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Enhancing Least Squares GNSS Positioning 

with 3D Mapping without Accurate  

Prior Knowledge  

MOUNIR ADJRAD and PAUL D. GROVES 

University College London, London, UK 

 

ABSTRACT: Global Navigation Satellite System (GNSS) positioning performance in dense 

urban areas is severely degraded due to the obstruction and reflection of the signals by the 

surrounding buildings. A basic GNSS position solution can exhibit errors of tens of meters, 

sometimes more. Here 3D mapping is used to aid conventional ranging-based GNSS 

positioning. Terrain height-aiding is used to contribute an additional virtual ranging 

measurement to the position solution. In addition, 3D city models are used to predict Non-

Line-Of-Sight (NLOS) reception over a large search area. The resulting NLOS probabilities 

are used to aid a consistency checking algorithm that selects and weights the signal used for 

the final position solution. Iteration is employed to refine the position solution. Practical test 

results demonstrate improvement in the horizontal and vertical accuracy of conventional 

ranging-based GNSS positioning in urban areas by a factor of 2.5 and 5, respectively. Using 

the new technique, the Root Mean Square (RMS) position error in dense urban areas was found 

to be 20.8m horizontally and 12.2m vertically. 

KEY WORDS:  Height-Aiding, Consistency Checking, Urban Canyons, Intelligent Urban 

Positioning. 
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INTRODUCTION 

  Improving upon the relative poor real-time positioning accuracy achievable in dense urban 

areas can unlock the potential for a host of new positioning applications. Examples include 

navigation for the visually impaired, tracking people with chronic medical conditions and 

emergency caller location. For these latter applications, it is important to determine which side 

of the street a pedestrian is on and which building they are in front of. This is also useful for 

guiding visitors, meeting friends and business associates and location-based advertising, while 

augmented reality relies on knowing where the user is. Similarly, to make best use of the space 

in cities, sustainable transport requires advanced lane control systems for vehicles and 

advanced railway signaling systems, both of which require accurate positioning. With the 

emergence of citizen science, low-cost devices to measure noise and pollution are becoming 

prevalent.  As these measurements vary greatly across a street, accurate positioning is required 

to interpret the results. 

  The Global Positioning System (GPS) provides meters-level positioning in open 

environments, but the accuracy and reliability in urban areas is poor because buildings block, 

attenuate, reflect and diffract radio signals. This has conventionally been a major hindrance to 

positioning, with errors of tens of meters common and often no position solution available at 

all [1]. Using the new Global Navigation Satellite Systems (GNSS) constellations (GLONASS 

and, in future, Galileo and Compass) in addition to GPS dramatically increases the number of 

usable satellites. This improves the availability of a position solution in urban areas, but not 

the accuracy [2]. 

  One way of improving positioning performance is to integrate GNSS with dead reckoning 

(DR) sensors, such as low-cost inertial sensors and car odometers [3]. DR sensors measure 

change in position, so require a good GNSS position solution for initialization. Following this, 
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their positioning errors increase over time, so they are only useful for bridging short gaps in 

GNSS coverage. Another approach is to use other widely available radio signals, such as Wi-

Fi, phone signals, and television. However, these typically suffer from the same propagation 

errors as GNSS in urban environments so do not offer better accuracy. Visual techniques are 

another option. However, they require extensive processing and data storage capacity and can 

be sensitive to passing pedestrians and vehicles, and variation in lighting. 

  Reliable meters-level positioning in dense urban areas is almost impossible to achieve cost-

effectively using a single method. To achieve this goal, a paradigm shift is needed. Instead of 

designing a single-technology navigation or positioning system, we need to use as much 

information as we can cost-effectively obtain from many different sources in order to determine 

the best possible navigation solution in terms of both accuracy and reliability. 

  This new approach to navigation and real-time positioning in challenging environments 

requires many new lines of research to be pursued [4]. These include: 

• How to integrate many different navigation and positioning technologies when the 

necessary expertise is spread across multiple organizations [5]; 

• How to adapt a multisensor navigation system in real-time to changes in the 

environmental and behavioral context to maintain an optimal solution [6]; 

• How to obtain more information for positioning by making use of new features of the 

environment [7]; 

• How to use 3D mapping to improve the performance of existing positioning 

technologies, such as GNSS, in dense urban areas. 

  The final item is the subject of the present paper. Intelligent urban positioning (IUP) aims to 

achieve a step change in the performance of real-time GNSS positioning in dense urban areas 

by combining three key ingredients [8]: 

• Multi-constellation GNSS; 
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• New techniques for detection of non-line-of-sight (NLOS) signal propagation;  

• Three-dimensional mapping. 

  Making use of the signals from all visible GNSS satellites significantly increases the amount 

of information available to compute a position solution from. It also provides the flexibility to 

select which signals to use and which to discard. NLOS signals are received only via reflected 

surfaces and can contribute large ranging errors. If these signals can be identified and excluded 

[9, 10], the accuracy of conventional GNSS positioning may be substantially improved. 

Therefore, multi-constellation GNSS and effective NLOS detection are both critical 

components of any initiative to improve GNSS positioning accuracy in challenging urban 

environments. 

  There are at least three ways in which 3D mapping can be used to enhance GNSS positioning: 

detection and mitigation of NLOS reception, shadow matching and height-aiding. A full IUP 

implementation would incorporate all three of these techniques and could also use conventional 

map matching [11]. 

  A number of research groups have shown that 3D city models can be used to mitigate the 

effects of NLOS GNSS signal reception, a major source of error in dense urban areas. The 3D 

model can be used to predict which signals are NLOS and exclude these from the position 

solution, which is otherwise computed using conventional ranging-based GNSS positioning. 

  There are a number of different ways in which this could be done, as illustrated in Figure 1. 

A single candidate position may be considered if the location is already roughly known, 

whereas multiple candidate positions must be considered if the positioning uncertainty is 

several tens of meters, which increases the processing load. The 3D city model can also be used 

merely to predict whether a signal is NLOS or it can be used to predict the range correction 

required to use reflected signals for positioning. Again, predicting the range corrections 

requires substantially more processing capacity.  
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Fig. 1-Ways of aiding conventional ranging-based GNSS positioning using 3D models. 

