automatically delivering outcomes matching the quality
levels manually assigned by log experts from academia and practice in a fraction
of the time needed for manual analysis, we demonstrate the approach’s appli-
cability in practice. Real-world fidelity is indicated by successfully using the
prototype with three logs with different characteristics. We received feedback
from the experts regarding the usefulness of both our approach and the proto-
type: The experts confirmed that timestamps are the cornerstones of event logs
and should be analyzed in detail. Therefore, the approach as a way of detect-
ing and quantifying timestamp quality issues in event logs was deemed useful
to practitioners and researchers alike. This applies to both the proposed frame-
work (Table 1) as well as the underlying set of metrics. At the same time, the
experts frequently proposed two extensions to further increase the approach’s
usefulness and completeness: (i) including domain-specific metrics to increase
the approach’s usefulness in highly specific fields and (ii) including more intel-
ligent metrics to increase the explanatory power and guidance of the approach.

Detecting and Quantifying Timestamp Imperfections 15

The implementation as part of the ProM framework allows for interoperability
with other tools and was therefore welcomed by all experts. In summary, we are
confident that the approach and its implementation adequately support users
in detecting and quantifying timestamp quality issues in event logs and address
our research question.

6 Conclusion

Following DSR principles, we designed and implemented an approach for de-
tecting and quantifying timestamp imperfections in event logs based on 15 novel
data quality metrics structured along four data quality dimensions and log lev-
els each. The applied metrics and dimensions were subsequently evaluated using
real-life event logs and involving experts from academia and practice. Our frame-
work focuses on timestamp quality issues and provides a first step in quantifying
event log quality. The approach can detect common timestamp-related issues and
measure the quality of timestamp information in event logs. Furthermore, our
approach is domain-agnostic (e.g. by suppressing irrelevant metrics or adjusting
the weight of metrics). Thus, we support process stakeholders in determining
the suitability of an event log for Process Mining analysis. We also assist data
scientists in automatically identifying and assessing data quality issues in event
logs. Finally, our approach paves the way for future research on detecting and
quantifying quality issues of further event log components (e.g., activity labels).

These insights come with limitations: First, we intend to minimize the risk
that existing issues remain undetected (false negatives). This sensitivity, how-
ever, can cause the approach to identify issues that may be false alarms (false
positives) such as uniqueness issues caused by batched events [20]. However, we
mitigate potential over-detection by allowing users to review detected issues and
plan to implement a white-list functionality as part of future work. Second, the
evaluation was only performed on three different logs and under the assump-
tion that expert assessments are correct. Thus, we are running the risk of the
prototype being configured improperly if experts are biased or the logs only cap-
ture very special situations. We consider this risk to be low, given that the logs
cover a broad range of characteristics and the assessments of the internal and
external experts for each log were very similar. Although we followed established
principles and systematically identified potential timestamp-related quality is-
sues from the literature and our evaluation showed promising results for the
approach and the prototype, a more thorough evaluation involving further logs
and experts should be conducted in the future (see [24]).Thereby, evaluations
(with case studies or controlled experiments) need to focus on generality and
completeness of the metrics and further examine the real-world fidelity of the
approach’s results.

We also identified areas where the approach can be extended. First, we want
to provide a more interactive detection approach whereby fine-grained user con-
figuration can be taken into account (e.g., for minimum and maximum values
or rules for certain metrics to detect violations). Second, the framework should

16 Fischer et al.

be seen as a foundation for future extensions. Therefore, we want to encour-
age researchers to introduce further metrics to underpin the quality dimensions.
Third, our approach can also be extended with other log attributes such as event
labels. Moreover, research so far lacks a systematic approach on how to define
quality measures. Our work, therefore, constitutes a starting point to design a
set of axioms for the definition of measures [27]. Finally, a natural extension
to this work is to provide the user with an opportunity to repair the detected
timestamp issues in a similar manner to those presented in [8,9]. Our vision is to
provide an integrated approach to detecting, quantifying, repairing and tracking
(timestamp) quality issues in event logs.

Acknowledgements:
We would like to thank Queensland’s Motor Accident Insurance Commission

and the Queensland University of Technology for allowing us access to their
datasets.

