
Enhancing Exploration in Graph-like Worlds

Hui Wang Michael Jenkin Patrick Dymond

Department of Computer Science and Engineering, York University

4700 Keele Street, Toronto, Ontario, Canada

{huiwang,jenkin,dymond}@cse.yorku.ca

Abstract

This paper explores two enhancements that can be

made to single and multiple robot exploration in graph-like

worlds. One enhancement considers the order in which

potential places are explored and another considers the

exploitation of local neighbor information to help disam-

biguate possible locations. Empirical evaluations show that

both enhancements can produce a significant reduction in

exploration effort in terms of the number of mechanical

steps required over the original exploration algorithms and

that for some environments up to 60% reduction in mechan-

ical steps can be achieved.

1. Introduction

The problem of exploring and mapping autonomously

an unknown terrain is a core task in robotics. In the lit-

erature this is commonly referred to as SLAM, Simultane-

ous Localization and Mapping [12, 13]. In the majority of

SLAM approaches the environment is represented through

a metric map that captures the geometric properties of the

environment (e.g. [6]). An alternative to a metric-based

representation is a topological or graph-like representation

[8, 9, 11, 1, 2, 3, 4]. Such a representation provides the

minimal information that a robot must be able to represent

in order to distinguish one place from another. [3, 4] de-

veloped a non-probabilistic SLAM algorithm for graph-like

worlds in which no distance or orientation metric is defined.

In this work the world is modeled as an embedded graph,

i.e., a graph in which there exists an ordering of edges inci-

dent upon each vertex. The model supposes the existence of

a unique marker that can be used to help disambiguate loca-

tions in the environment (vertices in the graph-like world).

In [3, 4] it was shown that graph-like worlds can be fully ex-

plored and mapped by a single robot equipped with a unique

marker. Later work [5] sketched how the single robot ex-

ploration algorithm of [3, 4] can be adapted to the problem

of multiple robot exploration. This sketch suggested how

multiple mobile agents might exploit the abilities developed

in [3, 4] in order to explore in a coordinated fashion. The

work in [14] formally develops the sketch provided in [5]

and extends [3, 4] to the problem of multiple robot graph

exploration. This extension assumes the same formalism

as described in [3, 4] and populates the world with two or

more robots each of which is equipped with its own unique

marker. The exploration algorithm presented in [14] incor-

porates the core requirements for achieving multiple robot

exploration: a technique to merge partial world representa-

tions obtained by the different robots, a technique to par-

tition the merged portion of the world between the robots

so that they continue to explore, and a rendezvous schedule

for the robots to coordinate their exploration activities. Em-

pirical evaluations show that multiple robots can provide a

reduction in exploration effort in terms of the number of me-

chanical steps required over that of a single robot and that

for some environments this improvement is super-linear.

This paper investigates how the exploration task in the

above papers can be conducted in a more effective way. We

explore two enhancements that can be made to both the sin-

gle robot exploration algorithm [3, 4] as well as to portions

of the multiple robot exploration algorithm [5, 14]. The first

enhancement considers a breadth-first exploration in order

to reduce repeated traversals during exploration, the second

enhancement considers exploiting local neighbor structure

information to help disambiguate possible confusions dur-

ing exploration. Empirical evaluations show that both the

enhancements can provide a reduction in exploration cost

over that of the original algorithms and that for some en-

vironments up to a 60% reduction of the mechanical work

required can be achieved.

The paper is organized as follows. Section 2 reviews

the world model and both the single and multiple robot ex-

ploration algorithms given in [3, 4, 5, 14], which form the

basis of the work in this paper. Section 3 presents a strategy

in which a breadth-first exploration order is used. Section 4

presents a strategy in which the local neighbor information

is exploited during exploration. Section 5 presents possible

directions for future work.

2. The world model and exploration algo-

rithms

2.1. Basic model

The world to be explored is modeled as a finite aug-

mented undirected graph. The graph is augmented through

an embedding for the edges at each vertex. The goal of

the robot’s exploration is to build an augmented undirected

graph that is isomorphic [7] to the finite world it has been

assigned to explore. The robot’s inputs are its sensations

and it can interact with the world only through its actions.