  Early implementations assumed that the position was approximately known [12, 13]. Using 

the 3D model to correct the NLOS ranging errors takes this a stage further [14]. However this 

does not work when the initial position uncertainty is several tens of meters because different 

satellites are visible at different positions within the area in which the user may be located. 

Therefore, several research groups have extended the concept of 3D-mapping-aided GNSS 

ranging by using the 3D city model to predict the path delay of the NLOS signals across a range 

of candidate positions [15-18]. A single-epoch positioning accuracy of 4m has been reported 

[18]. However, the path delay must be determined using ray tracing, which is highly 

computationally intensive and thus an obstacle to real-time implementation if the search area 

is large. The urban trench approach [19] enables the path delays of NLOS signals to be 

computed very efficiently, but only if the building layout is highly symmetric.  

  The challenge is to develop a computationally efficient NLOS mitigation technique that can 

cope with position uncertainties of tens of meters. We therefore predict NLOS signal reception 

across a wide area and use this to aid signal selection and weighting within the positioning 

algorithm. We do not attempt to predict the path delay. This enables us to use pre-computed 

building boundaries [2] to predict satellite visibility very rapidly simply by comparing the 
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satellite elevation with that of the building boundary at the corresponding azimuth at each 

candidate position. 

  The second way of aiding GNSS using 3D mapping is shadow matching. This is a new 

technique that determines position by comparing the measured signal availability and strength 

with predictions made using a 3D city model [20]. It is designed to be used alongside 

conventional ranging-based GNSS positioning in dense urban areas in order to improve the 

cross-street accuracy. Since 2011, several groups have demonstrated shadow matching 

experimentally, using both single and multiple epochs of GNSS data [21-25]. Cross-street 

positions within a few meters have been achieved in environments where the error in the 

conventional GNSS position solution is tens of meters, enabling users to determine which side 

of the street they’re on. Shadow matching has also been demonstrated in real time on an 

Android smartphone [26]. The challenge now is to improve reliability and integrate shadow 

matching with other positioning techniques [27].  

  The third way in which 3D mapping may be used to aid GNSS is terrain height-aiding. This 

may be used to generate a virtual ranging measurement [28] which substantially improves the 

solution geometry in dense urban environments, improving horizontal as well as vertical 

positioning using ranging based GNSS. The terrain height is also used in shadow matching to 

find the candidate position.  

  Our overall aim is to combine all three types of aiding from 3D mapping into GNSS 

positioning: height-aiding, NLOS mitigation and shadow matching. However, this paper 

focuses primarily on the use of 3D mapping to aid ranging-based GNSS positioning, namely 

assisting the signal selection and weighting within the positioning algorithm and terrain height-

aiding. The methodology is described first. The results achieved using GPS and GLONASS 

data collected in London are then presented, followed by a summary of the conclusions and 
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future work.   This article is partially based on a paper presented at ION GNSS+ 2015 in Tampa, 

FL [29]. 

APPROACH  

  Our approach uses spatial data in two different ways. Firstly, building boundary data derived 

from a 3D city model is used to assist the signal selection and weighting within the positioning 

algorithm. The building boundaries are used to predict if each signal is directly receivable over 

a range of candidate positions centered on an approximate GNSS position solution [2]. This 

approach is much faster than using the city model directly though building boundaries can use 

more memory. From this, the probability of each signal being NLOS or directly received is 

then estimated. This was combined with consistency checking, signal geometry and signal 

strength information, based on previous work performed at University College London (UCL), 

to predict which combination and weighting of signals produces the best position solution [30]. 

  Our second technique uses Digital Terrain Models (DTMs) to aid GNSS positioning by 

effectively providing an additional ranging measurement. Previous research with simulated 

height-aiding showed that this has the potential to improve horizontal as well as vertical 

positioning in dense urban environments through improved solution geometry [30]. Here, 

height-aiding is provided from a real DTM with interpolation and iteration used to maximise 

the precision. This is described in the Terrain Height-Aiding sub-section. 

  Figure 2 shows the enhanced GNSS ranging algorithm, comprising six steps. The following 

steps are iterated several times to improve the position solution. 

• A search area is determined using the conventional GNSS position solution on the first 

iteration and the previous solution on subsequent iterations, together with an 

appropriate confidence interval.  
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• Using the building boundaries precomputed from the 3D city model, the proportion of 

the search area within which each satellite is directly visible is computed, providing an 

estimate of the probability that the signal is direct LOS. 

• A consistency checking process is applied as described in [30] with the additional use 

of the direct LOS probabilities from the 3D mapping at different stages of the algorithm. 

• The set of signals resulting from the consistency checking process is subjected to a 

weighting strategy exploiting the previously determined LOS probabilities, satellite 

elevation and C/N0. 

• DTM information is extracted from the 3D city model and a virtual range measurement 

is generated using the position at the center of the search area. 

• Finally, a position solution is derived from a modified least-squares estimation process. 

 

 

Fig. 2- Enhanced GNSS ranging algorithm block diagram. 
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3D Modelling 

  In March 2014 Ordnance Survey (OS) published an alpha release of the Building Height 

Attribute (BHA) dataset, which is an enhancement to OS MasterMap Topography Layer [31]. 

The first alpha release of BHA included buildings covering approximately 8,000km2 of the 

United Kingdom (UK). Subsequent releases have increased the coverage of the dataset which 

covers major towns and cities in Great Britain. A number of attributes are provided for each 

building, as shown in Figure 3, these are: 

• AbsHMin: The height of the ground level with respect to the vertical datum; 

• AbsH2: The height of the base of the roof with respect to the vertical datum; 

• AbsHMax: The height of the highest part of the roof with respect to the vertical datum; 

• RelHMax: The relative height from ground level to the highest part of the roof; 

• RelH2: The relative height from ground level to the base of the roof.  

  RelH2 was used here as it provides a good representation of the height of buildings relative 

to one another. 

 

Fig. 3-Building height attributes as defined by OS. 

