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Abstract—Enhancing information security via reliable user
authentication in wireless body area network (WBAN)-based
Internet of Things (IoT) applications has attracted increasing
attention. The noncancelability of traditional biometrics (e.g.
fingerprint) for user authentication increases the privacy
disclosure risks once the biometric template is exposed, because
users cannot volitionally create a new template. In this work,
we propose a cancelable biometric modality based on high-
density surface electromyogram (HD-sEMG) encoded by hand
gesture password, for user authentication. HD-sEMG signals
(256 channels) were acquired from the forearm muscles when
users performed a prescribed gesture password, forming their
biometric token. Thirty four alternative hand gestures in common
daily use were studied. Moreover, to reduce the data acquisition
and transmission burden in IoT devices, an automatically
generated password-specific channel mask was employed to
reduce the number of active channels. HD-sEMG biometrics
were also robust with reduced sampling rate, further reducing
power consumption. HD-sEMG biometrics achieved a low equal
error rate (EER) of 0.0013 when impostors entered a wrong
gesture password, as validated on 20 subjects. Even if impostors
entered the correct gesture password, the HD-sEMG biometrics
still achieved an EER of 0.0273. If the HD-sEMG biometric
template was exposed, users could cancel it by simply changing
it to a new gesture password, with an EER of 0.0013. To the best
of our knowledge, this is the first study to employ HD-sEMG
signals under common daily hand gestures as biometric tokens,
with training and testing data acquired on different days.

Index Terms—biometrics, user authentication, IoT, HD-sEMG,
pattern recognition.

I. INTRODUCTION

W ITH the rapid development of wireless body area

network (WBAN)-based Internet of Things (IoT)
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in smart environment [1] and Internet of Medical Things

(IoMT) in smart healthcare [2], the demand for reliable user

authentication has been soaring in recent years. Authentication

tokens encrypted via “what the user knows” (e.g. password) and

“what the user has” (e.g. ID card) are very easy to reproduce

for impostors once related tokens are exposed. Authentication

via “what the user is” (e.g. biometrics, such as DNA, face

and fingerprints) are more challenging to blindly replicate and

thus intruding the authentication system is relatively more

complex. However, traditional biometric tokens such as face

recognition, voice and gait, are still naturally exposed to

impostors while others, such as DNA and fingerprint, can

be easily recorded by impostors without the user’s knowledge.

Moreover, most traditional biometrics are noncancelable. Once

the biometric template is exposed to impostors, it is permanently

compromised because the user cannot create a new template.

Employing physiological signals acquired directly by WBAN

devices in an IoT environment as biometric tokens, such as

the electroencephalogram (EEG) [3] and electrocardiogram

(ECG) [2], can mitigate the above risks because EEG and ECG

are relatively difficult to expose. However, EEG acquisition

is a relatively cumbersome procedure, currently impractical

for authentication in real-life situations. Besides, ECG is

sensitive to heart rate variations caused by environmental and

physiological factors, which are not under the users’ volitional

control. Accordingly, ECG is still not an established cancelable

biometric modality.

The inter-individual differences in surface electromyogram

(sEMG) signals have long been a challenge in multi-user

human-machine interfacing (HMI) [4], indicating its potential

as a biometric modality. Moreover, EMG has been widely

applied in WBAN-based IoT and IoMT applications. Rescio

et al. [5] developed a sEMG-based pre-fall detection system.

EMG-based gesture recognition techniques have also been

embedded in a wearable interaction system for mobile devices

[6]. Besides, with the advancement of portable and wearable

high-density sEMG (HD-sEMG) acquisition systems [7], [8],

muscle activity can be sampled with a sufficient spatial

resolution for IoT-based smart environments. Accordingly,

employing sEMG signals acquired directly by such wearable

WBAN devices in IoT applications for user authentication

is an efficient approach. Our previous work [9], for the first

time, employed HD-sEMG as a biometric token, and proved

the excellent cancelability of HD-sEMG signals [10], [11].

HD-sEMG signals acquired from the right dorsal side of the
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hand during isometric contractions of muscles corresponding

to a specific finger and finger combinations, were used as

biometric tokens. If a biometric token is exposed, the users

can replace it by changing muscle activations corresponding

to another finger combination. Nonetheless, this previous work

was limited by the use of isometric contractions, which are

not a natural or comfortable way for users to generate sEMG

signals. Using sEMG signals under more natural, dynamic hand

gestures would contribute to the translation of this approach

to daily IoT application scenarios where convenience of use is

a key factor. EMG generated by hand gestures or motions has

been used as biometrics in previous studies [12], [13], [14].

However, the training and testing data in these studies were

not acquired on different days. Accordingly, inter-day variation

of signal characteristics and inter-session electrode shift were

not taken into account. Both factors are significant concerns

for biometrics based on physiological signals.

In this work, we substantially advance sEMG biometrics

with respect to those found in the literature by: (1) First, a

diversity of 34 alternative hand gestures in common daily use

was included in our gesture pool to generate sEMG signals.

Dynamic contractions, compared with isometric contractions,

are more natural and comfortable for the users, thus increasing

the applicability in daily IoT applications. (2) Second, 256-

channel HD-sEMG signals were acquired from muscles of

the right forearm. Compared with HD-sEMG from the dorsal

side of the hand used in our previous work [10], HD-sEMG

signals acquired from the forearm are more informative as they

capture the activity of extrinsic hand/wrist muscles active in

most daily hand gestures. Signals acquired from 256 channels

also provide high-resolution muscle activation information

compared with traditional sEMG [12], [13], [14]. (3) Third,

HD-sEMG signal acquisition can be implemented via integrated

electrode arrays which are more convenient to wear than

multiple separate conventional sEMG electrodes. (4) Fourth,

to reduce the data acquisition and transmission burden in IoT

devices, an automatically generated password-specific channel

mask was employed to reduce the number of active channels.

We also observed that the HD-sEMG biometric template is

robust to reduced temporal sampling rate, which reduces

power consumption. (5) Further, we also evaluated the security

strength of HD-sEMG biometrics via password entropy analysis,

demonstrating the high security of HD-sEMG against brutal

attack. (6) Last, the training and testing data in our work were

acquired on different days (separated by an 8.5 day interval,

on average). Even in this cross-day validation, the HD-sEMG

differences can be protective for authentication, both when the

impostors know the gesture password and when impostors enter

a random gesture password. The obtained results in the present

work redefine the current state-of-the-art in sEMG biometric

authentication.

