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Abstract: The agriculture sector is highly vulnerable to natural disasters and climate change, leading
to severe impacts on food security, economic stability, and rural livelihoods. The use of geospatial
information and technology has been recognized as a valuable tool to help farmers reduce the adverse
impacts of natural disasters on agriculture. Remote sensing and GIS are gaining traction as ways to
improve agricultural disaster response due to recent advancements in spatial resolution, accessibility,
and affordability. This paper presents a comprehensive overview of the FAIR agricultural disaster
services. It holistically introduces the current status, case studies, technologies, and challenges, and it
provides a big picture of exploring geospatial applications for agricultural disaster “from farm to
space”. The review begins with an overview of the governments and organizations worldwide. We
present the major international and national initiatives relevant to the agricultural disaster context.
The second part of this review illustrates recent research on remote sensing-based agricultural disaster
monitoring, with a special focus on drought and flood events. Traditional, integrative, and machine
learning-based methods are highlighted in this section. We then examine the role of spatial data
infrastructure and research on agricultural disaster services and systems. The generic lifecycle of
agricultural disasters is briefly introduced. Eventually, we discuss the grand challenges and emerging
opportunities that range from analysis-ready data to decision-ready services, providing guidance on
the foreseeable future.
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1. Introduction

The agricultural sector is among the most vulnerable to the impacts of natural disas-
ters and climate change, posing significant challenges to rural communities in building
resilience [1]. The effects of climate change, such as rising temperatures and extreme
weather events, raise the frequency and severity of disasters. Agricultural disasters, in-
cluding droughts, floods, hurricanes, and infestations, have a tremendous influence on
food security, economic stability, and rural livelihoods. To effectively respond to disasters,
it is essential to collaborate with multiple stakeholders and to utilize diverse data and
information resources. For instance, efficient early warning systems, disaster risk reduction
planning, and the development of contingency plans can assist farmers in mitigating the
impacts of natural disasters on agriculture [2].

The utilization of geospatial information and technologies, such as remote sensing
(RS) and geographic information systems (GIS), are gaining traction as ways to improve
agricultural disaster response. This is mainly attributed to the recent advancements in
spatial resolution, accessibility, and affordability. RS techniques, whether passive or active,
are capable of providing reliable and immediate data over vast areas. High-resolution
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remote sensing imagery plays a fundamental role in delineating the impact of agricultural
disasters. Meanwhile, GIS facilitates swift and accurate mapping for vulnerable commu-
nities, critical infrastructure, cropland damage, etc. In addition, rapid spatial analysis by
integrating space-based satellite imagery, low-altitude images (e.g., drones), and on-the-
ground statistics can provide a more comprehensive picture of the impact of a disaster and
support informed decision-making. For example, combining information on crop yields
and production with soil moisture levels can provide insights into the potential impact
of drought on food security [3]. However, the exchange and integration of information
between different organizations and systems can be hindered by a lack of interoperability,
potentially diminishing the efficiency and effectiveness of disaster response efforts.

Open standards, such as those developed by the Open Geospatial Consortium (OGC)
and International Organization for Standardization (ISO), may facilitate the interoperability
of diverse systems and ensure that data can be readily exchanged and integrated between
organizations [4]. For example, OGC provides a suite of standards that tackle various
aspects of geospatial information interoperability, including data discovery, data models
and encoding, services, and APIs [5]. By providing a common language and set of protocols
for sharing geospatial data and information, these standards contribute to furnishing a
more comprehensive picture of the situation and insights into the affected area, thereby
streamlining the decision-making processes. However, despite the potential benefits of
advancing agricultural resilience from farm to space, various challenges pertaining to inter-
operability persist. One of the main challenges is guaranteeing the relevance, timeliness,
and accessibility of information to all stakeholders involved in the response, which means
to ensure that the right information is available to the right people at the right time.

To envision and best support the Findable, Accessible, Interoperable, and Reusable
(FAIR) agricultural disaster services, this paper aims to overview the previous efforts
by taking a tour across this wide topic, dedicated to individuals with an interest in em-
ploying geospatial technologies for agricultural applications, as well as the remote sens-
ing and GIS communities in advancing the United Nations Sustainable Development
Goals (e.g., Goal 2—“Zero hunger”, Goal 11—“Sustainable cities and communities”, and
Goal 13—“Climate action”) [6]. We do not linger on specific comparisons between meth-
ods or results, nor do we recommend any single approach as the definitive solution for
agricultural disaster services. Instead, the scope is to provide a thorough overview of what
geospatial approaches have to offer for agricultural disasters while redirecting readers to
more specific papers and major references. Section 2 introduces the organizations world-
wide and their initiatives, which contributes to answering the question: who are the major
players, and what notable projects could researchers follow? Section 3 describes the typical
studies that have examined the impacts of natural disasters on agriculture, with a special
focus on agricultural droughts and floods, which contributes to answering the question:
how can RS technologies be used to build a recipe for disaster indicators, and what are the
current status and trends in earth observation (EO)-based methods. Section 4 summarizes
the generic lifecycle of agricultural disasters, and it reviews the research on agricultural
disaster services and systems, contributing to answering the question: how can GIS, cy-
berinfrastructure, or spatial data infrastructure (SDI) be used to enhance FAIR services.
Section 5 discusses the primary challenges faced by researchers and practitioners, as well
as the emerging opportunities coming along. Finally, Section 6 provides a conclusion to
this paper.

2. The Major Players Worldwide

Agricultural sectors, such as crops, forests, livestock, and fisheries, are susceptible to a
wide range of disasters (e.g., droughts, floods, hurricanes, storms, earthquakes, wildfires,
diseases, and infestations). The international, national, and regional governments and
organizations invest considerable time and effort into agricultural disaster management
(Figure 1).
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2.1. Intergovernmental Organizations

The United Nations (UN) plays a leading role in promoting global efforts to build
agricultural resilience to natural disasters and climate change, including joint research and
development initiatives, capacity-building programs, and cross-border collaborations. The
UN comprises a series of funds, programmes, and specialized agencies that focus on specific
areas and topics [7]. The United Nations Office for Disaster Risk Reduction (UNDRR) leads
the Sendai Framework for Disaster Risk Reduction 2015–2030, which includes specific
targets related to agriculture, such as enhancing early warning systems, promoting risk-
sensitive development, and increasing the capacities of rural communities [8]. The United
Nations Development Programme (UNDP) has launched the Global Drought Initiative to
assist affected countries in constructing frameworks for mitigating and managing the effects
of drought, as well as building resilient dryland [9]. The United Nations Environment
Programme (UNEP) promotes nature-based solutions for reducing disaster risks, with a
focus on disaster prevention [10]. UNEP also provides scientific and technical support to
the United Nations Framework Convention on Climate Change (UNFCCC) [11]. The UN
International Fund for Agricultural Development (IFAD) provides financial and technical
assistance to rural communities in developing countries, especially helping smallholder
farmers to build resilience to natural disasters [12].

The Food and Agriculture Organization (FAO) of UN has led international cooperation
initiatives in agricultural monitoring and disaster risk management for years. FAO ad-
ministers a series of projects on Geospatial Information for Sustainable Food Systems [13],
and it periodically releases reports under the theme “The Impact of Disasters and Crises
on Agriculture and Food Security” [1,14,15]. Moreover, FAO collaborates with the Eco-
nomic Co-operation and Development (OECD) to manage the project Building Agricultural
Resilience to Natural Disasters: Country Case Studies [2,16]. The World Meteorological
Organization (WMO) of UN works to enhance the capacity of countries to provide weather
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and climate services. WMO and UNEP established the Intergovernmental Panel on Cli-
mate Change (IPCC), which provides guidance for policymakers and stakeholders on
ways to mitigate the impacts of climate change on agriculture [17]. The Group on Earth
Observations (GEO) is an intergovernmental partnership that aims to provide a common
platform for the sharing of EO data and information, as well as to support Disaster Risk
Reduction (DRR) [18] and Global Agriculture Monitoring (GLAM) [19]. GEO is developing
the Global Earth Observation System of Systems (GEOSS) to better integrate observing
systems and share data by connecting existing infrastructures using standards [20]. The
World Bank provides financial support to developing countries to help build resilience to
natural disasters and to enhance the capacity of rural communities. The World Bank leads
many projects that support the development of agriculture risk resilience and insurance
solutions. For example, Climate-Smart Agriculture (CSA) is a global initiative aimed at
promoting sustainable agriculture practices and new technologies that help farmers reduce
vulnerability to climate-related shocks [21].