  OS publish the data as a single Comma Separated Values (CSV) file containing over 20 

million records. This is a very large dataset and can cause data management problems in a 

desktop environment so Edinburgh Data and Information Access (EDINA) have split the 
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dataset up using the OS 5km grid allowing users to download the data in tiles for their study 

area. The data is available in CSV, Keyhole Markup Language (KML) and File Geodatabase 

formats.   

  The datasets required to generate the 3D model are: 

• OS MasterMap® Topography Layer: the format selected was File Geodatabase 

(FileGDB) format as this format does not require any conversion to use it in Quantum 

Geographic Information System (QGIS), a GIS package of choice for our work which 

is free and open source. 

• OS Terrain™ 5 DTM: this will be used as  the base (surface) heights for the area; 

• BHA data, selected as CSV format; 

• OS VectorMap® Local Raster or 1:25 000 Scale Color Raster (used as a backdrop).  

  The dataset was merged in QGIS generating the 3D model displayed in Figure 4. The 3D 

model was exploited to generate building boundaries as described in [2] with an example of 

generated building boundaries illustrated in Figure 5. The boundaries are from a GNSS user’s 

perspective, with the buildings edge determined for each azimuth (from 0 to 360°) as a series 

of elevation angles. The results from this step show where the building edges are located within 

an azimuth-elevation sky plot. Satellites are visible above this edge and blocked below it. The 

elevation of the building boundary is computed at a range of azimuths. Building boundaries 

are computed over a grid of candidate user locations. The altitude of these candidate user 

locations can be set at a certain distance above the ground, e.g. 1.5 m might be assumed for 

users holding smartphones in front of them. Only outdoor locations are considered. 
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Fig. 4-OS data-derived 3D Model. 

 

Fig. 5-Example of generated building boundaries.  

Signal Selection and Weighting  

  With a multi-constellation GNSS receiver, the number of measurements available will 

normally greatly exceed the minimum number required for a position solution. Therefore, 

measurements contaminated by NLOS reception or multipath can be down weighted (or in 

some cases rejected) in order to obtain the best position solution from the measurements 

available. The challenge is to identify which are the best signals. In benign reception 

environments, this can be done using consistency checking techniques. However, this is 

unreliable in dense urban environments, even using a more robust algorithm. Here, we use 3D 

data to extend the work presented in [30] where combinations of three techniques for mitigating 
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the impact of NLOS and multipath interference on positioning accuracy were investigated, 

namely: consistency checking, elevation-based weighting and signal-strength-based weighting.  

  As demonstrated in [3], a position solution may be computed from a set of pseudo-range 

measurements using least-squares estimation. This is given by 𝐱̂+ = 𝐱̂− + (𝐇𝐺𝑒T𝐖𝜌𝐇𝐺𝑒)−1𝐇𝐺𝑒T𝐖𝜌(𝐳̃ − 𝐳̂−),  (1) 

where 𝐱̂+is the estimated state vector, comprising the position and time solution, 𝐱̂− is the 

predicted state vector,  𝐳̃ is the measurement vector, 𝐳̂− is the vector of measurements predicted 

from 𝐱̂− ,  𝐖𝜌  is the weighting matrix and 𝐇𝐺𝑒  is the measurement matrix. For GPS and 

GLONASS measurements with an unknown interconstellation timing offset, the state vector 

and measurement vector are 

x = ( 𝐫𝑒𝑎𝑒𝛿𝜌𝑐𝑎𝛿𝜌𝑐𝐺𝐿) z = ( 
 𝜌𝑎,𝐶1𝜌𝑎,𝐶2⋮𝜌𝑎,𝐶𝑚 ) 

 
,   (2) 

where r𝑒𝑎𝑒  is the Cartesian position, resolved about and with respect to an Earth-centred Earth-

fixed (ECEF frame), 𝛿𝜌𝑐𝑎 and 𝛿𝜌𝑐𝐺𝐿 are, respectively, the receiver clock offset and GLONASS-

GPS timing offset, expressed as ranges, 𝜌𝑎,𝐶𝑗  is the pseudo-range from satellite 𝑗 and 𝑚 is the 

number of satellite used. The measurement matrix is given by 

𝐇𝐺𝑒 = ( 
 −𝑢𝑎1,𝑥𝑒 −𝑢𝑎1,𝑦𝑒 −𝑢𝑎1,𝑧𝑒 1 −𝛿1∈𝐺𝐿−𝑢𝑎2,𝑥𝑒 −𝑢𝑎2,𝑦𝑒 −𝑢𝑎2,𝑧𝑒 1 −𝛿2∈𝐺𝐿⋮ ⋮ ⋮ ⋮ ⋮−𝑢𝑎𝑚,𝑥𝑒 −𝑢𝑎𝑚,𝑦𝑒 −𝑢𝑎𝑚,𝑧𝑒 1 −𝛿𝑚∈𝐺𝐿) 

 
,    (3) 

where u𝑎𝑗𝑒  is the line-of-sight vector from the user antenna to satellite 𝑗 and 𝛿𝑗∈𝐺𝐿 is 1 where 

satellite 𝑗 is a GLONASS satellite and zero otherwise. The line-of-sight vectors and predicted 

pseudo-ranges, 𝜌̂𝑎,𝐶𝑗− , are given by 

u𝑎𝑠𝑒 ≈ r̂𝑒𝑗𝑒 −r̂𝑒𝑎𝑒−|𝐫𝑒𝑗𝑒 −𝐫̂𝑒𝑎𝑒−|,  (4) 
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𝜌̂𝑎,𝐶𝑗− = √[r̂𝑒𝑗𝑒 − r̂𝑒𝑎𝑒−]T[r̂𝑒𝑗𝑒 − r̂𝑒𝑎𝑒−] +  𝛿𝜌̂𝑐𝑎− + 𝛿𝑗∈𝐺𝐿𝛿𝜌̂𝑐𝐺𝐿− + 𝛿𝜌̂𝑖𝑒,𝑎𝑗− , (5) 

where r̂𝑒𝑗𝑒  is the position of satellite 𝑗, r̂𝑒𝑎𝑒−  is the predicted user position, 𝛿𝜌̂𝑐𝑎− is the predicted 

receiver clock offset, 𝛿𝜌̂𝑐𝐺𝐿− is the predicted GLONASS-GPS timing offset and 𝛿𝜌̂𝑖𝑒,𝑎𝑗−  is the 

satellite 𝑗 Sagnac correction [30]. 

