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Abstract

Consider photography in scattering media. One goal is

to enhance the images and compensate for scattering ef-

fects. A second goal is to estimate a distance map of the

scene. A prior method exists to achieve these goals. It is

based on acquiring two images from a fixed position, us-

ing a single camera mounted with a polarizer at different

settings. However, the shortcomings of this polarization-

based method comprise having to acquire these images se-

quentially, reduced light level, and inapplicability at low

backscatter degree of polarization. In this paper, a new

technique is described to alleviate these issues by integrat-

ing polarization and stereo cues. More precisely, the ear-

lier single-camera method is extended to a pair of cameras

displaced by a finite baseline. Each camera utilizes polar-

izers at different settings. Stereo disparity and polarization

analysis are fused to construct de-scattered left and right

views. The binocular stereo cues provide additional geo-

metric constraints for distance computation. Moreover, the

proposed technique acquires the two raw images simultane-

ously. Thus it can be applied to dynamic scenes. Underwa-

ter experiments are presented.

1. Introduction

Imaging within scattering media, e.g., underwater, has

become increasingly important for a large number of sci-

entific and commercial applications [8, 9]. In such me-

dia, poor visibility due to back-scatter hinders both human

assisted operations and computer vision systems. Addi-

tional complexities arise when operating in low-light en-

vironments, and thus the use of artificial sources is neces-

sary. Visibility degrades quickly with increasing distance

between the camera and objects. On the other hand, re-

ducing the backscatter calls for careful arrangement of the

source and camera. Hence, it becomes highly desirable to

develop methods that can enhance visibility and improve

Figure 1. Polarization-based method for a single camera with two

different polarization filter settings was applied to an uncalibrated

stereo pair. Despite improvement, better results are expected with

a model that accounts for the stereo baseline, thus utilizing both

the stereo disparity cue and polarization analysis (courtesy of Tali

Treibitz).

image quality in scattering media; e.g., [14].

Some of these issues are addressed by utilizing two im-

ages from a camera with a polarization filter, maintaining

the same viewing position while varying the filter orien-

tation [18, 21]. By applying a polarization-based mathe-

matical model, these images are decoupled into backscat-

ter and enhanced de-scattered components, while the scene

distance map is recovered as an auxiliary product. The ro-

bustness of the method can be demonstrated by applying it

to a stereo pair having a finite baseline; see Fig. 1. Yet,

improved performance is expected by the generalization of

polarization analysis to images acquired at multiple views.

We show that the integration of polarization analysis

with stereovision leads to new methodology that provides

several advantages over earlier methods. In the context of

stereo vision several research has been done underwater ir-

respective of polarization [15, 6, 2, 16, 7, 20]. Those works,

however, have focused on 3D reconstruction under reason-

able visibility conditions, rather than enhancing the visibil-

ity itself. Furthermore, in [17], they account for light atten-

uation under uniform lighting while estimating the distance



map.

Here, we extend the earlier single-camera method [21]

to a pair of cameras displaced by a finite baseline. Each

camera utilizes a different polarization setting, and stereo

disparity and polarization analysis are utilized to construct

enhanced de-scattered views. The availability of binocu-

lar stereo cues to compute distance, enables the application

of our method even when the images are obtained under

low degrees of polarization. On the other hand, the use of

polarization complements standard stereo, since it enables

the removal of the backscatter (thus, improving stereo im-

agery), enhancement of backscatter modulation (by remov-

ing degeneracy), and the estimation of distances irrespec-

tive of the object texture or surface markings. Thus, our

method can be applied even when only one of the two cues

is dominant. A stereo setup can overcome temporal delays

by acquiring images simultaneously, and thus can be used

in dynamic scenes. While the proposed method is applica-

ble to images acquired in a variety of scattering media, we

present the results of experiments with underwater images

acquired under controlled turbidity conditions.