These are described below.

The World The world is defined as an embedding of an

undirected graph G = (V,E) with set of vertices V =
{v1, ..., vn} and set of edges E = {(vi, vj)}. The definition

of an edge is extended to allow for the explicit specification

of the order of edges incident upon each vertex of the graph

embedding. This ordering is obtained by enumerating the

edges in a systematic (e.g., clockwise) manner from some

standard starting direction.

Perception A robot’s perception of its environment is

limited to edge-related, marker-related and robot-related

perception. With edge-related perception, a robot can de-

termine the relative positions of edges incident on the cur-

rent vertex vi in a consistent manner, e.g., by a clockwise

enumeration for a planar graph. As a result, the robot can

identify the edge through which it entered the vertex and,

because the graph is embedded, can assign a local label

to each edge in the vertex. Note that this local edge or-

dering is not, in general, equal to the unknown ordering

specified by the graph embedding, but will be a rotation

of it. marker-related perception enables a robot to sense

whether its unique marker is present at the current vertex.

With robot-related perception, a robot is able to sense the

presence of the other robot(s) at the current vertex (robots

can meet in a vertex and sense each other when they meet).

Movement and marker operation A robot can move

from one vertex to another by traversing an edge (a move).

A sequence of moves along a path is reversible. A robot

can put down the marker it holds at the current vertex and it

can pick up its marker if it is located at the current vertex (a

marker operation).

Inter-robot communication In multiple robot case the

robots can communicate with each other only when they

are at the same physical location (vertex of the graph).

2.2. Exploring a graph with single robot

It was shown in [3, 4] that as long as the explorer is

equipped with a single unique marker that can be dropped

and picked up at will it was possible for a robot to fully

map its environment. The algorithm proceeds by incremen-

tally building a known map out of the known subgraph. As

new vertices are encountered, they are added to the explored

subgraph, and their outgoing edges are added to the set of

edges that lead to unknown places and therefore must be ex-

plored. The core technique is to “validate” (disambiguate)

locations that could be confused, based on the fact that the

path taken by the robot can be retraced, and that the marker

is unique.

The algorithm maintains an explored subgraph S, and a

set of unexplored edges U , which emanate from vertices of

S. A step of the algorithm consists of selecting an unex-

plored edge e = (v1, v2) from U , and validating the vertex

v2 at the unexplored end of the edge, i.e., to make sure that

v2 is not identical to any other vertex in the explored sub-

graph S. This process is carried out by placing the marker

at v2 and visiting all potential confusing vertices of S, look-

ing for the marker. If the marker is found at vertex vi of S,

then vertex v2 (where the marker was dropped) is identical

to the already known vi (where the marker was found). In

this case, the edge is added to S and removed from U . If the

marker is not found at one of the vertices of S, then vertex

v2 is not in S and is added to S. The previously unexplored

edge e is also added to S, which has now been augmented

by one edge and one vertex. Unexplored edges incident on

v2 are added to the set of unexplored edges U . The algo-

rithm terminates when U is empty. The cost of exploring

the graph in terms of edges traversed by the robot (its me-

chanical complexity) follows from the need to go back to

the known subgraph and visit all potentially confusing loca-

tions there to solve the ‘have I been here before’ problem.

In the probabilistic SLAM literature this problem is known

as ‘loop closing’ [12, 13]. Note that the choice of which

edge e to choose from the set of unexplored edges in U is

arbitrary. In [3, 4] a ‘closest-first’ strategy was used to se-

lect the edge.