In Europe, the European Commission’s Directorate-General for Agriculture and Rural
Development (DG AGRI) provides funding for initiatives aimed at enhancing the resilience
of the agricultural sectors to natural disasters, such as the European Agricultural Fund
for Rural Development (EAFRD) [22] and the European Regional Development Fund
(ERDF) [23]. The European Commission also manages the EO programme—Copernicus.
The Copernicus Emergency Management Service provides an early warning component,
which consists of the Global Flood Awareness System (GloFAS), Global Wildfire Informa-
tion System (GWIS), and Global Drought Observatory (GDO) [24]. In Asia Pacific, the UN
Economic and Social Commission for Asia and the Pacific (ESCAP) has launched the Risk
and Resilience Portal Initiative to support climate-related and biological multi-hazards,
and it provides a Data Explorer to stay updated on the hazard impacts across various
regions [25]. ESCAP also published a number of reports on climate resilient infrastructure
and DRR [26]. Asia-Pacific Economic Cooperation and Asia-Pacific Network for Global
Change Research (APN) are other active organizations that strengthen the capacity to man-
age disaster risks in the region [27,28]. Africa is also susceptible to a wide range of natural
disasters. The African Regional Centre for Technology (ARCT), under the auspices of UN
Economic Commission for Africa (ECA), is a regional initiative aimed at enhancing the
resilience of agricultural systems in Africa through technology-based approaches, including
areas of drought-tolerant crops, water management, and soil conservation. FAO has also
implemented several programs in Africa to improve the resilience of small-scale farmers [2].
In addition, the world’s largest global partnership of agricultural innovation networks—the
Consultative Group on International Agricultural Research (CGIAR), with its 15 research
institutes—continually endeavors to develop frameworks, systems, standards, strategies,
and policies for agricultural services [29].

2.2. National Governments and Agencies

There are also many organizations and initiatives at the national, local, and regional
levels that are working to enhance the resilience of agricultural systems to natural disasters.
State/provincial departments of agriculture and local extension services play a critical role
in providing information, resources, and support to farmers and communities.

In the United States, at the federal level, the US Department of Agriculture (USDA)
is one of the leading organizations in providing agricultural disaster services. The USDA
provides technical assistance, financial support, and educational resources to farmers and
communities across the US to help them prepare for, respond to, and recover from natural
disasters. The USDA National Agricultural Statistics Service (NASS) collects and analyzes
data on agricultural production, prices, and other key indicators in the US, providing
valuable information to farmers and policymakers. NASS operates its own geospatial
programs, such as CropScape, VegScape, Crop-CASMA, and Disaster Analysis [30]. The
USDA also manages the Farm Service Agency (FSA) and the Natural Resources Conserva-
tion Service (NRCS), which work to improve the resilience of agricultural lands to natural
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disasters and other environmental challenges [31]. The Global Agricultural and Disaster
Assessment System (GADAS) also works to monitor global agricultural conditions and to
assess the impact of natural disasters on agriculture [32]. The USDA Risk Management
Agency (RMA) provides insurance and risk management services to farmers, including
coverage for losses due to natural disasters [33]. The Federal Emergency Management
Agency (FEMA), Environmental Protection Agency (EPA), National Geospatial-Intelligence
Agency (NGA), and United States Agency for International Development (USAID) are
other important players in building agricultural resilience to natural disasters in the US.
They all provide funding and resources to help countries and communities recover from
natural disasters, including agricultural lands and systems [34].

Space agencies and data centers play a crucial role in building agricultural resilience to
natural disasters through their satellite and EO programs. These programs provide valuable
information and data for monitoring crop growth, water resources, and soil moisture levels,
enabling early warnings of potential natural disasters and supporting the development
of effective risk management strategies in the agriculture sector. Prominent agencies and
initiatives include the National Aeronautics and Space Administration (NASA), which
manages programs, such as Landsat [35], Terra [36], Aqua [37], Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [38], Soil Moisture Active Passive (SMAP) [39], and Global
Precipitation Measurement (GPM) [40]. The European Space Agency (ESA) manages the
Copernicus and Sentinel missions [41], as well as the Soil Moisture and Ocean Salinity
(SMOS) [42]. The National Oceanic and Atmospheric Administration (NOAA) manages
the Geostationary Operational Environmental Satellites (GOES) [43], Advanced Very High
Resolution Radiometer (AVHRR) [44], and the National Weather Service (NWS) [45]. The
United States Geological Survey (USGS) administers the National Geospatial Program
(NGP) [46] and vegetation monitoring products [47]. Additionally, these space agencies
also have specific initiatives on disasters, such as NASA’s Earth Science Disasters Pro-
gram [48,49] and NOAA’s Disaster Preparedness Program [50,51]. Based on the robust data
capabilities, these agencies provide valuable information on: (1) vegetation health, crop
distribution, and crop yields; (2) natural disasters, such as droughts, floods, and hurricanes;
(3) changes in temperature, rainfall patterns, soil moisture levels, and the distribution of
land and water resources. There are also some active non-governmental data centers, such
as the National Drought Mitigation Center (NDMC), which provides data, maps, and tools
on agricultural drought [52], as well as the Dartmouth Flood Observatory (DFO), which
maintains an active global archive of large flood events from 1985 to the present [53].

In the UK, the Department for Environment, Food and Rural Affairs (DEFRA) is the
primary governmental department responsible for supporting the UK agricultural sectors.
DEFRA administers the Flood and Coastal Resilience Innovation Fund, Countryside Stew-
ardship, etc. [54,55]. In Canada, the Agriculture and Agri-Food Canada (AAFC) is the
primary government responsible for supporting the Canadian agricultural sectors, and it
manages the AgriRecovery program that provides financial assistance to farmers. Natural
Resources Canada (NRCan) is another department actively developing policies to build
agricultural resilience, with a special focus on flood mapping. In China, the Ministry of
Agriculture and Rural Affairs, the Ministry of Emergency Management, and the National
Disaster Reduction Center of China (NDRCC) are the major governments for promoting the
development of agriculture and implementing disaster reduction, and they have launched
a number of initiatives, such as the Sharing and Learning on Community Based Disaster
Management in Asia Programme (CBDM Asia) [56]. The aforementioned examples are
merely a selection, and actually, many countries have their own national departments and
agencies, providing coordinated responses to natural disasters and financial assistance to
farmers who have suffered losses. The researchers could choose to follow and contribute to
them according to their locations.
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2.3. International Standard Organizations

The international standard organizations are not specifically focused on agricultural
disaster services. However, their standards and initiatives do play a crucial role by improv-
ing interoperability and data sharing between organizations and systems. The standard
organizations always work closely with international governments and space agencies,
such as the UN, World Bank, NASA, and ESA, to support the development of geospatial
data standards for disaster resilience.

The Open Geospatial Consortium is a leading international organization that develops
and promotes standards for geospatial information sharing. The OGC’s efforts in building
agricultural resilience to natural disasters are focused on making the geospatial data and
services FAIR. One of the key initiatives of the OGC is the Standards Program, which
develops the standards for data discovery, data models and encoding, services and APIs,
and sensors, etc. [5]. These standards enable efficient information sharing in a seamless
manner for emergency responders and decision-makers. Another OGC initiative is the
Domain Working Group (DWG). The DWGs bring together organizations and experts from
the public and private sectors to collaborate on the development of geospatial standards
and best practices. For example, the Emergency and Disaster Management DWG is working
on standards for incident management, damage assessment, and evacuation planning, and
the Meteorology and Oceanography DWG is dedicated to improving collection, analysis,
and dissemination of hazard information in a timely and useful fashion [57]. In addition,
OGC Collaborative Solutions and Innovation Program (COSI), such as the Disaster Pilot
(2019, 2021, 2023) and Climate Resilience Pilot 2021–2026, provide funding and support to
development, which focuses on demonstrating innovative geospatial technologies for early
warning systems and emergency response [58].

The ISO has released international standards for a wide range of industries, includ-
ing both agriculture and disaster. ISO standards provide guidance to government and
non-governmental organizations on risk management (ISO 31000) [59], incident manage-
ment (ISO 22320) [60], public warning (ISO 22322) [61], and food safety management (ISO
22000) [62]. For instance, ISO 31000 provides an effective decision-making framework for
managing risks associated with natural disasters, which can be applied to agricultural
sectors. ISO 22000 provides a systematic approach to managing food safety, including the
prevention of food contamination and the protection of food quality during and after a
disaster. In addition, standards developed by ISO/TC 211 are exclusive for geographic infor-
mation, which can be used to build an interoperable geospatial framework for agriculture
disaster information services and systems, such as geographic metadata (ISO 19115) [63],
encoding (ISO 19118) [64], data quality (ISO 19157) [65], and services (ISO 19119) [66].

There are also other standard organizations focusing on developing and promoting
standards for geospatial and EO data exchange. For example, the Federal Geographic Data
Committee (FGDC) has developed the National Spatial Data Infrastructure (NSDI) Strategic
Plan 2021–2024, which ensures open standards-based interoperability to enable geospatial
shared services [67]. W3C Spatial Data on the Web Working Group has developed a number
of specifications and best practices that encourage better sharing of spatial data on the Web,
as well as the use of Linked Data and the Resource Description Framework (RDF) [68]. The
Committee on Data of the International Science Council (CODATA) also works to advance
geospatial research data that are intelligently open [69].