2. Imaging Model

2.1. Notation

Let two calibrated cameras view the scene (Fig. 2). The

origin of the world coordinate system is the projection cen-

ter of the left camera, the Z-axis is along the optical axis

and the XY axes are parallel to the horizontal and verti-

cal scan lines. We assume a calibrated stereo system where

the coordinate systems of the two cameras are parallel, and

that the baseline vector is D = (D, 0, 0) in the global co-

ordinate system. Hence, the epipolar lines are parallel to

the x axis. Let X = (X,Y, Z) be the world coordinates

of a point in the water. The projection of X on the im-

age plane is x = (x, y). In particular, an object point at

Xobj = (Xobj, Yobj, Zobj) corresponds to an image point

xobj. Variables associated with the left or right camera are

denoted by L or R, respectively. These include the image

coordinates x
L,xR, and the coordinates corresponding to the

same scene object x
L

obj,x
R

obj. The same distinction applies

to the scattering angle θ and the backscatter degree of polar-

ization (DOP) p, as defined in the earlier method proposed

in [18, 21]. Briefly, when two images are taken with differ-

ent polarization filter setting, one image is typically brighter

than the other. The DOP p ∈ [0, 1] is the ratio of the differ-

ence between the two images to the backscatter component.

We define the line of sight of the left and right views,

LOSL and LOSR, as follows:

L camera

R camera

Light source

Object

Dome of 

radius   

Polarizer 

Scattering particle

LOSR

LOSL
R

camR

L
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srcR

r
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Figure 2. Imaging setup.

LOSL ≡
{

X: Z ∈ [0, Zobj],

X = (Z/f)xL

obj, Y = (Z/f)yLobj

}

LOSR ≡
{

X: Z ∈ [0, Zobj],

X = D + (Z/f)xR

obj, Y = (Z/f)yRobj

}

(1)

where f is the focal length of the cameras. If the two cam-

eras are enclosed in dome ports with equal radius r, then the

distances from the dome to X for the left and right cameras,

respectively, would be

RL

cam(X) = ‖X‖ − r, (2)

RR

cam(X) = ‖X − D‖ − r. (3)

2.2. Stereo and Polarization

With no polarizer, the measured image for each camera

is given by

I(xobj) = S(xobj) + B(xobj) , (4)

where S(xobj) is the object signal and B(xobj) is the

backscatter [5, 11, 12]. Before detailing these components,

note that backscatter is the major cause of contrast deterio-

ration [5], rather than signal blur. This was demonstrated in

[18] using objective criteria. Interestingly, according to Ref.

[23], human vision associates image quality mostly with

contrast, rather than resolution. For these reasons, we do

not focus here on image blur and deblurring, although the

small-angle forward scattering in high turbidity can intro-

duce a significant amount of image blur [5, 11, 12]. Rather,

we consider the prime effects associated with turbidity to be

backscatter and attenuation.

Define Lobj(xobj) as the object radiance we would have

sensed had no disturbances been caused by the medium

along the LOS, and under uniform illumination. Propaga-

tion of light to the object and then to the camera via the

medium yields an attenuated signal [5, 11]:

S(xobj) = Lobj(xobj)F (xobj) , (5)



where F is the falloff function, described below.

Consider for the moment a single illumination point

source. From this source, light propagates a distance Rsrc

to Xobj. Free space propagation creates a 1/R2
src irradiance

falloff. Yet, there is turbidity, characterized by an attenu-

ation coefficient c. Hence the falloff functions for the left

and right images are

F L(xL

obj)=
(

exp{−c[Rsrc(Xobj)−r]}
R2

src(Xobj)
Q(Xobj)

)

exp(−c‖Xobj‖) ,
(6)

F R(xR

obj)=
(

exp{−c[Rsrc(Xobj)−r]}
R2

src(Xobj)
Q(Xobj)

)

exp(−c‖Xobj − D‖) ,
(7)

respectively. In these equations Q(Xobj) expresses the non-

uniformity of the scene irradiance, solely due to the inho-

mogeneity of the illumination. It similarly exists if the wa-

ter is clear, i.e., c = 0, and can thus be pre-calibrated in

clear water. For multiple illumination sources, Eqs. (6) and

(7) are derived for each source, and then all F ’s are summed

up. This can be generalized to include illumination due to

multiple scattering [19].