  The different weighting schemes considered are: conventional elevation-based weighting, 𝐶/𝑁0-based weighting and no weighting. 𝐖𝜌 is given by 

𝐖𝜌 = ( 
 𝜎𝜌1−2 0 ⋯ 00 𝜎𝜌2−2 ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝜎𝜌𝑚−2) 

 
’      (6) 

where, for the elevation-based weighting,  𝜎𝜌𝑗 = 𝑎 + 𝑏 exp(−𝜃𝑛𝑢𝑎𝑗/𝜃0),        (7) 

where 𝜃𝑛𝑢𝑎𝑗  is the elevation angle of the 𝑗𝑡ℎ  satellite and the constants are 𝑎 = 0.13m, 𝑏 =0.56m and 𝜃0 = 0.1745 rad [32] while, for 𝐶/𝑁0-based weighting, 𝜎𝜌𝑗 = √𝑐×10−(𝐶/𝑁0)𝑗 10⁄ ,       (8) 

where (𝐶/𝑁0)𝑗 is the measured carrier-power-to-noise-density ratio of the 𝑗𝑡ℎ satellite signal 

in dB-Hz and 𝑐 = 1.1×104m2s−1 is a constant [33].   

  For the case without weighting, 𝐖𝜌 is simply the identity matrix.  

  In this work, as indicated above, we exploit the 3D city model to classify the signals as line-

of-sight (LOS) or not. As we do not know our exact position, we cannot definitively predict 

which signals are LOS and which are NLOS. Instead, we consider a search area of candidate 

positions and determine the proportion of those positions at which a direct LOS signal can be 

observed for each satellite. This gives us an estimate of the probability that each signal received 

is LOS. This additional information helps to further refine the positioning algorithm proposed 

in [30]. The consistency checking process, described in the next section, is modified and we 
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define a new weighting matrix,𝐖𝜌3𝐷, for the least-squares position solution, derived above, 

that incorporates this additional information. This replaces 𝐖𝜌 in equation (1) and is given by 

𝐖𝜌3𝐷 = ( 
 𝑝1𝜎𝜌1−2 0 ⋯ 00 𝑝2𝜎𝜌2−2 ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝑝𝑚𝜎𝜌𝑚−2) 

 
,   (9) 

where the elements 𝑝𝑖, 𝑖 = 1,⋯ ,𝑚, are the estimated probabilities that each signal is received 

via a direct LOS path.  

 

Fig. 6-Shadow map used for 3D-aided mapping weighting. 

  The derivation of the elements 𝑝𝑖 is as follows: We begin by defining a circular search area 

with a radius between 40 and 100m. Within the search area, we define a grid of points with a 

meter separation and use the 3D city model to exclude those points known to be within 

buildings. For each satellite, we compare the azimuth and elevation with the building boundary 

at each grid point to determine whether the signal is direct LOS or NLOS at that point. This is 

equivalent to computing a shadow map from a city building map (within the region of interest) 

with respect to a GNSS satellite position by projecting the buildings onto the surface, as 
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illustrated by Figure 6. The direct LOS map of each considered signal is represented as a 2D 

matrix filled with the elements “1” or “0”, each indicating whether or not the receiver has a 

direct LOS to the corresponding GNSS satellite at that grid point (similarly, an NLOS map 

could be generated by switching the 1 and 0 values). By calculating a simple average of the 

“1”s and “0”s across all outdoor locations within the search area, we determine a LOS 

probability 𝑝𝑖  for each satellite. The overall likelihood weightings are then determined by 

multiplying the LOS probabilities with the 𝐶/𝑁0 -derived or elevation-based weighting 

factors, 𝜎𝜌i−2, described previously. In this work, the considered shadow map region is a square 

centered at the conventional GNSS position solution with a side of 200m. 

 

Fig. 7-Approach to positioning using consistency checking proposed in [30]. 
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Consistency Checking 

  We recall that the consistency checking technique presented in [30], and illustrated in Figure 

7, looks at identifying the subset of GNSS measurements and height-aiding virtual range 

(referred thereafter as GNSS plus height-aiding measurements) that are most consistent with 

each other (the height-aiding process is explained in the next sub-section). The subset 

comparison method works by scoring different subsets of the GNSS plus height-aiding 

measurements according to their consistency and then using the most consistent subset to form 

the position solution. The basis of this method is the Minimal Sample Set (MSS), where a 

subset solution is only selected in preference to the all-signal solution when a highly consistent 

subset is available. Each MSS is used to predict the remaining pseudo-ranges, which are 

compared with their measured values, both to score the MSS and to identify which of the 

measurements are consistent with it. The algorithm considered is based on a technique known 

as Random Sample Consensus (RANSAC), which uses random-draw subsets of the 

measurements and a probability-based stopping criterion for efficiency. The MSS is then 

assessed, resulting in a Consensus Set (CS) and a cost function which is a measure of 

consistency. The CS is the set of measurements outside the MSS that are found to be consistent 

with the MSS, defined as the magnitude of the residual, 𝑒𝑗𝑖 , being within a pre-defined 

threshold, 𝛿. The cost function 𝐶𝑖 , corresponding to the 𝑖th MSS, is defined by (assuming a 

Gaussian distribution). 

𝐶𝑖(𝐞𝑖) =∑𝑘(𝑒𝑗𝑖, 𝛿)𝑚
𝑗=1 , (10) 

where 

𝑘(𝑒𝑗𝑖, 𝛿) = {|𝑒𝑗𝑖|/𝜎𝜌𝑗    |𝑒𝑗𝑖| ≤ 𝛿𝛿/𝜎𝜌𝑗     |𝑒𝑗𝑖| > 𝛿 ,     (11) 
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where 𝜎𝜌𝑗 are given by (7) and (8) and 𝑒𝑗𝑖  are the elements of vector 𝐞𝑖. This latter is calculated 

using 𝐞𝑖 = 𝐳̃ − 𝐳̂+𝑖,  (12) 

where 𝐳̂+𝑖 is the set of measurements predicted from the 𝑖th MSS position and time solution, 

x̂+𝑖, given by 

x̂+𝑖 = x̂− + 𝐇𝐺𝑒,𝑖−1(𝐳𝒊 − 𝐳̂𝑖−).       (13) 

  Where 𝐇𝐺𝑒,𝑖 comprises the rows of the measurement matrix, 𝐇𝐺𝑒 , given by (3), which 

correspond to the 𝑖th MSS, 𝐳̂𝑖− comprises the elements of the predicted measurement vector, 𝐳̂−, given by (2), corresponding to the 𝑖th MSS and x̂−is the predicted state vector, also defined 

by (2).  