2.3. Exploring a graph with multiple robots

[5, 14] extended [3, 4] to use two or more robots to solve

the exploration problem in graph-like world. Joint explo-

ration is achieved through alternating phases of indepen-

dent exploration by the individual robots and coordinated

merging of the independently acquired partial world repre-

sentations. At any time, the robots retain a common repre-

sentation of some part of the world (the commonly known

subgraph) Sm that evolves over time, as well as independent

information regarding other parts of the world. As succes-

sive iterations of the exploration and merging process take

place, Sm grows monotonically until it is isomorphic to the

entire world map. The algorithm proceeds by having all

of the robots start at a single location with a common refer-

ence direction (the initial definition of Sm), and partitioning

the unknown edges leaving the known world (edges in U)

so that each robot explores independently, using the explo-

ration algorithm described in [3, 4]. After exploring for a

previously agreed-upon interval, which is defined in terms

of the number of edge-traversals, the robots return to a com-

monly known and agreed upon location to merge their indi-

vidually acquired partial world representations. Each merge

process takes two partial maps and involves disambiguating

possible locations between the two maps. One of the partial

maps is chosen as the base map which is augmented with

information collected by the other robot. After merging,

the merged map is then shared between the robots becom-

ing the new commonly known representation Sm and the

remaining unknown edges of the new Sm are re-partitioned

between the robots for the next phase of independent explo-

ration. The algorithm repeats until the environment is fully

explored.

As in [3, 4] the cost of joint exploration is defined in

terms of the amount of physical motion (edge traversals)

that is required in order to perform the task. In the explo-

ration phase, in which robots explore in parallel, the cost is

the maximum mechanical cost required by the robots. For

the merge phase, in which only one robot performs the task,

the cost is the mechanical cost associated with the moving

robot. The total task cost is the sum of the cost of each

exploration and merge phase.

Figure 2 illustrates the multiple robot exploration algo-

rithm operating as two robots explore the Toronto Subway

System. A graph is constructed of the subway system with

vertices in the graph representing stations and edges in the

graph representing tunnels connecting the stations (Figure

1). In this example both of the two robots start at a com-

mon location (‘Union Station’, the highlighted vertex in

the graph) which is the initial common map shared by the

robots. The partition strategy is that unexplored edges of

the common map are partitioned evenly between the robots.

The rendezvous schedule is 370 mechanical steps and the

starting vertex is the rendezvous location, i.e., each of the

robots explores for 370 mechanical steps, and then returns

to the starting place to merge their world representations.

During the merge, robot1’s map is designated as the base

map which is augmented with information in robot2’s map.

After merging, the augmented base map is shared between

the robots as the new common map and the unknown edges

of the common map is partitioned. This example involves

three phases of independent exploration and three phases of

coordinated merging, with the last (third) merge phase gen-

erating the full map of the subway system. In the figure the

Figure 1. Graph simulating the Toronto Sub-
way System.

Exploration-1 (370×1 exploration steps) and merge-1

(a) r1’s map (b) r2’s map (c) Merged map

Exploration-2 (370×2 exploration steps) and merge-2

(d) r1’s map (e) r2’s map (f) Merged map

Exploration-3 (370×3 exploration steps) and merge-3

The full map is generated and the algorithm terminates

(g) r1’s map (h) r2’s map (i) Merged map

Figure 2. Multiple robot exploration on the
Toronto Subway System.

(a) Closest-first exploration on

lattice

(b) Breadth-first explo-

ration on lattice

Figure 3. Exploration strategies on lattice.

darker portions represent the common map Sm and lighter

portions represent the independently explored maps.

3. Breadth-first exploration

The next two sections consider enhancements that can be

made to both the single robot exploration algorithm [3, 4] as

well as to the multiple robot exploration algorithm [5, 14].

This section presents an enhancement that addresses the or-

der in which new places are selected during the exploration

process. In the original exploration algorithms, the robot

always chooses the closest place to explore. Consider the

example in Figure 3 where a lattice graph is explored. Sup-

pose the robot starts at vertex A and chooses the unexplored

edge leading to vertex B. According to the original algo-

rithms, it will be at vertex B when it finishes validating ver-

tex B. Suppose then it chooses an unexplored edge on ver-

tex B leading to vertex C. When finished validating vertex

C, the robot then chooses the unexplored edge at vertex C

leading to vertex D, and so on. The labels in Figure 3(a)