Let b(θ) be the phase function. The backscatter for

a small illumination source can be derived by integration

along the LOS for each of the left and right images [5, 21].

Following Ref. [21], we assume that the degree of polariza-

tion p, as well b(θ) for all backscatter angles, are constant.

Hence, we obtain

BL(xL

obj) = b exp(cr)
‖Xobj‖−r
∫

RL

cam=0

Isrc(X) exp(−c‖X‖)dRL

cam, X∈LOSL ,
(8)

BR(xR

obj) = b exp(cr)
‖Xobj−D‖−r
∫

RR

cam=0

Isrc(X) exp(−c‖X−D‖)dRR

cam, X∈LOSR,

(9)

where Isrc(X) is given by

Isrc(X) =
Lsrc

R2
src(X)

exp (−cRsrc(X)) Q(X). (10)

Some variables are clearly independent of L and R. These

include Lsrc, Rsrc, and Q(X) (thus Isrc), which are asso-

ciated solely with the illumination. This also applies to X

and Xobj, since they are defined in the global coordinate

system.

Since Lobj(xobj) is defined as the object radiance un-

der uniform illumination and in the absence of any distur-

bance from the medium along the LOS, we will adopt the

brightness-constancy1 assumption [4], as commonly done

1The simplified brightness constancy model can be readily relaxed with

more general optical flow models, allowing us to generalize the analysis.

in stereo analysis. That is, Lobj is similar for L or R (at

corresponding pixels). Hence,

SL(xL

obj) = Lobj(x
L

obj)F
L(xL

obj) ,

SR(xR

obj) = Lobj(x
R

obj)F
R(xR

obj) .
(11)

In summary, substituting into Eq. (4) yields the final model

of the stereo images:

IL(xL

obj) = SL(xL

obj) + BL(xL

obj) (12)

IR(xR

obj) = SR(xR

obj) + BR(xR

obj) . (13)

3. Efficient Polarization in a Stereo System

The methods in Refs [18, 21] were implemented by se-

quentially taking two frames, each with a different polariza-

tion setting of the imaging system. However, in a stereo sys-

tem, such two images can be taken simultaneously. Hence,

stereo complements this earlier approach by overcoming

its temporal delays and its inaccuracy of distance estima-

tion. Moreover, stereo can also be performed if p = 0
(zero DOP). On the other hand, the use of polarization

complements standard stereo, since it decreases backscatter

(improving the image to begin with) [3]. Polarization en-

hances the backscatter modulation (removing degeneracy),

and thus enables the estimation of distances irrespective of

the object’s texture and surface markings. The pathological

case, where the approach fails, corresponds to a texture-less

object in a p = 0 medium. In Refs [18, 21], the polar-

izer modulates the backscatter, but not the signal. The latter

simply divides its energy equally between the polarization

components. Suppose that the L camera is set with a polar-

izer (termed analyzer), such that the backscatter is minimal,

while the R camera is set with an orthogonal analyzer. Then,

the raw images would be

ILpol(x
L

obj) = 1
2SL(xL

obj) + 1−p

2 BL(xL

obj)

IRpol(x
R

obj) = 1
2SR(xR

obj) + 1+p

2 BR(xR

obj)
, (14)

since p is insensitive to the backscatter ray direction. Note

that IRpol is worse than IR defined in Eq. (13): the signal in

IRpol is attenuated by half, while the backscatter is amplified

relative to the signal by (1 + p) > 1. Thus, we may utilize

an analyzer only on the L camera, yielding ILpol according to

Eq. (14). The right camera has no polarizer, hence it simply

outputs IR as defined in Eq. (13). This increases the light

throughput, and makes the formulation applicable even if

p may change from the L view to the R view (since polar-

ization has no impact on the R image). Anyway, there are

essentially two unknowns per pixel x
L: the object distance

Zobj and the object radiance under uniform lighting Lobj.