3. EO-Based Agricultural Disaster Research: Case Studies

Over the past decades, agricultural drought and flood have been, undoubtedly, the
predominant types that have sparked considerable scientific efforts. Therefore, we have
selected the typical studies of agriculture disasters, with a special focus on the impacts of
crops and vegetation, to illustrate the comprehensive capabilities of remote sensing for
predicting, monitoring, and assessing agricultural disasters.
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3.1. Agricultural Drought

Agricultural drought (also referred to as vegetation drought) represents soil moisture
deficiency in vegetation, which is usually driven by meteorological drought (insufficient
precipitation) [70–72]. The occurrence of agricultural drought is influenced by various nat-
ural factors, such as precipitation, temperature, and topography, as well as anthropogenic
factors, including crop distribution, crop varieties, and growth conditions. EO-based
agricultural drought monitoring has become increasingly important in recent years for
assessing the probability of drought and estimating vegetation health and crop yields.
Remote sensing technologies, such as satellites and drones, are used to observe and analyze
various aspects of drought, including vegetation conditions, soil moisture, precipitation
patterns, etc. Geospatial modeling and analysis also play a key role in drought monitoring,
as they can be used to map vegetation cover and to estimate the spread of drought-affected
areas. Digital elevation models and hydrological modeling are two of the most common
techniques used in this regard. Artificial intelligence (AI) and big data technologies, such as
machine learning (ML) and deep learning (DL), are also increasingly being used to assess
agricultural drought, which leverages vast amounts of data collected from remote sensing,
ground measurements, and other sources. As illustrated in Figure 2, the following subsec-
tions are some typical studies categorized by the methods used in EO-based agricultural
drought monitoring.
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3.1.1. Remote Sensing-Based Agricultural Drought Indicators

Remote sensing-based vegetation indices are the most common approaches for moni-
toring agricultural drought, as they offer the potential for large-scale and timely monitoring
of vegetation health and stress from satellite imagery. Remote sensing-based indices natu-
rally integrate soil moisture or vegetation information into agricultural drought indicators,
which are difficult to directly gauge from field observations [73].

The Normalized Difference Vegetation Index (NDVI) is the most well-established index
to estimate agriculture drought, and its history can be dated back to the late 20th century.
NDVI is calculated by comparing the reflectance of red and near-infrared wavelengths that
can be used to measure the greenness of vegetation, which is an indicator of plant stress
within the rootzone [74]. Numerous studies, based on NDVI-based drought monitoring,
have been conducted by using a broad range of multispectral sensors, such as Advanced
Very High-Resolution Radiometer (AVHRR), Landsat, MODIS, Sentinel-2, Quickbird, and
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RapidEye [75–80]. The studies also cover global to regional scales [81,82]. However, NDVI
is insensitive to dense vegetation areas, and it is sensitive to soil background variations.
The standalone NDVI-based method has limitations regarding long term change, improved
vegetation indices, such as Vegetation Condition Index (VCI) [83], Vegetation Health Index
(VHI) [84], Enhanced Vegetation Index (EVI) [85], and Temperature Vegetation Drought
Index (TVDI) [86], which have been proposed. For example, Barretta et al. calculated the
three-month VCI from MODIS and Landsat for drought early warning in Kenya [87]. Zhong
et al. utilized the weekly VHI from AVHRR to investigate the long-term spatiotemporal
characteristics of vegetative drought in the Contiguous United States (CONUS) [88]. VCI
and VHI have also been widely used in a combined way, with other indices, such as
Gross Primary Productivity (GPP) [89,90]. Additionally, efforts have been made to apply
evaluations among different indices, and the advantage of the multivariate index approach
is that it has different sensitivities to vegetation type and density [91–93]. For example, Wu
et al. [94] evaluated the agricultural drought frequency change and agricultural drought
area change based on the use of Palmer drought severity index (PDSI) [95] and VHI.

Soil moisture plays a vital role in maintaining the sustained healthiness of vegetation,
and variations in soil moisture can be captured by quantiles or anomalies. An increasing
trend of recent studies utilizes soil moisture as the basis to assess agricultural drought
conditions by leveraging microwave remote sensing data, such as SMAP, SMOS, ASMR-E,
and Sentinel-3 [96,97]. For instance, Xu et al. assimilated the SMAP soil moisture data into
a hydrologic model to provide more reliable surface soil moisture over the CONUS. The
authors also developed a novel drought index and found that it captures the flash drought
earlier than the USDM in the use case, thus performing a high correlation with the yield loss
of wheat [98]. Martínez-Fernández et al. calculated the soil water deficit for agricultural
drought monitoring by using the SMOS L2 time series [99]. Moreover, efforts have also
been made to develop improved indices, such as the Soil Moisture Condition Index (SMCI),
Microwave Integrated Drought Index (MIDI) [100], Soil Moisture Agricultural Drought
Index (SMADI) [101,102], and High Resolution Soil Moisture Drought Index (HSMDI) [103].
However, limitations also exist due to the relatively short-term soil moisture data archives
compared to vegetation indices or surface temperature data. Thermal and hyperspectral
imagery, in combination with optical data, are promising in effectively enhancing the
early warning capabilities, and such approaches discriminate the causes of regional crop
stress in a quantitative manner, as well as the severity of the stress in terms of impacts on
final yield [104,105].

Overall, most studies are generally focused on specific geographical regions prone to
drought, and only a few drought indices have been applied at a global scale. This limitation
arises from the lack of standardized, ground-truthed databases for drought and crop yield,
which make validation challenging [106].

3.1.2. Integrative Methods for Drought Monitoring

These methods integrate multiple data sources, including remote sensing data, in-situ
observations, and meteorological data, to provide a more comprehensive and accurate view
of agricultural drought conditions in either morphological or biophysical ways [107,108].
For example, Brown et al. proposed the Vegetation Drought Response Index (VegDRI)
by integrating the Standardized Precipitation Index (SPI) [109], PDSI, NDVI, and Land
Cover. VegDRI exploits the strengths of both remote sensing and climate-based drought
monitoring, and it has been widely applied to develop models and to assess drought at the
national scale [110]. Zhang et al. proposed a multi-sensor integrated framework based on
the analysis of the agricultural drought evolution process, and they further developed a
novel index, named the Process-based Accumulated Drought Index (PADI), to quantify the
accumulative drought impacts on crops [111].

The integrative methods draw upon both remote sensing data and ground-based data
sources as parameters. Ground-based monitoring involves the use of in situ instruments
(e.g., weather stations and soil moisture sensors) to collect climate data. Ground mea-
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surements are a valuable source of qualitative data, especially in areas with challenging
topography or dense vegetation [108]. For instance, the rootzone soil moisture deficits
can hardly be measured with remote sensing data alone. Cao et al. developed an agricul-
tural drought index based on a vegetation–soil water deficit, with the combination of soil
moisture and potential evapotranspiration [112]. Similarly, taking the consideration of pre-
cipitation and evaporation effects, SPI and Standardized Precipitation Evapotranspiration
Index (SPEI) [113] are other highly-used factors combined by a number of studies [114–117].
For example, Yuan et al. identified varying degrees of preseason drought and analyzed
the sensitivity of the vegetation spring phenology by using EVI and SPEI [118], while Ren
et al. analyzed the effects of heat and drought stress on wheat harvest date based on SPEI
and PDSI [119]. Remote sensing parameters, such as temperature-related indicators from
the Land Surface Temperature (LST) and the Temperature Condition Index (TCI), are also
commonly used to construct multivariate composite indices [120]. For example, Amani
et al. proposed a new index called Temperature-Vegetation-Soil Moisture Dryness Index
(TVMDI) by using NDVI, LST, and soil moisture data [121]. Cai et al. developed the Scaled
Drought Condition Index (SDCI) by combining VCI, TCI, and Precipitation Condition
Index (PCI) [122]. Kloos et al. conducted a correlation analysis between NDVI and LST,
and they applied the TCI, VCI, and VHI to evaluate agricultural yield anomalies in Bavaria,
Germany [123]. Bento et al. proposed a multi-scalar drought index to disentangle the
contributions of VCI and TCI on vegetation health over drylands [124].

As evidenced, researchers have exerted considerable efforts to establish comprehen-
sive indices for drought monitoring. Due to the data availability, as well as spatial and
temporal resolution, passive remote sensing-based approaches have been most widely
used. Normally, the researchers have to trade off spatial and temporal resolution when
selecting the data sources, and certain variables even have a contradictory effect on drought
prediction models, which is a key challenge of integrative methods. However, new oppor-
tunities have arisen with the advent of combined-sensor products, such as the ESA Climate
Change Initiative (CCI) Soil Moisture [125], which has already shown high potential for
multi-spatiotemporal scale drought monitoring [126–128]. In addition, it is important to
note that appropriate agricultural practices can prevent agricultural drought even after
severe meteorological droughts. Climate variables (e.g., SPI and SPEI) are not always
reliable indicators for agricultural drought and should not be used straightforwardly to
verify agricultural drought indices [129].