illustrate the order of exploring new vertices in the origi-

nal algorithms. In disambiguating the unknown place later

labelled vertex E, vertices C, B and A are potentially con-

fusing vertices (they have unexplored edge(s) with the same

degree as the unknown vertex). As a consequence, the robot

has to go back to visit vertex C, vertex B, and all the way

back to the furthest vertex A. In this example, as the ex-

ploration proceeds, the ‘closest-first’ selection of the new

place to explore generates repeated traversals to the same

vertices. To avoid the repeated traversals, a natural alterna-

tive to the closest-first exploration would be to use ‘breadth-

first’ exploration, i.e., explore all unknown edges of vertex

A first, then explore all unexplored edges of neighbors of

vertex A, and so on, as shown in Figure 3(b) where the la-

bels of the vertices illustrate the order and ‘breadth’ of the

exploration. The goal is to try to maintain a compact, fully-

explored region of the graph. Using this approach for this

example the traversal cost during the search for vertices is

reduced. Note that this is not universally true as there exist

examples for which a closest-first exploration is more effi-

cient than breadth-first exploration. Empirically, however,

it appears to be more efficient as will be demonstrated for

lattice graphs.

Correctness Incorporating this enhancement into the sin-

gle robot exploration algorithm [3, 4] and the exploration

process of the multiple robot exploration algorithm [5, 14]

maintains the correctness of the original algorithms. The

only difference between the enhanced algorithm and the

original algorithms is the order in which the unknown

places are selected and the details of exploring each un-

known place are the same as the original algorithms and

therefore the correctness of the original algorithms is not

violated.

Empirical evaluation Experiments were conducted to

examine the performance of the breadth-first exploration in

the above example. In the experiments two robots explore

a set of two-dimensional square lattice with holes. Two-

dimensional square lattices with holes represent the type

of environment that is often encountered in the interior of

modern buildings. Experiments were conducted on both

20×20 and 28×28 fully connected lattices with varying

number of holes (0%–40%). Holes were generated by ran-

domly selecting vertices to remove while ensuring that the

resulting graph remains connected. The breadth-first explo-

ration is expected to work well in less heterogeneous (hole

density) lattice graphs, where repeated traversals for dis-

ambiguation are more likely. Each condition was repeated

30 times, each with randomly generated holes in the lattice

graph, and using both the original closest-first and the en-

hanced breadth-first exploration algorithm. The evaluation

metric for the robot team is the mechanical cost defined in

[14] and reviewed in Section 2.3. Results are shown in Fig-

ure 4, which illustrates the average mechanical cost of both

the algorithms, as well as the corresponding fraction of im-

provement (reduction of the average mechanical cost) from

the enhanced breadth-first algorithm over the original algo-

rithm, given by

(original cost- enhanced cost) / original cost.

Corresponding standard errors are also shown. We can see

that for both graph classes, the breadth-first exploration pro-

vides substantial improvement over the closest-first explo-

ration approach for graphs with a low hole density. As the

number of holes increases, the breadth-first exploration still

provides an improvement but the improvement becomes

0

10000

20000

30000

40000

50000

60000

70000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ec

ha
ni

ca
l C

os
t (

av
er

ag
e)

Fraction of Holes

Breadth-First Exploration
Closest-First Exploration

(a) Average mechanical cost - 20×20 lattice

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
of

 Im
pr

ov
em

en
t (

av
er

ag
e)

 fr
om

 th
e

E
nh

an
ce

m
en

t

Fraction of Holes

(b) Average improvement - 20×20 lattice

0

50000

100000

150000

200000

250000

300000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

M
ec

ha
ni

ca
l C

os
t (

av
er

ag
e)

Fraction of Holes

Breadth-First Exploration
Closest-First Exploration

(c) Average mechanical cost - 28×28 lattice

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
ra

ct
io

n
of

 Im
pr

ov
em

en
t (

av
er

ag
e)

 fr
om

 th
e

E
nh

an
ce

m
en

t

Fraction of Holes

(d) Average improvement - 28×28 lattice

Figure 4. Breadth-first exploration on lattice hole graphs for two robots. Error bars show standard
errors.

smaller, and eventually when the graph is sufficiently het-

erogeneous (with more than 30% holes), the improvement

vanishes. A similar result was found with the single robot

exploration algorithm.