To estimate them, we have at our disposal two independent

raw images ILpol,raw and IRraw. The unknowns should be con-

sistent with these images.



4. Implementation

The analytical framework in the last sections is the foun-

dation of an algorithm for reconstructing de-scattered im-

ages by decoupling the backscattering fields of the left and

right stereo pairs. Both c and b may be measured in a-priori

experiments or by utilizing standard equipment. In addi-

tion, we make use of the known source illumination field,

determined through calibration with the images of a uni-

form planar target.

The operations are carried out at each pixel x
L

obj = x
L.

With calibrated cameras, the coordinate x
L uniquely defines

LOSL, up to an unknown distance Zobj. This unknown

could be estimated using correspondences. The estimated

Ẑobj and x
L uniquely define

X̂obj = X̂obj(Ẑobj | x
L) = [X̂obj, Ŷobj, Ẑobj]

=
[

(Ẑobj/f)xL, (Ẑobj/f)yL, Ẑobj

]

,
(15)

and the correspondence

x̂
R= x̂

R(Ẑobj | x
L)=

[

(X̂obj−D)f/Ẑobj, Ŷobjf/Ẑobj

]

,

(16)

defines LOSR according to Eq. (1). Then, utilizing the

measured values of c and b, Eqs. (6)-(9) directly yield

the modeled falloff and backscatter fields. Recall that for

each pixel x
L, these fields depend only on a single un-

known degree of freedom, the distance Ẑobj, thus denoted

F L

model(Ẑobj | x
L), F R

model(Ẑobj | x
L), BL

model(Ẑobj | x
L),

and BR

model(Ẑobj | x
L). With two equations for each pair

of corresponding points in the stereo pair, the object re-

flectance can be estimated. Having the estimated backscat-

ter field for the left and right images, the left and right sig-

nals can be computed by manipulating Eqs. (14). The entire

process can be repeated, by feeding back the de-scattered

stereo images to the disparity estimation module, for com-

puting a better range map. The block diagram in Fig. 3

depicts the iterative process.

5. Experiments and Results

Experiments were carried out with stereo pairs acquired

in a 6’(W)× 12’(L)× 6’(H) indoor water tank, in differ-

ent turbidity levels, but the same positions relative to the

scene. The water turbidity and scattering level were varied

by adding a known volume of low-fat milk to clear water,

namely quarter, half and one liter. Hereafter, we call experi-

ments with quarter, half and one liter contamination of milk

as low, medium and high concentrations, respectively.

The stereo baseline2 is about 17.2 [cm]. The light source

position is (8.5,9,0.0) [cm] (located between the two cam-

eras). The backscatter decreases by increasing the baseline

2Recall that the left-camera projection center is chosen as the origin of

the world coordinate system.
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Figure 3. Block-diagram of de-scattering algorithm.

between each camera and the source. However we deliber-

ately used a small camera-source distance to challenge our

method.

To estimate the illumination field, first we acquired a

high-dynamic-range image of the field over a narrow spa-

tial band to determine the source pattern for one cross sec-

tion. Then we assumed the same distribution for other cross

sections at different orientations. Measurement of inherent

optical properties of ocean waters, including the attenua-

tion coefficient can be made with off-the-shelf spectrome-

ters. Furthermore, ocean optics models of these coefficients

exist as functions of environmental conditions, e.g., size and

concentration of scatterers that can be readily estimated.

For our experiments, we determined the attenuation co-

efficient a priori as a linear function of the milk concentra-

tion, using images at different source-to-camera propaga-

tion paths [13]. This linear model was applied at various

milk concentrations. Also, the scattering coefficient b was

estimated from the published data in [13]; the backscatter

coefficient for low-fat milk is approximately the same as

the attenuation coefficient.