3.1.3. Machine Learning and AI-Based Methods

In recent years, machine learning and AI-based methods have become increasingly
popular for assessing the severity of drought conditions and devising strategies for mitiga-
tion. By leveraging ML/DL algorithms, data from satellite imagery, weather forecasts, and
other sources can be analyzed to detect areas of drought. Some studies have focused on
using traditional ML methods, such as random forest (RF) and support vector machines
(SVM), while others have explored DL approaches, such as artificial neural networks (ANN)
and deep neural networks (DNN), to process large datasets, improve accuracy, and generate
insights for agricultural drought monitoring and assessment [130,131].

A number of studies have been conducted to demonstrate the effectiveness of ML
and AI-based methods for agricultural drought monitoring, based on the integration of
multi-source remote sensing data [132]. For instance, Zhao et al. applied SVM, bias-
corrected random forest (BRF), and extreme gradient boosting (XGBoost) to estimate
agricultural drought based on SPEI in Shandong, China [133]. Prodhan et al. employed a
deep forwarded neural network (DFNN) with the consideration of precipitation, vegetation,
and soil factors, and they evaluated agricultural drought by using SMDI during crop
phenology stages [134]. Shen et al. also used a DFNN to construct a comprehensive drought
monitoring model, which is applicable in the monitoring of agricultural drought [135].
Areffian et al. demonstrated the effects of drought on vegetation cover based on SPI and
MODIS NDVI by using ANN [136]. Ghazaryan et al. assessed the drought impact and
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spatiotemporal patterns of crop conditions at the field scale. They used logistic regression to
evaluate the drought-induced variability of remotely sensed parameters for different crop
growth stages [137]. Bayissa et al. developed a high resolution vegetation outlook model for
the Upper Blue Nile basin, and this model is able to predict the vegetation condition during
the main crop-growing season based on a rule-based regression tree approach [138]. With
the aim to determine whether various remotely-sensed drought factors could be effectively
used for monitoring agricultural drought in south-eastern Australia, Feng et al. proposed a
reproduced SPEI by adopting RF, SVM, and multi-layer perceptron neural network as the
regression models [139]. Park et al. developed drought indicators through the blending of
six drought factors using RF, boosted regression trees (BRT), and Cubist, and the six factors
were selected from sixteen candidates by using the relative importance as weights [140].

ML-based methods can be used to identify areas at risk of agricultural drought, en-
abling better prediction and early warning systems. For instance, Rahmati et al. developed
new approaches to predict agricultural drought hazard with advanced ML models, includ-
ing regression trees, BRT, RF, SVM, multivariate adaptive regression splines (MARS), and
flexible discriminant analysis (FDA). Eight severe droughts over the period 1994–2013 in
Queensland, Australia were used as the use cases [141]. Dao et al. integrated full spectra
and derivative spectra with three ML algorithms (RF, SVM, and DNN) for early drought
detection and classification [142]. Zhang et al. employed extremely randomized trees (ERT),
extreme learning machine (ELM), and Model, developed by H2O.deep learning(H2O.DL),
to model and predict droughts at different time scales [143]. Aghelpour et al. proposed a
novel model for predicting agricultural drought based on PDSI time series, and they used
the dragonfly algorithm (DA) to optimize the parameters of SVM [144]. Tian et al. used
the support vector regression (SVR) model, incorporating SPEI, to predict the agricultural
droughts in the Xiangjiang River basin. They also analyzed the relationship between soil
moisture and drought [145].

In addition, ML models are also capable of providing more accurate insights into the
drought impact on crop yields, which is invaluable for agricultural decision-makers. To
this end, Bouras et al. developed a cereal yield forecasting model by using both using
linear (multiple linear regression, MLR) and non-linear (SVM, RF, and XGBoost) ML
algorithms [146]. Zambranoa et al. used freely available, near-real-time (NRT) data sources
from MODIS to predict agricultural productivity in Chile, with two approaches—linear
regression and the DL model [147]. A study by An et al. proposed a method that uses a
deep convolutional neural network (DCNN) to classify maize drought stress [148]. Mann
et al. proposed a data fusion method by combining remote sensing data with agricultural
survey data, and they predicted the maize and wheat losses from drought using RF [149].

Furthermore, hybrid models and ensemble approaches that combine ML and crop
models have also been found to improve the accuracy of drought predictions. For example,
Li et al. presented a novel method to estimate regional wheat drought risk for insurance
applications, and they established a drought vulnerability assessment system by coupling
the MCWLA crop growth model [150] with statistical models (RF and MLR) [151].

In general, data preprocessing and feature selection are considered critical steps
for improving the accuracy and efficiency of the aforementioned methods. Although
ML and AI-based methods have the potential to revolutionize the ways of agricultural
drought monitoring and forecasting, the lack of high-quality ground truth data remains
a major challenge for developing ML models. Moreover, the accuracy and reliability
challenges posed by DL models, which can evaluate the intricate relationship between
drought variables and crop growth, remain an ongoing issue.

3.2. Agricultural Flood

Flood disasters have been identified as one of the most impactful natural disasters
on agriculture due to their sudden onset, broad distribution, frequent occurrence, and
severe damage. In recent years, crop losses caused by flood disasters have been extensive
worldwide. Effective monitoring of flood disasters is of utmost importance for disaster
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management agencies to facilitate disaster prevention, prediction, and post-disaster recov-
ery efforts. Furthermore, it facilitates the agricultural sector in tracking the agricultural
product market, food prices, grain security, and policy-making. High-precision flood dis-
aster simulation and prediction is an essential approach for preventing and mitigating
agricultural flood disasters. As illustrated in Figure 3, the primary methods for agricultural
flood disaster monitoring include remote sensing indices modeling, based on crop phenol-
ogy, geoscientific modeling, founded on disaster-causing processes (such as hydrological
and hydraulic models), and data-driven methods (such as machine learning and AI-based
techniques). Model-driven methods have the advantage of explicit physical interpretation,
but they may be restricted by imprecise modeling expressions and data requirements. In
contrast, data-driven methods, although lacking interpretability on biophysical meaning,
typically perform with higher accuracy than model-driven methods.
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3.2.1. Remote Sensing-Based Agricultural Flood Monitoring

Remote sensing-based modeling is a common approach to assess crop damage caused
by floods, and it typically involves two key steps: (1) extracting and mapping the disaster-
causing factors and related indicators (e.g., flood extent, depth, and duration) and
(2) evaluating the vulnerability of affected crops [152].

Numerous studies have been conducted to rapidly extract flood inundation areas
under complex climatic conditions, as summarized below. Optical remote sensing-based
extraction methods have been explored in a number of studies, leveraging long-term Land-
sat TM, AVHRR, MODIS, high-resolution Sentinel, and Gaofen satellite imagery [153,154].
The Normalized Difference Water Index (NDWI) is a widely used index for extracting
water bodies [155]. Optical remote sensing-based methods offer several advantages, such
as numerous data sources, high spatial and spectral resolution, and frequent revisits.
However, they are susceptible to adverse weather conditions and cloud cover [156]. Sev-
eral studies have also explored synthetic aperture radar (SAR)-based extraction methods,
utilizing Sentinel-1, Radatsat, Envisat, and TerraSAR data, which provide all-weather ca-
pability, penetrate through vegetation and clouds, but at a higher cost, and are affected
by changes in backscattering and discontinuous data acquisition [157–159]. Tsyganskaya
et al. summarized the insights about the relationships between SAR parameters and envi-
ronmental conditions for flooded vegetation detection [160]. Other studies have focused
on optimizing flood data products, such as the NRT global flood observation products
provided by the DFO and FEMA, as well as their validation [161]. Furthermore, stud-
ies have been conducted on rapid flood mapping using soil moisture and precipitation
data [162,163]. Some studies have also used multi-satellite data to achieve more accurate
and comprehensive results [164,165].
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Once the flood inundation indicators have been determined, there are traditional GIS
analysis methods available for assessing crop vulnerability to flooding, such as geospatial
overlay. Additionally, there are sophisticated modeling and estimation approaches that
consider various factors, such as crop type and vulnerability index, as well as historical
statistics [166–168]. Remote sensing-based modeling presents a notable advantage in an-
alyzing the dynamic changes of crops in both time and space, with a relatively mature
process and application experience. However, these methods have limitations in moni-
toring the growth process of crops and evaluating yield loss due to less consideration of
phenological mechanisms.