II. DESCRIPTION OF EXPERIMENT AND DATASET

A total of 20 subjects (12 males, 8 females; aged 22 to

34 years) participated in the experiment. Each subject was

informed about the research purpose and experiment procedure.

Written informed consent was signed by all subjects. The

Fig. 1: Electrode placement

experiment was reviewed and approved by the ethics committee

of Fudan University (approval number: BE2035).

Before the experiment, the right forearm was cleansed with

abrasive gel. To reduce the skin-electrode impedance, the

subject’s forearm was then wiped using an alcohol pad. Four

8×8 electrode arrays (Adhesive Matrix ELSCH064NM1, OT

Bioelettronica, Torino, Italy) were used to acquire the 256-

channel HD-sEMG signals from the forearm. Each gelled

electrode in the array is elliptical in shape (5-mm major axis,

2.8-mm minor axis) with 10-mm center-to-center inter-electrode

distances. The extensor and flexor muscles were each covered

by two arrays, as shown in Fig. 1, forming combined 16×8

electrode arrays for each muscle group. For each subject, we

labeled an area on each side of the forearm (extensor and flexor

muscles) via anatomical landmarks to place the electrode array.

The left and right boundaries of the labeled area were set to the

radial and ulnar aspects of the forearm. The distal and proximal

boundaries of the labeled area were set to the head of the ulna

and the humeroulnar joint. We then aligned the center of the

combined 16×8 electrode array with the center of the labelled

area. The long axis of the array was placed along the long axis

of the forearm. The right leg drive electrode was placed on the

head of the ulna. The reference electrode of the acquisition

device was placed on the elbow. The HD-sEMG signals were

acquired using the Quattrocento system (OT Bioelettronica,

Torino, Italy), with a passband of 10–500 Hz, a sampling rate

of 2048 Hz, a resolution of 16 bits, and a gain of 150.

During the experiment, subjects sat on a comfortable chair,

watching the experiment instructions shown on the computer

screen in front of them. Subjects were queued to perform 34

hand gestures in common daily use activating one or multiple

degrees of freedom (DoFs), using their most comfortable effort

levels. The gestures were the following: (1) thumb extension,

(2) index finger extension, (3) middle finger extension, (4) ring

finger extension, (5) little finger extension, (6) wrist flexion,

(7) wrist extension, (8) wrist radial, (9) wrist ulnar, (10) wrist

pronation, (11) wrist supination, (12) thumb + index finger

extension, (13) index finger + middle finger extension, (14)
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Fig. 2: The 34 gestures used in the experiment.
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Fig. 3: Schematic sequence diagram of each trial.

wrist flexion + hand close, (15) wrist extension + hand close,

(16) wrist radial + hand close, (17) wrist ulnar + hand close,

(18) wrist pronation + hand close, (19) wrist supination + hand

close, (20) wrist flexion + hand open, (21) wrist extension

+ hand open, (22) wrist radial + hand open, (23) wrist ulnar

+ hand open, (24) wrist pronation + hand open, (25) wrist

supination + hand open, (26) thumb + index finger + middle

finger extension, (27) index finger + middle finger + ring

finger extension, (28) middle finger + ring finger + little finger

extension, (29) index finger + middle finger + ring finger +

little finger extension, (30) hand close, (31) hand open, (32)

thumb + index finger pinch, (33) thumb + index finger + middle

finger pinch, (34) thumb + middle finger pinch. Subjects were

asked to not activate any muscles not involved in the queued

task. The hint pictures of the above gestures are shown in Fig.

2. Subjects performed two trials for each gesture and then

Subject 7-Hand Close

-Day 1

Subject 7-Hand Close

-Day 2

Subject 7-Hand Open

-Day 1

Subject 7-Hand Open

-Day 2

Subject 12-Hand Close

-Day 1

Subject 12-Hand Close

-Day 2

Subject 12-Hand Open

-Day 1

Subject 12-Hand Open

-Day 2

...
RMS 

Feature

Extraction

Channel 1

Channel 2

Channel 3

Channel 256

256-Channel HD-sEMG Signals

Fig. 4: Examples of HD-sEMG signals and the converted RMS

maps of 2 representative subjects (subjects 7 and 12) under 2

hand gestures (hand close and hand open) on 2 days. The RMS

maps were computed from all 256 channels in the 16 × 16
electrode array. The 16 × 16 electrode array was formed by

four 8× 8 electrode arrays. The upper left, lower left, upper

right and lower right 8× 8 electrode arrays of each 16× 16
electrode array in this figure correspond to the upper left, lower

left, upper right and lower right 8×8 electrode arrays in Fig. 1,

respectively. Each single 8× 8 electrode array was up-sampled

to 100×100 through bicubic interpolation to obtain a sufficient

resolution for better visualization.

continued to the next gesture. The gestures were performed

following the order shown in Fig. 2. In each trial, three 1-s

dynamic tasks (moving from the relaxed state to the target

gesture) and one 4-s gesture maintenance task (moving from

the relaxed state to the target gesture and then maintaining that

specific target gesture) were performed with a 2-s inter-task

resting period, as shown in Fig. 3. A 5-s inter-trial resting

period was provided. The data acquisition procedure takes

about 20 minutes totally. For each subject, HD-sEMG signals

during 204 (34 gestures × 2 trials × 3 tasks) dynamic tasks

and 68 (34 gestures × 2 trials × 1 task) maintenance tasks

were acquired. Subjects were asked to inform the laboratory

assistant if they missed a task or performed a wrong task. The

missed or wrong tasks were removed from the dataset. On

average, 2.30 ± 2.71 out of 204 (1.13%) dynamic tasks and

0.85 ± 1.05 out of 68 (1.25%) maintenance tasks were removed.

HD-sEMG signals were acquired in two sessions on different

days (interval: from 3 days to 25 days with an average of 8.50

± 6.72 days) for each subject. Sessions 1 and 2 were used

as training and testing dataset, respectively. Fig. 4 presents

examples of acquired HD-sEMG signals and the converted

root mean square (RMS) maps of 2 representative subjects

(subjects 7 and 12) under 2 hand gestures (hand close and hand

open) on 2 days. The RMS maps show a similar pattern for

the same subject under the same hand gesture, but vary with

either different subjects or different hand gestures, indicating

the feasibility of HD-sEMG based user authentication encoded

by hand gestures. Therefore, a feasible authentication method
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Fig. 5: Power spectral density of the raw and preprocessed

(filtered) EMG signals from a representative subject.

can be implemented by estimating a matching score between

the input signals for authentication and the enrolled signals

via the similarity between the feature maps. Input signals with

a wrong user identity or a wrong gesture password lead to a

low matching score.