  The process is iterated to find a MSS that generates the minimum cost function. This continues 

until there have been sufficient iterations for the probability of finding a better MSS to fall 

below a certain threshold [30]. In cases where the MSS with the lowest cost function has no 

measurements in its consensus set, it is not possible to confirm that this measurement subset 

(or any other) is self-consistent, so consistency checking is deemed to have failed and the all-

satellite position solution is used. 

  In our new approach exploiting the 3D city model, the MSS generation step, indicated by (a) 

in Figure 7, is modified as follows: The samples, unlike in [30], are not drawn from all 

measurements, but from a subset of the data with the highest quality (i.e. the measurements 

with the highest 𝑝𝑖 ). We further explain the difference between our approach and the one 

proposed in [30] using the following example: Imagine the algorithm in [30] drawing 𝑇𝑁 samples of size 𝑚 out of 𝑁  measurements. Let {𝑀𝑖}𝑖=1𝑇𝑁 denote the sequence of samples 𝑀𝑖 ⊂ 𝑈𝑁 (where 𝑈𝑁is the set of all tentative correspondences) that are uniformly drawn by 

[30], and let  {𝑀(𝑖)}𝑖=1𝑇𝑁  be sequence of the same samples sorted in descending order according 



18 

 

to the sample quality: 𝑖 < 𝑗 ⇒ 𝑞(𝑀(𝑖)) ≥ 𝑞(𝑀(𝑗)) (where q is a quality function, in our case 

corresponding to 𝑝𝑖). If the samples are taken in order 𝑀(𝑖), the samples that are more likely to 

be uncontaminated are drawn earlier. Progressively samples containing data points with lower 

quality function are drawn.  

Furthermore, an additional weighting is applied to the cost function indicated in Figure 7 as (b) 

and used to derive the consensus set (CS). This results in a modified cost function, 𝐶3𝐷𝑖 , given 

by 

𝐶3𝐷𝑖 (𝐞𝑖) =∑𝑘3𝐷(𝑒𝑗𝑖, 𝛿)𝑚
𝑗=1 ,           (14) 

where 

𝑘3𝐷(𝑒𝑗𝑖, 𝛿) = {𝑝𝑗|𝑒𝑗𝑖|/𝜎𝜌𝑗   | 𝑒𝑗𝑖| ≤ 𝛿𝑝𝑗𝛿/𝜎𝜌𝑗     |𝑒𝑗𝑖| > 𝛿 .  (15) 

Terrain Height-Aiding  

  Many conventional maps, dedicated digital terrain models (DTMs) and digital elevation 

models (DEMs) and all 3D maps provide the terrain height. Land vehicle or pedestrian GNSS 

user equipment may be assumed to be at a fixed height above the terrain. Therefore, the 

approximate GNSS horizontal position solution may be used to obtain a height solution from 

the mapping data or a separate terrain height database. This may then be used as an extra 

ranging measurement within a GNSS positioning algorithm, a technique known as height-

aiding [28]. Typically, the height-aiding measurement is treated as a virtual transmitter at the 

center of the Earth, the range to which is equal to the (local) Earth radius plus the height (Figure 

8).   

If the terrain within the search area is not flat, the range may vary over the uncertainty bounds 

of the approximate GNSS position solution. Therefore, for best accuracy, computation of the 
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position solution and height-aiding measurement should be iterated until convergence is 

achieved. 

  Height-aiding is particularly useful in cases where there are insufficient direct-LOS signals to 

determine a position solution without using NLOS signals. Under good GNSS reception 

conditions, height-aiding only improves vertical positioning. However preliminary tests using 

simulated height [30] have shown that in areas such as urban canyons, where the signal 

geometry is poor, it can also improve horizontal positioning. 

 

Fig. 8-Terrain height-aiding. 

  Considering 𝑚 GNSS range measurements, the height-aiding measurement forms the 𝑚 + 1𝑡ℎ component of the measurement vector, 𝒛, defined in (2). The height-aiding row of the 

measurement matrix is [30]. 

H𝐺,𝑚+1𝑒 = (𝑢𝑒𝑎,𝑥𝑒 𝑢𝑒𝑎,𝑦𝑒 𝑢𝑒𝑎,𝑧𝑒 0 0),     (16) 

where u𝑒𝑎𝑒 is the unit vector describing the direction from the center of the Earth to the predicted 

user position, given by 
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u𝑒𝑎𝑒 ≈ r̂𝑒𝑎𝑒−|𝐫𝑒𝑎𝑒−|,        (17) 

and the state vector is as defined in (2). Here we generate height-aiding measurements using a 

terrain height database and the unaided GNSS position solution. A constant weighting 

coefficient for the virtual height-aiding range measurement was used. Its value was determined 

empirically. The weighting strategy for the actual GNSS pseudorange measurements, based on 

satellite elevation, 𝐶/𝑁0 ratio, LOS probability and shadow map probabilities, does not apply 

to the virtual range. It equals to the inverse of the variance assumed on the pseudo-measurement 

(in this` case, the virtual range). 

  Figure 9 summarizes the iterative process of computing height-aiding comprising three main 

steps:  

1. A position is computed using pseudo-range measurements from all of the satellites tracked 

as described in equation (1) (using one of the weighting strategies described in Signal 

Selection and Weighting sub-section).  

2. Following the computed position and coordinate transformation from WGS84 to the 

National Grid Easting and Northing coordinate system, a database containing terrain height 

information is then queried and the four DTM vertices surrounding the position solution 

are identified and extracted. These latter are then used in an interpolation process (as 

described in the next paragraphs) to extract a new height corresponding to the computed 

position. 