4. Exploiting local neighbor information

This section considers the exploitation of the local neigh-

bor structure information during the exploration. The algo-

rithms in [3, 4, 5, 14] used the degree of a vertex (number of

incident edges) to disambiguate vertices before doing me-

chanical search. For an unknown place, known vertices that

have a different degree from the unknown place are identi-

fied as not being potentially confusing and are not visited.

All vertices having the same degree as the marker-dropped

place (and having unexplored edge(s)) are identified as be-

ing potentially confusing and are searched. Clearly the

more information we have to describe a vertex, the more

likely it is that we can disambiguate vertices without me-

chanical cost. In the previous work the degree of a vertex

was referred to as the signature [10] of the vertex. Here we

first extend the signature definition to include its immediate

neighborhood. The neighborhood information includes the

degree of each neighbor and how the neighbors are linked.

Denote the extended signature of a vertex v as sig(v). Then

sig(v) for a vertex v of degree k is an ordered set of integers

sig(v) = {d1, d2, , ..., dk}

where di represents degree information of the (neighbor)

vertex down edge i (0 ≤ i < k) of vertex v. If the degree

of edge i is unknown, then di is null. Note that |sig(v)| =
d(v). The order of the element in the signature set is based

upon the normal enumeration of edges of v, but with an

arbitrary initial orientation.

Retrieving the signature for new place Without extra

mechanical effort, the existing neighbor information for an

unknown vertex is not ‘rich’ enough for efficient disam-

biguation. For an unknown vertex where the marker is

dropped, the only neighbor information available is the de-

gree of the vertex where the robot (marker) came from.

Consider the example in Figure 5, where solid portions rep-

resent the known subgraph S and dotted portions represent

the unexplored edges and vertices in the real world. Assume

the robot travels from vertex A to an unknown vertex X ,

drops its marker and senses degree 3 at X . Assuming the

clockwise enumeration convention is used, then the avail-

able extended signature for X is {4, null, null}, where 4

is the degree of vertex A. Clearly the comparison of the

Figure 5. Retrieving neighbor information.

signatures with the known vertices in S would always re-

sult in many compatible matches. To obtain useful neigh-

bor information, extra mechanical steps are required. For

example, when a robot drops a marker at vertex X , it could

also explore all of the incident edges in X (except the edge

by which it entered) and sense the degree there and use this

information to construct a more powerful local signature.

With this extra effort, the signature of the unknown place X

will be enriched to {4, 3, 2}. As new places are validated,

the robot records extended signature information for all the

known vertices in known graph S.

Aligning signatures In comparing the signatures of two

vertices we need to align possible corresponding exits

(edges) and examine if they lead to the same vertex. In

comparing two arbitrary vertices where no alignment infor-

mation is available we may need to take into consideration

all permutations (e.g., all cyclic shifts), due to the fact that

an arbitrary initial orientation is used in ordering elements

(neighbors) in a vertex signature. Due to the availability

of some alignment information in the exploration process,

however, not all the cyclic permutations are ‘valid’ and need

to be compared. This partial alignment information results

from the fact that for a vertex v1 in S to be the potentially

confusing vertex of the unknown place, among v1’s incident

edges, it must be one of its unexplored edge(s) that corre-

sponds to the edge incident on the unknown place which the

robot used to enter this location. For a vertex v1 having

n unexplored edges, there are at most n cyclic permuta-

tions that are ‘valid’ and need to be compared. Consider the

known vertices C and D in Figure 5. In comparing the sig-

natures of X with vertex D (having two unexplored edges)

there are two valid cyclic permutations in their signatures,

i.e., {4, 3, 2} vs. {1, 3, 2}, and {4, 3, 2} vs. {2, 1, 3}. On

the other hand, comparing the signature of X with that of

vertex C (having one unexplored edges) involves only one

valid permutation, i.e., {4, 3, 2} vs. {3, 2, 3}. Each aligned

signature permutation establishes pairs of neighbors that are

‘pointed to’ by the aligned exits in the permutation. We call

such aligned neighbors a neighbor pair.