Regarding crop yield loss assessment, several methods utilize crop growth models
for simulation calculations, including the WOrld FOod STudies (WOFOST) model [169],
the Agricultural Production Systems sIMulator (APSIM) model [170], etc. Furthermore,
some enhanced models are specifically designed to assess crop yield reduction resulting
from floods. For Example, the Agriculture Flood Damage Analysis (AGDAM) model is
one of the most preferred models, which considers flood duration and the time of year
for agricultural flood loss quantification, and it was developed by the US Army Corps of
Engineers (USACE) [171,172]. Yildirim and Demir presented a comprehensive assessment
of agricultural flood risk in Iowa, US, by leveraging AGDAM [172]. Molinari et al. proposed
a conceptual model, named AGRIDE-c, for the estimation of flood damage to crops [173].
Li et al. developed a process-based crop model to estimate the waterlogging damage to
wheat yield [174]. These models generally require a large number of input parameters and
necessitate data preprocessing and assimilation, with a relatively high level of complexity.
In a different study, Rahman et al. proposed a novel index, named the Disaster Vegetation
Damage Index (DVDI), to estimate the crop-specific damage that occurs immediately after
flood events [175].

3.2.2. Coupling Hydrological Models with Earth Observation Data

The use of hydrological models is also a common method for monitoring and assess-
ing agricultural floods. These models provide a means of simulating flood conditions,
gaining an understanding of the disaster process, and estimating the impact of flood
depth [176,177]. Typically, natural disaster factors, such as rainfall, temperature, and
terrain, are input into the model, which then outputs hydrological and hydraulic informa-
tion, as well as flood indicators [178]. Several well established hydrological models and
tools exist to facilitate this process, such as the TOPography based hydrological MODEL
(TOPMODEL) [179], Storm Water Management Model (SWMM) [180], Soil and Water
Assessment Tool (SWAT) [181], Rapid Flood Spreading Model (RFSM) [182], and Height
Above the Nearest Drainage (HAND) [183–185].

Recent studies have aimed to enhance flood monitoring and assessment in agricultural
areas by coupling hydrological models with remote sensing, ground observation, and Digi-
tal Elevation Model (DEM) data [186,187]. For instance, Hendrawan and Komori developed
flood vulnerability curves for rice crops by using a two-dimensional hydrodynamic model
and remote sensing data (e.g., NDVI and EVI). The authors found that the relationship
between the intensity of flood parameters and the degree of rice crop yield loss fits logarith-
mic regression functions, demonstrating that flood depth is the most significant parameter
in loss estimation [188]. Psomiadis et al. utilized Sentinel-1 and Landsat imagery in col-
laboration with a one-dimensional hydraulic model to assess flood impact in agricultural
areas. They employed a case study of a major flood event that occurred in Sperchios river
catchment in Greece, which is characterized by extensive farming activity [189]. Chen et al.
proposed a quantitative and spatial evaluation framework to facilitate the identification
of historical flood characteristics that influence crop losses. They developed an empirical
model, based on vegetation indices from mid-high spatial and temporal remote sensing
data in association with agricultural statistics data. Additionally, they employed a rainfall-
runoff model and a two-dimensional hydraulic model to implement a routing scheme for
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surface runoff. The authors found that the flow velocity of flood was the most influential
factor that caused corn, rice, and soybean yield losses in the mountainous regions [190].

In summary, the aforementioned studies demonstrate that the integration of hydro-
logical models with remote sensing holds promise in elevating the comprehensiveness
of flood assessments by providing richer information. While these models make better
use of distributed data and physical processes, they often require substantial data and
computational power. Moreover, hydraulic models are susceptible to imprecise modeling
expression, model generalization, and initial condition uncertainty, which may impede
their accuracy in certain scenarios.

3.2.3. Machine Learning and AI-Based Methods

In recent years, there has been a discernible upsurge in the adoption of machine
learning and AI-based methods for agricultural flood monitoring and assessment. Classic
methods, such as RF, SVM, and ANN, have been successfully applied to flood monitoring
and prediction, and they have even exhibited effectiveness for long-term flood forecast-
ing [191]. Although the biophysical interpretation of ML methods is not explicit, they tend
to manifest superior performance compared to model-driven methods [192].

Substantial evidence from long-term studies reveals a notable linear correlation be-
tween the vegetation index (or its cumulative value) during the crop growing season and
the crop yield [193]. Many researchers have utilized NDVI data to establish regression
models that describe crop yield relationships. For example, Shrestha et al. utilized a linear
regression model to estimate flood impact on corn yield at the field level, with the use of
MODIS NDVI and UDSA Cropland Data Layer (CDL) [194]. Similarly, Chen et al. proposed
a systematic approach and developed an empirical regression model to identify influential
factors controlling flood damage extent on crop yields [195]. Wang et al. developed an
integrated disturbance index to detect the impact of flood on crop production, and they
also investigated the relationship between flood indicators and loss extent by using the RF
model [196]. Another study by Li et al. also utilized the RF model to generate a post-flood
recovery map based on Sentinel-1/2 imagery, which could help reduce the agricultural
failure cost to a great extent [197]. Lazin et. al developed a model based on CNN to assess
the cropland damage area by floods at the county level, which can be further applied to
forecast the impacts in the upcoming season [198]. Phan et al. proposed a framework to
quickly estimate the rice areas damaged by flooding, and they also applied a SVM classifier
on time–series Sentinel 1A imagery to produce a rice-flooding frequency map over the Red
River Delta [199].

Overall, these studies demonstrate the potential of machine learning and AI-based
methods for agricultural flood monitoring and assessment. By feeding remote sensing data
to the ML model, these methods can provide timely information regarding flood extent,
severity, and impact on crops. However, further research is needed to validate and refine
these methods, as well as to apply cutting-edge technologies that can address the challenges
of agricultural flooding in various regions and contexts.

4. Cyberinfrastructure for Agricultural Disaster Resilience
4.1. Disaster Lifecycle: The Role of Agriculture

Natural disasters can have devastating consequences on agricultural development,
often wiping out years of progress in a single event. This situation is further aggravated by
increased agricultural activity in high-risk areas. In order to effectively manage agricul-
tural disasters, a comprehensive understanding of their occurrence and evolution cycle is
necessary. The disaster lifecycle is a framework that describes the various stages of disaster
risk management, including preparedness, response, recovery, and mitigation [8]. Each
stage is associated with different objectives and requires the coordination of a variety of
resources and strategies. Furthermore, to gain a deeper understanding of the agricultural
disaster lifecycle, we summarize the key points into the following four stages:
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(1) Disaster risk identification and awareness

Risk identification in the agriculture sector entails analyzing potential hazards (e.g.,
their location, intensity, frequency, and probability), as well as evaluating exposure and vul-
nerability conditions (e.g., physical, socio-economic, and environmental aspects) [200]. For
example, this involves establishing multi-hazard vulnerability profiles and sector-specific
maps, with a priority on the risks and exposure levels of farming communities. Addition-
ally, knowledge sharing and awareness raising initiatives are of paramount importance.
This involves expanding activities, education, and training for farmers and communities to
reduce vulnerabilities of natural disasters in agriculture. For example, seasonal forecast-
ing and advisories can help farmers make appropriate decisions, such as adjusting their
cultivation practices or selecting drought-resistant varieties to ensure their food security
and income.

(2) Disaster prevention and preparedness

To ensure effective disaster prevention and preparedness for the agriculture sector,
it is essential to focus on accurate prediction and monitoring capabilities, as well as the
knowledge and strategies necessary to respond to disasters. Preparedness activities for
the agricultural sector include national/local emergency preparedness planning, specific
contingency plans, simulation drills and exercises, equipment and material supplies, estab-
lishment of evacuation coordination mechanisms, rapid risk assessment, and dissemination
of public information [2]. Regular monitoring and forecasting of disaster time and likeli-
hood is also critical. For example, strong connections should be established with multiple
disaster warning systems to implement adequate forecasts regarding disaster risks before
they occur, while simultaneously strengthening the resilience of farmers, communities, and
relevant stakeholders. In addition, disaster prevention measures can be implemented at
the farm level, such as using crop varieties that are more resilient to floods or droughts,
as well as implementing conservation practices (e.g., conservation tillage). Social protec-
tion schemes and risk insurance can further assist in reducing farmers’ vulnerability and
exposure to financial impacts, as well as potential food security risks. For example, crop
insurance can assist farmers in diversifying the risk of income loss.

(3) Disaster emergence response and impact assessment

Emergency response refers to immediate interventions taken after a disaster. It aims
to provide impact assessment and emergency assistance to affected communities and
preserve the integrity of their property and assets [1]. For example, using remote sensing
imagery to expeditiously assess agricultural damage can provide a more granular and
nuanced understanding of the disaster situation, locate field assessments in hotspots, and
detect potential changes in yields. In addition, emergency response efforts for agriculture
also include providing resources, such as food, seeds, fertilizers, and tools, to safeguard
post-disaster agricultural livelihoods.