III. METHODS

A. Data Preprocessing

The acquired HD-sEMG data were first bandpass filtered

from 10–500 Hz using an 8-order Butterworth filter. A cascade

of several notch filters was then employed to attenuate power

line interference (50 Hz) and each of its harmonic components

up to 400 Hz. Fig.5 presents the power spectral density of

representative sEMG signals. The filtered HD-sEMG signals

were segmented into different tasks for further analysis. Signals

in the first 0.25 s of reaction time after each task onset were

removed from the analysis, retaining only the remaining stable

period of each task.

B. Feature Extraction

The framework of the proposed method is shown in Fig. 6.

Features widely applied in EMG pattern recognition studies,

consisting of RMS [10], variance of central frequency (VCF)

[15], Hjorth2 parameter [16], and spectral entropy [10], were

extracted from each channel of the HD-sEMG electrode array

during each task to represent the HD-sEMG biometric template.

Each of the four features was computed once per task using

the entire available task interval (less the 0.25 s reaction

time startup). For each of the four features, a 256-length

feature vector was constructed with each element in the vector

corresponding to one specific channel. The four vectors were

concatenated together to construct a 1024-length feature vector.

C. Matching Score Calculation

The constructed 1024-length feature vectors corresponding

to all task labels were fed into a random forest classifier with
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Fig. 6: Framework of the proposed method.

an ensemble of 1000 decision trees. We selected the random

forest classifier due to the high-dimensionality of the feature

space. The user-specific random forest classifiers of dynamic

tasks and maintenance tasks were trained separately, using the

user’s data acquired in session 1. For each user, a task sequence

in a prescribed order was set as the gesture password. The

gesture password is the combination of N gestures selected

from the pool of 34 gestures. The gesture passwords were

constructed by either dynamic tasks or maintenance tasks and

their respective performance was compared. When users or

impostors performed a specific task sequence to get access

into the authentication system, the HD-sEMG of each task

was fed into the random forest classifier successively. For each

performed task, a 34-length score vector [s1, s2, ..., si, ..., s34]
was calculated by the classifier, where si represented the

probability that the true label of the performed task was i.

The matching score between the task sequence performed by

a user or impostor and the enrolled gesture password was

given by: S = 1
N

∑N

j=1 spwd(j), where N is the length of

gesture password and pwd(j) is the label of the jth task in

the enrolled password. Because the user-specific random forest

classifier was trained using only the user’s HD-sEMG signals,

the score of impostors’ data when performing the correct

gesture password was expected to be lower than the user’s

due to the inter-individual differences of HD-sEMG biometric

patterns. If impostors entered a wrong gesture password, the

matching score was expected to be further lower due to the

inter-task differences of HD-sEMG patterns.

We trained the random forest model using all 34 hand

gestures. In practice, the gesture password could be set by

simply selecting a combination of gestures (with a specific

order) from the pool of 34 gestures, using a smart phone or other

user interfaces. When the HD-sEMG biometric token encoded

by a specific gesture password is compromised, users can cancel

the compromised token and simply set a new gesture password

on a smart phone without new HD-sEMG data. Even if HD-

sEMG under all gestures are exposed during the enrollment

procedure, users can still include new gestures into the pool or

change the muscle contraction efforts (with different force or

torque values) of specific gestures. A large amount of alternative

gestures provide numerous biometric tokens, in contrast to the

human face and DNA. In practical applications, users may
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trade-off between the effort required to train the model (e.g.,

the number of training gestures in the pool and the number

of repetitions for each single gesture) vs. the security of the

authentication system (a higher diversity of gestures increases

the security of the gesture password).

D. Performance Evaluation Metrics

User authentication systems normally make two kinds of

mistakes, namely False Rejection (FR) and False Acceptance

(FA). The former one means the system rejects the user in

error. The latter implies that the system accepts the impostor

in error. Accordingly, we used False Rejection Rate (FRR)

and False Acceptance Rate (FAR) as evaluation metrics. The

threshold of matching score was tuned to obtain the receiver

operating characteristic (ROC) curve. The Equal Error Rate

(EER), i.e. the FRR when FRR=FAR, was extracted from the

ROC curve to evaluate the authentication performance.

Considering we trained user-specific random forest models

and the matching score was calculated specific to each gesture

password, we assigned thresholds independently to each gesture

password of each subject. An ROC curve was obtained for each

gesture password of each user. Previous studies on user-specific

authentication models using other biometric modalities, such as

face [17] and palm print [18], employed the same strategy. The

overall EER can be obtained in two different manners. In the

first manner, an EER value was calculated for each individual

ROC curve. The overall EER was taken as the average of all

EER values. In the second manner, an ensemble average ROC

curve was obtained by calculating the average FRR from all

ROC curves at the threshold corresponding to each FAR value.

The overall EER was extracted from the ensemble average

ROC curve. The EER values obtained via the first and second

manner were termed EER1 and EER2, respectively. Because

EER1 [18] and EER2 [10], [17] are both used in biometric

authentication studies, we reported both metrics in our work

to provide benchmarks for future studies.

E. Validation Methodologies

Three validation situations were considered to evaluate the

proposed user authentication method:

Situation 1: We aimed to evaluate the authentication

performance when impostors do not know the gesture password.

For each subject (user), all other subjects were viewed

as impostors. For each user, a N -length gesture sequence

(constructed separately for dynamic tasks and maintenance

tasks) was randomly generated as the user’s gesture password.

We varied N from 1–12. To take into account the performance

variation with different gesture passwords, 5 repetitions of

random gesture password generation were performed for each

user. Each gesture password of each user was generated

independently, and tested against all impostors. A user’s HD-

sEMG pattern may vary when entering the same gesture

password multiple times. To further take this factor into account,

for each of the 5 generated gesture passwords of a specific user,

tasks with the same gesture label were selected randomly and

independently when tested against each impostor. To generate

enough testing samples for each gesture password, the above

random selection of tasks with the same label was further

repeated for 10 times when tested against each impostor. For

each user-impostor adversarial validation, the task sequence for

impostors was generated independently, thus not necessarily

the same as the sequence of users. The authentication system

was trained using the user’s data acquired in session 1. In

the testing procedure, each user and impostor used their own

HD-sEMG signals acquired in session 2 as the biometric token.