3. Following conversion of the height to a virtual range measurement, this is then added to 

the measurement vector and a new position solution is computed. The process is iterated 

until the difference between the old and new position is smaller than the DTM cell 

resolution. 

  We examined the effect of different terrain resolutions, obtained from Ordnance Survey 

(OS) grid DTM 5 and DTM 50 (with 5m and 50m grid resolution, respectively, and both 
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having a 1.5m height resolution) [31], on horizontal position and height accuracy for urban 

mobile positioning. The choice of interpolation algorithm for estimating heights from the 

DTM was also investigated. 

 

Fig. 9-Terrain Height-Aiding Process. 

  GNSS position solutions are unlikely to correspond to the grid points in any DTM. Therefore 

heights for aiding GNSS positioning must be interpolated from surrounding points in the DTM. 

There are a variety of interpolation algorithms [34] (e.g. linear, bilinear, bicubic and biquintic). 

A higher order interpolant that takes account of the points beyond those immediately 

surrounding the position of interest, either directly or indirectly as slope estimates, will 

generally produce a better estimate than the bilinear algorithm. However, the more complex an 

interpolation algorithm is, the more computationally expensive it becomes, which may be a 

prohibitive overhead when computing GNSS positions using consumer devices such as 

smartphones. The first part of the work described here investigates how the choice of DTM 

and interpolation method affects the performance of the proposed positioning algorithm, in 

terms of horizontal position and height accuracy. 

  The study reported in [34] demonstrates that whether interpolating on mathematical surfaces 

or DTMs, irrespective of terrain complexity, the higher-order algorithms consistently 
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outperform the simpler linear variant. For this study, two representative high-order 

interpolation algorithms, bicubic and biquintic, were tested, as well as the more popular bilinear 

algorithm, often incorporated in desktop Geographic Information System (GIS) packages. 

Bicubic interpolation gave significant better positioning performance than bilinear 

interpolation but the performance of bicubic and biquintic interpolation was similar [35]. 

Therefore, bicubic interpolation has been selected. 

  The most commonly used interpolation method for a regular grid is patchwise polynomial 

interpolation. The general form of this equation for surface representation is [34] 

ℎ(𝑥, 𝑦) =∑∑𝑎𝑖𝑗𝑥𝑖𝑦𝑗𝑛
𝑗=0 ,𝑚

𝑖=0         (18)   
where ℎ(𝑥, 𝑦) is the height of an individual point with rectangular coordinates 𝑥 and 𝑦,  and {𝑎𝑖𝑗, 𝑖 = 0, ⋯ ,𝑚, 𝑗 = 0,⋯ , 𝑛} are the coefficients of the polynomial in (18).  

Bicubic interpolations makes use of a 16-term function can be represented by (18) with 𝑚 =𝑛 = 3. Since the coordinates of each grid vertex are known, the values of {𝑎𝑖𝑗, 𝑖 = 0, ⋯ ,3, 𝑗 =0,⋯ ,3} can be determined from a set of simultaneous equations based on (18), one for each 

known point, or its derivative. Having determined the coefficients, 𝑎𝑖𝑗, the height for a location 

with known horizontal coordinates can be determined using (18).  

In order to solve the 16 coefficients, the heights at the four vertices of the grid cell, together 

with three derivatives (in total 16 values) are calculated. The first derivatives with respect to 𝑥 

and 𝑦, 𝜕𝑥ℎ(𝑥, 𝑦) and 𝜕𝑦ℎ(𝑥, 𝑦), express the slope of the surface in the 𝑥  and 𝑦 directions, 

respectively, whilst the second-order cross derivative, 𝜕𝑥𝑦ℎ(𝑥, 𝑦), represents the slope in both 𝑥 and 𝑦. For the bicubic interpolation it is necessary to estimate the derivatives or slopes at the 

DTM vertices. Slope values will influence the shape of the interpolating surface function in a 

more valuable and accurate way than just using additional DTM vertices [36]. To estimate 
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these slopes from the grid heights, we used finite difference approximations [37] where the 

different slopes are calculated as follows: 

𝜕𝑥ℎ(𝑥𝑖, 𝑦𝑖) = ℎ(𝑥𝑖+1, 𝑦𝑖) − ℎ(𝑥𝑖−1, 𝑦𝑖)2(𝑥𝑖+1 − 𝑥𝑖−1)  

𝜕𝑦ℎ(𝑥𝑖, 𝑦𝑖) = ℎ(𝑥𝑖, 𝑦𝑖+1) − ℎ(𝑥𝑖, 𝑦𝑖−1)2(𝑦𝑖+1 − 𝑦𝑖−1)  

𝜕𝑥𝑦ℎ(𝑥𝑖 , 𝑦𝑖)
= ℎ(𝑥𝑖+1, 𝑦𝑖+1) − ℎ(𝑥𝑖−1, 𝑦𝑖+1) − ℎ(𝑥𝑖+1, 𝑦𝑖−1) + ℎ(𝑥𝑖−1, 𝑦𝑖−1)4(𝑥𝑖+1 − 𝑥𝑖−1)(𝑦𝑖+1 − 𝑦𝑖−1)  

 

(19) 

Initialization Process  

   The approach proposed in this work relies on the definition of a search area around the 

unknown actual position. This is done by considering the conventional GNSS solution as the 

center of a circle with a pre-defined radius (a typical 40m radius was considered based on the 

work performed in [24]). Relying on the conventional GNSS solution as a basis for the 

selection of the search area is not a robust approach especially in a deep urban environment 

where the conventional GNSS solution might be more than 40m away from the true position. 

Here, we propose two iterative initialization approaches. A single-stage process is described 

first, followed by a two-stage process.  