There are three main possible states for combining a

camera and a polarizer. The polarizer could be aligned such

that it removes maximum amount of backscatter. There-

fore, the resulting image has minimum amount of backscat-

ter. Conversely, the polarizer could be aligned in such

a way that the resulting image has maximum backscat-

ter. Finally, the camera could have no polarizer. In a

stereo setup, both left and right cameras be in any one of

these states. Among all possible combinations, we refer to

minimum scattering setting when polarizers on both

cameras remove maximum amount of backscatter and con-

sequently the raw images then have minimum amount of

backscatter. Accordingly, maximum scattering setting



(a) (b)

Figure 4. Raw images under the maximum scattering setting with (a) low and (b) medium concentration of low fat milk. The bottom

row shows the magnified cylindrical object. Its enhanced result is shown at the right side at each image.

refers to the setting with maximum amount of backscatter in

raw images and unpolarized setting refers to the setting

with no polarizer on both cameras.

In the first data set, the background is the tank wall at one

end at about 2 [m] distance from the stereo system, covered

with black Neoprene sheet. Images were recorded at low

and medium concentrations, corresponding to average at-

tenuation coefficients of roughly {0.37} [m−1] and {0.74}
[m−1], respectively. The targets comprise two planar ob-

jects at 0.8 [m] and 1.2 [m], and a cylindrical object at 1.5

[m] from the stereo cameras.

Fig. 4 depicts stereo pairs of the same scene recorded un-

der the maximum scattering setting, at low and medium

concentrations of low fat milk. The cylindrical object is

magnified in Fig. 4. It is shown before and after removing

backscatter in both left and right images, at different con-

centrations. In medium concentration, the object is almost

veiled and the enhanced images show a great deal of im-

provement. The recovered signal in medium concentration

is darker than the recovered signal in low concentration, due

to stronger attenuation. Fig. 5 contrasts the recovered signal

and raw images.

For quantitative assessment, we compare the ability of

the SIFT point detector [10] to find corresponding points in

raw and enhanced stereo pairs using identical parameter set-

tings. After determining corresponding points using SIFT,

a denser range map was obtained by a match propagation

technique [1] and interpolation. A ground-truth range map

was estimated using images taken by the same setup in clear

water.

Fig. 6 compares the initial and final estimated range

maps that are obtained from the raw data and the de-

scattered images for the first data set. In all cases, the ini-

tial seeds obtained from SIFT are depicted by black circles.

It is noted that the choice of our range estimation method

is mainly for demonstration purposes, and in general, one

can apply other algorithms. However, match propagation

is based on color (intensity) constancy assumption. Thus

the denseness of the estimated map is strongly coupled to

the similarity of the left and right views in the raw and de-

scattered images. Only a small number of initial matches

were used to explore the effectiveness of match propaga-

tion. As can be seen, in both concentrations, the final esti-

mated range map is closer to the ground truth than the initial

range map. Also, notice that at medium concentration, SIFT

was not able to find any match on farther objects (Welcome

mat and cylindrical object). In contrast, in the recovered

signal, several corresponding points were detected on these

objects.

Fig. 7 compares the results of the proposed method

(stereo method) with the single camera method [21] at dif-

ferent milk concentrations. For comparison purposes, we

illustrate the results of stereo method where the left polar-

izer is set to minimize the backscatter and the right polar-

izer is set to maximize the backscatter. In all images in

Fig. 7, the results were superimposed on image with min-

imum backscatter. As can be seen, in all cases, the results

show improvement over the image with minimum backscat-

ter. Since both methods use the same physical basis for

backscatter modeling, the results of two methods are con-

sistent with each other.

In the second data set, the tank wall is at about 2.5 [m]

distance from the stereo system. The images were obtained

medium and high concentrations. Furthermore, we acquired

images in clear water to serve as the benchmark to compare

with our results. For lack of space, we show and compare

the left views of the processed data. Also, we depict an

estimation of Lobj, instead of the estimated signal.