Overall, 19000 testing samples (20 users × 5 repetitions of

gesture password generation × 19 impostors × 10 repetitions

of random selection of tasks with the same gesture label) were

generated per value of N for both users and impostors.

Situation 2: We aimed to evaluate the authentication

performance when impostors entered the correct gesture

sequence to mimic the users’ EMG patterns. The only

difference with respect to situation 1 was that the task sequence

of impostors was set as the same as users. Accordingly,

the effect of individual differences of EMG patterns when

performing the same task sequence was evaluated.

Situation 3: We aimed to evaluate the cancelability of HD-

sEMG biometrics. The only difference with respect to situation

1 was that for each user-impostor pair, the impostor employed

the user’s HD-sEMG signals as the biometric token. This

simulates the scenario where the users’ biometric template

is stolen by impostors and used to attack the authentication

system. But, the task sequence of the impostor was generated

independently from that of the user. This choice is in line with

the real world situation because users can change to a different

gesture password to cancel the stolen one.

F. Ablation Experiment

In the most challenging situation 2, we evaluated the

contribution and necessity of each feature used in our method

(i.e., RMS feature, VCF feature, Hjorth2 feature, and SE

feature) via the ablation method. Specifically, we dropped

out one of the four features at a time and kept the remaining

three features. The performance variation was used to evaluate

the contribution and necessity of each feature.

G. Evaluation of the Impact of Different Factors

Factor 1, Different Types of Tasks: To compare the

authentication performance of dynamic tasks and maintenance

tasks, we generated gesture passwords using the two different

tasks separately. The total signal duration was kept the same.

Specifically, a 12-length gesture password constructed from

dynamic tasks (a total of 12 s of signal via 1 s per task) and a

3-length gesture password constructed by maintenance tasks

(a total of 12 s of signal via 4 s per task) were used and

their corresponding EER values in situations 1, 2 and 3 were

compared. We also kept the total number of task the same to

compare the performance of dynamic and maintenance tasks.

Factor 2, Length of Gesture Password: We investigated EER

variation when progressively reducing the length of the gesture

password.
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Factor 3, Active Channel Number: In lightweight IoT

application scenarios, reducing the data acquisition and

transmission burden reduces power consumption, which is

essential. Accordingly, we investigated EER variation with a

different number of active channels. We designed a channel

mask with only a proportion of channels active to acquire

sEMG signals. The channel mask was designed automatically

and specific for each gesture password. For each password, we

calculated the RMS in all 256 channels for each task involved

in the gesture password. For each channel, the maximum RMS

value when performing the N tasks in the gesture password was

used to represent the activation level of that specific channel.

We ranked the maximum RMS values across the 256 channels.

The leading P channels were set to be active in the channel

mask. In our work, the range of P was set from 16 to 256,

with an increment of 16. The EER variation as a function of

the P value was investigated. The channel mask was generated

automatically using data of session 1.

Factor 4, Sampling Rate: To further promote lightweight IoT

applications with efficient power consumption, authentication

performance using HD-sEMG signals with progressively

reduced sampling rate fs was investigated. EER values with

fs = {2048 Hz, 1844 Hz, 1639 Hz, 1434 Hz, 1229 Hz, 1024

Hz} were evaluated. The original signal in each channel was

resampled separately using an anti-aliasing filter, followed by

interpolation. The lower boundary of the sampling rate was set

to 1024 Hz, higher than the Nyquist sampling frequency of

the preprocessed HD-sEMG signals with 10–500 Hz spectral

band.

H. Security Strength Analysis

We performed security strength analysis to evaluate the

robustness of the proposed authentication system against brutal

attack from impostors. Specifically, we focus on spoofing attack

where impostors use manufactured biometric data to intrude

the system. We assume that the feature types of the system

are known to impostors so that they can guess a feature vector

and then manufacture fake biometric data via a reverse feature

extraction algorithm. Impostors can repeat the same random

guessing operation until a successful attack is achieved. When

guessing the feature vector, we assume impostors know the

range of the feature space constructed by a large population of

people. We also assume a uniform distribution of the feature

space (same as [19] in which the security of EEG biometrics

was analyzed).

The probability of a successful attack is defined as:

P =
Vuser −

∑K

k=1 V
k
ǫ

Vtotal

(1)

where Vtotal and Vuser refer to the volume of feature space

constructed by all subjects and a specific user, respectively. V k
ǫ

is the volume of space near the kth history signal and K is

the number of all history signals. The term −
∑K

k=1 V
k
ǫ can

avoid a replay attack (reusing exposed data) by applying a

similarity check between incoming new testing data and history

(both training data and all data with successful access into

the system). In practical application, the similarity check can

be implemented by calculating the distance between a history

feature vector and an incoming new testing feature vector.

To avoid over-estimation of the security of our system against

brutal attack, we applied the following operations to calculate

the maximal P (the most challenging threat).

1) We pooled data acquired on two days together to estimate

Vuser. Cross-day factors increased the variation of biometric

patterns of the same user.

2) We performed security analysis using only a 1-

length gesture password to encode the HD-sEMG biometrics.

Increasing the number of gestures contributes to higher security,

but here we consider the worst case.

3) Different users with different gestures as password

may show different variations of biometric patterns (i.e.,

different values of Vuser). To analyze the security of HD-

sEMG biometrics against brutal attack in the worst case (to

avoid over-estimation), we selected the user and gesture with

largest Vuser to calculate P .

4) A large V k
ǫ contributes to a higher difficulty of brutal

attack. We set V k
ǫ = 0, so that P = Vuser

Vtotal

>
Vuser−

∑
K

k=1
V k

ǫ

Vtotal

.

5) We removed the dependence between features via

principal component analysis (PCA). A higher dimensionality

of the feature space normally contributes to a higher difficulty

of brutal attack. But the dimensionality of the space constructed

by m-length feature vectors may be lower than m due to feature

dependence. For example, if the system repeats the same feature

1000 times to construct a 1000-length feature vector, impostors

only need randomly guess one feature value to intrude the

system. Equivalently, the dimensionality of the space of such a

1000-length feature vector is 1. We performed security analysis

of the system in a dependence-removed feature space, with

100%, 99%, 98%, 97%, 96% and 95% variance preserved.