  The single-stage initialization approach is illustrated in Figure 10. The idea is to take the 

conventional GNSS receiver position solution and consider a large search area, larger than the 

typical 40m search radius considered before (in our work we have selected an initial search 

radius of 100m with a grid spacing of 15m). We then apply the height-aiding and 3D-city-

model aided signal selection and weighting, using the height averaged across the search area 

and extracted from the 3D city model. The resulting position solution is then considered as the 

center of a new search area with a reduced search radius (in our work we reduced the search 
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radius with decrements of 20m) with the new height still averaged across the search area and a 

reduced grid spacing (in this work we reduced the grid spacing by decrements of 3 meters).   

 

 

Fig. 10- Proposed approach with single-stage initialization. 

  The process is iterated until we reach a search area radius of 40m. Following the completion 

of the initialization process, a height-aiding (considering the actual height at each search area 

point and extracted from the 3D city model as opposite to the previously averaged height across 

the search area) and 3D-city-model aided signal selection and weighting is performed 

considering the position solution outputted by the initialization stage as the center of a search 

area of 40m radius and 1m grid spacing. 

  If the true position is outside of the search area, the wrong region of the 3D city model is used 

for NLOS prediction. This can result in the NLOS prediction adversely affecting the 

performance of the consistency checking process. 
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Fig. 11-Proposed approach with two-stage initialization. 

  The initialization strategy shown in Figure 11 solves this problem through a two stage 

iteration process. The first stage applies height-aiding and consistency checking process on the 

conventional GNSS without employing the 3D model-based weighting. The average height 

across the search area is considered for this stage. The second stage then proceeds as shown in 

Figure 10, making use of NLOS predictions from the 3D model. A 60m search radius was 

considered at the beginning of this second stage this to accommodate for the originally very 

poor conventional GNSS horizontal accuracy and taking into account the expected 

improvement in horizontal accuracy using the consistency checking and height-aiding [35].      

EXPERIMENTAL RESULTS 

  The combined height-aiding and 3D model-based NLOS prediction algorithm was tested 

using GPS and GLONASS data collected using a Leica Viva GS15 survey-grade multi-

constellation GNSS receiver in Central London (test sets 1 and 2) and  using a u-blox evaluation 

kit (EVK-M8T), which is a multiconstellation GNSS receiver (GPS/GLONASS and Galileo 

ready) [38] (Test Set 3). The first set of test data was collected near Moorgate underground 

station on 8th April 2011. There are three sites within the test data set, each occupied for about 



26 

 

38 minutes. The truth was established using traditional surveying methods and is accurate at 

the cm-level.  

The second test data set was collected near Fenchurch Street station on 23rd July 2012. Overall, 

22 sites were occupied to cover a variety of environments. Each site was occupied for two 

periods of about 10 minutes approximately 3 hours apart. The truth was established to 

decimeter-level accuracy using a 3D city model with tape measurements from landmarks. 

Figure 12 shows an overview of the test sites. 

 

 

Fig. 12-Locations of the test set 1 (left) and test set 2 sites (right) (Background Image © 2013 

Bluesky © Google). 

  To validate the estimation of LOS probability using the city model, we analyzed the estimated 

LOS probability for all LOS and NLOS signals at all epochs and across all sites. This was done 

by first working out which signals are really LOS and NLOS at each site and epoch (using the 

true location and building boundaries). This enables the classification of the LOS probabilities 

(referred to in the manuscript as ip ). Figure 13 presents a histogram plot of the two set of ip  

(for LOS and NLOS signals). We can see from the figure that the majority of LOS signals have 

a value of ip over 50% and most NLOS signals have a value of ip lower than 50%. Therefore, 

comparing the proportion of the proportion of the search area over which each signal is 
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predicted by the 3D city model to be LOS is an effective way of estimating the likelihood that 

a signal is LOS or NLOS. 

 

Fig. 13-Estimated LOS probability for NLOS and LOS signals at all epochs across all sites. 

We analyzed the impact of varying the assumed standard deviation of the height-aiding 

measurements with the least-squares weight matrix, between 0.1m and 10m, in order to identify 

the optimum value (in terms of horizontal positioning performance, in RMS). Separate 

optimizations were performed: for the approach with height-aiding only and for the approach 

including height-aiding and 3D model-aiding. A value of 0.9m was found for the former and 

of 1.6m for the latter. Thus, a lower weighting for the height-aiding measurement works better 

when LOS/NLOS predictions from the 3D city model are used. 

  Height-aiding and consistency checking without 3D model-based NLOS prediction was tested 

using a number of different algorithm configurations. These results are given in Table 1 

summarizing the RMS horizontal and vertical position error with conventional GNSS 

positioning and terrain height-aiding for both 𝐶/𝑁0 and elevation based weighting and using 

OS DTM 5 and DTM 50. 
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Table 1 - Position errors – Height-aiding only approach and average RMS error for test sets 1 
and 2 using different combinations. 

Positioning Average RMS  

Positioning Error (m) 

Terrain Aiding Weighting Horizontal Vertical 

 

None 

Elevation 50.1 53.9 

(𝐶/𝑁0) 46.1 50.1 

Bicubic  

interpolation  

and a 5m/50m   

grid spacing 

 

DTM 50 
Elevation 34.7 11.8 

(𝐶/𝑁0) 31.5 13.1 

 

DTM 5 
Elevation 29.8 9.9 

(𝐶/𝑁0) 25.9 10.3 

 

  The terrain-aiding results presented are those using the bicubic polynomial as it provided 

similar results to the biquintic polynomial interpolation and better overall performance than a 

bilinear interpolant [35]. This configuration is used for all subsequent results in the paper. With 𝐶/𝑁0-based weighting, terrain height-aiding improved the horizontal accuracy by 44% with 

DTM 5 and 32% with DTM 50. 

  We have tested the height-aiding approach augmented with the 3D aided signal selection at 

all sites. Figure 14 illustrates the achieved improvements in positioning at location T9. The 

RMS horizontal position error was reduced by 64% and the vertical error by 83%. Table 2 

summarizes the results at all locations within test sets 1 and 2. 
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Fig. 14-Position error, location T9 - conventional GNSS positioning (left) and The 3D model-

based NLOS prediction and height-aiding approach. The figures in the legend are RMS errors 

in meters (the markers are used to distinguish the different plots for black and white prints and 

are not corresponding to the RMS error values reported on the legend. This also applies to 

Figure 17, 18, 19 and 20). 
 