(4) Disaster recovery and reconstruction

The disaster recovery stage aims to rebuild and restore normal agricultural operations
by rehabilitating and reconstructing physical, economic, and social assets. The primary
objective of this phase is to mitigate the impacts of the disaster by restoring damaged
infrastructure and agricultural production. Key activities include assessing and quantifying
agricultural losses, as well as implementing longer-term post-disaster measures, such
as rehabilitation or reconstruction of disaster-resilient agricultural infrastructure (e.g.,
drainage and irrigation systems).

4.2. Disaster SDI

The proliferation of remote sensing systems and the innovation of remarkable AI
algorithms has extremely improved the indicator recipes for disaster response. However,
disasters, such as droughts and floods, still inflict unprecedented socio-economic conse-
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quences. A critical gap is that these systems are not seamlessly connected as parts of a
common SDI.

A SDI can be described as a network of interconnected technologies, policies, and
institutional arrangements designed to facilitate the discovery, sharing, access, and use
of geospatial information. Specifically, a disaster SDI is designed to access and share
disaster-related data, information, and knowledge in a standardized manner, and it enables
decision-makers, field responders, and the affected public to make informed decisions and
to take effective actions to enhance disaster resilience. The OGC is actively promoting
the development of disaster SDI, which brings together the disaster SDI puzzle pieces
that facilitate the right information to the right person at the right time, forming a pat-
tern that can adapt to any disaster or region. The OGC Disaster Pilot 2021 Engineering
Report demonstrated the value chain of a disaster SDI, and it also highlighted the role
of the Analysis Ready Data (ARD) [201] and Decision Ready Information (DRI) in that
context [202]. The disaster ARD is characterized by the state of readiness, or near-readiness,
of any dataset to be transformed and integrated into applications across diverse domains.

Achieving interoperability in the field of agricultural disaster resilience is a complex
task, as it requires the integration of multiple technologies. In order to effectively respond to
disasters and to mitigate their impacts, it is necessary to have a system in place that allows
for seamless communication and collaboration between various stakeholders (e.g., farmers,
governments, non-profit organizations, and research institutions). Several efforts have
been made to promote the development of SDI with the use of geospatial data in a range of
fields, including disaster management. The FGDC has played a major role in supporting
the Global Spatial Data Infrastructure (GSDI) Association. Through the GeoPlatform
initiative, FGDC has provided a centralized platform to publish, share, and assess the
authoritative geospatial data and services across different levels of communities (e.g.,
federal, state, local, tribal) [203,204]. Additionally, studies have explored the application of
disaster SDI [205–209].

4.3. Existing Research on Agricultural Disaster Services and Systems

To facilitate the efficient delivery of disaster ready indicators to relevant stakeholders, it
is crucial to develop reliable systems and tools for easily accessing and directing visualizing.
Prior efforts on cyberinfrastructure and SDI have been proven efficient in enhancing data
products’ dissemination. In this regard, we reviewed the existing literature on agricultural
disaster services and systems, with a special focus on interoperability, to further scrutinize
the challenges of geospatial data exchange and information sharing in disaster responses.

Efforts have been made to provide interoperable data services for cropland and vegeta-
tion [210,211]. For example, the Global Information and Early Warning System on Food and
Agriculture (GIEWS), administered by FAO, disseminates the major food crop condition
data at the global scale (e.g., NDVI anomaly, VCI, VHI, Drought Intensity, and Agricultural
Stress Index) [212]. GEO and the University of Maryland developed the Global Agricultural
Monitoring (GEOGLAM) Crop Monitor for Early Warning, which provides global agro-
climatic condition data services for seven major crops (maize, rice, wheat, beans, cassava,
millet, sorghum, teff, and groundnut) in 49 producer countries [213,214]. The Anomaly
Hot Spots of Agricultural Production (ASAP), launched by the European Commission,
serves as an online early warning system to identify hotspots of agricultural production
anomaly [215]. ASAP provides the SPI, NDVI, and NDVI anomalies cumulated over the
growing season. CropScape is a web service-based system for CONUS cropland data
dissemination, managed by the USDA and George Mason University [216–218]. CropScape
provides the annual CDL data and a series of tools for on-demand data downloading,
map customization, and statistical analysis. Several efforts have been made to validate
and to refine the CDL on CropScape by using ML methods [219,220]. VegScape is a web
service-based system for monitoring vegetation condition cover CONUS, and VegScape
provides NRT vegetation index data products, such as NDVI, VCI, and Mean-referenced
Vegetation Condition Index (MVCI) [221]. Crop-CASMA is a data service application
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system that facilitates the retrieval, analysis, and sharing of soil moisture data for the
CONUS [222,223]. CropWatch is a global crop monitoring system that determines key crop
production indicators, such as crop acreage, crop condition, crop production, cropping
intensity, and crop planting proportion [224].

Several well known drought information systems worldwide have been established to
provide meteorological and agricultural drought indicators. Examples include the Global
Drought Information System (GDIS) [225], Global Integrated Drought Monitoring and
Prediction System (GIDMaPS) [226], US Drought Monitor (USDM) [227], European Drought
Observatory (EDO) [228], and African Flood and Drought Monitor (AFDM) [229]. Table 1
displays a series of global and regional drought indicators provided by the aforementioned
systems. In addition, Sun et al. introduced the Global Agricultural Drought Monitoring
and Forecasting System (GADMFS), which provided a cyberinfrastructure framework for
vegetation drought monitoring, with the indicators derived from satellite-based datasets
by using OGC WMS, and WCS [230,231]. Yan et al. implemented an operational drought
monitoring system for China, which supports the statistical analysis based on VCI, TCI,
and VHI [232]. Peng et al. demonstrated the advantages of web services in delivering
on-demand agricultural drought analysis [233].

Furthermore, several studies have proposed flood monitoring systems to enhance
prediction and response capabilities. For instance, The Oak Ridge National Laboratory
proposed a HPC-powered cyberinfrastructure that adopts machine learning methods for
timely and high-resolution hydrometeorological predictions [234]. Di et al. developed
an EO-based flood crop loss assessment cyber-service system, RF-CLASS, for supporting
flood-related crop statistics and insurance decision-making. The system is implemented
with interoperable specifications to facilitate automatic data fetching from NASA EO data
systems [161,235]. Zhang et al. proposed an approach to enable interoperable model
sharing on the web by coupling OGC Open Modelling Interface (OpenMI) and Web Pro-
cessing Service (WPS). The TOPMODEL and SWMM5 services are implemented as the use
cases [236,237]. Similarly, Qiu et al. developed a flood disaster management system (FDMS)
by leveraging OpenMI standard, and the system provides disaster reduction capabilities
that cover the entire workflow, including rainfall monitoring, hydrological simulation,
runoff prediction, risk assessment, inundation simulation, inundation extraction, and loss
assessment. The authors also used an ontology-based approach to automatically link flood
models with appropriate datasets as inputs [238]. Zhai et al. proposed a Sensor Web and
web service-based framework to support active flood disaster monitoring [239]. Yang et al.
developed an observation task chain representation model that describes an eight-tuple ob-
servation task, as well as the sensor planning service of remote sensing satellites on a flood
monitoring use case [240]. Demir et al. provided an overview of the Iowa Flood Information
System (IFIS), which was designed as a generalized flood cyberinfrastructure [241].

Exploring the geospatial big data computational technologies (e.g., Google Earth En-
gine (GEE) [242] and Geospatial Data Cube (GDC)) for managing and analyzing large-scale
datasets has become a research focus [243–245]. GEE has been used for in-season crop type
identification and cropland extent mapping, with different emphases on automation work-
flow [220,246], specific crop type [247,248], and regional application [249,250]. Zhang et al.
proposed an add-on toolkit for GEE, which derive CDL-based data products and simplify
on-demand agricultural land use modeling [251]. Additionally, Li and Demir proposed
a U-Net-based method to extract flood extent by utilizing GEE and SAR imagery [252].
Scheip and Wegmann developed a global open-access hazard mapping application base
on GEE—HazMapper, which identifies the impacted vegetation areas from a natural dis-
aster based on the relative difference in NDVI [253]. Khan and Gilani proposed a global
scale drought severity index (DSI), and they used GEE for global drought mapping and
monitoring from 2001 to 2019 [254,255]. Liu et al. developed a rapid extraction method for
monitoring agricultural disasters at the regional scale, and they used MODIS vegetation
index products from the period 2005–2019 based on GEE [256]. Furthermore, researchers
have established the methodology of using GDC and ML models for agriculture monitor-
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ing [257], determining the decrease extent of cropped area [258], generating value-added
products in rapid disaster mapping [259], and supporting flood disaster recovery [260].

Table 1. Summary of typical studies of agricultural disaster services and systems.