Vtotal is the volume of a hypercube (same assumption in

study [19]) constructed by features of all gestures and all

subjects. The exact volume of the feature space corresponding

to a specific user depends on the boundary surface given by

the employed machine learning algorithm. To make the results

more general to most machine learning algorithms and simplify

the analysis, here we also assume a hypercube-shaped feature

space of a single user. Accordingly, Vtotal and Vuser can be

obtained via Vtotal =
∏M

m=1 q
m
total and Vuser =

∏M

m=1 q
m
user,

respectively, where M is the dimensionality of the dependence-

removed feature space, qmtotal and qmuser refer to the length of

hypercube side in dimension m, determined by the difference

between the maximal and minimal values in that dimension. We

employed password entropy [20], i.e., the base 2 logarithm of

expected total number of brutal attack attempts to successfully

guess the correct biometric token, to evaluate the security.

Specifically, the entropy E (bits) was calculated via E =
log2(

1
P
). A higher E represents a higher security against brutal

attack.

I. Statistical Analysis

To quantify performance variation due to a specific factor,

statistical analysis was performed. Because the obtained data

did not satisfy the normality assumption of parametric test, the

two-sided sign test was applied. Bonferroni-Holm correction
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(b) ROC curve of situation 2.
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(c) ROC curve of situation 3.

Fig. 7: ROC curves.

*All ROC curves present the average performance of all gesture passwords of all subjects. All ROC curves are with a 12-length gesture password
constructed by dynamic tasks. The intersection of the diagonal and each ROC curve represents the EER2 in each situation. Also note that we used different
axis scales for ROC curves in different situations.

was also performed to avoid multiple comparison errors. In the

remaining part of the paper, only Bonferroni-Holm corrected

p-values are reported. A significant difference was reported if

p < 0.05 was achieved. Because EER2 is an overall average of

all users, statistical analysis is not applicable on an individual

element. Accordingly, statistical analysis was performed on

EER1 values of all users.

IV. RESULTS

A. Performance of Situation 1

The ROC curve of situation 1 with 12-length gesture

passwords constructed by dynamic tasks is presented in Fig. 7a.

An average EER1 of 0.0013 and EER2 of 0.0074 was achieved.

By further encoding users’ HD-sEMG biometrics using gesture

passwords, the unique patterns of users’ HD-sEMG signals

could be strengthened. The low EER1 and EER2 with an

average 8.5-day interval between training and testing sessions

proved its high practical potential in real world scenarios.

B. Performance of Situation 2

The ROC curve of situation 2 with 12-length gesture

passwords constructed by dynamic tasks is presented in Fig. 7b.

Even when impostors enter the correct gesture password, the

individual differences of HD-sEMG biometric patterns under

the same muscle task can still serve as a second defense. In

this case, the proposed authentication approach could inhibit

impostors with an EER1 of 0.0273 and EER2 of 0.0674. In

the most challenging situation 2, we performed an ablation

experiment to evaluate the necessity of all features employed

in our work. With RMS, VCF, Hjorth2 and spectral entropy

features dropped out (keeping the remaining 3 features each

time), an EER1 of 0.0311, 0.0300, 0.0320 and 0.0300 were

obtained, respectively, which was always greater than the error

achieved using all features (0.0273) (but with no significance,

p > 0.05 in all cases). EER2 of 0.0678, 0.0704, 0.0774 and

0.0729, respectively, were likewise obtained, higher than when

using all features (0.0674).
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(a) Comparison in EER1.
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(b) Comparison in EER2.

Fig. 8: Performance comparison between dynamic and

maintenance tasks with different number of tasks.

*The EER values shown in this figure are validated in situation 2. For
dynamic tasks, the duration to perform each gesture is 1 s. Because we
removed the first 0.25 s of reaction time after each task onset, the signal
duration for analysis is 0.75 s for each task. For maintenance tasks, the
duration to perform each gesture 4 s. We take signals from 1.25 s to 2 s
after task onset (also with a total duration of 0.75 s), during which period,
subjects have reached the target gesture and maintained the steady gesture.
The training samples of dynamic tasks were also reduced to the same size
as maintenance tasks for a fair comparison.
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We then compared the performance of gesture passwords

constructed by dynamic tasks and maintenance tasks in the

most challenging situation 2. As shown in Fig. 8, for both

dynamic and maintenance tasks, a larger number of tasks

contributes to a significantly lower EER1. For dynamic tasks,

significant differences were found for comparisons between the

12 tasks and all numbers of tasks from 1 to 10. For maintenance

tasks, significant differences were found for comparisons

between the 12 tasks and all numbers of tasks from 1 to

7. However, EER1 of maintenance tasks shows no significant

differences compared with dynamic tasks for all numbers of

tasks from 1 to 12 (p > 0.05 in all cases). To perform the

maintenance tasks, subjects have to first perform dynamic tasks

to reach the target gesture, which increases the duration to

enter the gesture password in practical scenarios. A longer

duration to enter the gesture password may greatly reduce the

convenience of the proposed method. Considering dynamic

tasks show no significant differences in performance compared

with maintenance tasks and each dynamic task takes a shorter

duration in practical use, all the following evaluations were

based on the dynamic tasks.

C. Performance of Situation 3

Fig. 7c shows the results of situation 3 (using 12-

length dynamic task gesture password), where the HD-sEMG

biometric token of users encoded by a specific gesture password

was exposed to impostors. Then, impostors used the exposed

HD-sEMG biometric token to spoof the authentication system.

In a similar scenario, users can cancel the exposed biometric

token by simply changing to a new gesture password. An

average EER1 of 0.0013 and EER2 of 0.0047 was achieved,

demonstrating excellent cancelability of the proposed HD-

sEMG biometric modality.

D. Performance Variation with the Number of Active Channels

Fig. 9 shows the EER variation (situation 2) with the

number of active channels. With the number of active channels

progressively increasing, EER showed a reduction trend, for

both EER1 and EER2. Moreover, significant differences were

found for comparisons between the channel number 256 and

all channel numbers from 16 to 160 (p < 0.05 in all cases).