References

1. van der Aalst, W.M.P.: Process mining: data science in action, vol. 2. Springer,
Berlin, Heidelberg (2016)

2. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Responsible Data Science. Business
and Information Systems Engineering 59(5), 311–313 (2017)

3. Alkhattabi, M., Neagu, D., Cullen, A.: Assessing information quality of e-learning
systems. Computers in Human Behavior 27(2), 862–873 (2011)

4. Andrews, R., van Dun, C.G.J., Wynn, M.T., Kratsch, W., Röglinger, M.K.E.,
ter Hofstede, A.H.M.: Quality-informed semi-automated event log generation for
process mining. Decision Support Systems 132(3) (2020)

5. Askham, N., Cook, D., Doyle, M., Fereday, H., Gibson, M., Landbeck, U., et al.:
The six primary dimensions for data quality assessment (2013)

6. Awad, A., Zaki, N.M., Di Francescomarino, C.: Analyzing and repairing overlap-
ping work items. Information and Software Technology 80, 110–123 (2016)

7. Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining
results? In: CIDM 2013. pp. 127–134. IEEE (2013)

8. Conforti, R., la Rosa, M., ter Hofstede, A.H.M.: Timestamp repair for business
process event logs. Tech. rep., University of Melbourne (2018)

9. Dixit, P.M., Suriadi, S., Andrews, R., Wynn, M.T., ter Hofstede, A.H.M., Buijs,
J.C.A.M., et al.: Detection and interactive repair of event ordering imperfection in
process logs. In: CAiSE 2018. pp. 274–290. Springer, Cham (2018)

10. Emamjome, F., Andrews, R., ter Hofstede, A.H.M.: A Case Study Lens on Process
Mining in Practice. In: OTM 2019. pp. 127–145. Springer, Cham (2019)

11. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for
maximum impact. MIS quarterly pp. 337–355 (2013)

12. Gschwandtner, T., Gärtner, J., Aigner, W., Miksch, S.: A taxonomy of dirty time-
oriented data. In: ARES 2012. pp. 58–72. Springer, Berlin, Heidelberg (2012)

13. IEEE Task Force on Process Mining: Process mining manifesto. In: BPM 2011. pp.
169–194. Springer, Berlin, Heidelberg (2011)

14. Johnson, A.E.W., Pollard, T.J., Lu, S., Lehman, L.w.H., Feng, M., Ghassemi, M.,
et al.: MIMIC-III, a freely accessible database. Scientific data 3, 160035 (2016)

Detecting and Quantifying Timestamp Imperfections 17

15. Kherbouche, M.O., Laga, N., Masse, P.A.: Towards a better assessment of event
logs quality. In: IEEE SSCI 2016. pp. 1–8. IEEE (2016)

16. Krippendorff, K.: Reliability in Content Analysis. Human communication research
30(3), 411–433 (2004)

17. Lee, Y.W., Pipino, L.L., Funk, J.D., Wang, R.Y.: Journey to data quality. The
MIT Press (2009)

18. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for in-
formation quality assessment. Information and Management 40(2), 133–146 (2002)

19. Lu, X., Fahland, D., Andrews, R., Suriadi, S., Wynn, M.T., ter Hofstede, A.H.M.,
et al.: Semi-supervised log pattern detection and exploration. In: OTM 2017. pp.
154–174. Springer, Cham (2017)

20. Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving
batch organisation of work insights from event logs. Decision Support Systems 100,
119–128 (2017)

21. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. Journal of management
information systems 24(3), 45–77 (2007)

22. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications
of the ACM 45(4), 211–218 (2002)

23. Sattler, K.U.: Data quality dimensions. In: Liu, L., Özsu, T.M. (eds.) Encyclopedia
of Database Systems, pp. 612–615. Springer (2009)

24. Sonnenberg, C., Vom Brocke, J.: Evaluations in the science of the artificial. In:
DESRIST 2012. pp. 381–397. Springer, Berlin, Heidelberg (2012)

25. Stvilia, B., Gasser, L., Twidale, M.B., Smith, L.C.: A framework for information
quality assessment. Journal of the American Society for Information Science and
Technology (2007)

26. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining. Information Systems 64, 132–150 (2017)

27. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions
of precision measures in process mining. Information Processing Letters 135, 1–8
(2018)

28. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: CAiSE 2010. pp. 60–75. Berlin, Heidelberg (2010)

29. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological founda-
tions. Communications of the ACM 39(11), 86–95 (1996)

30. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. Journal of Management Information Systems 12(4), 5–33 (1996)

31. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a
literature review. MIS Quartely 26(2), 13–23 (2002)

32. Wynn, M.T., Sadiq, S.: Responsible Process Mining - A Data Quality Perspective.
In: BPM 2019. pp. 10–15. Springer, Cham (2019)

	Enhancing Event Log Quality: Detecting and Quantifying Timestamp Imperfections