System Functionality Data Region Standard

GEOGLAM [213]
Provide reliable information

on early warning and
crop conditions

Synthesis of crop condition
map, season-specific map Globe /

GIEWS [212]
Disseminate the major food
crop condition data at the

global scale

NDVI Anomaly, VCI, VHI,
ASI, and precipitation Globe /

CropScape [218]
Explore and disseminate
geospatial cropland data

products for decision support
CDL, crop frequency CONUS WMS, WFS,

WCS, WPS

VegScape [221] US vegetation condition
monitoring

NDVI, VCI, MVCI, RMVCI,
and RVCI CONUS WMS, WCS,

WFS

GDIS [225]
Drought monitoring,

forecasting, impacts, history,
research, and education

NADM (North American),
CDI (European), DI, SPI,

SPEI, EDDI, VHI, ESI, and
GRACE-based soil moisture

(surface and rootzone)

Globe /

GIDMaPS [226]
Near-real-time drought

indicators for monitoring
and prediction

SPI, SSI, and MSDI Globe /

U.S. Drought
Monitor [227]

Weekly US drought map with
five classifications USDM, DSCI CONUS /

EDO [228]

Drought-relevant maps of
indicators derived from

precipitation, satellite, and
modelled soil

moisture measurement

CDI, SPI, SMI, PDSI, DI,
fAPAR, Low-Flow Index,
Daily temperature, and

Fire Danger

Europe WMS

AFDM [229]
Drought information for the

current date and the past
one month

Soil Moisture Index Africa /

GADMFS [231]

Cyberinfrastructure
framework for vegetation

drought monitoring
and forecasting

NDVI, VCI, and VHI Globe WMS, WFS,
WCS, WPS

RFCLASS [235]

EO-based flood crop loss
assessment for supporting
flood-related crop statistics

and insurance
decision-making

VCI, MVCI, and DVDI CONUS WMS, WFS,
WCS

Crop-CASMA [223] Soil moisture data analysis,
visualization, and sharing

SMAP-based soil moisture
(surface and rootzone) CONUS WMS, WFS,

WCS, WPS

GeoPlatform [204]

Publish, share, and assess the
authoritative geospatial data
and services across different

levels of communities

Flood extent, flood depth
grids, ESI, fire heat extent,

and hurricane lane
CONUS

OpenAPI,
STAC,

ISO 19139
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Table 1. Cont.

System Functionality Data Region Standard

FDMS [238]

Rainfall monitoring,
hydrological simulation,

runoff prediction, risk
assessment, inundation

extraction, and loss assessment

NDWI, flood extent,
and runoff China WMS, WFS,

OpenMI

GeoDR [208]

Rapid awareness, information
extraction, impact assessment,
and decision recommendation

for disaster
emergency response

NDWI, flood extent China WMS, WPS

Some of the readily accessible data/products were listed, while its derived data were not included here.
“NDVI—Normalized Difference Vegetation Index; VCI—Vegetation Condition Index; VHI—Vegetation
Health Index; ASI—Agricultural Stress Index; MVCI—Mean-referenced Vegetation Condition Index;
RMVCI—Ratio to Median Vegetation Condition Index; RVCI—Ratio to previous-year Vegetation Condition Index;
GPCC—Global Precipitation Climatology Centre; NADM—North American Drought Monitor; CDI—Combined
Drought Indicator; DI—Global Drought Index; SPI—Standardized Precipitation Index; SPEI—Standardized
Precipitation Evapotranspiration Index; EDDI—Evaporative Demand Drought Index; ESI = Evaporative Stress
Index; SSI—Standardized Soil Moisture Index; SMI—Soil Moisture Index; MSDI—Multivariate Standardized
Drought Index; DSCI—Drought Severity and Coverage Index; USDM—Percent Area in U.S. Drought Moni-
tor Categories; fAPAR—Fraction of Absorbed Photosynthetically Active Radiation; WMS—Web Map Service;
WCS—Web Coverage Service; WFS—Web Feature Service; WPS—Web Processing Service; OpenMI—Open
Modelling Interface; STAC—SpatioTemporal Asset Catalog”.

5. FAIR Agricultural Disaster Services—Challenges and Opportunities

In the new era of data-driven agricultural disaster resilience, the development of
innovative platforms and services can enable efficient geoscientific data utilization and
foster deep learning. As the use of geospatial information and technologies continues to
expand, it becomes increasingly imperative to adopt standards-based approaches in disaster
response efforts. To facilitate the delivery from ARD to DRI, a lucid value-enhancement
pipeline has been identified by the communities. As delineated in Figure 4, this section
highlights some major challenges and the way forward from the FAIR perspective.

5.1. Data Discovery and Access

With the emergence of new agricultural data platforms and geoprocessing function-
alities, data discovery remains a challenge. A major hurdle is the lack of standardized
metadata, which hinders users from efficiently accessing and discovering datasets and
services. For instance, when users endeavor to search for all the available imagery in a
particular area, they need to sift through diverse sites from multiple providers, and each
imagery catalog exhibits a slightly different way of representing its data, thereby com-
plicating the discovery process. Currently, limited catalogs provide comprehensive and
up-to-date information on geospatial datasets related to agricultural disasters. To tackle
this challenge, developing metadata profiles and catalog services based on the existing
efforts and standards, such as OGC API—Records [261] and SpatioTemporal Asset Catalog
(STAC) [262], are promising solutions. STAC aims to develop a common language for
searching imagery, as well as a catalog approach. STAC can complement Cloud Optimized
Geotiff (COG) [263] with additional metadata, thereby formalizing the modern paradigm
of accessing data through the Cloud. Moreover, data access needs to consider all possible
output data type structures (e.g., feature, coverage, multi-dimensional dataset, or data
cube), as well as the query parameters for pre-filtering. The new series of OGC APIs for
data access and retrieval, such as the OGC API—Environmental Data Retrieval (EDR) [264]
and Data Access and Processing API (DAPA) [265], can provide lightweight interfaces to
access the complex agro-disaster resources.
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5.2. Analysis Ready Data

Analysis ready data are key components in making the geospatial data FAIR. Preparing
interdisciplinary resources, such as remote sensing data for analysis readiness, can be time-
consuming and resource-intensive, especially in the aftermath of a disaster. ARD can
streamline this process by providing users with pre-processed and formatted data, in
advance for reusability across a broad range of disaster analytical tasks [266]. Moreover,
ARD can be integrated into a Geospatial Data Cube, which enables EO data with large-scale
analysis. Previous studies have demonstrated that GDC emphasizes the datasets having a
common definition of orthogonal space, time, and phenomenon axes, which is promising
for aligning multi-source data with different spatial and temporal resolutions [243]. A good
example would be combining the drought observations or predictions made at different
resolutions to provide a comprehensive perspective. However, there are still a number of
challenges for researcher to dig through, such as defining ARD for vector and tabular data,
as well as establishing an interoperable GDC metadata model and API that support the
handling of various GDCs [267,268].

5.3. Data and Harmonization

Understanding the evolution and history of specific disasters is key to predicting
and assessing future occurrences [269]. To provide timely support for decision-making on
agricultural disaster risk management and emergency response, it is essential to enhance
efforts to integrate earth observation, crop growth, climate modeling, hydrological simu-
lation, and machine learning. The production of DRI requires the integration of models,
datasets, and analytical processes from different disciplines, such as agroecology, meteorol-
ogy, hydrology, and geology. Given the vast amount of long-term spatial and temporal data
resources, what data exchange formats need to be supported at the various interfaces? Zarr
is a sophisticated format, originating from the ocean science community, and it has been
gaining popularity for storing multidimensional array data on the Cloud [270]. The Zarr
library has also been used to optimize access to HDF5 and NetCDF4 formats within Cloud
environments [271]. Moreover, COG has emerged as a fundamental format for storing
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geospatial raster data on the Cloud-based systems. COG enables web clients to request a
specific piece of an image, instead of necessitating access the entire image. Moreover, how
should one harmonize differences and uncertainties to facilitate scientific discoveries and
predictions? A possible direction is to leverage the modeling frameworks and interfaces,
such as OpenMI standard, which is widely used to couple diverse models and runtime data
exchange through well-defined interfaces. Extending and improving such frameworks can
support models that involve multiple simulation phases and time-step computations (e.g.,
hydrological model) [237], further enhancing the interaction among various agricultural
disaster-related models in a distributed environment.

5.4. Data Processing

The agro-disaster data have grown significantly in terms of quantity, diversity, and
complexity, which severely restricts the improvement of emergency response capabilities.
This data heterogeneity challenge can be bridged with data semantics and a knowledge
graph, which is essential for ensuring value-enhancement data processing. For example,
during a flash flood emergency response, a powerful value-added service chain needs
to be integrated from various atom service functions. The traditional process-oriented
construction method is too rigid to adapt to the flexible characteristics of remote sensing
data processing. To address the complex relationships among various entities in the
disaster domain, such as the evolution of disaster events, the correlation of spatiotemporal
data, and the integration of model services, it is essential to delineate the interconnections
between events, tasks, data, models, and services, thereby forming a comprehensive disaster
knowledge graph. This approach can further promote the construction of a knowledge-
driven processing service chain. Moreover, all disaster recipes and knowledge resources
can combine together as a knowledge package, which substantially support reproducible
EO science [272,273].