Comparing signatures – radius 1 Two extended signa-

tures sig(v1) and sig(v2) are considered compatible if the

two vertices v1 and v2 have the same degree and, among the

valid cyclic permutation(s), there exists at least one permu-

tation such that each of the neighbor pairs in the permuta-

tion have the same degree. That is,

(i) |sig(v1)| = |sig(v2)|.

(ii) There exists a valid cyclic permutation in which for

each neighbor pair 〈di, dj〉 in the permutation, di = dj .

According to the comparison rule, in the above example the

signatures of X and D are not compatible and the signa-

tures of X and C are not compatible either. Hence the un-

known place X is successfully disambiguated against the

potentially confusing vertices C and D.

Comparing signatures – radius n In the above approach

the signature was extended by considering neighbors one

edge traversal from the vertex being considered. The sig-

natures were compatible if there was some permutation of

the orderings of the edges such that the information known

about the vertices were consistent. We can trivially extend

the approach to any radius ‘r’. In the radius 1 algorithm,

step (ii) of the consistency check can be replaced with a

recursive call to the consistency check. Note that this re-

cursion must have some maximum limit in order to bound

the radius of the search. Extra mechanical cost may be re-

quired to retrieve the topology information of the further

neighbors.

Correctness of the enhancement Incorporating this en-

hancement into the single robot exploration algorithm [3, 4]

and the exploration process of the multiple robot explo-

ration algorithm [5, 14] maintains the correctness of the

original algorithms. The extended signature ‘filters out’

(disambiguates) some vertices that would have to be visited

in the original algorithms. But any vertex that is filtered out

cannot be a valid match due to the fact that the signature

comparison process only disambiguates vertices for which

there is no possible permutation of edges that allows a valid

matching between the two subgraphs.

Empirical evaluation The enhancement does not change

the order in which new places are explored, but it may re-

quire extra mechanical cost to retrieve the extended signa-

tures. The same set of experiments in Section 3 were con-

ducted to investigate the performance of the enhancement,

i.e., two robots explore on 20×20 and 28×28 lattices with

0

10000

20000

30000

40000

50000

60000

70000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ec

ha
ni

ca
l C

os
t (

av
er

ag
e)

Fraction of Holes

Extended Signature Exploration
Original Exploration

(a) Average mechanical cost - 20×20 lattice

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
of

 Im
pr

ov
em

en
t (

av
er

ag
e)

 fr
om

 th
e

E
nh

an
ce

m
en

t

Fraction of Holes

(b) Average improvement - 20×20 lattice

0

50000

100000

150000

200000

250000

300000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

M
ec

ha
ni

ca
l C

os
t (

av
er

ag
e)

Fraction of Holes

Extended Signature Exploration
Original Exploration

(c) Average mechanical cost - 28×28 lattice

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
ra

ct
io

n
of

 Im
pr

ov
em

en
t (

av
er

ag
e)

 fr
om

 th
e

E
nh

an
ce

m
en

t

Fraction of Holes

(d) Average improvement - 28×28 lattice

Figure 6. Extended signature exploration on lattice hole graphs for two robots. Error bars show
standard errors.

varying number of randomly generated holes. Each condi-

tion was repeated 30 times using both the original algorithm

and the enhanced algorithm (using radius 2 comparison).

The results for the team of two robots are shown in Figure 6,

where both the average cost of the algorithms and the corre-

sponding average fraction of improvement (cost reduction)

from the enhanced algorithm over the original algorithm are

reported, along with corresponding standard errors. We can

see that in both graphs, when there are zero holes, i.e., when

the graph is completely homogeneous, the performance of

the enhanced algorithm is worse than the original algorithm.

This is true because extra mechanical costs are spent at each

new place for its neighbor information but the disambigua-

tion tasks cannot benefit from the information. Even with

1% holes the enhanced algorithm shows improved perfor-

mance. In this example for both graph classes, cost reduc-

tions of up to 60% are achieved. Similar results were ob-

tained with the single robot exploration algorithm.

It is interesting to compare the breadth-first exploration,

the extended signature exploration and the original (closest-

first) exploration algorithm. When there are few holes, i.e.,

the graph is relatively homogeneous the breadth-first explo-

ration outperforms the extended signature algorithm and the

original algorithm. As the number of holes increases the

improvement from the breadth-first exploration decreases

whereas the improvement from the extended signature in-

creases. Eventually when the graph is sufficiently heteroge-

neous, the extended signature exploration outperforms the

breadth-first exploration and the original algorithm.