The trend is particularly sharp when the number of active

channels is lower than 48. With 48 active channels, the HD-

sEMG biometrics-based user authentication achieved an EER1

of 0.0483 and an EER2 of 0.0908.

E. Performance Variation vs. Sampling Rate

We further investigated the EER variation using different

temporal sampling rates under situation 2, with the number of

active channels fixed at 48. As shown in Fig. 10, with sampling

rate fs decreasing from 2048 Hz to 1024 Hz, both EER1

and EER2 remained at a low value. The EER1 comparison

between each pair of sampling rate shown in Fig. 10 shows

no significant differences (p > 0.05 in all cases). With the

sampling rate of 1024 Hz and the channel number of 48, the

authentication system yielded an EER1 of 0.0505 and an EER2
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Fig. 9: Performance variation with different number of active

channels.

*The EER values shown in this figure are validated with 12-length gesture
password constructed by dynamic tasks in situation 2. Because EER1
is calculated for each gesture password and each subject, the standard
deviation was also shown here.
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Fig. 10: Performance variation vs sampling rate fs.

*The EER values shown in this figure are validated with 12-length gesture
password constructed by dynamic tasks in situation 2. Because EER1
is calculated for each gesture password and each subject, the standard
deviation was also shown here.

of 0.0943. The HD-sEMG biometrics-based user authentication

was therefore robust against sampling rate. Accordingly, in

IoT devices, the sampling rate of the proposed system can

be reduced to half for efficient power consumption. We also

evaluated the authentication performance in situations 1 and 3,

with the channel number of 48 and the sampling rate of 1024

Hz, achieving an EER1 of 0.0036 and 0.0043, and EER2 of

0.0104 and 0.0132, respectively.

F. Performance Variation with Subject Number

We evaluated the EER variation with different number of

subjects included in the analysis under situation 2. For each

number of subjects, the subjects were randomly selected for

5000 times. The average EER in this analysis is presented

in Fig. 11. With subject number increasing, both EER1 and

EER2 do not show an obvious growth trend. For both EER1

and EER2 with 20 subjects, the EER values show significant

differences only for subject number ≤ 13. For subject number

larger than 13, no significant differences were found, indicating

the performance converged to the mathematical expectation.
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Fig. 11: Performance Variation with Subject Number.

*The EER values shown in this figure are validated with 12-length gesture
password constructed by dynamic tasks in situation 2. The number of active
channels is fixed at 256. The sampling rate is fixed at 2048 Hz. For the
curve of EER2, we add a slight shift (shift value = 0.1) on the x-axis to
avoid overlap with the curve of EER1.

TABLE I: Security strength against brutal attack.

Preserved Variance With
PCA-based Dependence Removal

Entropy E

100% 1318 bits
99% 313 bits
98% 238 bits
97% 198 bits
96% 164 bits
95% 140 bits

G. Results of Security Strength Analysis

The security strength of HD-sEMG biometrics against brutal

attack is presented in Table I. With 95% variance preserved, the

security of the proposed HD-sEMG biometrics is equivalent to

a 140-bit key with a total of 2140 expected attempts of brutal

attack required to intrude the system. As a comparison, Feng et

al. [21] showed that the human face biometric template has a 75-

bit entropy. Sadeghi et al. [19] evaluated the security strength

of EEG biometrics, with an 81-bit entropy achieved. Assuming

each attack attempt takes 1000 flops, using a supercomputer

with 10 petaFLOPS to intrude our 140-bit authentication system

takes 2140×103

10×1015 ≈ 1.39×1029 seconds, i.e., ≈ 4.41×1021 years.

So, intruding the HD-sEMG biometric authentication system

via brutal attack is almost impossible with currently available

computation.

V. COMPARISON WITH RELATED WORK

EMG-based biometric authentication has recently emerged

as a new area. There are two different evaluation methods in the

literature, namely biased evaluation and rigorous evaluation. In

the biased evaluation method, the training and testing data

are acquired on the same day. Therefore, signal variation

across days is not taken into consideration. In some cases,

the data may even be acquired in the same session, which

ignores electrode shifts. The rigorous evaluation, by contrast,

employs data acquired on separate days as training and testing

sets, to simulate a relatively realistic scenario. Venugopalan

et al. [12] achieved a FRR of 2.7% (Genuine Accept Rate of

97.3%) at 10% FAR, using the K-Nearest Neighbor (K-NN)

technique, with training and testing data acquisition sessions

performed on the same day. He et al. [14] employed an

improved Discrete Fourier Transform-based method to construct

the sEMG biometric template, yielding an EER of 0.035 using

training and testing data sets acquired on the same day. In

previous study [10], 64-channel HD-sEMG signals acquired

with a 4000 Hz sampling rate from the right dorsal side of

the hand during muscle isometric contractions were employed

as biometric tokens, achieving an average EER2 of 0.1496

in a cross-day evaluation. The present study is based on the

same rigorous cross-day evaluation method, with training and

testing from data acquired on different days. We therefore

compared our method with previous state-of-the-art studies

that used the same evaluation method. A detailed comparison

between the previous study [10] and this work (both used

cross-day evaluation) is shown in Table II. Because users and

impostors entered the same gesture password each day, EER

in this situation was mainly regulated by the inter-individual

differences of sEMG characteristics. As shown in Table II, our

present method achieved a largely reduced EER2 (from 0.1496

to 0.0674) when impostors entered the correct gesture password,

with respect to the previous study. If we applied a channel

mask with only 48 active channels and reduced the sampling

rate for efficient power consumption in IoT devices, both a

largely reduced EER2 with respect to the previous study (from

0.1496 to 0.0943) and a largely reduced data transmission rate

(from 6.144× 106 bits/s to 7.864× 105 bits/s) were obtained.

Moreover, the results shown in Table II were obtained with

12-s signal duration (12 tasks × 1 s per task), which is one

half the duration used in the previous work. Therefore, the

total data volume to be acquired, transmitted and processed

can be further reduced (from 1.475× 108 bits to 9.437× 106

bits). The all-round performance improvement of our present

work promotes the practical use of HD-sEMG biometrics in

IoT applications.

We propose possible hypotheses to explain the excellent

performance in the present work with respect to our previous

study [10] from the following perspectives: (1) algorithms,

(2) anatomical structure of the forearm, (3) human gesture

kinematics, (4) hardware sensing and (5) experiment design.