Table 2 - Average position errors obtained using terrain height-aiding and 3D model-based 
NLOS prediction – Test sets 1 and 2 

Positioning Algorithm 

Average RMS 

Positioning Error (m) 

Horizontal Vertical 

Conventional GNSS (using 𝐶/𝑁0  weighting) 46.1 50.1 

Terrain Height-aiding only (DTM5 and (𝐶/𝑁0) weighting) 25.9 10.3 

Terrain Height-aiding and 3D model-based NLOS Prediction 20.1 9.0 

Accuracy Improvement 56% 82% 
 

  A third dataset was collected near Fenchurch Street station on the 15th of May 2015 using u-

blox EVK-M8T GNSS receiver; the 4 selected sites are illustrated in Figure 15 and in Figure 

16. The truth was established to decimeter-level accuracy using a 3D city model with tape 

measurements from landmarks. 

  We have evaluated the combined 3D aided signal selection and height-aiding approach using 

this data. Figure 17, Figure 18 and Figure 19 illustrate the positioning error using conventional 

GNSS positioning (with consistency checking and 𝐶/𝑁0  weighting),  height-aiding, and the 

new approach (height-aiding and 3D model-based NLOS prediction aiding, with the single-

stage initialization), respectively. Table 3 summarizes the improvement in position accuracy 
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for each location. Note that conventional positioning at site S4 is 40% poorer than at the other 

sites. Using the new method, the RMS position error across all four sites was 21.6m 

horizontally and 15.4m vertically. 

 

Fig. 15-Locations of the Test Set 3 sites (Background Image © 2015 Bluesky © Google). 

 

Fig. 16-Locations and skylines for Test Set 3. 

              S3                            S4      S1                                 S2 
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Fig. 17-Position error using conventional GNSS positioning – u-blox data collected at Test Set 

3. The figures in the legends are RMS errors in meters. 

 

Fig. 18-Position error using height-aiding approach – u-blox data collected at Test Set 3. The 

figures in the legends are RMS errors in meters. 
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Fig. 19-Position error using the 3D model-based NLOS prediction and height-aiding approach 

– u-blox data collected at Test Set 3. The figures in the legends are RMS errors in meters. 

Table 3 - Position accuracy improvement using terrain height-aiding and 3D model-based 
NLOS prediction (compared to conventional GNSS positioning with consistency checking) – 
Locations S1, S2, S3, and S4 on Figure 15. 

Approach Location 
Improvement in Accuracy 

Horizontal Vertical 

 
Height-aiding only 

 

S1 38% 79% 

S2 37% 78% 

S3 39% 73% 

S4 40% 66% 

All 38% 74% 

 
 

Height-aiding augmented 
with the 3D aided signal selection 

S1 71% 83% 

S2 53% 80% 

S3 52% 74% 

S4 73% 69% 
All 62% 77% 
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  Further data was collected at site S2 where it was found that the conventional GNSS solution 

used to initialize the new approach was more than 163m away from the true position. This 

makes it a good candidate to test our second initialization technique illustrated in Figure 11.     

  The results obtained using single-stage and two-stage initialization approaches are illustrated 

in Figure 20. It is clear that the two-stage initialization approach resolved the problem of the 

initial position error being too large for the single-stage initialization approach to handle 

(Where the single-stage initialization approach resulted in a larger error compared to the GNSS 

receiver calculated solution).   

 

Fig. 20-3D model-based NLOS prediction and height-aiding with the single-stage initialization 

approach (left) and two-stage initialization approach (right). The figures in the legends are 

RMS errors in meters. 

 

  At all of the other test sites (26 location displayed on Figure 12 and Figure 15), the positioning 

performance using the two initialization techniques was almost the same. The mean difference 

in RMS horizontal and vertical position error across all test sites between the two methods was 

0.7m and 1.1m, respectively.    

CONCLUSIONS AND FURTHER WORK  

  The ability of height-aiding to improve GNSS positioning in dense urban areas using an 

iterative process has been assessed using data collected at multiple sites. Using a height-aiding 

measurement from a 3D city model or separate terrain height database significantly improves 
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the single-epoch positioning accuracy, horizontally as well as vertically, due to the improved 

solution geometry. Using Leica Viva geodetic receiver measurements and comparing to the 

conventional GNSS positioning using 𝐶/𝑁0  weighting, horizontal accuracy is improved by 

44% and vertical accuracy by 79%.   

  Augmenting the height-aiding with 3D city model-based NLOS prediction aids signal 

selection and weighting using consistency checking further improved the accuracy by 22% 

horizontally and 13% vertically. The combined improvement was 56% horizontally and 82% 

vertically, a factor of 2.3 and 5.5, respectively. A u-blox EVK-M8T consumer-grade receiver 

was also used with the height-aiding and the 3D model-based NLOS prediction and the overall 

accuracy improvement across four locations in a dense urban area was of 62% horizontally and 

77% vertically, a factor of 2.7 and 4.1, respectively. The overall improvement, considering the 

data collected from both receivers, was 61% horizontally and 80% vertically, a factor of 2.5 

and 5, respectively. The overall RMS position error using the new method was 20.8m 

horizontally and 12.2m vertically. 

  Iterative initialization strategies have been demonstrated that accommodate the fact that the 

receiver does not possess an accurate knowledge of the actual position. It was found that using 

only height-aiding in the initial iterations, with 3D city model-based NLOS prediction 

introduced in later iterations, performance was better when the conventional GNSS horizontal 

error exceeded 100m. 

  In future work we plan to integrate the techniques presented here with GNSS shadow 

matching [24], a concept known as intelligent urban positioning [8]. We also propose to 

develop a more sophisticated ranging-based GNSS positioning algorithm that uses NLOS 

prediction from the 3D city model at individual candidate position instead of the average NLOS 

position across the search area. This will also be integrated with shadow matching. The 

algorithms presented here will then be used for initialization, minimizing the search area for 
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the subsequent positioning algorithms. Applications that could benefit from this include vehicle 

lane detection for intelligent transportation systems (ITS), location-based advertising, 

augmented-reality, and step-by-step guidance for the visually impaired and for tourists. 
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