5. Summary and future work

This paper explores how the exploration task in single

and multiple robot graph exploration can be conducted in a

more effective way. We developed two enhancements that

can be made to both the single robot exploration algorithm

[3, 4] as well as to the exploration process in multiple robot

exploration algorithm [5, 14]. One enhancement considers

the order in which new places are explored and the other

enhancement considers exploiting local neighbor informa-

tion to help disambiguate possible confusions. Empirical

evaluations for both enhancements were conducted on lat-

tice hole graphs of varying homogeneity. Both the enhance-

ments can produce a reduction in exploration effort and in

some environments up to 60% reduction can be achieved.

Graph homogeneity has a great impact on the performance

of both the enhancements but in a different manner. When

the graph is relatively homogeneous, adopting a breadth-

first exploration outperforms the extended signature algo-

rithm. As the number of holes increases the improvement

from the breadth-first exploration decreases whereas that

from the extended signature increases. When the graph

is sufficiently heterogeneous the extended signature explo-

ration outperforms the breadth-first exploration.

The performance of the enhancements in more heteroge-

neous environment (e.g., lattice with more than 50% holes)

remains to be further evaluated. Moreover it would be a

challenging and interesting future task to integrate both the

enhancements into the exploration algorithms in a strategic

way. An algorithm may integrate both the closest-first ex-

ploration, the breadth-first exploration and the extend sig-

nature exploration strategies. Then during the exploration

these strategies are selected in a case by case manner, e.g.,

based on the approximate homogeneity of the currently

known graph.

Acknowledgments

The financial support of NSERC is gratefully acknowl-

edged.

References

[1] E. Davis. Representing and Acquiring Geographic Knowl-

edge. Morgan Kaufmann Publishers Inc., USA, 1986.

[2] G. Dudek, P. Freedman, and S. Hadjres. Mapping in un-

known graph-like worlds. Robotic Systems, 13(8):539–559,

1998.

[3] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic

exploration as graph construction. Technical Report RBCV-

TR-88-23, Research in Biological and Computational Vi-

sion, Department of Computer Science, University of

Toronto, 1988.

[4] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic

exploration as graph construction. IEEE Transactions on

Robotics and Automation, 6(7):859–865, 1991.

[5] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Topological

exploration with multiple robots. In 7th International Sym-

posium on Robotics with Application (ISORA), Anchorage,

Alaska, USA, 1998.

[6] A. Elfes. Occupancy Grids: A Probabilistic Framework

for Robot Perception and Navigation. PhD thesis, Carnegie

Mellon University, 1989.

[7] L. Guibas and J. Stolfi. Primitives for the manipulation of

general subdivisions and the computation of Voronoi dia-

grams. ACM Transactions on Graphics, 4(2):74–123, 1985.

[8] B. Kuipers. Modeling spatial knowledge. Cognitive Science,

2:129–153, 1978.

[9] B. Kuipers and Y. Byun. A qualitative approach to robot ex-

ploration and map-learning. In Workshop on Spatial Reason-

ing and Multi-Sensor Fusion, pages 390–404, St. Charles,

IL, USA, 1987.

[10] B. Kuipers and Y. Byun. A robot exploration and mapping

strategy based on a semantic hierarchy of spatial represen-

tations. Robotics and Autonomous Systems, 8(1-2):47–63,

1991.

[11] B. Kuipers and T. Levitt. Navigation and mapping in large-

scale space. AI Magazine, 9(2):25–43, 1988.

[12] S. Thrun. Robotic mapping: a survey. In G. Lakemeyer

and B. Nebel, editors, Exploring Artificial Intelligence in the

New Millennium, pages 1–35. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2003.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.

MIT Press, USA, 2005.

[14] H. Wang. Multiple robot graph exploration. Technical Re-

port CSE-2007-06, Department of Computer Science and

Engineering, York University, 2007.