(1) For the algorithms, the present work employed RMS,

VCF, Hjorth2 parameter and spectral entropy features to

represent biometric templates. RMS represents the amplitude

of sEMG in each channel, with a decoding of the HD-sEMG

biometrics in the temporal domain. VCF, Hjorth2 parameters

and spectral entropy all represent unique characteristics of the

power spectrum, with a decoding of the sEMG biometrics in

the spectral domain. Moreover, the above features extracted

from all 256 channels further decoded the sEMG biometrics

in the spatial domain. The combination of temporal-spectral-

spatial domain features likely contributed to the excellent

authentication performance in our work. (2) For the anatomical

structure, the forearm contains several muscle groups active

during most activities of daily living, and contain the extrinsic

muscles of the hand. Accordingly, EMG signals acquired from

the forearm should provide more discriminative information

than signals acquired from the dorsal side of the hand (used in
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TABLE II: Comparison with state-of-the-art EMG biometric authentication.

Study
EMG

Channels
Sampling
Rate (Hz)

ADC
Resolution

(bit)

Required Acquisition
and Transmission

Rate (bit/s)

Number
of Tasks

Signal
Duration (s)

Data
Volume (bits)

EER1 EER2

Jiang et al. [10] 64 4000 24 6.144× 10
6 8 8×3=24 1.475× 10

8 - 0.1496

This Work 48 1024 16 7.864× 10
5 8 8×1=8 6.291× 10

6 0.0872 0.1353

This Work 256 2048 16 8.389× 10
6 8 8×1=8 6.711× 10

7 0.0495 0.0976

This Work 48 1024 16 7.864× 10
5 12 12×1=12 9.437× 10

6 0.0505 0.0943

This Work 256 2048 16 8.389× 10
6 12 12×1=12 1.007× 10

8 0.0273 0.0674

*The EER values shown in this figure are validated in the most challenging situation 2, where users and impostors enter the same gesture password.

our previous work [10]). Besides, the extensor digitorum muscle

has a cylindrical shape along the proximal-distal direction of the

forearm. Different muscle compartments have oblique fascicle

overlap instead of running in parallel [22], therefore resulting in

a complex anatomical structure. The inter-individual differences

of signal characteristics may also result from the variability in

volume conductor properties (e.g., thickness of subcutaneous

tissues). These sources of variability in anatomical structure

make sEMG a promising biometric modality. (3) For human

gesture kinematics, dynamic contractions are a more natural

way to exert force and generate EMG signals, compared with

isometric contractions. With repeated practice of frequently

used hand gestures, users can easily repeat a specific motor

pattern (e.g., the efforts of muscle groups) to perform a gesture

sequence, further contributing to a similar EMG pattern when

performing the same gesture sequence on a second day. (4)

For hardware sensing, we acquired 256 channels in our data

acquisition experiment. The area of the forearm covered by our

electrodes was very large since we used four electrode arrays.

Although we applied a channel mask to reduce the number of

active channels, the larger total area seems to have reduced the

impact of a relatively small electrode shift on a second day.

Therefore, the cross-day variation of signal characteristics was

largely reduced. (5) Additionally, for the experimental design

in the present work, we acquired sEMG during a total of 34

hand gestures, providing a large pool of alternative muscle

contraction tasks to encode the HD-sEMG biometric template.

Previous work has quantified the spatial activation patterns of

HD-sEMG in the forearm under different muscle contraction

tasks, at both the macroscopic level (global sEMG) [23] and the

microscopic level (motor units decomposed from global sEMG)

[24]. Significant differences across different muscle contraction

tasks were found at both levels [23], [24]. The larger inter-task

differences due to the larger gesture pool in the present work

also contributed to the excellent authentication performance

when impostors enter the wrong gesture password.

In both this work and the previous work [10], most of the

results were evaluated via EER. EER is an effective criterion

to compare the performance of different authentication systems.

The computation of EER requires the data from both users and

impostors, thereby the threshold corresponding to the point in

the ROC curve where FAR=FRR can be found. In practical

applications, users may prefer a rigorous system (with a low

FAR) or a soft system (with a low FRR). In such cases, the

threshold can be selected according to the ROC curve obtained

by the training data of the user and other subjects (as impostors)

already stored in the database.

VI. DISCUSSION

A. Performance Variation with Different Factors

The inter-individual characteristics differences of

physiological signals (e.g. EEG and EMG) have long

been a big challenge in diverse applications [25]. In this work,

we proposed a user authentication method using HD-sEMG

biometrics encoded by a prescribed gesture password. The

volitional selection of different gesture passwords allows users

to cancel the original biometric token once it is exposed

to impostors. We investigated the performance variation

of HD-sEMG biometrics with different factors, including

different types of tasks with number of tasks, number of active

channels and sampling rate. For the selection of task type

and password length, our results demonstrate that dynamic

and maintenance tasks show no significant differences in

performance. However, dynamic tasks take a shorter duration

to perform, thus contributing to more convenient use in

practical IoT applications. The key factor to improve the

authentication performance is to increase the length of the

gesture password. With more tasks involved, the useful

muscular information contained in HD-sEMG signals greatly

increased.

We also investigated the authentication performance with

reduced number of active channels and sampling rate. By

reducing the number of active channels and sampling rate,

the data acquisition, transmission and processing burden in

IoT devices is greatly reduced. In IoT application scenarios,

efficient power consumption is indeed one of the key factors.

This is especially true for HD-sEMG, with a large number

of channels and a high sampling rate. A recent study [26]

has developed a wearable HD-sEMG acquisition system with

modular architecture. Each 32-channel sensor unit of the

wearable system is small in size (3.4 cm × 3 cm × 1.5 cm) and

light in weight (16.7 g), which would simplify the application

of HD-sEMG. The wearable HD-sEMG acquisition system

allows continuous acquisition for up to 5 hours, at 2048 Hz

sampling rate, with all channels (for each sensor unit) active.

Using the proposed authentication method, with a sampling rate

reduced from 2048 Hz to 1024 Hz and only a proportion (48

out of 256) of channels active, it would be possible to greatly

prolong the continuous acquisition duration. The channel mask

is obtained automatically during model training. After that,

the signal acquisition system for a specific user can just

activate a proportion of channels according to the channel mask.
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In practical use, adaptively triggered HD-sEMG acquisition,

transmission and processing can be achieved via a low-cost and

energy-efficient continuous key gesture spotting technique [27].