In this experiment, we explore a different combina-

tions of a stereo vision system with polarizers. Fig. 8



(a) (b)

Figure 5. Comparison between the raw images and the recovered signals, (a) low and (b) medium concentration.

(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Figure 6. Comparison of range map estimation at different concentrations. First row: low concentration results (a) left view of raw image,

(b) initial range map using raw images, (c) final range map using final enhanced images, (d) ground-truth range map. Second row: medium

concentration results (a’) left view of raw image, (b’) initial range map using raw images, (c’) final range map using final enhanced images,

(d’) ground-truth range map.

illustrates the experiment with medium milk concentra-

tion. First, the raw images in (a,a’) are recorded under

minimum scattering setting. In (b,b’), the polarizer

on left camera is set to minimize the backscatter, while the

right camera utilizes no polarizer. The images in (c,c’) were

taken without any polarizer. The single camera method can-

not be applied in any of these cases, since either both cam-

eras have the same polarizer settings, or one camera em-

ploys no polarizer. In (d), we show the left image in clear

water, used here as the ground truth. The images in (e-g)

were obtained by applying our method to the data in (a-c),

respectively.

We obtain the best results in the case where both the po-

larization and stereo cues are significant. As we remove the

polarizer from one or both cameras, the contrast of the re-

constructed reflectance map deteriorates. With no polarizer,

the stereo disparity is the sole source of range cue in order

to estimate the backscatter field. Note that by computing the

reflectance map, we also compensate for non-uniform illu-

mination; compare the processed data and the ground truth

image taken in clear water.

Fig. 9 shows the results at high milk concentration. The

reconstructed image is considerably enhanced over the ban-

ner, where the SIFT method with disparity propagation pro-

duces a dense range map. However, SIFT does not give

any seed match over the circular object, because the signal

is too weak. Thus, we have applied in this region the es-

timated range from the less turbid data. This allows us to

establish the upper bound on the performance in estimating

the reflectance map of the circular object.



(a) (b)

(a’) (b’)

Figure 7. Comparison of stereo method with single camera method

[21], results of (a) single camera method at low concentration,

(b) stereo camera method at low concentration, (a’) single cam-

era method at medium concentration, (b’) stereo camera method

at medium concentration

6. Conclusions

We generalized an earlier polarization-based method to

estimate and eliminate backscattering from underwater im-

ages. Instead of acquiring two images with different po-

larization settings on a single camera, we work with stereo

cameras having suitable polarization filters. We considered

different combinations of polarizers with stereo cameras. In

all cases, the active light source employs a polarizer. The

best results were achieved when the two cameras had po-

larizers aligned to yield images with minimum amount of

backscatter. This may be related to conclusions made in

ref. [22].

Among several advantages, the binocular stereo cue pro-

vides additional geometric constraint, and can thus work

in the absence of a high DOP. Another advantage of our

method is that the two images can be acquired simultane-

ously, avoiding temporal delays.

In the absence of both polarization and binocular cues,

namely low DOP with a textureless object/scene, our

method becomes ill-posed. Two sets of experiments each

with two different turbidity levels verify that the proposed

mathematical models lead to improved image quality. How-

ever, to achieve the best results, the system components, in-

cluding the active illumination source, have to be calibrated.

Generalization to deal with multiple scattering and nonuni-

form back-scatter are worth future explorations.

(a) (a’)

(b) (b’)

(c) (c’)

(d) (e)

(f) (g)

Figure 8. Results of data with medium concentration. Data of raw

left and right stereo views (a,a’) with polarizers on both cameras,

whose orientation minimizes the backscatter, (b,b’) polarizer filter

only on left camera, (c,c’) neither camera utilizing a polarizer. The

left image in clear water (d) is compared with the reflectance maps

estimated by our method. The images in (e-g) are de-scattered

results that correspond to the data in (a-c), respectively.
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