Machine learning and AI-based methods play an increasing role in the context of
agricultural disaster applications. To facilitate the value-added processing pipeline, it is
crucial to describe the ML models and corresponding training data in a proper manner.
One of the top priorities for efficient ML algorithms is the availability of high-quality
training datasets. However, the limited interoperability and discoverability of training
datasets have become a significant bottleneck in ML-based EO applications. To address
this issue, a rising new standard from OGC is the Training Data Markup Language for
Artificial Intelligence (TrainingDML-AI) [274], which focuses on developing the model and
encodings for geospatial ML training data, providing the potential for an AI-ready data
exchange format. Furthermore, another challenge is the full-stack ML workflow, which
means linking all the preprocessing, training and testing, and post-processing steps into
an automated pipeline [275]. For example, this involves deploying ML models with OGC
API—processes that enhance agricultural disaster services and which involve how to ingest
training models and to develop extensions for the special production phases of ML.

5.5. Data Quality

Data quality is a broad concept that may refer to data accuracy, completeness, timeli-
ness, relevance, consistency, provenance, and fit-for-purpose. To enhance the utilization of
geospatial information in agricultural disaster resilience efforts, it is important to highlight
the challenge posed by data quality. Agriculture may require higher resolution imagery
compared to other sectors, especially when smallholder farming systems are affected.
Ground truthing is essential and necessary at different stages to assess the immediate and
longer-term cropland impacts of a disaster. To ensure data quality, remote sensing analyses
must be in conjunction with ground truthing activities, such as on-site measurements, agri-
cultural surveys, administrative data, and stakeholder questionnaires. However, collection
and sharing of ground truthing still poses challenges, both in terms of improving the quality
of on-the-ground observation and enhancing the effectiveness of RS approaches. In addi-
tion, data provenance can play a critical role in promoting data quality. Data provenance
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can help detect and correct errors that may arise during data collection, processing, or anal-
ysis. By providing transparency and accountability in the data creation and management
process, data provenance can ensure that the data are accurate, reliable, and trustworthy.
In this regard, long-term support is necessary to achieve full traceability from high-level
data products back to the original raw data.

6. Conclusions

On our planet, 2.6 billion people draw their livelihoods mostly from agriculture.
Natural hazards and disasters disproportionately affect the small-scale farmers, fishers,
and forest-dependent communities who produce over half of the world’s agricultural
production. Focusing on applications to agricultural disasters, this paper overviews the
cutting-edge research and progress of geospatial data science, and it seeks to address four
key questions. (1) Who are the major players worldwide, and what notable projects could
researchers follow? (2) What are the most impactful disaster types on agriculture? How can
earth-observing remote sensing technologies help build the recipe for agricultural disaster
indicators? (3) How can GIS and SDI help enhance FAIR agricultural disaster services
and systems? (4) What are the current challenges and the way forward? By answering
these questions, this review highlights the state-of-the-art technologies that have been
used in various stages of the disaster lifecycle, along with the obstacles. One limitation
of this review is that it predominantly concentrates on research conducted within the
last five years. This duration has been chosen to focus on the most recent and advanced
technologies for this topic. Another one is that we have selected the most impactful
agricultural disaster types as case studies to avoid the paper overly being lengthy. The
research and development of agricultural disaster SDI and FAIR services remain in their
infancy, and the grand challenges ranging from analysis-ready data to innovative AI models
to decision-ready services derive numerous opportunities for government, academia, and
industry. Ongoing efforts to explore, implement, and adapt these new opportunities to
disaster risk reduction in agriculture, as well as post-disaster rehabilitation, are sparking
innovation today, and they will continue to do so for the foreseeable future.
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This table lists all the abbreviations and acronyms used in this paper.
AAFC Agriculture and Agri-Food Canada
AGDAM Agriculture Flood Damage Analysis
ANN Artificial Neural Network
APSIM Agricultural Production Systems sIMulator
ARCT African Regional Centre for Technology
ARD Analysis Ready Data
ASAP Anomaly Hot Spots of Agricultural Production
ASI Agricultural Stress Index



Remote Sens. 2023, 15, 2024 22 of 33

AVHRR Advanced Very High Resolution Radiometer
BRT Boosted Regression Trees
CDI Combined Drought Indicator
CDL Cropland Data Layer
CGIAR Consultative Group on International Agricultural Research
CODATA Committee on Data of the International Science Council
CONUS Contiguous United States
COSI Collaborative Solutions and Innovation Program
DAPA Data Access and Processing API
DCNN Deep Convolutional Neural Network
DEFRA Department for Environment, Food and Rural Affairs
DFNN Deep Forwarded Neural Network
DG AGRI Directorate-General for Agriculture and Rural Development
DFO Dartmouth Flood Observatory
DRR Disaster Risk Reduction
DRI Decision Ready Information
DWG Domain Working Group
EAFRD European Agricultural Fund for Rural Development
EDDI Evaporative Demand Drought Index
EDR Environmental Data Retrieval
EO Earth Observation
EPA Environmental Protection Agency
ESA European Space Agency
ESCAP Economic and Social Commission for Asia and the Pacific
ESI Evaporative Stress Index
EVI Enhanced Vegetation Index
FAIR Findable, Accessible, Interoperable, and Reusable
FAO Food and Agriculture Organization
FEMA Federal Emergency Management Agency
FGDC Federal Geographic Data Committee
fAPAR Fraction of Absorbed Photosynthetically Active Radiation
FSA Farm Service Agency
GADAS Global Agricultural & Disaster Assessment System
GADMFS Global Agricultural Drought Monitoring and Forecasting System
GDC Geospatial Data Cube
GDO Global Drought Observatory
GDIS Global Drought Information System
GEE Google Earth Engine
GEO Group on Earth Observations
GEOSS Global Earth Observation System of Systems
GIDMaPS Global Integrated Drought Monitoring and Prediction System
GIEWS Global Information and Early Warning System on Food and Agriculture
GLAM Global Agriculture Monitoring
GloFAS Global Flood Awareness System
GPCC Global Precipitation Climatology Centre
GPP Gross Primary Productivity
GSDI Global Spatial Data Infrastructure
GWIS Global Wildfire Information System
HAND Height Above the Nearest Drainage
HSMDI High Resolution Soil Moisture Drought Index
IFAD International Fund for Agricultural Development
IPCC Intergovernmental Panel on Climate Change
ISO International Organization for Standardization
LST Land Surface Temperature
MODIS Moderate Resolution Imaging Spectroradiometer
MSDI Multivariate Standardized Drought Index
MVCI Mean-referenced Vegetation Condition Index
NADM North American Drought Monitor
NASA National Aeronautics and Space Administration
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NASS National Agricultural Statistics Service
NDMC National Drought Mitigation Center
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NGA National Geospatial-Intelligence Agency
NGP National Geospatial Program
NOAA National Oceanic and Atmospheric
NDRCC National Disaster Reduction Center of China
NRCan Natural Resources Canada
NSDI National Spatial Data Infrastructure
NWS National Weather Service
OGC Open Geospatial Consortium
OpenMI Open Modelling Interface
PADI Process-based Accumulated Drought Index
PCI Precipitation Condition Index
PDSI Palmer Drought Severity Index
RDF Resource Description Framework
RF Random Forest
RFSM Rapid Flood Spreading Model
RMA Risk Management Agency
RMVCI Ratio to Median Vegetation Condition Index
RVCI Ratio to previous-year Vegetation Condition Index
SDI Spatial Data Infrastructure
SMADI Soil Moisture Agricultural Drought Index
SMAP Soil Moisture Active Passive
SMCI Soil Moisture Condition Index
SMI Soil Moisture Index
SMOS Soil Moisture and Ocean Salinity
SPEI Standardized Precipitation Evapotranspiration Index
SPI Standardized Precipitation Index
SSI Standardized Soil Moisture Index
STAC SpatioTemporal Asset Catalog
SVR Support Vector Regression
SVM Support Vector Machines
SWAT Soil & Water Assessment Tool
SWMM Storm Water Management Model
TCI Temperature Condition Index
TOPMODEL TOPography based hydrological MODEL
TVDI Temperature Vegetation Drought Index
TVMDI Temperature-Vegetation-Soil Moisture Dryness Index
UNDP United Nations Development Programme
UNDRR United Nations Office for Disaster Risk Reduction
UNEP United Nations Environment Programme
UNFCCC United Nations Framework Convention on Climate Change
USDA United States Department of Agriculture
USDM United States Drought Monitor
USGS United States Geological Survey
USAID United States Agency for International Development
VCI Vegetation Condition Index
VHI Vegetation Health Index
WCS Web Coverage Service
WFS Web Feature Service
WMO World Meteorological Organization
WMS Web Map Service
WOFOST WOrld FOod STudies
WPS Web Processing Service
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