This key gesture spotting module can be embedded into the

wearable HD-sEMG acquisition system. Once the key gesture

(e.g., an additional trigger gesture in the gesture password) is

detected, the HD-sEMG acquisition is then triggered. Otherwise,

the HD-sEMG acquisition system would stay in the idle state,

further reducing the power consumption of IoT devices. Recent

advances of event-based sEMG acquisition [28] and an analog-

compressed sensing techniques for low-power wearable sEMG

acquisition systems can also contribute to an extremely energy-

efficient wearable HD-sEMG acquisition system in the near

future. Additionally, in this work, we aimed to evaluate the

performance of HD-sEMG generated under hand gestures

as biometrics, with a reduced sampling rate and number of

channels. The signal acquisition system (Quattrocento system)

used in our work is designed for laboratory use. Wearable HD-

sEMG systems [7], [8] are the topic of intense research. For

example, Farina et al. [29] used Smart Fabric and Interactive

Textile (SFIT) systems to record HD-sEMG signals with

high-density electrodes embedded in a sleeve. This system is

promising to be applied in real world IoT scenarios. Our work

proceeds in parallel with hardware developments to investigate

the feasibility of applying HD-sEMG biometric authentication

to IoT applications.

B. Possible Risks of Information Disclosure

With the wide application of WBAN in daily IoT

environments, the risk of information disclosure substantially

increases. Traditional biometrics are vulnerable once exposed

due to their noncancelability and cross-application invariance.

Even worse, the exposed biometric template normally contains

private information. For example, exposed DNA via lost hair

or saliva can be used to extract highly sensitive information,

such as possible diseases and congenital disabilities. Similarly,

the exposed human face can be used to recognize the user

and disclosing the exposed face template to the public may

largely affect the user’s social life. Previous studies propose

to employ one-way functions [30] to transform the original

biometric template to an encrypted one. The encrypted template,

instead of the original one, is then transmitted, processed

and saved in the database. Once the encrypted templates are

stolen, simply changing a new one-way transform function

eliminates the above risks. However, no solutions can eliminate

privacy disclosure risks once the original biometric template

is exposed. For HD-sEMG biometrics, the original biometric

template is almost impossible to be exposed without a user’s

knowledge because the HD-sEMG electrode array must be in

close contact with the user’s skin. The one-way function can

be embedded directly in the data acquisition procedure. For

example, a more complex channel mask can be employed to

further encrypt the acquired HD-sEMG signals, with a time-

variant and channel-dependent amplifier gain, instead of only

reducing the number of active channels. One-way functions

can also be embedded in the signal preprocessing module of

the HD-sEMG acquisition system. In this way, the HD-sEMG

biometric template would be encrypted at the initial stage of the

signal processing pipeline. The original HD-sEMG biometric

template can be hardly exposed through other means.

Although the proposed HD-sEMG biometrics show

superiorities in certain aspects, replay attack is still a threat to

the authentication system. Impostors can spoof the system by

directly replaying an exposed biometric token, or incorporating

small-scale noises into the exposed biometric token before

replaying. This issue can be addressed in at least two ways:

(1) liveness detection and (2) similarity check. Liveness

detection techniques are very convenient to embed into a HD-

sEMG biometric authentication system. For example, because

electrode arrays need to be in close contact with a user’s skin

to acquire sEMG signals, a movement detection sensor can

be directly embedded into the array to detect small muscle

movements during muscle contractions to verify the liveness

of the current object for identity authentication. As another

option, a low-cost photoplethysmography (PPG) sensor [31]

can be used to acquire the PPG signals which reflects blood

oxygen saturation and pulse rate, for liveness detection. For

the second approach, an intuitive similarity check is to verify

if the input biometric token is close to a history sample in the

signal or feature domain. To this end, previous studies have

proposed advanced algorithms for replay detection, which have

been applied to other modalities. For example, Sriskandaraja

et al. [32] proposed a novel algorithm to estimate similarities

between pairs of genuine speech samples for the detection of

replayed samples, using a suitable learned embedding via deep

Siamese architectures. Gui et al. [33] employed an ensemble

classifier and noise residual features to detect if the input EEG

biometrics have been compromised and manipulated. These

algorithms are promising to be adapted for replay detection of

HD-sEMG biometrics.

C. Limitations and Future Work

Limitations of the present work and perspectives for future

studies need to be clarified. First, our study investigated HD-

sEMG biometrics with subjects performing different hand

gestures in a sitting position. Future studies need to consider

a more realistic application scenario, where subjects perform

different hand gestures to generate HD-sEMG biometrics with

varying posture. Second, advanced algorithms to prevent replay

attack in the context of HD-sEMG biometric authentication

have not been systematically investigated in our work. A deep

investigation into the replay threats and the security protocol

to utilize HD-sEMG biometrics is required in future studies.

Third, further improving the hardware design to facilitate

HD-sEMG recordings is essential for practical applications.

Future studies should also investigate the performance of HD-

sEMG biometrics acquired via wearable sleeves or wristbands.

Other strategies to improve the convenience to use HD-sEMG

biometrics, such as reducing training efforts, are also necessary.

Practical factors, such as the impact of weather, clothes and

user sweating, on authentication performance need to be studied

to facilitate practical applications. Additionally, although we

re-applied the electrode arrays on the second day to avoid

over-estimation of the performance, future studies focusing
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on the electrode shift issue are needed. For example, rotation

and translation-invariant learning algorithms [34], [35] are

promising to adapt to electrode shift on multiple days, which

can further improve authentication performance.

VII. CONCLUSION

In this work, we proposed a cancelable HD-sEMG-based

biometrics encoded by gesture password. The proposed HD-

sEMG biometrics can achieve a low EER when impostors

enter a wrong gesture password. Even if impostors enter the

correct gesture password, the inter-individual differences of HD-

sEMG signals, as the second defense layer, can still recognize

impostors with a low EER. The inter-task differences of HD-

sEMG signals also allow users to cancel the original HD-sEMG

biometric token by changing to a new gesture password. With

a lower number of channels and sampling rate, the proposed

user authentication system can achieve a greatly reduced data

acquisition and transmission rate, while maintaining a low

EER, further contributing to efficient power consumption in

IoT applications. The proposed method can advance the limits

of information security in IoT application scenarios.
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